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Abstract

We show that there is a constant k such that Buss’s intuitionistic theory IS12 does not prove
that SAT requires co-nondeterministic circuits of size at least nk. To our knowledge, this is
the first unconditional unprovability result in bounded arithmetic in the context of worst-case
fixed-polynomial size circuit lower bounds. We complement this result by showing that the
upper bound NP ⊆ coNSIZE[nk] is unprovable in IS12.

In order to establish our main result, we obtain new unconditional lower bounds against
refuters that might be of independent interest. In particular, we show that there is no efficient
refuter for the lower bound NP ⊈ i.o.-coNP/poly, addressing in part a question raised by Atserias
[Ats06].
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1 Introduction

1.1 Context and motivation

Pich and Santhanam [PS21] and subsequently Li and Oliveira [LO23] have shown that certain
strong complexity lower bounds are unprovable in bounded arithmetic theory PV1 and its exten-
sions, such as APC1 and S12. For instance, [PS21] established that PV1 does not prove that there

is a language L ∈ NP that is average-case hard against co-nondeterministic circuits of size 2n
o(1)

.
Note that, while the unprovability results of [PS21] and [LO23] are unconditional, they only apply
to significantly strong complexity lower bounds.

It would be more interesting to understand the (un)provability of circuit lower bounds that are
closer to major open problems from complexity theory, such as showing that NP is not contained in
P/poly. To achieve this, it is necessary to develop techniques to address the following three aspects
for which these lower bound statements are stronger than NP ⊈ P/poly:

(A) The statements consider average-case instead of worst-case lower bounds.

(B) They refer to sub-exponential size instead of super-polynomial size lower bounds.

(C) The lower bound is against co-nondeterministic circuits instead of deterministic circuits.

Aiming for unconditional results, we propose the consideration of these three challenges in the
more restricted (but formally necessary) setting of intuitionistic theories of bounded arithmetic.
Intuitionistic theories distinguish themselves from classical logic systems by aligning more closely
with the concept of constructive proofs. Notably, intuitionistic logic systems do not presuppose the
principles of the excluded middle and double negation elimination, which give rise to key inference
rules in classical logic (see, e.g., [Koh08] for some background and applications).1 We note that
connections between complexity theory and intuitionistic logic have been widely investigated (see,
e.g., [Bus86b, CU93, Bus90a, Har92, FM98, Bus90b, Avi00, Mon08, GP13, Jeř17] and references
therein).

1.2 Results

We show that worst-case fixed-polynomial size lower bounds against co-nondeterministic circuits
for a language in NP cannot be established in IS12 [Bus86b], the intuitionistic analogue of Buss’s
theory S12 [Bus86a]. This unconditional result addresses aspects (A) and (B) highlighted above,
in the setting of intuitionistic bounded arithmetic.2 We also remark that the lower bound we
consider, which is weaker than NP ̸⊂ coNP/poly, is implied by the widely believed conjecture that
PH does not collapse. On the other hand, we are not aware of any standard assumption that
implies the strong two-sided error average-case lower bounds for NP against subexponential-size
co-nondeterministic circuits considered in previous unprovability results [PS21, LO23].

A natural question is whether one can also unconditionally show that lower bounds against
deterministic circuits (instead of co-nondeterministic circuits) are unprovable in IS12, which corre-
sponds to Item (C) in the discussion above. This question is particularly interesting in light of the

1For instance, win-win arguments from complexity theory, such as the non-constructive proof of the existence of
a pseudodeterministic algorithm for generating primes from [OS17] by considering if PSPACE ⊂ BPP or not, are not
available in intuitionistic theories.

2Note that showing the unprovability of fixed-polynomial size lower bounds is stronger than showing the unprov-
ability of super-polynomial size lower bounds.

3



existence of non-trivial lower bounds that are provable in IS12. For instance, it is possible to show
in IS12 that the parity function on n input bits requires Boolean formulas of size Ω(n3/2), which is
a consequence of its provability in S12 [CKK+25] and a conservation result [Avi00, Theorem 3.17].
As we explain in more detail in Appendix A, for some formalizations of lower bound statements
against deterministic circuits, unprovability in IS12 yields unprovability in the stronger theory S12,
an observation that first appeared in Ghasemloo and Pich [GP13]. We believe that this connection
further motivates the investigation of the unprovability of complexity lower bounds in intuitionistic
theories.

Next, we provide more details about our results and formalizations.

Formalizations. Fix a polynomial-time nondeterministic machine M . Given n0 ∈ N and a size-
bound s : N → N that is sufficiently time-constructive and satisfies n ≤ s(n) ≤ 2n, we consider a
sentence LBexp(M, s, n0) stating that:3

∀n ∈ LogLog with n ≥ n0 ∀D ∈ coNSIZE[s(n)] ∃x ∈ {0, 1}n ErrorM (D,n, x) ,

where ErrorM (D,n, x) denotes the formula

(∃y, z ∈ {0, 1}s(n)M(x, y) = 1 ∧D(x, z) = 0) ∨ (∀y, z ∈ {0, 1}s(n) M(x, y) = 0 ∧D(x, z) = 1) .

This sentence expresses that, for every n ≥ n0, no co-nondeterministic circuit of size at most s(n)
decides L(M) on inputs of length n. The notation LBexp emphasizes that a candidate proof of this
sentence is able to manipulate concepts of exponential size 2O(n), since n ∈ LogLog. We refer to
Section 2.1 for more details on how to formalize this sentence in the setting of IS12.

If s(n) = nk for some rational number k ≥ 1, we can consider a sentence LBpoly(M, s, n0) stating
that:

∀n ∈ Log with n ≥ n0 ∀D ∈ coNSIZE[s(n)] ∃x ∈ {0, 1}n ErrorM (D,n, x) .

The key difference here is that when s(n) = nk it is sufficient to assume n ∈ Log to obtain a natural
formalization of complexity lower bounds. Correspondingly, the notation LBpoly emphasizes that a
candidate proof of this sentence can manipulate concepts of size polynomial in n.

Theorem 1.1. The following results hold:

(i) [Exponential Regime] Let δ > 0 be a rational number, n0 ∈ N, and M be a polynomial-time

nondeterministic machine. Then IS12 ⊬ LBexp(M, 2n
δ
, n0) .

(ii) [Polynomial Regime] Let n0 ∈ N and M be a polynomial-time nondeterministic machine.
Then there is an integer k ≥ 1 such that IS12 ⊬ LBpoly(M,nk, n0) .

The proof of Theorem 1.1 combines two main steps. First, we employ a strong witnessing result
[Bus86b, CU93] for the intuitionistic theory IS12 to show that the provability of a circuit lower bound
yields a computationally bounded refuter. A refuter for a lower bound of the form L /∈ C, where C
is a complexity class, is an algorithm R(1n, E) that, given an input length n and a device E from
C, outputs an n-bit string x such that E(x) ̸= L(x). We then establish unconditionally that such a
refuter does not exist. Consequently, the lower bound sentence cannot be proved in the theory IS12.

3Note that n ∈ LogLog essentially means that bounded quantifiers refer to objects of length 2O(n); similarly,
n ∈ Log means that bounded quantifiers refer to objects of length poly(n). For a formal definition, see Section 2.1.
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Elaborating on our approach, we now present some new consequences for refuters that might
be of independent interest. We use SATn to denote the decision version of the satisfiability problem
for De Morgan Boolean formulas represented by n-bit strings (our results are robust to encoding
details). As in the discussion above, we say that a refuter R for a language L succeeds against a
class C of devices on input length n if, for every E ∈ C, R(1n, E) outputs x ∈ {0, 1}n such that
E(x) ̸= L(x). Observe that the existence of such a refuter implies that L /∈ C.

Theorem 1.2. The following results hold:

(i) Let k and c be rational numbers such that 1 < k < c < k2. Then there is no non-uniform
refuter R(1n, En) for SATn against En ∈ coNSIZE[nk] that has circuit size ≤ nc and succeeds
on every large enough input length n.

(ii) There is an integer k ≥ 1 such that there is no non-uniform refuter R(1n, En) for SATn

against En ∈ coNSIZE[nk] of polynomial circuit size which succeeds on every large enough
input length.

These two items are incomparable. The first item of Theorem 1.2 is an impossibility result for
refuting even very weak lower bounds (nk gates for any fixed k > 1), but only addresses refuters
of size smaller than nk

2
. On the other hand, the second item holds against any polynomial-size

refuter, but does not provide an explicit constant k for the size bound.
Atserias [Ats06] raised the following related questions in a work showing that there is a ran-

domized refuter for the lower bound NP ⊈ P/poly (assuming NP ⊈ P/poly):4

• Is there a refuter for NP ⊈ i.o.-P/poly?

• Is there a refuter for NP ⊈ coNP/poly?

Thus, Theorem 1.2 Item (ii) provides an answer to a combination of these questions: there is no
refuter for NP ̸⊂ i.o.-coNP/poly.

At a high level, the proof of Theorem 1.2 proceeds by contradiction. From the existence of such
a refuter, we obtain a worst-case upper bound on the complexity of SATn. This step requires an
extension of a technique from previous papers [Kra11, Pic15] to the setting of worst-case complexity
and to the polynomial circuit size regime. To achieve this, we employ a new bootstrapping argument
(see Section 3.1) that invokes the refuter over different input lengths and aggregates the information
obtained from it. Finally, the circuit size upper bound extracted from the refuter contradicts the
original assumption that a refuter exists, since it implicitly assumes a corresponding circuit lower
bound. We note that the second item of Theorem 1.2 requires an extra non-constructive ingredient,
and as a result, the proof does not produce an explicit constant k.

Finally, we complement Theorem 1.1 by establishing the unprovability in IS12 of the upper
bound NP ⊆ coNSIZE[nk], for any fixed k ∈ N. The formalization of this upper bound statement
is presented in Section 4.

Theorem 1.3 (Informal, see Theorem 4.5). For any constant k ∈ N, IS12 ⊬ “NP ⊆ coNSIZE[nk]”.

4As usual, for a set C of languages, we let i.o.-C denote the set of languages L′ for which there is some L ∈ C such
that L′ and L agree on infinitely many input lengths.
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The proof of Theorem 1.3 relies on an adaptation of an approach from [KO17], which reduces
the unprovability of non-uniform circuit upper bounds to establishing certain uniform circuit lower
bounds (in the standard sense of complexity theory). In our result, the required uniform circuit
lower bound is achieved by a modification of an argument from [SW14].

Theorem 1.3 contributes to an active line of research on the unprovability of circuit upper bounds
[CK07, KO17, BM20, BKO20, CKKO21, ABM23]. In contrast to other unconditional results from
these papers, which hold even for stronger theories, Theorem 1.3 establishes the unprovability of
co-nondeterministic circuit upper bounds for NP.5

Altogether, Theorem 1.1 Item (ii) and Theorem 1.3 bring us closer to an unconditional inde-
pendence result for IS12 with respect to worst-case fixed-polynomial bounds in co-nondeterministic
circuit complexity.6

Finally, we note that both Theorem 1.1 and Theorem 1.3 can be extended to “semi-classical”
formalizations of the statements, where the sub-formula inside the outermost existential quantifier
can be replaced by any classically equivalent formula. In particular, the inner part of the lower
bound sentence can be replaced with its double negation translation. Details of this extension are
discussed in Section 5.

1.3 Related work

Ghasemloo and Pich [GP13] studied connections between natural proofs [RR97] and intuition-
istic logic. In a bit more detail, the theory of natural proofs can be used to establish the conditional
unprovability of circuit lower bounds in classical theories admitting certain interpolation theorems
(see [Raz95, Kra97]), and [GP13] investigates what (conditional) consequences this can have for
the provability of lower bounds in intuitionistic theories.

Theorem 1.1 should be contrasted with a result from Cook and Urquhart [CU93, Theorem
10.16] establishing the unprovability of super-polynomial lower bounds for the extended Frege
propositional proof system in the related intuitionistic theory IPVω (see also [KP89, Corollary 4]
and [Bus90b, Section 6.2]). We note that the two results consider different lower bound questions,
formalizations, and choice of parameters. Moreover, their proofs rely on completely different ap-
proaches. For instance, in terms of the formalization, the sentences LBexp and LBpoly do not state
that the input x under ErrorM (x) is a tautology, which appears to be crucial in the results from
[CU93, KP89]. Furthermore, to our knowledge, it is not known how to extend their results to the
fixed-polynomial size regime, as in Theorem 1.1 Item (ii).

It is perhaps interesting to compare Theorem 1.2 Item (ii) with the positive results of Gutfreund,
Shaltiel, and Ta-Shma [GST07] about the existence of refuters (see also [CJSW21] and references
therein). For instance, [GST07, Lemma 4.1] roughly states that, if NP ̸= RP, then it is possible
to produce counter-examples to the correctness of a randomized input machine of complexity nk

in time of order nk
2
. While the parameters of our lower bound and of their upper bound nearly

match, we note that their results and Theorem 1.2 Item (ii) refer to different complexity lower

5Note that establishing the unprovability of co-nondeterministic circuit size upper bounds is stronger than estab-
lishing the unprovability of deterministic circuit size upper bounds.

6Formally, our results show that for each L ∈ NP there is k such that the lower bound L /∈ coNSIZE[nk] is
unprovable, and that for each k there is L ∈ NP such that the upper bound L ∈ coNSIZE[nk] is unprovable. While
our unprovability results are robust to the use of different machines of the same time complexity to represent L in
a sentence, we note that they do not give a fixed pair (L′, k′) for which both lower bounds and upper bounds are
unprovable.
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bounds and consider slightly different refuter guarantees.
Finally, we mention that the bootstrapping procedure employed in the proof of Theorem 1.2

is somewhat similar to an argument that appears in [BTW10] in the context of refuters for SAT
solvers.

Acknowledgements. We would like to thank Erfan Khaniki and Dimitrios Tsintsilidas for dis-
cussions on proof complexity lower bounds in intuitionistic bounded arithmetic. We are also grateful
to the anonymous reviewers for several comments that improved our presentation. Igor C. Oliveira
received support from the Royal Society University Research Fellowship URF\R1\191059; the
UKRI Frontier Research Guarantee Grant EP/Y007999/1; and the Centre for Discrete Mathemat-
ics and its Applications (DIMAP) at the University of Warwick. Lijie Chen is supported by a Miller
Research Fellowship. Jiatu Li is supported by MIT Akamai Presidential Fellowship.

2 Preliminaries

2.1 Intuitionistic bounded arithmetic

We consider the intuitionistic theory of bounded arithmetic IS12 introduced in [Bus86b] (see
also [CU93, Bus90a] for equivalent definitions). Our unprovability results are quite robust, as they
rely on the consequences of a witnessing theorem for IS12 and do not crucially depend on details
of the formalization. Nevertheless, for concreteness and in order to complement the discussion
in Appendix A, below we provide more details about the theory. The exposition assumes basic
familiarity with bounded arithmetic (see, e.g., [Bus97] for the necessary background).

Informally, IS12 can be defined as theory S12 but with intuitionistic predicate logic and polynomial
induction restricted to Σb+

1 -formulas, i.e., Σb
1-formulas that do not contain implications and nega-

tions. Next, we review some details for a reader that might not be familiar with this terminology.
Since we will not make use of sequent calculus, we follow the Hilbert-style equivalent presentation
from [CU93].

As in the case of S12, we take the language of IS
1
2 to consist of non-logical symbols 0, S, +, ×, #,

⌊12x⌋, |x|, and ≤ with their usual interpretations over the intended standard model N. The logical
symbols are ∧, ∨, →, ∀, ∃, and =. The connectives ¬ and ↔ can be introduced with appropriate
abbreviations using → [CU93, Page 109]. In terms of non-logical axioms, IS12 consists of 21 basic
axioms (see [CU93, Page 111]) and the axiom scheme Σb+

1 -PIND (discussed below). The standard
logical axiom schemes and rules of inference governing intuitionistic predicate logic are listed in
[CU93, Page 110].

For a term t not containing a variable x, we can define bounded quantifiers (∃x ≤ t)φ and
(∀x ≤ t)φ via the abbreviations ∃x (x ≤ t ∧ φ) and ∀x (St ≤ x ∨ φ), respectively. Sharply bounded
quantifiers are bounded quantifiers of the form (∃x ≤ |t|) and (∀x ≤ |t|). We recall that Πb

0 = Σb
0

is the set of formulas whose quantifiers are all sharply bounded. Similarly, formulas containing
only bounded quantifiers can be classified into hierarchies Σb

i and Πb
i by counting alternations of

bounded quantifiers while ignoring sharply bounded quantifiers (cf. [CU93, Page 111]). A formula
is positive if it contains no occurrence of the symbol → (recall that negations are introduced via
abbreviation and do not need to be explicitly discussed). A formula is Σb+

1 if it is both Σb
1 and

positive.
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We define ∀n ∈ Log (resp. ∃n ∈ Log) as the abbreviation of ∀N ∀n = |N | (resp. ∃N ∃n = |N |).
Similarly, we define ∀n ∈ LogLog (resp. ∃n ∈ LogLog) as the abbreviation of ∀N ∀n = ||N ||
(resp. ∃N ∃n = ||N ||).

Finally, IS12 admits the aforementioned Σb+
1 -PIND axiom scheme, consisting of formulas (possi-

bly with additional parameters) of the form φ(0) ∧ ∀x (φ(⌊12x⌋) → φ(x)) → ∀y φ(y) , where φ is a

Σb+
1 -formula.

Formalization of complexity lower bounds. We now discuss the formalization of the sen-
tences LBexp(M, s, n0) and LBpoly(M, s, n0) informally introduced in Section 1.2. Recall that M is
a non-deterministic polynomial-time machine, s : N → N, and n0 ∈ N. The fixed machine M and
the constant n0 can be explicitly encoded using a term of IS12 built from the constant symbol 0 and
from the other function symbols. Note that, in order to formalize the lower bound statements, it
is sufficient to be able to define any polynomial-time function in the language of IS12. Indeed, this
allows us to employ appropriate formulas to specify the output of M on a given input, check if an
object D encodes a circuit of a given size, evaluate a given circuit on an input pair (x, y), decode
an n-bit string from an object x, etc.

It turns out that, as established in [CU93, Corollary 2.7], every function f computable in
polynomial time is Σb+

1 -definable in IS12. This means that there is a Σb+
1 -formula ϕ(x, y) such that

N |= ∀xϕ(x, f(x)) and IS12 proves that ∀x ∃! y ϕ(x, y) (see [CU93, Pages 114-115]). Given this result,
it is not hard to fully specify the sentences LBexp(M, s, n0) and LBpoly(M, s, n0) using a formula
for each relevant polynomial-time function. Since the details of how this can be done appear on
previous works on the provability of lower bounds in bounded arithmetic (see, e.g., [Pic15]), below
we comment only on the part of the formalization that affects the running time of computations
obtained from proofs in IS12.

For instance, the sentence LBexp(M, s, n0) can be expressed as

∀N ∀n ∀D ∃x
(
n = ||N || ∧ n ≥ n0 ∧ |x| = n ∧ Circuits(D,n) → ErrorM (D,n, x)

)
,

where Circuits is a Σb+
1 -formula that checks if D is the description of a co-nondeterministic circuit

of size at most s(n), and ErrorM is built as a formula that checks if M(x) ̸= D(x). Note that if
x is an n-bit number and D encodes a circuit of size at most 2n, a polynomial-time function f
over inputs N , n, and D computes in time poly(|N |, |D|, |n|) = 2O(n). On the other hand, when
s(n) ≤ nk for some k, we can take n = |N | in the formalization of LBpoly(M, s, n0), which yields an
algorithm from a proof in IS12 whose running time is poly(n) instead of poly(2n).

We stress that our unprovability results do not depend on the specific formulas employed to
formalize the lower bound sentence. For more detailed discussion, see Section 5.

2.2 Complexity theory

We assume basic familiarity with complexity theory, e.g., the definition of complexity classes
P,NP and coNP (see [AB09]). We use NSIZE[s(n)] (resp. coNSIZE[s(n)]) to denote the set of
languages decidable by families of nondeterministic (resp. co-nondeterministic) circuits of size s(n).
For a set C of languages, we let i.o.-C denote the set of languages L′ for which there is some L ∈ C
such that L′ and L agree on infinitely many input lengths.
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Uniform circuits. Let C be a non-uniform complexity class, e.g., C = SIZE[poly(n)] or C =
NSIZE[poly(n)]. We say that L ∈ P-uniform C if L is decidable by a family of C-circuits {Cn :
{0, 1}n → {0, 1}}n∈N such that there is a polynomial-time Turing machine M such that M(1n)
outputs the description of Cn.

Refuters. Let L be a language, R be an algorithm, and C be a complexity class. We often abuse
notation and also view C as a class of computational devices. We say that R is a refuter for the
lower bound L /∈ C (or a refuter for L against C) on input length n if, for every E ∈ C, R(1n, E)
outputs x ∈ {0, 1}n such that E(x) ̸= L(x). We extend this definition in the natural way when R
represents a non-uniform family of circuits. In this case, we might omit the input 1n and simply
write Rn.

3 Unprovability of Lower Bounds in IS12

In this section, we prove new results about refuters and employ them to establish the unprov-
ability of lower bounds against co-nondeterministic circuits in theory IS12.

3.1 Unconditional lower bounds for refuters

In this section, we prove each item of Theorem 1.2 and establish some related results needed in
the proof of Theorem 1.1. First, we prove the following lemma, which shows that worst-case upper
bounds can be extracted from refuters, even in situations where the refuter runs in exponential
time. The lemma can be used to show an unconditional lower bound against refuters and will be
useful in the proof of Theorem 1.1 Item (i).

Lemma 3.1. Let L ∈ NP, and let δ > 0. Suppose that there is an algorithm R(1n, D) such that,

for every co-nondeterministic circuit D on n input variables and of size at most 2n
δ
, R(1n, D) runs

in time 2O(n) and outputs a string w ∈ {0, 1}n such that D(w) ̸= L(w). Then, for every language
L′ ∈ NP and for every constant ε > 0, we have L′ ∈ DTIME[2n

ε
].

Proof. Suppose that L ∈ NTIME[nd] for some d ∈ N. Let M ′ be a nondeterministic machine that
decides L′ and runs in time at most nc

′
, where c′ ∈ N. Let ε > 0 be an arbitrary constant. Finally,

let γ = γ(d, ε) > 0 be a small enough constant to be defined later. We argue that the following
deterministic algorithm Bγ(x) decides L′ in time O(2n

ε
):

1. Let x ∈ {0, 1}n be the input string.

2. Bγ computes the description of a co-nondeterministic circuit E′ of size at most n2c
′
that

decides the complement of L′. In other words, E′(u) = 1−L′(u) for every string u ∈ {0, 1}n.

3. Bγ produces the code of a co-nondeterministic circuit Dx(y), where y ∈ {0, 1}nγ
, such that

Dx(y) ignores its input y and computes according to E′(x).

(In other words, while the length of the main input string y of Dx(y) is smaller than the length
of the main input string u of E′(u), they share the same non-deterministic input string, and
E′ sets u to be the fixed string x.)

4. Bγ computes w = R(1n
γ
, Dx) ∈ {0, 1}nγ

.
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5. Finally, Bγ determines the bit b = L(w) by a brute force computation, then sets b as its
output bit.

First, we argue that Bγ decides L′. Since Dx is a co-nondeterministic circuit over m = nγ

input strings and of size at most n2c
′
= m2c′/γ ≤ 2m

δ
(for a large enough m and assuming that γ

is constant), R(1n
γ
, Dx) outputs a string w ∈ {0, 1}nγ

such that L(w) = 1−Dx(w). Consequently,

b = L(w) = 1−Dx(w) = 1− E′(x) = 1− (1− L′(x)) = L′(x) ,

i.e., the output bit of B(x) is correct.
Next, we argue that B runs in time at most O(2n

ε
). Clearly, Steps 1–3 all run in poly(n) time.

Moreover, Step 4 runs in time 2O(nγ) under the assumption on the running time of R(1n
γ
, Dx).

This is at most 2n
ε
if we set γ ≤ ε/2. Finally, since L ∈ NTIME[nd], the brute force computation in

Step 5 can be performed in deterministic time 2O(ℓd) over an input of length ℓ. Since ℓ = nγ = |w|
in our case, if γ ≤ ε/2d we get that Step 5 runs in time at most 2n

ε
. Overall, if we set γ ≜ ε/2d, it

follows that Bγ runs in time at most O(2n
ε
). This completes the proof that L′ ∈ DTIME[2n

ε
].7

In the proof of the next result, we employ a more sophisticated bootstrapping argument consisting
of iterated applications of the refuter over different input lengths. Recall that we use SATn to denote
the satisfiability problem for De Morgan Boolean formulas represented by n-bit strings.

Theorem 3.2 (Restatement of Theorem 1.2 Item (i)). Let k and c be rational numbers such
that 1 < k < c < k2. Then there is no non-uniform refuter R(1n, En) for SATn against En ∈
coNSIZE[nk] that has circuit size ≤ nc and succeeds on every large enough input length n.

Proof. In order to simplify some calculations, we prove the result for a fixed but arbitrary language
L ∈ NTIME[n]. Since poly(log n) overheads in our estimates do not affect the result, it is easy to
check that the same proof works for a language in NTIME[n · poly(log n)], such as SAT = {SATn}.
Similarly, we will tacitly assume that machines of complexity t can be simulated by circuit of size t
(instead of O(t · log t)). Our construction and upper bounds can be easily adjusted to account for
these small overheads, since for constants a < b, na · poly(log n) < nb for every large enough n.

Let 1 < k < c < k2, and let M be a linear time nondeterministic machine that decides L. Now
consider an arbitrary n0 ∈ N, and suppose towards a contradiction that R = {Rℓ}ℓ≥n0 is a sequence
of nonuniform circuits Rℓ of size ≤ ℓc such that, given a circuit Eℓ ∈ coNSIZE[ℓk] over ℓ input bits,
Rℓ(Eℓ) outputs a string xℓ such that M(xℓ) ̸= Eℓ(xℓ). We will prove the following claim.

Claim 3.3. There is an input length ℓ0 ≥ n0 and a deterministic circuit Bℓ0 of size at most ℓk0 that
agrees with the language L over {0, 1}ℓ0, i.e., Bℓ0(x) =M(x) for all x ∈ {0, 1}ℓ0.

Note that the existence of Bℓ0 is in contradiction with the existence of the refuter Rℓ0 , since
there is no string xℓ0 such that Bℓ0(xℓ0) ̸= M(xℓ0). Consequently, in order to complete the proof
of Theorem 3.2, it is sufficient to establish Claim 3.3.

Proof of Claim 3.3. We will consider a large enough input length ℓ0 ≥ n0 specified later in the
proof. First, we describe the pseudocode of a (recursively defined) deterministic circuit Bℓ0(x) that
computes as follows:

7We observe that, in the proof of Lemma 3.1, it is enough for the refuter R to work on co-nondeterministic circuits
of size nα(n), where α(n) → ∞. However, the formulation above will be sufficient for our purposes.
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1. Bℓ0 is given a string xℓ0 ∈ {0, 1}ℓ0 as input.

2. It computes the description of a co-nondeterministic circuit Eℓ1(z) operating on inputs of
length ℓ1 that ignores its input string z and satisfies Eℓ1(z) ≜ 1−M(xℓ0).

(The value ℓ1 < ℓ0 will be defined below.)

3. Bℓ0 obtains xℓ1 ≜ Rℓ1(Eℓ1).

(Note that if size(Eℓ1) ≤ ℓk1 then M(xℓ1) = 1− Eℓ1(xℓ1) = 1− (1−M(xℓ0)) =M(xℓ0).)

4. Finally, it computes bℓ1 ≜M(xℓ1), and uses this bit to decide M(xℓ0).

(As explained below, the key point of the construction is that we can (deterministically)
compute the bit bℓ1 in a recursive fashion via Steps 1–3 using the sequence of refuters.)

Before elaborating on the recursion performed in Step 4, we discuss the complexity parameters
involved. Let t(ℓ1) denote the circuit complexity of computing the bit bℓ1 ≜M(xℓ1) on an arbitrary
input xℓ1 , i.e., the complexity of deciding if xℓ1 ∈ L over strings of length ℓ1. As explained below,
in order for Bℓ0 to be correct and of the desired size, it is sufficient that:

• size(Eℓ1) ≈ ℓ0 ≤ ℓk1 (i.e., the refuter receives a circuit of bounded size in Step 3), where we
have used that M runs in nondeterministic linear time and omitted polylog factors.

(In our analysis below, we can assume that the description of Eℓ1 can be computed in size at
most ℓk0/4, since k > 1 and M runs in linear time.)

• We need that ℓ1 ≥ n0, so the output of Rℓ1(Eℓ1) is defined in Step 3.

• The circuit size of the refuter in Step 3, which is upper bounded by ℓc1, satisfies ℓ
c
1 ≤ ℓk0/4.

• The circuit size t(ℓ1) needed to compute bℓ1 in Step 4 satisfies t(ℓ1) ≤ ℓk0/4.

If these conditions are met, Bℓ0(x) = M(x) for all x ∈ {0, 1}ℓ0 , and its overall size t(ℓ0) is strictly
less than ℓk0 (with some room to spare that will be handy later in the proof), since

t(ℓ0) ≤ ℓk0/4 + ℓk0/4 + t(ℓ1) ≤ ℓk0/4 + ℓk0/4 + ℓk0/4 < ℓk0.

Constraints. The conditions described above yield the following inequalities (omitting some low
order terms):

ℓ
1/k
0 ≤ ℓ1 ≤ ℓ

k/c
0 (thus c < k2) and t(ℓ1) ≤ ℓk0/4.

Recall that the condition c < k2 is one of our assumptions. Jumping ahead, we will define ℓ1 as a
function of ℓ0, k, and c, and employ a recursive approach to compute bℓ1 so that the conditions are
satisfied.

Key insight. Note that in order to compute bℓ1 = M(xℓ1) we must solve the same problem on a
smaller input length, i.e., we would like to design a circuit Bℓ1 that computes L on input length
ℓ1 ≪ ℓ0. Consequently, using that we have refuter circuits for all input lengths ≥ n0, it is enough
to iterate the same construction!

Recursion. The circuit Bℓ1 computes analogously to Bℓ0 , by considering a smaller input length
ℓ2 ≪ ℓ1 and a corresponding co-nondeterministic circuit Bℓ2 . Similarly to the analysis from above,
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we obtain the following constraints to guarantee its correctness and the desired circuit size bound
(again omitting small order factors to focus on the relevant asymptotics):

size(Eℓ2) ≈ ℓ1 ≤ ℓk2 and ℓc2 ≤ ℓk1/4 and t(ℓ2) ≤ ℓk1/4.

This forces that

ℓ
1/k
1 ≤ ℓ2 ≤ ℓ

k/c
1 and t(ℓ1) ≤ ℓk1/4 + ℓk1/4 + t(ℓ2) < 3 · ℓk1/4 ≤ ℓk0/4,

where we assumed that t(ℓ2) ≤ ℓk1/4 and used that ℓ1 ≪ ℓ0. In other words, we need

ℓ
1/k
1 ≤ ℓ2 ≤ ℓ

k/c
1 (thus c < k2) and t(ℓ2) ≤ ℓk1/4.

Parameters and base case. Consider the input lengths ℓ0 > ℓ1 > . . . > ℓd explored in this
way, together with the corresponding circuits Bℓ0 , . . . , Bℓd , where each Bℓi contains Bℓi+1

as a sub-
routine. In other words, Bℓ0 appears close to the input string, followed by Bℓ1 , and so on. (The
string xℓi+1

computed by Bℓi serves as the input string to Bℓi+1
.) We start with an input length

ℓ0 sufficiently larger than n0 so that all calls to the non-uniform refuter R consider input lengths
not smaller than n0. In order to satisfy the inequalities from above, our parameters are defined as
follows:

– Sequence of input lengths. We let ℓi+1 ≜ ℓ
1/k
i . Therefore, ℓd = ℓ

1/kd

0 .

– Number of stages. We take d large enough, so that ℓd = ℓ
1/kd

0 = log ℓ0, i.e., d ≜ (log log ℓ0 −
log log ℓd)/ log k = O(log log ℓ0).

– Initial input length ℓ0. We want ℓd = log ℓ0 ≥ n0, so we set ℓ0 ≜ 2n0 .

In the base case (input length ℓd and circuit Bℓd), we simply consult the hardcoded truthtable of
the language L computed by machine M on inputs of length ℓd = log ℓ0. The truthtable of L on
input length log ℓ0 can be nonuniformly stored using ℓ0 bits. This can be seen as an overhead in
the final size of Bℓ0 that is of order ℓ0 ≤ ℓk0/4, where this inequality uses that k > 1 and assumes
that ℓ0 ≥ n0 is large enough. Since the overall size bound for Bℓ0 is given by a simple additive
function obtained from the concatenation of a sequence of circuits, it is not hard to see that its
total size is at most ℓk0, as desired.

As explained above, this completes the proof of Theorem 3.2.

The next lemma will be used in the proof of Theorem 1.1 Item (ii).

Lemma 3.4. Let L ∈ NTIME[nc] for some constant c ≥ 1. The following statements hold:

(i) If there is a polynomial-time refuter R for the lower bound L /∈ i.o.-coNSIZE[s(n)] for some
monotone time-constructible function s : N → N such that ω(nc · log n) ≤ s(n) ≤ poly(n), then
L ∈ P.

(ii) If there is a polynomial-size non-uniform refuter R for the lower bound L /∈ i.o.-coNSIZE[s(n)]
for some monotone time-constructible function s : N → N such that ω(nc · log n) ≤ s(n) ≤
poly(n), then L ∈ P/poly.
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Proof. The argument is similar to the construction described above. In order to establish the first
item, consider the following polynomial-time algorithm that aims to solve L. On a given input
instance x ∈ {0, 1}n for L, we construct a coNSIZE[O(nc · log n)]-circuit Dx : {0, 1}n/2 ×{0, 1}nc →
{0, 1} of the form Dx(u, v) (where v is the nondeterministic input string) that ignores its primary
input u ∈ {0, 1}n/2 and computes according to 1−L(x). Since L ∈ NTIME[nc], the transformation
from machines to circuits guarantees that Dx(u, ·) is a co-nondeterministic circuit of size at most
O(nc · log n) ≤ s(n/2), assuming that n is sufficiently large. Moreover, a description of Dx can be
computed from x and from the nondeterministic machine for L in time polynomial in n.

Using the polynomial-time refuter R on input (1n/2, Dx) and the size upper bound for Dx, we
can find a string z1 ∈ {0, 1}n/2 such that Dx(z1) ̸= L(z1). Using the definition of the circuit Dx,
which as a co-nondeterministic circuit satisfies Dx(u) = 1−L(x) for every input u ∈ {0, 1}n/2, this
implies that

L(z1) = 1−Dx(z1) = 1− (1− L(x)) = L(x) .

To sum up, in time polynomial in n, we have reduced the problem of deciding L on x ∈ {0, 1}n
to that of deciding L on z1 ∈ {0, 1}n/2. We now recursively evaluate L(z1) in a similar fashion until
the input length is smaller than a large enough constant C. In other words, we produce a sequence
z1, . . . , zk of inputs, where each |zi| = n/2i, k ≤ log n, |zk| ≤ C, and

L(x) = L(z1) = . . . = L(zk) .

Since L(zk) can be computed in constant time by brute force and there are at most log n stages of
the recursion, it follows that we can decide L(x) in time polynomial in n = |x|, i.e., L ∈ P.

The proof of the second item is completely analogous to the proof of the first item, i.e., it is
sufficient to consider circuit size instead of running time.

We obtain the following consequence.

Theorem 3.5 (Restatement of Theorem 1.2 Item (ii)). There is an integer k ≥ 1 such that there
is no non-uniform refuter R(1n, En) for SATn against En ∈ coNSIZE[nk] of polynomial circuit size
which succeeds on every large enough input length.

Proof. Assume such a polynomial size refuter exists for k = 2, since we are done otherwise. Using
that SAT ∈ NTIME[n · poly(log n)] and setting s(n) = n2, it follows from Lemma 3.4 that SAT ∈
P/poly. As a consequence, there is a constant c ∈ N and a sequence of non-uniform (deterministic)
circuits of size nc that compute SATn on every large enough input length n. But then there is no
refuter witnessing that SATn /∈ coNSIZE[nk] when k = c+ 1, since this lower bound is simply false
when the input length is large enough.

3.2 Unprovability of lower bounds via refuter lower bounds

In this section, we prove each item of Theorem 1.1. We will need the following witnessing result
for the intuitionistic theory IS12.

Theorem 3.6 (Witnessing Theorem for IS12 [Bus86b, CU93]). Let φ be an arbitrary formula, and
suppose that

IS12 ⊢ ∀x ∃y φ(x, y) .
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Then there is a polynomial-time computable function f such that

N |= ∀a φ(a, f(a)) .

Furthermore, there is a Σb+
1 -formula ψ(x, y) such that:

(i) IS12 ⊢ ∀x ∀y (ψ(x, y) → φ(x, y)) .

(ii) IS12 ⊢ ∀x ∀y ∀z (ψ(x, y) ∧ ψ(x, z) → y = z) .

(iii) IS12 ⊢ ∀x ∃y ψ(x, y) .

In particular, Theorem 3.6 shows that the outermost existential quantifier of a sentence of
arbitrary quantifier complexity provable in IS12 can be efficiently witnessed by a polynomial-time
function.

Theorem 3.7 (Restatement of Theorem 1.1 Part (i)). Let δ > 0 be a rational number, n0 ∈ N,
and M be a polynomial-time nondetermistic machine. Then IS12 ⊬ LBexp(M, 2n

δ
, n0) .

Proof. We argue by contradiction. Under the assumption that

IS12 ⊢ LBexp(M, 2n
δ
, n0)

for a choice of M , δ > 0, and n0, it follows from Theorem 3.6 that there is a refuter R(1n, D)
that runs in time 2O(n) and outputs an input x ∈ {0, 1}n such that ErrorM (D,n, x), whenever D

is a co-nondeterministic circuit of size at most 2n
δ
and n ≥ n0. By Lemma 3.1, for any choice of

ε > 0, we get that L(M) ∈ DTIME[2n
ε
]. Taking ε < δ, this upper bound and the provability of

LBexp(M, 2n
δ
, n0) contradict the soundness of IS12.

Theorem 3.8 (Restatement of Theorem 1.1 Part (ii)). Let n0 ∈ N and M be a polynomial-time
nondetermistic machine. Then there is an integer k ≥ 1 such that IS12 ⊬ LBpoly(M,nk, n0) .

Proof. Let nc be an upper bound on the nondeterministic time complexity of M . Towards a
contradiction, assume that IS12 ⊢ LBpoly(M,nk, n0) for every k ≥ 1. In particular, this holds for
k = 2c. It follows from Theorem 3.6 that there is a refuter R(1n, D) that runs in time poly(n)
and outputs an input x ∈ {0, 1}n such that ErrorM (D,n, x), whenever D is a co-nondeterministic
circuit of size at most nk and n ≥ n0. Consequently, by Lemma 3.4, we get that L(M) ∈ P. In
particular, the sentence LBpoly(M,nk, n0) is false for some large enough constant k. This and the
assumption that IS12 ⊢ LBpoly(M,nk, n0) for every k ≥ 1 contradict the soundness of IS12.

4 Unprovability of Upper Bounds in IS12

In this section, we prove unconditionally that a natural formalization of the circuit upper bound
NP ⊆ coNSIZE[nk] is unprovable in IS12, for every fixed constant k.
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4.1 Unconditional uniform lower bound against co-nondeterministic circuits

We first prove that NP ⊈ P-uniform coNSIZE[nk], for every constant k. That is, for each k,
there is a language L ∈ NP that cannot be decided by any polynomial-time uniform family of co-
nondeterministic circuits of size nk. This uniform lower bound is obtained through an adaptation
of a technique of Santhanam and Williams [SW14] showing that P ⊈ P-uniform SIZE[nk].

First, we will need the following standard “no complementary speedup theorem”. Following
standard notation from complexity theory, we use NTIME[t(n)]/a(n) to denote the set of languages
that can de decided in nondeterministic time t(n) using a(n) advice bits per input length.

Theorem 4.1 (Folklore). For every constant b ≥ 1, coNTIME[nb+1] ⊈ NTIME[nb]/o(n).

Proof Sketch. Fix any constant b ≥ 1. Consider the following co-nondeterministic Turing machine
M that runs in time O(nb+1): On any input of the form x = (M̂, α, π) ∈ {0, 1}n, where M̂ is
interpreted as the encoding of a (clocked) nondeterministic Turing machine running in time O(nb),
αn is interpreted as the advice to M̂ on input length n, and π ∈ {0}∗ is a padding string, M
simulates M̂(x)αn (i.e., M̂ on input x with advice string αn) and accepts if and only if M̂(x)αn

rejects. It is not hard to show that the language L(M) /∈ NTIME[nb]/o(n).

Next, we introduce an auxiliary definition and establish a proposition that will be useful.

Definition 4.2. Let C = {Cn}n≥1 be a family of polynomial-size nondeterministic circuits, and
m = m(n) be a constructive function. The positive and negative m-padded direct connect language
for C, short for m-pDCL(C) and m-nDCL(C), are defined as follows:

m-pDCL(C) ≜ {(n, 1m, i) | ⟨Cn⟩i = 1},
m-nDCL(C) ≜ {(n, 1m, i) | ⟨Cn⟩i = 0},

where ⟨Cn⟩ is the string that encodes the circuit Cn.

Proposition 4.3. If C = {Cn}n≥1 is a P-uniform family of (nondeterministic) circuits, the padded
direct connect languages nε-pDCL(C), nε-nDCL(C) ∈ P for any fixed constant ε ∈ (0, 1).

Proof. Given (n, 1n
ε
, i), one can first print the description y = ⟨Cn⟩ of Cn in poly(n) time, then

check whether the i-th bit is 0 or 1. Since the input length is at least nε, this algorithm runs in
polynomial time.

Theorem 4.4. For every positive integer k, NP ⊈ P-uniform coNSIZE[nk].

Proof. We argue that coNP ⊈ P-uniform NSIZE[nk]. The theorem follows from this separation
by a simple complementation argument. Let k be any constant, and Hb be the hard language in
Theorem 4.1 for some b > k to be determined later. Towards a contradiction, we assume that for
every language L ∈ coNP, there is a family of P-uniform nondeterministic circuits C = {Cn}n≥1

of size cnk that decides L, where c is an arbitrary constant that can depend on L. In particular,
this uniform fixed polynomial upper bound holds for Hb. We will use the fixed polynomial upper
bound for coNP to optimize Hb to the extent that it violates Theorem 4.1.

1. (Pad Down). Let ε ≜ 1/2k and C = {Cn}n≥1 be the P-uniform family of nondeterministic
circuits of size cnk that decides Hb. By Proposition 4.3, we know that nε-pDCL(C) and
nε-nDCL(C) are in P, and therefore also in coNP.
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2. (Compress Cn). Let m = m(n) ≤ O(log n) + nε be the length of the input (n, 1n
ε
, i) for

nε-pDCL(C) and nε-nDCL(C). Since nε-pDCL(C) ∈ coNP, by the upper bound for coNP,
we get that there is a family of nondeterministic circuits Dp = {Dp

m}m≥1 of size c′mk that
decides nε-pDCL(C). Similarly, there is a family of nondeterministic circuits Dn = {Dn

m}m≥1

of size c′′mk that decides nε-nDCL(C). Note that the sizes of both circuits Dp
m and Dn

m are
O(mk) ≤ O(nεk) = O(

√
n), which gives a succinct representation of Cn.

3. (Speedup with Advice). Now we speedup the computation of Hb with Cn, D
p
m, and Dn

m. Let
M ′

αn
be the following nondeterministic algorithm with advice {αn}n≥1 of length o(n):

• The advice is defined as αn ≜ (Dp
m, Dn

m).

• Let αn = (Dp
m, Dm

n ) be the advice and x ∈ {0, 1}n be the input. Let ℓ ≜ |⟨Cn⟩|. Note that
since Cn is of size O(nk), ℓ ≤ Õ(nk). The algorithm nondeterministically guesses a string
y ∈ {0, 1}ℓ for every i ∈ [ℓ], then verifies that for every i ∈ [ℓ], yi = ⟨Cn⟩i. Concretely,
for every i ∈ [ℓ], the algorithm works as follows: if yi = 1, it simulates Dp

m(n, 1n
ε
, i) and

immediately rejects if Dp
m rejects; otherwise, the algorithm simulates Dn

m(n, 1n
ε
, i) and

immediately rejects ifDn
m rejects. Note that since bothDp

m andDn
m are nondeterministic

circuits of size O(
√
n), the running time for this step is O(ℓ) + Õ(

√
n) = Õ(nk). After

this step, we know that y = ⟨Cn⟩.
• Finally, the algorithm simulates Cn(x), which takes Õ(nk) time.

In summary, this algorithm takes an advice of length o(n) and simulates Cn(x) in time Õ(nk).
Since Cn decides Hb, this algorithm also decides Hb. Therefore, Hb ∈ NTIME[nk+1]/o(n).

This leads to a contradiction by choosing b = k + 2.

4.2 Unprovability of upper bounds via uniform lower bounds

We now combine the uniform lower bound (Theorem 4.4) and the witnessing theorem for IS12
(Theorem 3.6) to establish the unprovability of NP ⊆ coNSIZE[nk] in IS12. First, we explain how to
formalize this upper bound statement. This is similar to a formalization in [KO17].

Formalization. The fixed polynomial circuit upper bound NP ⊆ coNSIZE[nk] states that for
every polynomial-time nondeterministic Turing machine M and every input length n, there is a
co-nondeterministic circuit C of size O(nk) such that C(x) = M(x). For each k, we capture the
upper bound statement using a collection of sentences

“NP ⊆ coNSIZE[nk]” ≜ {UBM (k, c) |M is an NP machine and c ∈ N},

where UBM (k, c) is the sentence:

UBM (k, c) ≜ ∀n ∈ Log ∃C ∈ coNSIZE[cnk] ∀x ∈ {0, 1}n ¬ErrorM (C, n, x).

The sentence UBM (k, c) can be expressed in a natural way, similarly to the lower bound sentence
LBpoly described in Section 2.1.

For a fixed k, we say that a theory T proves “NP ⊆ coNSIZE[nk]” if for every polynomial-time
nondeterministic Turing machine M there is a constant c such that T ⊢ UBM (k, c).

We are now ready to prove the main result of this section.
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Theorem 4.5. For every k ∈ N, IS12 ⊬ “NP ⊆ coNSIZE[nk]”.

Proof. Towards a contradiction, we assume that IS12 ⊢ “NP ⊆ coNSIZE[nk]” for some k ∈ N, that
is, for every NP machine M there is a constant cM such that IS12 ⊢ UBM (k, cM ). For convenience,
we write

UBM (k, c) = ∀n ∈ Log ∃C ∈ coNSIZE[cMn
k] φ(n,C),

where φ(n,C) ≜ ∀x ∈ {0, 1}n ¬ErrorM (C, n, x). By the witnessing theorem for IS12 (Theorem 3.6),
for each NPmachineM , there is a polynomial-time algorithm AM that takes 1n as input and outputs
a co-nondeterministic circuit Cn of size at most cMn

k such that φ(n,Cn) holds in the standard model
N. In other words, C = {Cn}n≥1 is a P-uniform co-nondeterministic circuit family that decides
L(M). (Note that the algorithm takes 1n instead of n as input as ∀n ∈ Log is a shorthand for
∀v ∀n = |v|.) This immediately implies that every language in NP can be computable by a P-uniform
family of co-nondeterministic circuits of size O(nk), which is impossible by Theorem 4.4.

5 Interpretation and Generalization of Our Results

We make two remarks about the interpretation and generalization of our results.

Interpretation of the unprovability results. In this paper, we established the unprovability
of both co-nondeterministic circuit size upper bounds and lower bounds in the intuitionistic theory
IS12. Roughly speaking, the standard interpretation of the results is that the question of whether
NP requires large co-nondeterministic circuits cannot be constructively resolved, either because of
the lack of relevant non-logical axioms or because of the absence of the law of excluded middle.

Due to the nature of intuitionistic logic, it could still be the case that while NP ⊆ coNSIZE[nk]
is unprovable in IS12, ¬¬“NP ⊆ coNSIZE[nk]” is indeed provable in IS12, as ¬¬φ ⊢ φ is not an
admissible inference rule in intuitionistic logic. As explained in more detail next, our results can
be considered necessary steps towards the classical independence of worst-case lower bounds. (See
also [Bus90b, Section 6.2] for related considerations in a different context.)

Robustness of our unprovability results. Recall that the proofs of our unprovability results
in Theorem 3.7, Theorem 3.8, and Theorem 4.5 only rely on the soundness of IS12 over the standard
model and on the witnessing theorem to extract a polynomial-time algorithm for the outermost
existential quantifier. Therefore, the unprovability result holds even if one substitutes a subformula
of the lower bound or upper bound sentences inside the outermost existential quantifier by any
formula that coincides with the intended meaning over the standard model N.

In particular, the unprovability result holds even if any subformula inside the outermost existen-
tial quantifier is replaced by any classically equivalent formula. This suggests that our unprovability
result holds in “semi-classical” setting, i.e., classical reasoning is allowed inside the outermost ex-
istential quantifier.

A more formal way to phrase the observation is via the well-known double-negation transla-
tion (i.e. Gödel–Gentzen translation). The double-negation translation of a first-order sentence φ,
denoted by φN, is defined inductively by the following rules:

• AN ≜ ¬¬A for atomic A (i.e. A is a predicate);

• (φ ∧ ψ)N ≜ φN ∧ ψN; (¬φ)N ≜ ¬φN; (φ→ ψ)N ≜ φN → ψN;
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• (φ ∨ ψ)N ≜ ¬¬(φN ∨ ψN);

• (∀x φ)N ≜ ∀x φN;

• (∃x φ)N ≜ ¬¬∃x φN.

For a set Π of formulas, we define ΠN ≜ {φN | φ ∈ Π}.

Theorem 5.1 (see, e.g., [Bus98]). For a set Π of formulas and a formula φ, Π proves φ classically
if and only if ΠN proves φN intuitionistically. In particular, φ and ψ are classically equivalent if
and only if φN and ψN are intuitionistically equivalent.

Corollary 5.2. In Theorem 3.7, Theorem 3.8, and Theorem 4.5, the corresponding unprovability
result holds even if the subformula inside the outermost existential quantifier is replaced by its
double-negation translation.
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A On the Unprovability of Lower Bounds Against Deterministic
Circuits

This section provides an overview of a result from [GP13] showing that, under an appropriate
formalization, the unprovability in IS12 of worst-case lower bounds against deterministic Boolean
circuits yields the unprovability of the same lower bound in S12. The necessary background on
bounded arithmetic can be found in Section 2. In particular, the vocabulary of S12 and IS12 is
discussed in Section 2.1.

Formalization. For concreteness, we consider a constant δ > 0 and focus on the size bound 2n
δ
.

(The actual size bound is not relevant for the result, provided that it can be captured by a sharply
bounded formula in the sense described below.) We use SAT = {SATn} to denote the decision
version of the satisfiability problem for de Morgan Boolean formulas represented by n-bit strings.
We consider a sentence SAT-DLBexp(2n

ε
, n0) which encodes that, for every input length n ≥ n0 and

for every deterministic circuit D of size at most 2n
δ
, there is an input y such that SATn(y) ̸= D(y).
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The formalization will require the following auxiliary formulas. (The variable f appearing in some
of them but not referred to is used to guarantee bounded quantification, as discussed later in this
section.)

ONE(f, y). For variables f (a truth-table with |f | = 2n) and y (an index/input of f), we use the
formula ONE(f, y) to determine if the y-th entry of f is 1.

SAT(f, y, z). For variables y (encoding a Boolean formula) and z (encoding an assignment), the
formula SAT(f, y, z) denotes that y is satisfied by z.

DECIDES-SAT(f, y). For variables f and y, the formula DECIDES-SAT(f, y) denotes ONE(f, y) ↔
∃z ≤ |f | SAT(y, z), i.e., f correctly decides the satisfiability of the formula encoded by y. (The
intended interpretation is that z is an integer of magnitude at most 2n and consequently can be
viewed as an n-bit string.)

SIZE(f,D, n). For a variable D (encoding a deterministic Boolean circuit), SIZE(f,D, n) denotes

the formula that checks if D has n inputs and at most 2n
δ
gates.

ERROR(f,D,w, y). For variables f , D, w (a transcript of D’s computation), and y, Error(f,D,w, y)
denotes the formula stating that w correctly encodes the computation of D on y and f(y) ̸= D(y).

INDEX(f,W, y, w). For variables W (a sequence of transcripts), y, and w, INDEX(f,W, y, w) de-
notes that the y-th element of W is w.

Some of these formulas might require the specification of additional sub-formulas in order to capture
their intended behavior. Most importantly, we note that all these formulas admit sharply bounded
descriptions due to the presence of the variable f (we will use n = ||f ||) and the explicitly provided
candidate transcript w (whose correctness is easy to check). (This claim can be somewhat tedious to

check; for additional details, see a similar presentation in [GP13].) Next, we let SAT-DLBexp(2n
δ
, n0)

denote the following sentence:

∀f ∀n ∀D ∀W ∀w ∃y ≤ |f |(
n = ||f || ∧ n ≥ n0 ∧ DECIDES-SAT(f, y) ∧ SIZE(f,D, n) ∧ INDEX(f,W, y, w)

)
→

ERROR(f,D,w, y) .

Observe that SAT-DLBexp(2n
δ
, n0) is the universal closure of a sharply bounded formula, which is in

particular a ∀Σb
1-formula. It is not hard to see that it correctly captures (over the standard model

N) the statement that SATn /∈ SIZE[2n
δ
] for all n ≥ n0.

Finally, we will make use of the following conservation result.

Theorem A.1 (Avigad [Avi00, Theorem 3.17]). S12 is conservative over IS12 for ∀Σb
1 sentences.

As a consequence of this result and of the quantifier complexity of the formalization, the prov-
ability of SAT-DLBexp(2n

δ
, n0) in S12 yields its provability in IS12. In other words, if the lower bound

sentence in unprovable in IS12, it is also unprovable in S12:
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Theorem A.2. For every rational δ > 0 and n0 ∈ N, if IS12 ⊬ SAT-DLBexp(2n
δ
, n0) then S12 ⊬

SAT-DLBexp(2n
δ
, n0).

This result should be contrasted with Theorem 1.1 Item (i), which establishes in particular the
unprovability in IS12 of a co-nondeterministic size lower bound for SAT. Note that the quantifier
complexity of the sentences LBexp and LBpoly from Theorem 1.1 does not allow us to invoke Theo-
rem A.2 (nor an extension of this conservation result from [CH99]) to derive an unprovability result
for S12.
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