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Abstract

A randomized algorithm for a search problem is pseudodeterministic if it produces a fixed
canonical solution to the search problem with high probability. In their seminal work on the
topic, Gat and Goldwasser [GG11] posed as their main open problem whether prime numbers
can be pseudodeterministically constructed in polynomial time.

We provide a positive solution to this question in the infinitely-often regime. In more detail,
we give an unconditional polynomial-time randomized algorithm B such that, for infinitely many
values of n, B(1n) outputs a canonical n-bit prime pn with high probability. More generally, we
prove that for every dense property Q of strings that can be decided in polynomial time, there
is an infinitely-often pseudodeterministic polynomial-time construction of strings satisfying Q.
This improves upon a subexponential-time construction of Oliveira and Santhanam [OS17].

Our construction uses several new ideas, including a novel bootstrapping technique for
pseudodeterministic constructions, and a quantitative optimization of the uniform hardness-
randomness framework of Chen and Tell [CT21], using a variant of the Shaltiel–Umans generator
[SU05].
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1 Introduction

How hard is it to construct an n-bit prime1? This is a fundamental problem in number theory
and in complexity theory. Under reasonable assumptions, the problem is solvable in deterministic
polynomial time. In more detail, Cramér’s conjecture [Cra36] in number theory asserts that the
largest prime gap in any consecutive sequence of n-bit numbers is O(n2). Assuming this conjecture,
we can solve the prime construction problem efficiently by testing the first O(n2) integers greater
than 2n−1 for primality and outputting the first one, where the primality tests are done efficiently
using the algorithm of Agrawal, Kayal and Saxena [AKS04]. An independent source of evidence
for the efficiency of prime construction is the complexity-theoretic conjecture that DTIME(2O(n))
requires Boolean circuits of exponential size on almost all input lengths. Under this conjecture,
we can use the Impagliazzo–Wigderson pseudorandom generator [IW97] to derandomize the simple
randomized algorithm that outputs a random n-bit number, using the facts that primality testing
is in polynomial time and that an Ω(1/n) fraction of n-bit numbers are prime.

However, we seem very far from either settling Cramér’s conjecture or proving strong complexity
lower bounds. The best upper bound we can prove on the gap between consecutive n-bit primes is
2(0.525+o(1))n [BHP01], and no super-linear circuit lower bounds are known for DTIME(2O(n)) [LY22].
Indeed, the best unconditional result we have so far is that deterministic prime construction can
be done in time 2(0.5+o(1))n [LO87], which is very far from the polynomial-time bound we seek.
The Polymath 4 project (see [TCH12]) sought to improve this upper bound using number-theoretic
techniques but did not achieve an unconditional improvement.

In contrast to the situation with deterministic prime construction, it is easy to generate an n-bit
prime randomly, as mentioned above: simply generate a random n-bit number, test it for primality
in polynomial time, and output it if it is a prime. This algorithm has success probability Ω(1/n)
by the Prime Number Theorem, and the success probability can be amplified to be exponentially
close to 1 by repeating the process poly(n) times independently, and outputting the first of these
poly(n) numbers that is verified to be prime, assuming that there is at least one.

Gat and Goldwasser [GG11] asked whether it is possible to generate primes efficiently by a ran-
domized process, such that the output is essentially independent of the randomness of the algorithm.
In other words, is there a polynomial-time randomized algorithm, which on input 1n, constructs a
canonical prime of length n with high probability? They call such an algorithm a pseudodeterminis-
tic algorithm, since the output of the algorithm is (almost) deterministic even though the algorithm
might use random bits in its operation. Note that the randomized algorithm for prime generation
we described in the previous paragraph is very far from being pseudodeterministic, as different runs
of the algorithm are unlikely to produce the same prime. It is easy to see that a pseudodeterministic
construction serves as an intermediate notion between a randomized construction (which is trivial
for primes) and a deterministic construction (where little progress has been made so far).

[GG11] initiate a general theory of pseudodeterminism for search problems, motivated by appli-
cations in cryptography and distributed computing. Since then, there have been a number of papers
on pseudodeterminism, in various contexts, such as query complexity [GGR13, GIPS21, CDM23],
streaming algorithms [GGMW20,BKKS23], parallel computation [GG17,GG21], learning algorithms
[OS18], Kolmogorov complexity [Oli19,LOS21], space-bounded computation [GL19], proof systems
[GGH18, GGH19], number theory and computational algebra [Gro15, OS17], approximation algo-
rithms [DPV18], and many other settings (see, e.g., [BB18, Gol19, DPV21, DPWV22, WDP+22,
CPW23]).

Despite all this progress, the main problem about pseudodeterminism posed in [GG11] has
1Recall that a positive integer q is an n-bit prime if q is a prime number and 2n−1 ≤ q ≤ 2n − 1.
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remained open: Is there a pseudodeterministic polynomial-time algorithm for prime construction?
They describe this problem as “the most intriguing” and “perhaps the most compelling challenge for
finding a unique output”.

Unlike in the case of deterministic construction, number-theoretic techniques have so far not
proven useful for the pseudodeterministic construction problem for primes. Using complexity-
theoretic techniques, Oliveira and Santhanam [OS17] (see also [LOS21]) showed that for any ε > 0,
there is an algorithm that runs in time 2n

ε and succeeds on infinitely many input lengths.

1.1 Our Results

In this paper, we design a significantly faster algorithm and provide an affirmative answer to
the question posed by Gat and Goldwasser in the infinitely-often regime. Our main result can be
stated in full generality as follows.

Theorem 1.1 (Infinitely-Often Polynomial-Time Pseudodeterministic Constructions). Let Q ⊆
{0, 1}∗ be a language with the following properties:

(Density.) there is a constant ρ ≥ 1 such that for every n ∈ N≥1, Qn ≜ Q ∩ {0, 1}n satisfies
|Qn| ≥ n−ρ · 2n; and

(Easiness.) there is a deterministic polynomial-time algorithm AQ that decides whether an input
x ∈ {0, 1}∗ belongs to Q.

Then there exist a probabilistic polynomial-time algorithm B and a sequence {xn}n∈N≥1
of n-bit

strings in Q such that the following conditions hold:

1. On every input length n ∈ N≥1, PrB[B(1n) /∈ {xn,⊥}] ≤ 2−n.

2. On infinitely many input lengths n ∈ N≥1, PrB[B(1n) = xn] ≥ 1− 2−n.

Interestingly, our construction is non-black-box, in the sense that changing the code of the
algorithm AQ deciding property Q affects the canonical output of the corresponding algorithm B.
We will revisit this point when we discuss our techniques (see the remark at the end of Section 1.3.2).

Letting Q be the set of prime numbers and noticing that Q is both dense (by the Prime Number
Theorem) and easy (by the AKS primality test [AKS04]), we immediately obtain the following
corollary of Theorem 1.1.

Corollary 1.2 (Infinitely-Often Polynomial-Time Pseudodeterministic Construction of Primes).
There is a randomized polynomial-time algorithm B such that, for infinitely many values of n,
B(1n) outputs a canonical n-bit prime pn with high probability.

Corollary 1.2 improves upon the subexponential-time infinitely-often pseudodeterministic con-
struction of primes from [OS17] mentioned above. Note that the result for prime construction is
a corollary of a far more general result about properties that are dense and easy. This is evidence
of the surprising power of complexity theory when applied to a problem which seems to be about
number theory (but where number-theoretic techniques have not so far been effective). The famous
efficient primality testing algorithm of [AKS04] similarly applied complexity-theoretic derandom-
ization ideas to solve a longstanding open problem in computational number theory, though their
argument does require more information about primes.

For a string w ∈ {0, 1}∗ and t : N → N, we let rKt(w) denote the length of the smallest ran-
domized program that runs for at most t(|w|) steps and outputs w with probability at least 2/3.
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(We refer to [LO22] for a formal definition and for an introduction to probabilistic notions of time-
bounded Kolmogorov complexity.) By encoding the (constant-size) randomized polynomial-time
algorithm B and each good input length n using O(1) + log n bits in total, the following result
holds.

Corollary 1.3 (Infinitely Many Primes with Efficient Succinct Descriptions). There is a constant
c ≥ 1 such that, for t(n) = nc, the following holds. For every m ≥ 1, there is n > m and an n-bit
prime pn such that rKt(pn) ≤ log(n) +O(1).

In other words, there are infinitely many primes that admit very short efficient descriptions.
The bound in Corollary 1.3 improves upon the sub-polynomial bound on rKpoly(pn) from [LOS21].

In the next subsection, we describe at a high level the ideas in the proof of Theorem 1.1, and
how they relate to previous work.

1.2 Proof Ideas

The proof of Theorem 1.1 relies on uniform hardness-randomness tradeoffs [IW01,TV07]. For
concreteness, assume that Q = {Qn}n∈N≥1

, with each Qn ⊆ {0, 1}n consisting of the set of n-bit
prime numbers. Let AQ be a deterministic polynomial-time algorithm that decides Q (e.g., AQ is the
AKS primality test algorithm [AKS04]). Before we present our algorithm and the main ideas under-
lying our result, it is instructive to discuss the approach of [OS17], which provides a subexponential-
time pseudodeterministic construction that succeeds on infinitely many input lengths.

Subexponential-time constructions [OS17]. We first recall how uniform hardness-randomness
tradeoffs work. Given a presumed hard language L, a uniform hardness-randomness tradeoff for
L states that either L is easy for probabilistic polynomial-time algorithms, or else we can build a
pseudorandom set Gn ⊆ {0, 1}n computable in subexponential time (thus also has subexponential
size), which fools probabilistic polynomial-time algorithms on inputs of length n (for infinitely many
n). In particular, Trevisan and Vadhan [TV07] give a uniform hardness-randomness tradeoff for
a PSPACE-complete language LTV they construct, which has certain special properties tailored to
uniform hardness-randomness tradeoffs.2

The subexponential-time construction in [OS17] uses a win-win argument to derive an uncon-
ditional pseudodeterministic algorithm from the uniform hardness-randomness tradeoff of [TV07].
There are two cases: either LTV ∈ BPP, or it is not. If the former is the case, then PSPACE ⊆ BPP
by the PSPACE-completeness of LTV. Now, since we can in polynomial space test all n-bit numbers
using AQ until we find the lexicographic first prime number, we can also do it in randomized polyno-
mial time, i.e., there is a randomized algorithm B(1n) that runs in polynomial time and outputs the
lexicographically first n-bit prime with high probability. Thus, in this case, the lexicographically
first n-bit prime is the “canonical” output of the pseudodeterministic algorithm, and the algorithm
works on every input length n.

Suppose, on the other hand, that LTV ̸∈ BPP. Using the uniform hardness-randomness tradeoff
of [TV07], we have that for each ε > 0, there is a pseudorandom set G = {Gn}, where each
Gn ⊆ {0, 1}n is of size at most 2n

ε , such that for infinitely many n, Gn fools the algorithm AQ on
inputs of length n. Since AQ accepts an Ω(1/n) fraction of strings of length n by the Prime Number
Theorem, we have that the fraction of strings in Gn that are prime is Ω(1/n) (by choosing the error
parameter of the uniform hardness-randomness tradeoff to be small enough). In particular, there

2For the pseudorandomness experts, these special properties are downward self-reducibility and random self-
reducibility.
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must exist an element of Gn that is prime. Since Gn is computable in subexponential time, we
can define a subexponential time deterministic algorithm that enumerates elements of Gn and tests
each one for primality until it finds and outputs one that is prime. This algorithm is deterministic
but it runs in subexponential time, and is only guaranteed to be correct for infinitely many n.

Thus, in either case, we have a pseudodeterministic algorithm for constructing primes that runs
in subexponential time and works infinitely often. Note that we do not know a priori which of the
two cases above holds, and therefore the argument is somewhat non-constructive. By exploiting
further properties of the uniform hardness-randomness tradeoff, [OS17] manage to give an explicit
construction algorithm that runs in subexponential time infinitely often.

Win-win arguments. The above argument gives a subexponential-time construction, but the
win-win structure of the argument seems incapable of giving an optimal polynomial-time construc-
tion. Indeed, this is the case for many win-win arguments used in complexity theory:

• A win-win argument based on the Karp–Lipton theorem [KL80] gives that Σ2EXP requires
super-polynomial size Boolean circuits [Kan82], but seems incapable of giving truly exponen-
tial (2Ω(n)) Boolean circuit lower bounds.

• A win-win argument based on uniform hardness-randomness tradeoffs gives that either E ⊆
BPP or BPP can be simulated infinitely often in deterministic subexponential time on average
[IW01], but it remains unknown if such a tradeoff holds at the “high end”, i.e., whether it is
the case that either E is in probabilistic subexponential-time or else BPP can be simulated
infinitely often in deterministic polynomial time on average.

• A win-win argument based on the Easy Witness Lemma gives that if NEXP ⊆ SIZE(poly),
then NEXP = MA [IKW02], but it is unknown if any interesting uniform collapse follows from
the simulation of NEXP by subexponential-size Boolean circuits.

In each of these cases, the win-win argument seems to have inherent limitations that prevent us
from getting optimal lower bounds or tradeoffs. Indeed, a paper by Miltersen, Vinodchandran and
Watanabe [MVW99] studies the “fractional exponential” lower bounds that seem to be the best
provable using win-win arguments in the context of Boolean circuit lower bounds for exponential-
time classes.3

Thus, in order to obtain a polynomial-time pseudodeterministic algorithm for primality, it seems
that we need to go beyond win-win arguments. One natural idea is to apply uniform hardness-
randomness tradeoffs recursively. However, this seems hard to do with the uniform hardness-
randomness tradeoff of [TV07]. Their tradeoff applies only to the special language LTV. If we
argue based on the hardness or other properties of LTV, then in the case where LTV ∈ BPP, we
get a pseudodeterministic polynomial-time algorithm for constructing primes, but in the case where
LTV ̸∈ BPP, we get a subexponential-time constructible pseudorandom set, and it is unclear how
to apply the uniform hardness-randomness tradeoff to the algorithm for constructing this set.

Recursive application of uniform hardness-randomness tradeoffs. One of our main ideas
is to exploit very recent work on uniform hardness-randomness tradeoffs [CT21] which applies

3For example, a function f : N → N is sub-half-exponential if f(f(n)c)c ≤ O(2n) for every constant c. (The exact
definition of sub-half-exponential functions may be different in different papers.) Functions such as nk and 2log

k n are
sub-half-exponential, while 2εn and 2n

ε

are not. It is known that Σ2EXP cannot be computed by f(n)-size circuits
for every sub-half-exponential f , but it remains open to show that Σ2EXP requires circuit complexity 2n

ε

for any
constant ε > 0.
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to generic computations, as long as they satisfy certain mild properties. These tradeoffs yield
hitting sets rather than pseudorandom sets based on hardness — a hitting set H ⊆ {0, 1}M is a
set that has non-empty intersection with every QM ⊆ {0, 1}M that is dense (i.e., accepts at least a
1/poly(M) fraction of strings) and is efficiently computable. It turns out that for our application to
pseudodeterministic algorithms, uniform hardness-randomness tradeoffs that yield hitting sets are
sufficient.

Specifically, Chen and Tell [CT21] show that for any multi-output function f : {1n} → {0, 1}n
computed by uniform Boolean circuits of size T = T (n) and depth d = d(n), either there is a hitting
set H ⊆ {0, 1}M computable in time poly(T ), or f(1n) can be computed with high probability in
time (d+ n) · poly(M) (which could be much less than T ). Note that this tradeoff is applicable to
any multi-output function f given bounds on its uniform circuit complexity.

Our key idea is that this more generic uniform hardness-randomness tradeoff can be applied
recursively. Indeed, we apply it to multi-output functions which capture the very task we are trying
to solve, i.e., constructing a prime! In our base case, we use the function f which does a brute-force
search over n-bit numbers and outputs the lexicographically first one which is prime. This function
can be computed by uniform Boolean circuits of size 2O(n) and depth poly(n), and hence we can
apply the Chen–Tell tradeoff to it. We set M = nβ for some large enough constant β > 1 in the
tradeoff. If we have that f(1n) is computable with high probability in time (d+ n) · poly(M), then
we are done, since this gives us a pseudodeterministic algorithm for primes at length n. If not, we
have that there is a hitting set H ⊆ {0, 1}nβ computable in time 2O(n). In particular, by iterating
over the elements of H and outputting the first one that is prime, we gain over the naïve brute-force
search algorithm, since we are now outputting a prime of length nβ in time 2O(n). Now this new
algorithm can be captured by a multi-output function with output length nβ to which we apply the
Chen–Tell tradeoff again. In each recursive step, we either obtain a pseudodeterministic polynomial-
time construction of primes, or we obtain a significantly faster deterministic construction of primes
(of a larger input length). Intuitively, analyzing this process after O(log n) steps of recursion, we
can hope to show that at least one of the steps leads to a polynomial-time pseudodeterministic
algorithm at the input length considered at that step.

This doesn’t quite work as stated because the Chen–Tell tradeoff uses the Nisan–Wigderson
generator [NW94], which is not known to have optimal parameters for all levels of hardness.4

Our recursive process explores essentially all possible levels of hardness for the uniform hardness-
randomness tradeoff, since each recursive step corresponds to a different level of hardness. Using
the original Chen–Tell tradeoff gives a quasi-polynomial-time pseudodeterministic construction, but
in order to get a polynomial-time pseudodeterministic construction, we need to work harder.

Another crucial idea for us is to optimize the Chen–Tell tradeoff by using the Shaltiel–Umans
generator [SU05] rather than the Nisan–Wigderson generator. This idea comes with its own imple-
mentation challenges, since the Shaltiel–Umans generator is not known to have a crucial learnability
property that is required for the uniform hardness-randomness tradeoff. We sidestep this issue us-
ing a further win-win analysis, together with some other tricks; see Section 1.3.3 for details. This
enables us to achieve an optimal polynomial-time pseudodeterministic construction on infinitely
many input lengths, and thereby establish Theorem 1.1.5 We note that the subexponential-time
construction of [OS17] also only works for infinitely many input lengths, and it is still open even to
get a subexponential-time construction that works on all input lengths.

4Informally speaking, given a “hard truth table” of length T , we want to construct a hitting set H ⊆ {0, 1}M in
poly(T ) time; however, the Nisan–Wigderson generator requires 2Θ(log2 T/ logM) time to construct.

5While we do not explore this direction in the current work, we believe that our improvement on the Chen-Tell
tradeoff can be used to improve the tradeoff from [CRT22, Theorem 5.2 and Theorem 5.3], thus getting a better
uniform hardness vs randomness connection in the low-end regime.
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The intuitive description here does not address several subtleties that arise in the proof, such
as maintaining the right uniformity and depth conditions when recursively applying the uniform
hardness-randomness tradeoff. We refer to Section 1.3 for a more detailed discussion of such mat-
ters.

1.3 Technical Overview

As explained above, we consider a chain of t = O(log n) recursively defined (candidate) HSGs
H0,H1, . . . ,Ht operating over different input lengths. These HSGs are obtained from the recent
construction of Chen and Tell [CT21], which we informally describe next. Recall that we use QM

to denote the easy and dense property over inputs of length M .

The Chen–Tell [CT21] targeted HSG (“ideal version”). Let c ≥ 1 be a large enough con-
stant, and let f : {1n} → {0, 1}n be a family of unary functions computed by (uniform) Boolean
circuits of size T = T (n) and depth d = d(n). Then, for every log T ≤ M ≤ T there is a set
H ⊆ {0, 1}M computable in

time T̃ ≜ T c and depth d̃ ≜ d · log(T ) +M c

such that, if QM ⊆ {0, 1}M avoids H, (i.e., QM is dense but QM ∩ H = ∅), then we can compute
f(1n) with high probability in time (d+ n) ·M c.

In other words, if f admits low-depth circuits, we can construct a candidate HSG H over length-
M inputs such that breaking the generator H allows us to compute f(1n) in time poly(n, d,M). For
d,M ≪ T , this can be much faster than the original time T required to compute f .

The statement above differs from the results in [CT21] (stated for unary functions) in two
important ways. First, the claimed upper bound on T̃ (the running time of the HSG) is not
obtained by [CT21] for all choices of M . Secondly, we have not formally specified the uniformity of
the family of circuits computing f . While these are crucial points in [CT21] and when proving our
result, for simplicity we will assume for now that this upper bound can be achieved and omit the
discussion on uniformity.

Bootstrapping the win-win argument. We now review the idea discussed in Section 1.2, using
notations that will be more convenient for the remainder of this technical overview. Fix an arbitrary
n ∈ N≥1, and consider the corresponding property Qn ⊆ {0, 1}n decided by AQ(x) on inputs of
length n. Our initial H0 is trivial and set to {0, 1}n. (Intuitively, this corresponds to the first case
of the [OS17] argument sketched above where LTV ∈ BPP.) Consider now a “brute-force” algorithm
BF(1n) that computes the first x ∈ H0 such that AQ(x) = 1. We let f(1n) ≜ BF(1n) in the Chen–
Tell HSG. Note that f(1n) can be uniformly computed in time T = 2O(n) and depth d = poly(n),
since AQ(x) runs in polynomial time and all elements of H0 can be tested in parallel. We set
M(n) ≜ nβ , where β > 1 is a large enough constant. Let H1 ⊆ {0, 1}M be the candidate HSG
provided by Chen–Tell. Note that H1 can be computed in time T̃ = 2O(n) and depth d̃ = poly(n).

Next, we consider a win-win argument based on whether QM avoids H1. If this is the case, then
Chen–Tell guarantees that we can compute f(1n) = BF(1n) ∈ Qn with high probability in time
(d + n) ·M c = poly(n). In other words, we can pseudodeterministically produce a string in Qn in
polynomial time. On the other hand, if H1 ∩ QM ̸= ∅, we now have a set H1 of strings of length
M = nβ that contains a string in QM and that can be deterministically computed in time 2O(n).
That is, we are back to the former case, except that we can compute H1 (a set containing at least

8



one M -bit prime) in time much faster than 2O(M). Crucially, in contrast to the approach of [OS17],
the Chen–Tell HSG does not limit us to the use of the special language LTV, effectively allowing us
to reapply the same argument (with a speedup) over a larger input length.

In the next subsection, we discuss the “bootstrapping” and its parameters in more detail and
explain how it gives a polynomial-time pseudodeterministic construction, assuming we have the
ideal version of [CT21] described above.

1.3.1 Infinitely-Often Pseudodeterministic Polynomial-Time Constructions

Let n0 ∈ N be an “initial” input length, and t = O(log n0) be a parameter. For each 1 ≤ i ≤ t,
we define the i-th input length to be ni ≜ nβ

i−1, for a large enough constant β > 1. Our goal is
to design a pseudodeterministic algorithm for finding elements in Q that will be correct on at least
one of the input lengths n0, n1, . . . , nt. On each input length ni we will have:

1. the property Qni that we want to hit;

2. a candidate hitting set generator Hi ⊆ {0, 1}ni ; and

3. the brute-force algorithm BFi : {1ni} → {0, 1}ni , which iterates through all elements in Hi

and outputs the first element that is in Qni .

Note that BFi is completely defined by Hi. Suppose that Hi can be computed (deterministically)
in time Ti and depth di, then BFi can also be computed (deterministically) in time T ′i ≜ Ti ·poly(ni)
and depth d′i ≜ di · poly(ni). As discussed above, initially, H0 ≜ {0, 1}n0 is the trivial hitting set
generator, T0 ≜ 2O(n0), and d0 ≜ poly(n0).

For each 0 ≤ i < t, we let f(1ni) ≜ BFi,M ≜ ni+1, and invoke the Chen–Tell HSG to obtain the
HSG Hi+1 ⊆ {0, 1}ni+1 . Recall that Chen–Tell guarantees the following: Suppose that QM = Qni+1

avoids the HSG Hi+1, then one can use Qni+1 to compute f(1ni) with high probability in time
poly(d′i, ni,M) ≤ poly(di, ni), by our choice of parameters. Recall that if Hi indeed hits Qni ,
then f(1ni) implements the brute-force algorithm and outputs the first element in Hi ∩Qni (i.e., a
canonical element in Qni). To reiterate, Chen–Tell gives us the following win-win condition:

• either Qni+1 avoids Hi+1, in which case we obtain a probabilistic algorithm that outputs a
canonical element in Qni (thus a pseudodeterministic algorithm) in poly(di, ni) time;

• or Hi+1 hits Qni+1 , in which case we obtain a hitting set Hi+1 that hits Qni+1 , thereby making
progress on input length ni+1.

The HSG Hi+1 can be computed in time Ti+1 ≜ (T ′i )
c and depth di+1 ≜ d′i · log T ′i + nc

i+1.
Crucially, although T0 is exponential in n0, it is possible to show by picking a large enough β > 1 that
the sequence {ni}i∈N grows faster than the sequence {Ti}i∈N, and eventually when i = t = O(log n0),
it will be the case that Tt ≤ poly(nt) and we can apply the brute-force algorithm to find the first
element in Ht that is in Qnt in time polynomial in nt.

A more precise treatment of the growth of the two sequences {ni} and {Ti} are as follows. There
is some absolute constant α ≥ 1 such that T0 ≤ 2αn0 and

Ti+1 ≤ Tα
i (for each 0 ≤ i < t).

We set β ≜ 2α (recall that each ni+1 = nβ
i ). It follows from induction that for each 0 ≤ i ≤ t,

Ti+1 ≤ Tαi

0 = 2α
i+1n0 and ni+1 = nβ

i = nβi+1

0 = n
(2α)i+1

0 .
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Since
log Tt

log nt
≤ αtn0

(2α)t log n0
=

n0

2t log n0
,

it follows that when t ≈ log(n0/ log n0), Tt will be comparable to nt (rather than 2nt). Similarly,
one can show that di ≤ poly(ni) for every i ≤ t.

Informal description of the algorithm and correctness. To wrap up, we arrive at the follow-
ing pseudodeterministic algorithm that is correct on at least one of the input lengths n0, n1, . . . , nt.
On input length ni, if i = t, then we use poly(Tt) ≤ poly(nt) time to find the first string in Hi

that is also in Qni (i.e., simulate BFi); otherwise, use Qni+1 as a distinguisher for the Chen–Tell
hitting set Hi and print the output of BFi in poly(ni, di) ≤ poly(ni) time. To see that our algorithm
succeeds on at least one ni, consider the following two cases:

1. Suppose that Ht indeed hits Qnt . Then clearly, our algorithm succeeds on input length nt.

2. On the other hand, suppose that Ht does not hit Qnt . Since our trivial HSG H0 hits Qn0 ,
there exists an index 0 ≤ i < t such that Hi hits Qni but Qni+1 avoids Hi+1.

Since Qni+1 avoids Hi+1, Chen–Tell guarantees that we can speed up the computation of BFi
using Qni+1 as an oracle. Since Hi hits Qni , the output of BFi is indeed a canonical element
in Qni . It follows that our algorithm succeeds on input length ni.

This completes the sketch of the algorithm and its correctness. We note that while this exposition
explains how the second bullet of Theorem 1.1 is achieved, it does not address the behavior of the
algorithm on other input lengths (i.e., the first bullet in the same statement). For simplicity, we
omit this here and refer to the formal presentation in Section 3.6

While the aforementioned construction conveys the gist of our approach, there are two important
issues with our presentation. Firstly, as explained before, the results of [CT21] do not achieve the
ideal parameters of the HSG stated above. Secondly, we have only vaguely discussed the circuit
uniformity of the function f(1n). The uniformity of f is critical for the reconstruction procedure
of [CT21] to run in time comparable to the circuit depth of f . On the other hand, since our HSGs
and functions f (corresponding to the algorithm BF) are recursively defined, the circuit uniformity
of the [CT21] generator itself becomes another critical complexity measure in the proof.

In the next subsection, we discuss the Chen–Tell generator in more detail and explain how to
obtain an improved generator construction satisfying our requirements.

1.3.2 Improving the Chen–Tell Targeted Hitting Set Generator

The uniform hardness-to-randomness framework of Chen–Tell builds on two important ingredi-
ents:7

1. A layered-polynomial representation of a shallow uniform circuit.

2. A hitting set generator with a uniform learning reconstruction algorithm.
6Alternatively, the guarantee from the first bullet of Theorem 1.1 can always be achieved via a general argument.

We refer to [OS17, Proposition 2] for the details.
7Below we will focus on the high-level picture of the Chen–Tell framework without diving into too many details.

Our presentation is also somewhat different from the original presentation in [CT21].
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Layered-polynomial representation. We now discuss the first ingredient. Let f : {0, 1}n →
{0, 1}n be a logspace-uniform circuit family of size T (n) and depth d(n).8 Let M : N → N be the
parameter for output length. Building on the doubly efficient interactive proof system by [GKR15]
(and its subsequent simplification by [Gol17]), for any z ∈ {0, 1}n, [CT21] showed that there is a
sequence of polynomials {P z

i }i∈[d′] for d′ = d · polylog(T ) with the following nice properties:

• (Arithmetic setting.) Let F be a finite field of size M c for a large universal constant c > 1,
and let m be of order log T

logM . All the P z
i map Fm to F and have total degree at most M .

• (Base case.) There is an algorithm Base such that, given the input z ∈ {0, 1}n and w⃗ ∈ Fm,
computes P z

1 (w⃗) in poly(M) time.

• (Downward self-reducibility.) There is an oracle algorithm DSR that, given input i ∈
{2, . . . , d′} and w⃗ ∈ Fm, together with the oracle access to P z

i−1(·), computes P z
i (w⃗) in poly(M)

time.

• (Faithful representation.) There is an oracle algorithm OUT that, given input i ∈ [n] and
oracle access to P z

d′ , outputs f(z)i in poly(M) time.

Intuitively, these polynomials form an encoded version of the computation of f in the sense that
they admit both downward self-reducibility and random self-reducibility : every P z

i has low degree
and hence admits error correction properties; downward self-reducibility follows from definition.

We note that the proof of this result depends in a crucial way on the logspace-uniformity of
the circuit family computing f . (This allows one to arithmetize a formula of bounded size that
computes the direct connection language of the circuit, while also controlling the circuit uniformity
of the resulting polynomials.)

Hitting set generators with a uniform learning reconstruction algorithm. The second
ingredient of [CT21] is the Nisan-Wigderson generator combined with Reed-Muller codes [NW94,
STV01]. The most important property of this generator is that it supports a uniform learning
reconstruction algorithm. In more detail, for a polynomial P : Fm → F, the generator NWP takes
s = O

(
log2 T
logM

)
bits as seed, such that there is a uniform oracle algorithm R (for “reconstruction”)

where the following holds. Given oracle access to both P and an oracle D : {0, 1}M → {0, 1} that
distinguishes NWP (Us) from the uniform distribution, RP,D runs in poly(M) time and with high
probability outputs a polynomial-size D-oracle circuit that computes P .

Now, the hitting set Hf (z) is defined as

Hf (z) ≜
⋃

i∈[d′]

NWP z
i .

The uniform reconstruction algorithm. One key observation here is that if a distinguisher
D : {0, 1}M → {0, 1} avoids Hf (z), meaning that D accepts a large fraction of inputs from {0, 1}M
but rejects all strings in Hf (z), then clearly D also distinguishes all NWP z

i (Us) from the uniform
distribution. Following [IW01], [CT21] then shows that there is a uniform oracle algorithm Rf

that takes input z ∈ {0, 1}n and any “avoider” D of Hf (z) as oracle, and outputs f(z) with high
probability. In more detail, Rf works as follows:

8Intuitively, a circuit family is logspace-uniform if each circuit in the family can be printed by a fixed machine
that runs in space that is of logarithmic order in the size of the circuits. See Section 2.3 for the precise definition of
logspace-uniform circuits.
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1. It is given input z ∈ {0, 1}n and oracle access to an avoider D : {0, 1}M → {0, 1} of Hf (z).

2. For every i ∈ {2, . . . , d′}:

(a) The goal of the i-th step is to construct a poly(M)-size D-oracle circuit Ci that computes
P z
i .

(b) It runs the learning reconstruction algorithm RP z
i ,D to obtain a poly(M)-size D-oracle

circuit. To answer queries to P z
i , we first run the algorithm DSR to convert them into

queries to P z
i−1. Next, when i = 2, we answer these queries by calling Base directly, and

when i > 2 we answer these queries by evaluating our D-oracle circuit Ci−1.

3. For every i ∈ [n], output OUTCD
d′ (i).

Issue with the original Chen–Tell construction: Super-logarithmic seed length of NW.
The main issue with the construction above is that NWP z

i has seed length O
(
log2 T
logM

)
. In particular,

this means that when logM ≤ o(log T ), the hitting set Hf (z) has super-polynomial size, and there-
fore cannot be computed in poly(T ) time as in the “ideal version” of [CT21] stated above.9 Hence,
to improve the computation time of Hf (z) to poly(T ), we need an HSG with seed length O(log T )
for all possible values of M , together with a uniform learning reconstruction, when it is instantiated
with polynomials. Jumping ahead, we will replace NW with the Shaltiel–Umans Hitting Set Gen-
erator [SU05], obtaining an optimized version of the Chen–Tell generator with better parameters.
However, the original generator from [SU05] does not provide a uniform learning reconstruction
procedure. By a clever use of the classical construction of a cryptographic pseudorandom generator
from a one-way permutation and of another idea, we managed to modify their construction to allow
a uniform learning reconstruction. See the next subsection for more details.

Controlling the circuit uniformity of the optimized Chen–Tell generator. As stressed
above, in order to construct a layered-polynomial representation for f with the aforementioned pa-
rameters, it is crucial that f admits a logspace-uniform circuit family. Since we will rely on multiple
applications of the generator, and each new function BF on which the result is invoked contains as
a subroutine the code of the previous generator, we must upper bound the circuit uniformity of our
optimized Chen–Tell generator. This turns out to require a delicate manipulation of all circuits in-
volved in the proof and of the Turing machines that produce them, including the components of the
Shaltiel–Umans generator. For this reason, whenever we talk about a Boolean circuit in the actual
proof, we also bound the description length and space complexity of its corresponding machine. Ad-
ditionally, as we manipulate a super-constant number of circuits (and their corresponding machines)
in our construction, we will also consider the complexity of producing the code of a machine M2

encoding a circuit C2 from the code of a machine M1 encoding a circuit C1 (see, e.g., the “Moreover”
part in the statement of Theorem 3.1). The details are quite tedious, but they are necessary for
verifying the correctness and running time of our algorithm. In order to provide some intuition for
it, we notice that as we move from the HSG Hi to Hi+1, we also increase the corresponding input
length parameter from ni to ni+1 = nβ

i . While there is an increase in the uniformity complexity, it
remains bounded relative to the new input length. We omit the details in this proof overview.

9Indeed, if we rely on the original Chen–Tell construction to implement the bootstrapping method described above,
we would only obtain a quasi-polynomial-time pseudodeterministic construction, instead of a polynomial-time one.
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Non-black-box behavior. We note that the recursive application of the Chen–Tell generator is
responsible for the fully non-black-box behavior of our pseudodeterministic construction. Indeed,
since we invoke the Chen–Tell generator on each function BF (which contains the code of the algo-
rithm AQ deciding property Q as a subroutine), the collection of strings in the hitting set generator
depends on the layered-polynomial representation that is obtained from the code of BF. As a con-
sequence, our construction has the unusual feature that the canonical outputs of the algorithm B
in Theorem 1.1 are affected by the code of AQ. In other words, by using a different primality test
algorithm (or by making changes to the code implementing the AKS routine), one might get a
different n-bit prime!

The parameters of our hitting set generator appear in Section 3. The proof of the result is given
in Section 5.

1.3.3 Modified Shaltiel–Umans Generator with Uniform Learning Reconstruction

As explained above, in order to complete the proof of Theorem 1.1 we need to design a variant
of the Shaltiel–Umans generator [SU05] with a uniform learning reconstruction procedure.

The Shaltiel–Umans generator takes as input a low-degree polynomial P : Fm
p → Fp (in our

case p will be a power of 2) and produces a set of binary strings (which is supposed to be a hitting
set). The construction of this generator also relies on “generator matrices”. A matrix A ∈ Fm×m

p

is a generator matrix if it satisfies {Ai · 1⃗}1≤i<pm = Fm
p \ {⃗0}. Roughly put, the matrix A can be

thought of as performing multiplication with a generator of the multiplicative group of Fpm .
Recall that a generator has a uniform learning reconstruction algorithm if the following holds.

Given an algorithm D that avoids the output of the generator constructed using P , as well as
P itself, we can uniformly and efficiently generate (with high probability) a D-oracle circuit that
computes the polynomial P . (In other words, we can query P while producing the circuit, but the
circuit itself does not have access to P .)

However, the reconstruction procedure provided by the original Shaltiel–Umans generator only
guarantees the following: If the generator is constructed using P and some generator matrix A, then
using an algorithm D that avoids the output of the generator, and given the matrix A and oracle
access to P , one can obtain a (D-oracle) circuit C : [pm − 1] → Fm

p such that C(i) = P (Ai · 1⃗).10

(For the precise statement, see Theorem 4.9.) That is, this reconstruction is not a uniform learning
algorithm in the following sense:

1. It needs to know the matrix A (which can be viewed as non-uniform advice).

2. Given oracle access to P , it only learns a circuit that computes the mapping i 7→ P (Ai · 1⃗),
instead of a circuit that computes P (x⃗) on a given x⃗ ∈ Fm

p .

We now describe how to modify the Shaltiel–Umans generator to make its reconstruction a uniform
learning algorithm.

For the first issue, our idea is that, instead of using a generator matrix that is obtained by
brute-force search as in the original construction (we note that the reconstruction cannot afford
to perform the brute-force search due to its time constraints), we will use a generator matrix that
is from a small set of matrices that can be constructed efficiently. More specifically, using results
about finding primitive roots of finite fields (e.g., [Sho92]), we show that one can efficiently and
deterministically construct a set S of matrices that contains at least one generator matrix. The

10In fact, the circuit only computes P (Ai · v⃗) for some v⃗ output by the reconstruction algorithm. We assume v⃗ = 1⃗
here for simplicity.
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advantage is that the reconstruction algorithm can still afford to compute this set S. Note that
although we don’t know which matrix in S is a valid generator matrix (as verifying whether a matrix
is a generator matrix requires too much time), we can try all the matrices from S, and one of them
will be the correct one. This allows us to obtain a list of candidate circuits, one of which computes
P (provided that we can also handle the second issue, which will be discussed next). Then by
selecting from the list a circuit that is sufficiently close to P (note that given oracle access to P , we
can easily test whether a circuit is close to P by sampling) and by using the self-correction property
of low-degree polynomials, we can obtain a circuit that computes P exactly.

With the above idea, we may now assume that in the reconstruction we know the generator
matrix A used by the Shaltiel–Umans generator. Next, we describe how to handle the second issue.
Recall that the reconstruction algorithm of the Shaltiel–Umans generator gives a circuit C such
that C(i) = P (Ai · 1⃗), for i ∈ [pm − 1], and we want instead a circuit that given x⃗ ∈ Fm

p computes
P (x⃗). Now suppose given x⃗ ∈ Fm

p \ {⃗0}, we can also efficiently compute the value i ∈ [pm − 1] such
that Ai · 1⃗ = x⃗. Then we would be able to combine this with C to get a circuit E that computes P ,
i.e., if x⃗ = 0⃗ then E outputs P (⃗0) (where the value P (⃗0) can be hardcoded); otherwise, E computes
i for x⃗ as described above and then outputs C(i). However, the task of finding such i given A and
x⃗ is essentially the discrete logarithm problem, for which no efficient algorithm is known!

A classical result in cryptography is that one can construct a pseudorandom generator based
on the hardness of the discrete logarithm problem (see, e.g., [BM84,Yao82]). More generally, given
a permutation f whose inverse admits random self-reducibility11, one can construct a generator G
based on f so that if there is a distinguisher D that breaks G, then it can be used to invert f via
a uniform reduction. Our idea is to consider the bijection f : [pm − 1] → Fm

p \ {⃗0} such that for
each i ∈ [pm − 1], f(i) = Ai · 1⃗ (where the random self-reducibility of f−1 follows easily from that
of the discrete logarithm problem), and try to construct a pseudorandom generator G based on
f . We then combine the output of G with that of the Shaltiel–Umans generator constructed with
the polynomial P and the generator matrix A. Now if there is an algorithm D that avoids this
combined generator, which means D simultaneously avoids both the Shaltiel–Umans generator and
the generator G, then D can be used to obtain

• a circuit C such that C(i) = P (Ai · 1⃗) for every i ∈ [pm − 1], and

• a circuit C ′ that inverts f , i.e., C ′(x⃗) outputs i such that Ai · 1⃗ = x⃗ for every x⃗ ∈ Fm
p \ {⃗0}.

Then it is easy to combine C and C ′ to obtain a circuit that computes P .
A careful implementation of these ideas allows us to obtain a variant of the Shaltiel–Umans

generator with uniform learning reconstruction, as needed in our optimized Chen–Tell generator.
We refer to Theorem 4.1 in Section 4 for more details.

This completes the sketch of the proof of Theorem 1.1.

2 Preliminaries

For a positive integer k, we use [k] to denote the set {1, 2, . . . , }. We use N to denote all
non-negative integers and N≥1 to denote all positive integers.

For x, y ∈ {0, 1}∗, we use x◦y to denote their concatenation.12 For a function f : {0, 1}ℓ → {0, 1}
11Roughly speaking, a function has random self-reducibility if computing the function on a given instance can be

efficiently reduced to computing the function for uniformly random instances.
12We sometimes also use C1 ◦ C2 to denote the composition of two circuits, but the meaning of the symbol ◦ will

always be clear from the context.

14



we use tt(f) to denote the 2ℓ-length truth-table of f (i.e., tt(f) = f(w1) ◦ f(w2) ◦ . . . ◦ f(w2ℓ),
where w1, . . . , w2ℓ is the enumeration of all strings from {0, 1}ℓ in the lexicographical order).

Unless explicitly stated otherwise, we assume that all circuits are comprised of Boolean NAND

gates of fan-in two. In several places in the paper we will need the following notion, which strengthens
the standard notion of a time-computable function by requiring the function to be computable in
logarithmic space. The depth of a circuit is defined to be the maximum length (measured by the
number of edges) of any input-to-output path.

Definition 2.1 (Logspace-Computable Functions). We say that a function T : N→ N is logspace-
computable if there exists an algorithm that gets input 1n, runs in space O(log(T (n))), and outputs
T (n).

For convenience, we consider circuit families indexed by a tuple of parameters. Specifically, a
circuit family with k input parameters ℓ⃗ = (ℓ1, ℓ2, . . . , ℓk) ∈ Nk is defined as {C

ℓ⃗
}
ℓ⃗∈Nk , where each

C
ℓ⃗

is a circuit.

2.1 Finite Fields

Throughout this paper, we will only consider finite fields of the form GF(22·3
λ
) for some λ ∈ N

since they enjoy simple representations that will be useful for us. We say p = 2r is a nice power of
2, if r = 2 · 3λ for some λ ∈ N.

Let ℓ ∈ N and n = 2 · 3ℓ. In the following, we use F to denote F2n for convenience. We will
always represent F2n as F2[x]/(x

n + xn/2 + 1).13 That is, we identify an element of F2n with an
F2[x] polynomial with degree less than n. To avoid confusion, given a polynomial P (x) ∈ F2[x]
with degree less than n, we will use (P (x))F to denote the unique element in F identified with P (x).

Let κ(n) be the natural bijection between {0, 1}n and F = GF(2n): for every a ∈ {0, 1}n,
κ(n)(a) =

(∑
i∈[n] ai · xi−1

)
F
. We always use κ(n) to encode elements from F by Boolean strings.

That is, whenever we say that an algorithm takes an input from F, we mean it takes a string
x ∈ {0, 1}n and interprets it as an element of F via κ(n). Similarly, whenever we say that an
algorithm outputs an element from F, we mean it outputs a string {0, 1}n encoding that element
via κ(n). For simplicity, sometimes we use (a)F to denote κ(n)(a). Also, when we say the i-th element
in F, we mean the element in F encoded by the i-th lexicographically smallest Boolean string in
{0, 1}n.

2.2 Bounded-Space Turing Machines

Our argument is robust to specific details about the computational model, but in order to
estimate the relevant bounds, we must fix a model. We use the standard model of space-bounded
computation (see [Gol08, Section 5] or [AB09, Section 4]). A deterministic space-bounded Turing
machine has three tapes: an input tape (that is read-only); a work tape (that is read/write) and
an output tape (that is write-only and uni-directional). We assume that the machine’s alphabet is
Σ ≜ {0, 1}. The space complexity of the machine is the number of used cells on the work tape. For
concreteness, we assume that the work tape contains initially only □ (“blank”) symbols, and that
the machine writes symbols from Σ in the tape.

Throughout the paper, we will describe a space-bounded Turing machine by fixing a universal
Turing machine U that has an additional read-only program tape such that TM(x) is defined to be

13x2·3ℓ + x3ℓ + 1 ∈ F2[x] is irreducible, see [VL99, Theorem 1.1.28].
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the output of U with the program tape initialized as TM.14 Abusing the notation, we often use TM
to denote both the Turing machine and a binary string description of the Turing machine. Without
loss of generality, we also assume our description is paddable meaning that for every TM ∈ {0, 1}∗
and k ∈ N, TM and TM ◦ 0k represent the same machine. To avoid certain technicalities, we will
always assume that the space bound of a Turing machine TM is greater than its description size.

Configurations of space-bounded machines. On a fixed input x ∈ {0, 1}n, a space-s Turing
machine TM has 2s

′ possible configurations, where s′ = s′(s, n) = s + O(log s) + log n. Each
configuration can be described by s′ bits. Here, s measures the space used by the universal Turing
machine U that simulates TM on input x. In more detail, it can be described by the content of U ’s
work tape, U ’s current state, and the location of U ’s heads, including the head on the input/program
tape. (Note that a configuration does not include the content of the output tape, which does not
affect the next step of the machine.)

We will need the following fact for determining the relationship between configurations of a
Turing machine. Recall that a sequence {Dn}n≥1 of size-T (n) computational devices is logspace-
uniform if there is a machine M(1n) that runs in space O(log T (n)) and outputs Dn (or equivalently,
decides the direct connection language of Dn).

Fact 2.2. Given a description of Turing machine TM ∈ {0, 1}∗, a space bound s ∈ N, an input
x ∈ {0, 1}n, and two configurations γ, γ′ ∈ {0, 1}s′, there is an algorithm Anxt that determines
whether γ′ is the next configuration obtained by running TM for one step on input x. Moreover,
Anxt can be computed by a logspace-uniform O(m3)-size O(logm)-depth formula and by an O(m)-
space algorithm, where m is the total number of input bits. (Here, we assume that if γ is the
accepting state or the rejecting state, then the next configuration of γ is always γ itself.)

2.3 Circuits Generated by Bounded-Space Turing Machines

In this paper we often use the following two representations of a circuit (recall that throughout
this paper all circuits consist entirely of fan-in two NAND gates).

• (Adjacency relation tensor.) A circuit C of size T is given as a tensor TC ∈ {0, 1}T×T×T
such that for every tuple (u, v, w) ∈ [T ]3, TC(u, v, w) = 1 if and only if the gates in C indexed
by v and by w feed into the gate in C indexed by u.

• (Layered adjacency relation tensor.) A circuit C of width T and depth d is given as a
list of d tensors T

(i)
C ∈ {0, 1}T×T×T , where i ∈ [d], such that for every layer i ∈ [d] and tuple

(u, v, w) ∈ [T ]3, T (i)
C (u, v, w) = 1 if and only if the gates in the (i − 1)-th layer of C indexed

by v and by w feed into the gate in the i-th layer of C indexed by u.

Here, the input gates are on the 0-th layer, and the output gates are on the d-th layer. Without
loss of generality we can assume all layers have exactly T gates.

In both cases above, when evaluating C in a context, we will also specify two integers nin and nout

to denote the number of input/output gates; see the definition of Circuit[T, s, nin, nout](TM) given
below for details.

While we will mostly use the (unlayered) adjacency relation tensor representation, the layered
variant will be very convenient in Section 5.1.

14The advantage of fixing a universal Turing machine is that now our Turing machine always has a constant number
of states, which is helpful when bounding the number of configurations of a Turing machine of super-constant size.
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We define next a more general notion of a space-uniform circuit family with input parameters.
This will be useful in some situations where we need to compute explicit space bounds for uniformity
and index circuits by a tuple of parameters.

Definition 2.3 (α-Space-Uniform Circuits). Let k ∈ N and α, T : Nk → N. We say that a circuit
family with k input parameters

{
C
ℓ⃗

}
ℓ⃗∈Nk of size T = T (ℓ⃗ ) is α-space-uniform if there exists an

algorithm A such that:

1. (Decides the adjacency relation.) The algorithm gets ℓ⃗ ∈ Nk and (u, v, w) ∈ {0, 1}3 log(T )

as input and accepts if and only if the gates in C
ℓ⃗

indexed by v and by w feed into the gate
in C

ℓ⃗
indexed by u. (That is, the algorithm computes the adjacency relation tensor of C

ℓ⃗
.)

2. (Runs in α(ℓ⃗) space.) For input parameters ℓ⃗ ∈ Nk, the algorithm runs in space α(ℓ⃗ ).

We say
{
C
ℓ⃗

}
ℓ⃗∈Nk is logspace-uniform if it is µ log T -space-uniform for some constant µ.

Circuit determined by a Turing machine through the adjacency relation tensor. We
will also consider the circuit determined by a Turing machine in the non-asymptotic setting.
More specifically, given a Turing machine TM ∈ {0, 1}∗, parameters T, s, nin, nout ∈ N, we use
Circuit[T, s, nin, nout](TM) to denote the circuit whose adjacency relation is determined by running
TM with space bound s over all triples (u, v, w) ∈ {0, 1}3 log T with u > v > w. The first nin out
of T gates are the input gates, and the last nout out of T gates are the output gates. If TM fails
to halt on some triples using s bits of space, or the resulting circuit is invalid (i.e., inputs are not
source, or outputs are not sink), we let Circuit[T, s, nin, nout](TM) = ⊥.

Given two circuits C1 : {0, 1}n1 → {0, 1}n2 and C2 : {0, 1}n2 → {0, 1}n3 , one can compose them
into a single circuit C2 ◦ C1 : {0, 1}n1 → {0, 1}n3 in a natural way (i.e., by identifying the outputs
of C1 with the inputs of C2). Suppose C1 is a circuit of size T1 and depth d1, and C2 is a circuit
of size T2 and depth d2, then C2 ◦ C1 has size T1 + T2 and depth d1 + d2. Also, if C1, C2 are given
by two Turing machines TM1 and TM2, we can easily generate another Turing machine TM3 that
specifies C2 ◦C1. Formally, we will pick a universal machine such that we have the following simple
fact on the description length of TM3, whose proof we omit.

Fact 2.4 (Turing Machine Description of Circuit Composition). There is a universal constant
ccomp ∈ N such that the following holds. Given the descriptions of Turing machines TM1 and TM2,
parameters

ℓ⃗1 = (T1, s1, n1, n2), ℓ⃗2 = (T2, s2, n2, n3) ∈ N4,

and letting

C1 = Circuit[ℓ⃗1](TM1), C2 = Circuit[ℓ⃗2](TM2), and ℓ⃗3 = (T1 + T2, 2 · (s1 + s2) + ccomp, n1, n3),

there is a polynomial-time algorithm Acomp that given TM1,TM2, ℓ⃗1, ℓ⃗2 as input, outputs the descrip-
tion of a Turing machine TM3 such that 15

(C2 ◦ C1) = Circuit[ℓ⃗3](TM3) and |TM3| ≤ 2 · (|TM1|+ |TM2|+ log n2) + ccomp.

15We note that if either C1 = ⊥ or C2 = ⊥, then there is no guarantee on Acomp’s behavior.
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2.4 Pseudorandom Generators and Hitting Set Generators

Definition 2.5 (Avoiding and Distinguishing). Let m, t ∈ N, D : {0, 1}m → {0, 1}, and Z = (zi)i∈[t]
be a list of strings from {0, 1}m. Let ε ∈ (0, 1). We say that D ε-distinguishes Z, if∣∣∣∣ Pr

r←{0,1}m
[D(r) = 1]− Pr

i←[t]
[D(zi) = 1]

∣∣∣∣ ≥ ε.

We say that D ε-avoids Z, if Prr←{0,1}m [D(r) = 1] ≥ ε and D(zi) = 0 for every i ∈ [t].

3 Polynomial-Time Pseudodeterministic Constructions for Dense
Properties

In this section, we prove our main result, restated below for convenience.

Theorem 1.1 (Infinitely-Often Polynomial-Time Pseudodeterministic Constructions). Let Q ⊆
{0, 1}∗ be a language with the following properties:

(Density.) there is a constant ρ ≥ 1 such that for every n ∈ N≥1, Qn ≜ Q ∩ {0, 1}n satisfies
|Qn| ≥ n−ρ · 2n; and

(Easiness.) there is a deterministic polynomial-time algorithm AQ that decides whether an input
x ∈ {0, 1}∗ belongs to Q.

Then there exist a probabilistic polynomial-time algorithm B and a sequence {xn}n∈N≥1
of n-bit

strings in Q such that the following conditions hold:

1. On every input length n ∈ N≥1, PrB[B(1n) /∈ {xn,⊥}] ≤ 2−n.

2. On infinitely many input lengths n ∈ N≥1, PrB[B(1n) = xn] ≥ 1− 2−n.

We will need the following theorem, which is obtained by combining [SU05] and [CT21]. The
proof is presented in Section 5.

Theorem 3.1 (Improved Chen–Tell Hitting Set Generator). There exists a universal c ∈ N≥1, a
deterministic algorithm Hct, and a probabilistic oracle algorithm Rct such that the following holds.
Let κ, ρ ∈ N. Let T, d,M, n ∈ N all be sufficiently large such that n ≤ T , d ≤ T , and c · log T ≤
M ≤ T 1/(cρ). Denote ℓ⃗ ≜ (n, T, d,M, κ, ρ) as the input parameters.

For a Turing machine TM with description size |TM| = κ · log T , we let

CTM ≜ Circuit[T, κ · log T, n, n](TM).

Assume the circuit CTM ̸= ⊥ and CTM has depth at most d.

(Generator.) The generator Hct
ℓ⃗

(we write Hct
ℓ⃗

to denote that Hct takes ℓ⃗ as input parameters)
takes the description of a Turing machine TM ∈ {0, 1}κ log T as input, and outputs a list of
M -bit strings. We assume that the list has exactly T (c·κ)/2 entries.

Let T̃ ≜ T c·κ and d̃ ≜ c · (d log T + κ2 log2 T ) + M c. There is a Turing machine TMH with
description length c log T̃ such that for

CH ≜ Circuit

[
T̃ , c · κ log T, n,

(
T̃
)1/2

·M
]
(TMH),
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it holds that (1) CH(1
n) = Hct

ℓ⃗
(TM) and (2) CH has depth d̃. Moreover, there is a polynomial-

time16 algorithm Act that on inputs ℓ⃗ and TM ∈ {0, 1}κ log T , outputs the description of TMH.

(Reconstruction.) The reconstruction algorithm Rct takes the description of a Turing machine
TM ∈ {0, 1}κ log T as input, receives an oracle D : {0, 1}M → {0, 1}, and satisfies the following:

(Soundness.) For every oracle D : {0, 1}M → {0, 1}, (Rct)D
ℓ⃗
(TM) runs in time (d+n) ·M cρ

and with probability at least 1− 2−M , its output is either CTM(1n) or ⊥.
(Completeness.) If D (1/Mρ)-avoids Hct

ℓ⃗
(TM), then (Rct)D

ℓ⃗
(TM) outputs CTM(1n) with

probability at least 1− 2−M .

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We start with some notations.

Notation. Let n0 ∈ N be sufficiently large. We define n
(0)
0 = n0, and for every ℓ ∈ N≥1,

n
(ℓ)
0 = 22

n
(ℓ−1)
0 .

Now, fix ℓ ∈ N. For simplicity of notation, in the following we will use ni,Hi, t to denote
n
(ℓ)
i ,H

(ℓ)
i , t(ℓ), which will be defined later.

Construction of hitting sets. For some parameter t that we set later, we will define a sequence
of input lengths n1, . . . , nt, with the hope that we can construct a string in Q pseudodeterministically
on at least one of the input lengths.

Let β ∈ N≥1 be a sufficiently large constant to be chosen later. For every i ∈ [t], we set
ni = (ni−1)

β . For each i ∈ {0, . . . , t}, we will construct a hitting set Hi ⊆ {0, 1}ni , which is
computable by a logspace-uniform Ti-size di-depth circuit. As the base case, we set H0 as the whole
set {0, 1}n0 . We note that there is a logspace-uniform T0-size d0-depth circuit that outputs all
elements in H0, where T0 = 22n0 and d0 = 2n0.

Let κ ∈ N be a large enough constant to be specified later. Let c be the universal constant
from Theorem 3.1.

Informal description. We will first give a somewhat informal description of the construction
of the Hi, in particular, we will omit details about the uniformity of the circuits (whose analysis
is rather tedious). We hope this can help the reader to gain some intuition first. Later we will
carefully analyze the uniformity of the circuits for Hi.

For each i ∈ [t], we construct Hi as follows:

1. We define BFi−1 as the circuit implementing the following algorithm: Enumerate every element
in Hi−1 ⊆ {0, 1}ni−1 , and output the first element that is in Qni−1 ; if no such element exists,
then BFi−1(n) outputs ⊥;

Using the assumed polynomial-time algorithm AQ for deciding membership in Q, BFi−1 can
be implemented by a T ′i−1-size d′i−1-depth circuit, where

T ′i−1 = Ti−1 · poly(ni−1) and d′i−1 = di−1 + poly(ni−1).
16In this paper, whenever we say an algorithm A that generates Turing machines or other succinct descriptions

runs in polynomial time, we mean the running time is polynomial in the total number of input bits. In this case, the
time bound is polynomial in the description length of ℓ⃗ and TM, i.e., poly(κ log T ).
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2. We then set Hi as the hitting set from Theorem 3.1 constructed with the Turing machine
describing the circuit BFi−1 and output length ni.17 By Theorem 3.1, Hi can be implemented
by a Ti-size di-depth circuit, where

Ti = poly(T ′i−1) and di = O(d′i−1 · log T ′i−1 + log2 T ′i−1) + poly(ni).

(Here we are being informal, see below for a more precise description.)

Formal construction. Next we carefully detail the construction. Let µ ∈ N≥1 be a large enough
constant. First, we define a Turing machine TMH0 of description size µ that describes a T0-size
d0-depth circuit CH0 for H0 on input 1n0 in µ log T0 space. Formally

Circuit[T0, µ · log T0, n0,
√

T0 · n0](TMH0) = CH0 .

Let τ ∈ N be a large enough constant such that the running time of AQ on n-bit inputs is
bounded by nτ/3.

We will make sure all Hi has exactly
√
Ti elements. (This is satisfied for i = 0 since T0 = 22n0 .)

Now, for each i ∈ [t], we will define a Turing machine TMHi
such that

Circuit[Ti, µ · log Ti, ni,
√

Ti · ni](TMHi
) = CHi

,

where CHi
has depth at most di. We will also ensure the invariance that |TMHi

| ≤ µ · log Ti. By
our choice of µ, the above is satisfied when i = 0. The machine TMHi

is defined in two steps: In
the first step we define a machine TMBFi−1

describing the circuit BFi−1, and in the second step we
plug TMBFi−1

in Theorem 3.1 to obtain the machine TMHi
.

A Turing machine TMBFi−1
for BFi−1. We first define a Turing machine TMBFi−1

such that
TMBFi−1

(1ni−1) outputs a circuit for the algorithm BFi−1. Recall that BFi−1 works as follows:
Enumerate every element in Hi−1 ⊆ {0, 1}ni−1 and output the first element that is in Qni−1 ; if no
such element exists, then BFi−1(n) outputs ⊥;

Using the assumed polynomial-time algorithm AQ for deciding membership in Q, we first con-
struct a Turing machine TMtest with description size µ such that

Ctest = Circuit
[
Ti−1 · (ni−1)

τ/2, µ · log Ti−1,
√

Ti−1 · ni−1, ni−1

]
(TMtest)

has depth (ni−1)
τ/2, takes a list of (Ti−1)

1/2 strings from {0, 1}ni−1 , and outputs the lexicographically
first one in Qni−1 (if no such string exists, outputs ⊥ instead).

Applying Fact 2.4 to compose CHi−1
and Ctest, we obtain the desired Turing machine TMBFi−1

that constructs a circuit CBFi−1
computing BFi−1. Noting that µ is sufficiently large, we have that

TMBFi−1
takes

2 ·
(∣∣TMHi−1

∣∣+ µ+ log ni−1 + log Ti−1
)
≤ 3µ · log Ti−1

bits to describe and uses

2 · (µ · log Ti−1 + µ · log Ti−1 + log Ti−1) + µ ≤ 5µ · log Ti−1

space. We now set T ′i−1 = Ti−1 · nτ
i−1 and d′i−1 = di−1 + nτ

i−1, and we have

Circuit
[
T ′i−1, 5µ · log Ti−1, ni−1, ni−1

]
(TMBFi−1

) = CBFi−1
,

where CBFi−1
has depth at most d′i−1.

17We do not discuss how to construct the Turing machine here, the details can be found in the formal construction
below.
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The Turing machine TMHi
for Hi. Recall that Hi is defined as the hitting set Hct of Theorem 3.1

constructed with the circuit BFi−1 and output length ni in the informal argument. We now formally
define Hi as the hitting set

Hct
ni−1,T ′

i−1,d
′
i−1,ni,κ,ρ

(
TMBFi−1

)
.

To apply Theorem 3.1, we first need to ensure that

5µ · log Ti−1 ≤ κ log T ′i−1,

which is satisfied by setting κ ≥ 5µ. We also need to ensure that

ni−1 ≤ T ′i−1, d′i−1 ≤ T ′i−1, and c · log T ′i−1 ≤ ni ≤ (T ′i−1)
1/(cρ). (1)

By Theorem 3.1, we know that

TMHi
= Act

ni−1,T ′
i−1,d

′
i−1,ni,κ,ρ

(
TMBFi−1

)
describes a Ti-size, di-depth circuit CHi

such that CHi
(1ni−1) computes Hi. Moreover, TMHi

takes
c · κ · log T ′i−1 ≤ µ · log Ti space and c · log Ti bits to describe, where

Ti = (T ′i−1)
c·κ and di = c · (d′i−1 log T ′i−1 + κ2 · log2 T ′i−1) + nc

i .

Formally, we have
CHi

= Circuit[Ti, µ · log Ti, ni,
√

Ti · ni](TMHi
)

as desired. Our invariance on |TMHi
| is satisfied by setting µ > c.

Analysis of Ti and di and justification of (1). We set t to be the first integer such that

nt+1 > T
1/(cρ)
t .

In the following we first show that t ≤ log n0.
We first analyze the growth of Ti and T ′i . For every i < t, by our choice of t, we have that

ni < ni+1 ≤ T
1/(cρ)
i < Ti and hence T ′i = Ti · nτ

i ≤ T τ+1
i . Then, from Ti+1 = (T ′i )

c·κ, we have
Ti+1 ≤ T

c·(τ+1)·κ
i and consequently log Ti+1 ≤ c · (τ + 1) · κ · log Ti. Letting λ = c · (τ + 1) · κ, we

have
log Ti ≤ λi · log T0 = λi · 2n0

for every i ≤ t.
Recall that ni = nβ

i−1, we have log ni = βi · log n0. For Tt < nt to hold, we only need to ensure
the following:

λi · 2n0 < βi · log n0

⇐⇒ 2n0/ log n0 < (β/λ)i.

Now we will set β ≥ 100λ. Let t̄ ≤ log n0 be the first integer satisfying the above. We claim that
t ≤ t̄. Since otherwise t̄ < t, and we would have nt̄ > Tt̄ (which certainly implies nt̄+1 > T

1/(cρ)
t̄

) by
our choice of t̄. This contradicts our choice of t. Therefore, we have established that t ≤ log n0.

Now we turn to analyze di for i ≤ t. Note that d0 = 2n0, and for i ≥ 1, we have

di = O
(
(di−1 + nτ

i−1) · log T ′i−1 + log2 T ′i−1
)
+ nc

i .
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We will show that for every i < t, di ≤ 2nc
i . Clearly this holds for i = 0.

Since log T ′i−1 ≤ log Ti−1 + O(log ni−1) ≤ λi−1 · 2n0 + O(log ni−1) ≤ ni−1 (recall here that
ni−1 = (n0)

βi−1 and β = 100λ), we have

di ≤ O
(
(ni−1 + nτ

i−1) · ni−1 + n2
i−1
)
+ nc

i .

We can set β large enough so that di ≤ (ni−1)
β + nc

i ≤ 2 · nc
i . From definition, we also have

d′i ≤ 2nc
i + nτ

i for every i < t.
Now we are ready to justify the conditions from (1) are satisfied for i ∈ [t]. By our choice of

t and the definition of T ′i−1, we have ni−1 ≤ Ti−1 ≤ T ′i−1. To see d′i−1 ≤ T ′i−1 holds, recall that
T ′i−1 = Ti−1 · nτ

i−1, and we have d′i−1 ≤ 2nc
i−1 + nτ

i−1 ≤ Ti−1 · nτ
i−1 = T ′i−1 by setting τ > c. We also

have that c log T ′i−1 = c(log Ti−1 + τ log ni−1) = c(λi · 2n0 + τ log ni−1) < ni since n0 < (ni)
1/β and

λi ≤ logn0
ni. Finally, by our choice of t, we have ni ≤ T

1/(cρ)
i−1 <

(
T ′i−1

)1/(cρ).
Informal argument of the correctness. We first give a somewhat informal argument below,
and then give the precise argument later.

We will argue that for every ℓ ∈ N, there exists an i ∈ {0, 1, . . . , t(ℓ)} that our polynomial-time
pseudodeterministic algorithm for constructing an element from Q works on input length n

(ℓ)
i .

Let i ≥ 0 be the largest integer such that Hi ⊆ {0, 1}ni is a hitting set of Qni . (Note that such
i exists, since H0 = {0, 1}n0 is a hitting set of Qn0 .) If i = t, then we can simply run BFt to obtain
an element in Qnt deterministically. Note that this takes time poly(Tt) = poly(nt), since by our
choice of t, Tt ≤ nc·β·ρ

t .
Otherwise, we have i < t. In this case, we know that Qni+1 avoids the hitting set Hi+1 (here

we use the fact that Qni+1 accepts more than an n−ρi+1 fraction of strings from {0, 1}ni+1). By
the reconstruction part of Theorem 3.1, there is a poly(ni+1) · d′i randomized time algorithm that
simulates BFi with probability at least 1 − 2ni+1 . Since Hi is a hitting set for Qni , this gives us a
pseudodeterministic algorithm with poly(ni+1) time that finds a canonical element in Qni . Since
ni+1 = poly(ni), our pseudodeterministic algorithm runs in polynomial time.

Formal description of the algorithm B. First, note that by our choice of t and β, it holds
that n

(ℓ+1)
0 > n

(ℓ)

t(ℓ)
. On an input length n ∈ N≥1, our algorithm B is defined as follows:

1. Given input 1n for n ∈ N≥1.

2. Compute the largest ℓ ∈ N such that n
(ℓ)
0 ≤ n, then compute the largest i such that n

(ℓ)
i ≤ n.

Output ⊥ and abort immediately if n(ℓ)
i ̸= n. From now on we use ni, Ti, di, etc. to denote

n
(ℓ)
i , T

(ℓ)
i , d

(ℓ)
i , etc.

3. For every j ∈ {0, 1, . . . , i}, compute Tj , T
′
j , dj , d

′
j ,TMHj

,TMBFj
. There are two cases:

• Case I: ni+1 ≤ T
1/(cρ)
i : In this case, we have that i < t. Run(

Rct
)Qni+1

ni,T ′
i ,d

′
i,ni+1,κ,ρ

(TMBFi
)

and set zn be its output.

• Case II: ni+1 > T
1/(cρ)
i : In this case, we have that t ≤ i. Compute t first (recall that t

is the first integer such that nt+1 > T
1/(cρ)
t ). Output ⊥ and abort immediately if i > t.

Otherwise, construct CBFi
from TMBFi

and set zn = CBFi
(1n).
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4. Output zn if AQ(zn) = 1 and ⊥ otherwise.

From our choice of parameters and Theorem 3.1, the algorithm B runs in poly(n) time.

Analysis of the algorithm B. Finally we show that the algorithm B satisfies our requirements.
We call an input length n ∈ N≥1 valid if there exist ℓ ∈ N and i ∈ {0, . . . , t(ℓ)} such that n = n

(ℓ)
i ,

and we call n invalid otherwise.18 For every n ∈ N≥1, let yn be the lexicographically first element
in Qn.

For every invalid n ∈ N≥1, we simply set xn = yn. For every valid n ∈ N≥1, we set xn as follows:

xn =

{
CBFi

(1ni), if CBFi
(1ni) ∈ Qni ,

yn, if otherwise.

We first observe that for all invalid n ∈ N≥1, it holds that B(1n) = ⊥ with probability 1. Now
we are ready to show that for every n ∈ N≥1, PrB[B(1n) /∈ {xn,⊥}] ≤ 2−n. Clearly we only need
to consider valid n.

Fix a valid n ∈ N≥1. From the soundness of the reconstruction part of Theorem 3.1, it follows
that zn ∈ {CBFi

(1n),⊥} with probability at least 1 − 2−n (if i = t, then zn = CBFi
(1n) with

probability 1). If CBFi
(1ni) ∈ Qni , then xn = CBFi

(1ni) and zn ∈ {xn,⊥} with high probability;
otherwise we have zn = ⊥. In both cases the soundness of B holds.

Next, we show that for infinitely many n ∈ N≥1, we have PrB[B(1n) = xn] ≥ 1−2−n. Following
the informal argument, for every ℓ ∈ N, let i ≥ 0 be the largest integer such that Hi ⊆ {0, 1}n

(ℓ)
i is a

hitting set of Q
n
(ℓ)
i

. Letting n = n
(ℓ)
i , we will show that B(1n) outputs xn with probability at least

1− 2−n, which would finish the proof.
If i = t, since Hi is a hitting set for Qn, it follows that zn = CBFi

(1n) ∈ Qn, and we
have B(1n) = xn with probability 1. If i < t, we know that Qni+1 (1/nρ

i+1)-avoids the hit-
ting set Hi+1. By the completeness of the reconstruction part of Theorem 3.1, we have that
zn = (Rct)

Qni+1

ni,T ′
i ,d

′
i,ni+1,κ,ρ

(TMBFi
) equals CBFi

(1n) with probability at least 1 − 2−n. Moreover,
in this case, since Hi is a hitting set of Qn, we know zn ∈ Qn and zn = xn, which completes the
proof.

Let B be the algorithm given by Theorem 1.1. We note that, by using 1 bit of advice to encode if
a given input length n satisfies PrB[B(1n) = xn] ≥ 1−2−n, we can obtain an efficient algorithm that
outputs a canonical answer with high probability (i.e., satisfies the promise of a pseudodeterministic
algorithm) on all input lengths and is correct on infinitely many of them. We state the result below
as it might be useful in future work.

Corollary 3.2 (Pseudodeterministic Polynomial-Time Construction with 1 Bit of Advice that
Succeeds Infinitely Often). Let Q be a dense and easy language. There exist a polynomial-time
probabilistic algorithm A and a sequence of advice bits {αi ∈ {0, 1}}i∈N≥1

such that

• for all n ∈ N≥1, A(1n, αn) outputs a canonical xn ∈ {0, 1}n with probability at least 1− 2−n,
and

• for infinitely many n ∈ N≥1, xn ∈ Q ∩ {0, 1}n.
18By our choice of parameters, such pair (ℓ, i) is unique for a valid n.
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4 Modified Shaltiel–Umans Generator with Uniform Learning Re-
construction

In order to prove Theorem 3.1, we will need the following result.

Theorem 4.1 (A HSG with Uniform Learning Reconstruction). There exist an algorithm H and a
probabilistic oracle algorithm R(−) such that the following holds. Let p be a nice power of 2, m be a
power of 3, ∆,M ∈ N with p > ∆2m7M9, and let ℓ⃗ ≜ (p,m,M,∆) be the input parameters.

• The generator H
ℓ⃗

takes as input a polynomial P : Fm
p → Fp with total degree at most ∆,

specified as a list of pm evaluations of P on all points from Fm
p in the lexicographic order, and

outputs a set of strings in {0, 1}M . Moreover, H
ℓ⃗

can be implemented by a logspace-uniform
circuit of size poly(pm) and depth poly(log p,m,M).

• The reconstruction algorithm RD,P

ℓ⃗
, where D : {0, 1}M → {0, 1} is any function that (1/M)-

avoids H
ℓ⃗
(P ), runs in time poly(p,m) and outputs, with probability at least 1 − 1/pm, a

D-oracle circuit that computes P .

The rest of this section is dedicated to the proof of Theorem 4.1.

4.1 Technical Tools

4.1.1 Error-Correcting Codes

Theorem 4.2 (List-Decoding Reed–Solomon Codes [Sud97]). Let b, a, and d be integers such that
a >

√
2d · b. Given b distinct pairs (xi, yi) in a field F, there are at most 2 · b/a polynomials g of

degree d such that g(xi) = yi for at least a pairs. Furthermore, a list of all such polynomials can be
computed in time poly(b, log |F|).

In particular, if a = α · b for some 0 < α ≤ 1, provided that α >
√

2d/b, there are at most
O(1/α) degree-d polynomials that agree with an α-fraction of the b pairs.

4.1.2 Generator Matrices

Definition 4.3 (Generator Matrices). Let p be a power of 2 and m ∈ N. We say that A ∈ Fm×m
p

is a generator matrix for Fm
p if A is invertible, Apm−1 = I, and {Ai · v⃗}1≤i<pm = Fm

p \ {⃗0} for any
nonzero v⃗ ∈ Fm

p .19

Theorem 4.4 ([Sho92]). Let n ∈ N. Given any irreducible polynomial f of degree n over F2, one
can deterministically construct in time poly(n) a set Sn that contains at least one primitive root of
the multiplicative group of F2[x]/(f).

We need the following lemma to deterministically construct generator matrices. Note that it is
unclear how to deterministically construct a single generator matrix. Instead, we reduce the task
of constructing such matrices to the task of constructing primitive roots of Fpm . Then, we invoke
Theorem 4.4 to construct a set of matrices that contains at least one generator matrix. It turns out
that this set of matrices suffices for our purposes.

Lemma 4.5. Let p be a nice power of 2 and m be a power of 3. One can deterministically construct
in time poly(log p,m) a set of matrices in Fm×m

p that contains at least one generator matrix for Fm
p .

19In fact, it is not hard to see that the third condition implies the first two. We include those two conditions in
this definition as they will be useful later.
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Proof Sketch. Let p = 22·3
α and m = 3β , where α, β ∈ N. First recall that

Fpm =
F2[x](

x2·3α+β + x3α+β + 1
) and Fp =

F2[y]

(y2·3α + y3α + 1)
.

We view the field Fpm as an m-dimensional vector space over Fp with a basis (1,x,x2, . . . ,x3β−1),
using the following (bijective) mapping. Let v ∈ Fpm , then we can write

v ≜
2·3α+β−1∑

t=0

v̂t · xt (where v̂t ∈ F2)

=
2·3α−1∑
i=0

3β−1∑
j=0

v̂i,j · xi·3β+j

=
3β−1∑
j=0

xj ·

(
2·3α−1∑
i=0

v̂i,j · xi·3β
)
.

By mapping x3β to y, we get that for every j ∈ [3β − 1],

2·3α−1∑
i=0

v̂i,j · xi·3β =
2·3α−1∑
i=0

v̂i,j · yi,

which represents an element in Fp, so v corresponds under the mapping to an element in the vector
space Fm

p over Fp.
Next, analogously to [SU05, Lemma 4.4], we observe that:

1. multiplication by a fixed element g ∈ Fpm within the field corresponds to a linear trans-
formation Ag ∈ Fm×m

p within the vector space Fm
p (with respect to the above map and its

inverse);

2. Ag ∈ Fm×m
p can be obtained in time poly(log p,m) given g ∈ Fpm ;

3. if g is a primitive root of Fpm , then Ag is a generator matrix for Fm
p .

The lemma now follows from these observations and Theorem 4.4.

4.1.3 Random Self-Reducibility for Discrete Logarithm

Lemma 4.6. There is a probabilistic polynomial-time oracle algorithm DLCorr(−) such that the
following holds. Let p be a power of 2, m ∈ N, ε > 0, A be a generator matrix for Fm

p , and let g be
any probabilistic procedure that satisfies

Pr
v⃗←Fm

p \{0⃗}, g

[
g(v⃗) outputs i ∈ [pm − 1] such that Ai · 1⃗ = v⃗

]
≥ ε.

Then for every u⃗ ∈ Fm
p \ {⃗0}, DLCorrg(p,m, 1⌈1/ε⌉, A, u⃗) outputs ℓ ∈ [pm − 1] such that Aℓ · 1⃗ = u⃗

with probability at least 2/3.
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Proof Sketch. The algorithm is an adaptation of the worst-case to average-case reduction for the
discrete logarithm problem. Given u⃗ ∈ Fm

p \ {⃗0}, we pick a random j ∈ [pm − 1] and set v⃗ ≜ Aj · u⃗.
Let i ≜ g(v⃗). Since v⃗ is uniformly distributed, with probability at least ε we have Ai · 1⃗ = v⃗. We
check if this is the case in polynomial time (note that we can compute Ai in polynomial time by
repeated squaring). Suppose this is indeed the case, then Ai · 1⃗ = v⃗ = Aj · u⃗. Recall that A is
invertible. If i > j, we output ℓ ≜ i− j. If i = j, we have u⃗ = 1⃗. In this case, we output ℓ ≜ pm− 1.
Finally, if j > i, we output ℓ ≜ t− (j − i).

By sampling O(1/ε) many values of j, with probability at least 2/3, there is at least one invoca-
tion i ≜ g(v⃗) such that Ai · 1⃗ = v⃗ indeed holds. Therefore, the success probability of our algorithm
is at least 2/3.

4.1.4 Pseudorandom Generators from One-Way Permutations

Theorem 4.7 ([BM84,Yao82,GL89]). There exist a deterministic oracle algorithm CryptoG(−) and
a probabilistic oracle algorithm Invert(−) such that the following holds. Let s,M ∈ N be the input
parameters, and let f : {0, 1}s → {0, 1}s be a permutation.

1. CryptoGf
s,M outputs a set of 22s M -bit strings. Moreover, CryptoGf

s,M can be implemented by
a logspace-uniform f -oracle circuit of size poly(2s,M) and depth poly(s,M).

2. Invert
(−)
s,M takes x ∈ {0, 1}s as input and runs in poly(s,M) time. For any function D : {0, 1}M →

{0, 1} that ε-distinguishes CryptoGf
s,M from {0, 1}M , we have

Pr
x←{0,1}s

[
Invertf,Ds,M (x) = f−1(x)

]
≥ ε

poly(M)
.

Proof Sketch. The generator CryptoG(−) follows from the well-known construction of pseudorandom
generators from one-way permutations using the Goldreich–Levin Theorem [GL89]. More specifi-
cally,

CryptoGf
s,M ≜

⋃
x,r∈{0,1}s

(
⟨x, r⟩, ⟨f(x), r⟩, ⟨f(f(x)), r⟩, . . . ,

〈
f (M−1)(x), r

〉)
,

where ⟨·⟩ denotes the inner product mod 2 function and f (i) denotes the composition of f with itself
i times.

The “inverting” algorithm Invert(−) and its correctness rely on standard techniques in pseudo-
randomness such as the hybrid argument, Yao’s theorem on the equivalence between pseudoran-
domness and unpredictability [Yao82], and the Goldreich–Levin decoding algorithm [GL89]. (See
e.g., [AB09, Section 9.3].)

Finally, to see that CryptoGf
s,M can be implemented by a logspace-uniform f -oracle circuit of

size poly(2s,M) and depth poly(M), we first note that there is a Turing machine that given s,M ∈
N and x, r ∈ {0, 1}s, computes the M -bit string ⟨x, r⟩, ⟨f(x), r⟩, ⟨f(f(x)), r⟩, . . . ,

〈
fM−1(x), r

〉
in

poly(s,M) time using f as an oracle. Then by the fact that any time-t Turing machine can be
simulated by a logspace-uniform circuit of size O(t2), computing a single M -bit string in CryptoGf

s,M

can be done using a logspace-uniform f -oracle circuit of size poly(s,M). The desired conclusion
follows from the observation that we can compute these 22s M -bit strings in parallel.
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4.1.5 Self-Correction for Polynomials

Theorem 4.8 (A Self-Corrector for Polynomials, cf. [GS92,Sud95]). There is a probabilistic oracle
algorithm PCorr(−) such that the following holds. Let p be a power of 2, m,∆ ∈ N such that ∆ < p/3.
Let g : Fm

p → Fp be such that there exists a polynomial P of total degree at most ∆ for which

Pr
x⃗←Fm

p

[g(x⃗) ̸= P (x⃗)] ≤ 1/4.

Then for all x⃗ ∈ Fm
p , PCorrg(p,m,∆, x⃗) runs in time poly(∆, log p,m) and outputs P (x⃗) with

probability at least 2/3.

4.2 The Shaltiel–Umans Generator

We state a version of the hitting set generator constructed by Shaltiel and Umans [SU05] that
will be convenient for our purposes.

Theorem 4.9 (Implicit in [SU05]). There exist a deterministic algorithm HSU and a probabilistic
oracle algorithm RSU(−) such that the following holds. Let p be a power of 2, m,M,∆ ∈ N with
p > ∆2m7M9, ℓ⃗ ≜ (p,m,M,∆) be the input parameters, and let

• P : Fm
p → Fp be a polynomial with total degree at most ∆, given as a list of pm evaluations of

P on all points from Fm
p in lexicographic order, and

• A be a generator matrix for Fm
p .

Then

1. The generator HSU
ℓ⃗
(P,A) outputs a set of strings in {0, 1}M . Moreover, HSU

ℓ⃗
can be imple-

mented by a logspace-uniform circuit of size poly(pm) and depth poly(log p,m).

2. The reconstruction algorithm RSUD,P

ℓ⃗
(A), where D : {0, 1}M → {0, 1} is any function that

(1/M)-avoids HSU
ℓ⃗
(P,A), runs in poly(p,m) time and outputs, with probability at least 1 −

1/p2m, a vector v⃗ ∈ Fm
p \ {⃗0} and a D-oracle circuit C : [pm − 1]→ Fp such that

C(i) = P (Ai · v⃗) for every i ∈ [pm − 1].

The statement of Theorem 4.9 and the HSG result of [SU05] differ in two aspects:

• First, we use a polynomial instead of a Boolean function to construct the HSG, which fits
more naturally into the framework of Chen–Tell [CT21] (see also Section 5).

• Second, we explicitly calculated a circuit depth upper bound for computing the HSG, which
is not stated in [SU05].

Nevertheless, Theorem 4.9 easily follows from the arguments in [SU05]. For completeness, we review
the construction of [SU05] and present a proof sketch of Theorem 4.9 in this subsection.
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The generator. We first construct m candidate “p-ary PRGs” G
(0)
p-ary, G

(1)
p-ary, · · · , G(m−1)

p-ary : Fm
p →

FM
p ; note that the inputs and outputs of these “p-ary PRGs” are elements in Fp. In particular:

G
(j)
p-ary(x⃗) =

(
P (Apj ·1x⃗), P (Apj ·2x⃗), · · · , P (Apj ·M x⃗)

)
.

Then we convert each p-ary PRG into a (usual binary) PRG by invoking [SU05, Lemma 5.6].
More precisely, for each 0 ≤ j < m, we interpret G

(j)
p-ary as a PRG that takes a binary seed of

length m log p and outputs M elements in {0, 1}log p, using the canonical bijection κ(log p) between
Fp and {0, 1}log p. Then, for G

(j)
p-ary : {0, 1}m log p → ({0, 1}log p)M , given seeds x ∈ {0, 1}m log p and

r ∈ {0, 1}log p, we define

G(j)(x, r) =
(
⟨G(j)

p-ary(x)1, r⟩, ⟨G(j)
p-ary(x)2, r⟩, . . . , ⟨G(j)

p-ary(x)M , r⟩
)
.

Here, ⟨·⟩ denotes the inner product mod 2 function. In other words, we combine G
(j)
p-ary with the

Hadamard code to obtain a Boolean PRG G(j) : {0, 1}m log p+log p → {0, 1}M .
Finally, our HSG will be the union of all PRGs G(j). That is, our algorithm HSU

ℓ⃗
(P,A) enu-

merates every 0 ≤ j < m, x ∈ {0, 1}m log p, r ∈ {0, 1}log p, and prints the string G(j)(x, r).
To see that HSU

ℓ⃗
can be computed by a logspace-uniform low-depth circuit, we argue that

given appropriate indexes j and i, the i-th bit of G(j)(x, r) can be computed by a logspace-uniform
low-depth circuit. The bit we want to compute is

G(j)(x, r)i = ⟨G(j)
p-ary(x)i, r⟩ = ⟨P (Apj ·ix⃗), r⟩,

where x⃗ is the vector in Fm
p encoded by x. By repeated squaring, we can output a (logspace-uniform)

circuit of size and depth poly(log p,m) that computes Apj ·i. Multiplying Apj ·i with x⃗, indexing (i.e.,
finding the (Apj ·ix⃗)-th entry of P ), and computing Boolean inner product have logspace-uniform
circuits of size poly(M,pm) = poly(pm) and depth poly(m, log p, logM) = poly(log p,m). Since we
need to output m · pm+1 strings of length M and each output bit can be computed by a logspace-
uniform circuit of size poly(pm) and depth poly(log p,m), the complexity upper bounds for com-
puting HSU

ℓ⃗
follows.

Now we consider the reconstruction algorithm. Suppose there is an adversary D : {0, 1}M →
{0, 1} that (1/M)-avoids HSU

ℓ⃗
(P,A). It follows that D (1/M)-distinguishes every binary PRG G(j).

From distinguishers to next-element predictors. For each 0 ≤ j < m, we use D to build a
“next-element predictor” D(j) for G

(j)
p-ary. Since D (1/M)-distinguishes G(j), it can be used to build

a next-bit predictor D
(j)
bit such that

Pr
i←[M ],x←{0,1}m log p,r←{0,1}log p

[
D

(j)
bit

(
G(j)(x, r)1, . . . , G

(j)(x, r)i−1

)
= G(j)(x, r)i

]
≥ 1/2 + 1/M2.

Therefore, with probability ≥ 1/2M2 over i ← [M ] and x ← {0, 1}m log p, the probability over
r ← {0, 1}log p that D(j)

bit predicts the i-th bit of G(j)(x, r) given its first i−1 bits correctly is at least
1/2 + 1/2M2. In this case, using the list-decoding algorithm for Hadamard code [GL89], we can
find a list of O(M4) elements that contains G

(j)
p-ary(x)i. (In fact, the trivial list-decoding algorithm

suffices here, since it runs in time poly(p).) We call this procedure the next-element predictor D(j);
it takes as input

uM−1 ≜ P (A−(M−1)p
j
x⃗), uM−2 ≜ P (A−(M−2)p

j
x⃗), . . . , u1 ≜ P (A−p

j
x⃗),
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where x⃗← Fm
p is a random vector. It randomly selects i← [M ], invokes D

(j)
bit and the list-decoding

algorithm for the Hadamard code, and outputs a list of O(M4) elements. With probability Ω(1/M2)

over x⃗← Fm
p and the internal randomness of D(j)

bit , this list will contain P (x⃗).
We repeat D(j) for O(m log p) times and fix its internal randomness, so that in what follows we

can assume D(j) is deterministic. With probability at least 1−1/(10p2m), for every 0 ≤ j < m, D(j)

will be correct in the following sense: For some ρ ≜ 1/Θ(M2m log p), D(j) outputs ρ−2 elements,
and

Pr
x⃗←Fm

p

[
P (x⃗) ∈ D(j)(uM−1, uM−2, . . . , u1)

]
> ρ.

Learn Next Curve. We will use the following notation from [SU05]. Let r ≜ O(m log p) be a
parameter denoting the number of reference points, and v ≜ (m + 1)r − 1 denotes the degree of
curves.20 A curve is a polynomial C : Fp → Fm

p with degree v. (That is, each coordinate of C
is a univariate polynomial of degree v over Fp.) Recall that A ∈ Fm×m

p is the generator matrix.
We use AC to denote the curve where for each t ∈ Fp, AC(t) = A · C(t) (note that AC is still
a degree-v polynomial). We also use P (C) to denote the function such that for every t ∈ Fp,
P (C)(t) = P (C(t)); the evaluation table of P (C) is the length-p vector where for every t ∈ Fp, the
t-th entry of the vector is P (C(t)).

Now, we recall the implementation of an important subroutine called Learn Next Curve as
defined in [SU05, Section 5.5]. Learn Next Curve takes as input a next curve C : Fp → Fm

p , a
set of reference points R ⊆ Fp of size r, a stride 0 ≤ j < m, as well as input evaluations; the input
evaluations consist of two parts, namely the evaluation tables of P (A−ip

j
C) for every 1 ≤ i < M

and the values of P (C(t)) for every t ∈ R. The intended output evaluations consist of the evaluation
table of P (C).

In particular, Learn Next Curve starts by obtaining a set of ρ−2 values

St ≜ D(j)
(
P (A−(M−1)p

j
C(t)), P (A−(M−2)p

j
C(t)), . . . , P (A−p

j
C(t))

)
for each t ∈ Fp. Then it calls the algorithm from Theorem 4.2 on the pairs {(t, e)}t∈Fp,e∈St to
obtain the list of all polynomials Q such that Q(t) ∈ St for many coordinates t. (This takes
poly(pρ−2, log p) ≤ poly(p,m) time.) If this list contains a unique polynomial Q such that Q(t) =
P (C(t)) for every t ∈ R, then we output this polynomial; otherwise we output ⊥. It is clear that
Learn Next Curve runs in poly(p,m) time.

We say Learn Next Curve succeeds (on next curve, reference points, and stride), if whenever
the input evaluations are the intended values, the output evaluations are also the intended values. Let

εLNC ≜ O(vρ−1/p)v/2 + (8ρ−3)(v deg(P )/p)r.

It is proven in [SU05, Lemma 5.12] that, assuming p > 32 deg(P )v/ρ4, if the next curve and reference
points are chosen uniformly at random, Learn Next Curve succeeds with probability 1 − εLNC.
Since deg(P ) = ∆, ρ−1 = Θ(M2m log p), v = O(m2 log p), and p > ∆2m7M9, it is indeed the case
that p > 32 deg(P )v/ρ4. Also note that

εLNC ≤ O(ρ3/32 deg(P ))v/2 + (8ρ−3)(ρ4/32)r ≤ (1/2)r−1 ≪ 1/(10p4m).

A first attempt for the reconstruction algorithm would be the following. Let i ∈ [pm − 1], and
suppose that we want to compute P (Ai1⃗). We write i in p-ary as i =

∑m−1
j=0 ijp

j (where each

20The parameter v is set in the proof of [SU05, Lemma 5.14].
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ij ∈ {0, 1, . . . , p − 1}). Recall that for each next curve C and stride j, given the evaluation tables
of P (A−kp

j
C) for every 1 ≤ k < M , we can learn the evaluation table of P (C) in one invocation

of Learn Next Curve. Therefore, we proceed in m rounds, where for each 0 ≤ l < m, the l-th
round performs the following computation:

• Let i′ ≜
∑l−1

j=0 ijp
j . Suppose that at the beginning of the l-th round, we already know the

evaluation tables of P (Akpl+i′C) for each 1 ≤ k < M . (For l = 0, these values can be
hardcoded as advice; for l ≥ 1, they should be obtained from the previous round.) We
invoke Learn Next Curve M(p − 1) times with stride l to obtain the evaluation tables of
P (Akpl+i′C) for each 1 ≤ k < M · p. The l-th round ends here; note that we have obtained
the evaluation tables required in the (l + 1)-th round (namely P (Akpl+1+ilp

l+i′C) for every
1 ≤ k < M).

However, there is one issue with this approach: to learn a curve C, we also need to provide
Learn Next Curve with the evaluations of some reference points on C. To resolve this issue,
[SU05] introduced an interleaved learning procedure that involves two curves C1 and C2. These
two curves possess nice intersection properties that for certain choices of k and l, AkC1 and AlC2

intersect on at least r points. This enables us for example to learn the evaluation table of P (AlC2)
whenever we know the evaluation table of P (AkC1), by using the evaluations of P (AkC1) at reference
points R, where R is the intersection of AkC1 and AlC2.

Interleaved learning. In what follows, we use [C1∩C2] to denote the set {t ∈ Fp : C1(t) = C2(t)}.
We say two curves C1 and C2 are good if they satisfy the following properties:

• C1(1) ̸= 0⃗;

• for all 1 ≤ i < pm and all 0 ≤ j < m, [Ai+pjC1 ∩AiC2] and [AiC1 ∩AiC2] are of size ≥ r;

• for all 1 ≤ i < pm and all 0 ≤ j < m, Learn Next Curve succeeds given next curve Ai+pjC1,
reference points [Ai+pjC1 ∩AiC2], and stride j; and

• for all 1 ≤ i < pm and all 0 ≤ j < m, Learn Next Curve succeeds given next curve AiC2,
reference points [AiC1 ∩AiC2], and stride j.

By [SU05, Lemma 5.14], there is a poly(v, p)-time randomized algorithm that, with probability
1− 2mpm · εLNC ≥ 1− 1/(10p2m), outputs two curves C1 and C2 that are good.

The basic step in the reconstruction algorithm is called interleaved learning in [SU05]. This step
has the following guarantee: For a stride j, given the correct evaluation tables of P (Ai−kpjC1) and
P (Ai−kpjC2) for every 1 ≤ k < M , we can compute the correct evaluation tables of P (AiC1) and
P (AiC2). In particular, interleaved learning consists of the following two steps:

• first, we invoke Learn Next Curve with next curve AiC1, reference points [Ai−pjC2∩AiC1],
and stride j;

• then, we invoke Learn Next Curve with next curve AiC2, reference points [AiC1 ∩ AiC2],
and stride j.

Note that we assume that all invocations of Learn Next Curve succeed, as this happens with
high probability (1− 1/(10p2m)).
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The reconstruction algorithm. Recall that our reconstruction algorithm needs to output two
elements: a vector v⃗ ∈ Fm

p \ {⃗0} and a D-oracle circuit C : [pm− 1]→ Fp such that C(i) = P (Ai · v⃗)
for every i ∈ [pm − 1].

We first compute the curves C1 and C2 that are good with probability 1 − 1/(10p2m). Our
reconstruction algorithm will be correct provided that C1 and C2 are good (and that we fixed
good internal randomness of our next-element predictors D(j)); this happens with probability ≥
1 − 1/(10p2m) − 1/(10p2m) ≥ 1 − 1/p2m. The vector we output will be v⃗ ≜ C1(1) (which is non-
zero if C1 and C2 are good). It remains to output a circuit C such that for every i ∈ [pm − 1],
C(i) = P (Ai · v⃗).

Given an integer i, our circuit C first writes i in p-ary as i =
∑m−1

j=0 ijp
j . Then, it proceeds in

m rounds, where for each 0 ≤ l < m, the l-th round performs the following:

• Let i′ ≜
∑l−1

j=0 ijp
j . Suppose that at the beginning of the l-th round, we already know

the evaluation tables of P (Akpl+i′C1) and P (Akpl+i′C2) for each 1 ≤ k < M . We perform
interleaved learning M(p−1) times with stride l to obtain the evaluation tables of P (Akpl+i′C1)

and P (Akpl+i′C2) for each 1 ≤ k < M ·p. The l-th round ends here; note that we have obtained
the evaluation tables required to perform the (l + 1)-th round (namely, P (Akpl+1+ilp

l+i′C1)

and P (Akpl+1+ilp
l+i′C2) for every 1 ≤ k < M).

Finally, after the (m− 1)-th round, we have obtained the evaluation table of P (AiC1), and we can
simply output P (AiC1(1)) = P (Aiv⃗) as the answer.

Note that the interleaved learning procedure needs to invoke the next-element predictor, there-
fore our circuit C will be a D-oracle circuit. Also, at the beginning of the first (0-th) round, we need
the evaluation tables of P (AkC1) and P (AkC2) for each 0 ≤ k < M . Our reconstruction algorithm
can simply query the polynomial P to obtain these values and hardcode them into our circuit C.
It is clear that our reconstruction algorithm runs in poly(p,m) time and succeeds with probability
≥ 1− 1/p2m.

4.3 Modified Shaltiel–Umans Generator: Proof of Theorem 4.1

In this subsection, we prove Theorem 4.1, which is restated below.

Theorem 4.1 (A HSG with Uniform Learning Reconstruction). There exist an algorithm H and a
probabilistic oracle algorithm R(−) such that the following holds. Let p be a nice power of 2, m be a
power of 3, ∆,M ∈ N with p > ∆2m7M9, and let ℓ⃗ ≜ (p,m,M,∆) be the input parameters.

• The generator H
ℓ⃗

takes as input a polynomial P : Fm
p → Fp with total degree at most ∆,

specified as a list of pm evaluations of P on all points from Fm
p in the lexicographic order, and

outputs a set of strings in {0, 1}M . Moreover, H
ℓ⃗

can be implemented by a logspace-uniform
circuit of size poly(pm) and depth poly(log p,m,M).

• The reconstruction algorithm RD,P

ℓ⃗
, where D : {0, 1}M → {0, 1} is any function that (1/M)-

avoids H
ℓ⃗
(P ), runs in time poly(p,m) and outputs, with probability at least 1 − 1/pm, a

D-oracle circuit that computes P .

Proof. One difference between our generator and the Shaltiel–Umans generator (Theorem 4.9) is
that the reconstruction procedure in the latter only learns a circuit C0 that computes the mapping
i 7→ P (Ai · v⃗) (for some v⃗ output by the reconstruction procedure), where A is the generator matrix
used in the Shaltiel–Umans construction, instead of a circuit that computes P itself. Let us assume
for simplicity that the circuit C0 computes i 7→ P (Ai · 1⃗). Note that if given x⃗ ∈ Fm

p \ {⃗0} (which
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is the input on which we intend to evaluate P ), we could efficiently compute the value i ∈ [pm − 1]
such that Ai · 1⃗ = x⃗, then we would be able to combine this with the circuit C0 to compute P
(roughly speaking, by first computing i and then outputting C0(i)). However, there are two issues
with this approach:

1. First, we do not know the generator matrix A, as we need our reconstruction algorithm to be
uniform and thus we cannot hardcode A.

2. Second, the task of finding such i given x⃗ and A is essentially the discrete logarithm problem,
for which no efficient algorithm is known.

To handle the first issue, we will construct our generator by using the Shaltiel–Umans construc-
tion based on a generator matrix that is from a small set S given by Lemma 4.5. Then in the
reconstruction, we will try all the matrices from S, which can be generated efficiently, to obtain a
list of candidate circuits. We then select from the list a circuit that is sufficiently close to P and use
a self-corrector to compute P everywhere. For the second issue, we first observe that the mapping
f : i 7→ Ai · 1⃗ is a permutation. Treating f as a “cryptographic one-way permutation” and invoking
Theorem 4.7, we can construct a “cryptographic pseudorandom generator”, which has a uniform
reconstruction algorithm. We can then combine the output of this “cryptographic pseudorandom
generator” with that of the Shaltiel–Umans generator so that if there is an algorithm D that avoids
this combined generator, then D can also be used to invert f efficiently! Details follow.

The construction of H. For a matrix A ∈ Fm×m
p , let fA : [pm − 1] ∪ {0} → Fm

p be such that

fA(i) ≜

{
0n if i = 0

Ai · 1⃗ if 1 ≤ i < pm.

We will also view f as a function mapping s bits to s bits, where s ≜ m · log p. Also note that if A
is a generator matrix for Fm

p , then fA is a permutation.
Let HSU be the generator from Theorem 4.9 and CryptoG(−) be the generator from Theorem 4.7.

Also, let S ⊆ Fm×m
p be the set of matrices constructed using Lemma 4.5. We define

H
ℓ⃗
(P ) ≜

⋃
A∈S

(
HSU

ℓ⃗
(P,A)

⋃
CryptoGfA

s,M

)
.

The complexity of H. We argue that H
ℓ⃗

can be implemented by a logspace-uniform circuit of
size poly(pm) and depth poly(log p,m,M).

First note that given A, fA can be computed in poly(log p,m) time. Then again by the fact
that every time-t Turing machine can be simulated by a logspace-uniform circuit of size O(t2),
fA can be computed by a logspace-uniform circuit of size poly(log p,m). This means given A,
CryptoGfA

s,M , which by Theorem 4.7 has a logspace-uniform fA-oracle circuit of size poly(2s,M) and
depth poly(s,M), can be implemented by a logspace-uniform circuit of size poly(pm) and depth
poly(log p,m,M), where we have used that s = m · log p and M ≤ p1/9. Also, by Theorem 4.9, HSU

ℓ⃗
has a logspace-uniform circuit of size poly(pm) and depth poly(log p,m,M). To compute H

ℓ⃗
(P ),

we just need to compute HSU
ℓ⃗
(P,A) and CryptoGfA

s,M for all A ∈ S in parallel, where S can also be
computed in time poly(log p,m) and hence has logspace-uniform circuit of size poly(log p,m). This
yields a logspace-uniform circuit of size poly(pm) and depth poly(log p,m,M) computing H

ℓ⃗
.
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The reconstruction. Given oracle access to the polynomial P and a function D that (1/M)-
avoids H

ℓ⃗
(P ), we want to output a D-circuit that computes P . We do this in two stages. In the

first stage, we obtain a list of candidate circuits, one for each A ∈ S, that (with high probability)
contains at least one circuit that computes P . In the second stage, we will select, from the list of
candidate circuits, one that is sufficiently close to P and combine it with a self-corrector to obtain
a circuit that computes P on all inputs.

We now describe the first stage. Let A∗ be the lexicographically first matrix in S that is a
generator matrix for Fm

p , and consider the two sets

HSU
ℓ⃗
(P,A∗) and CryptoG

fA∗
s,M ,

which are subsets of H
ℓ⃗
(P ). Since D avoids H

ℓ⃗
, it also avoids both HSU

ℓ⃗
(P,A∗) and CryptoG

fA∗
s,M .

Assume for a moment that we are given the matrix A∗. We will construct a circuit CA∗ as
follows. Let RSU(−) and Invert(−) be the oracle algorithms from Theorem 4.9 and Theorem 4.7
respectively. We first run RSUD,P

ℓ⃗
(A∗) to obtain a D-oracle circuit C ′A∗ and some v⃗ ∈ Fm

p \ {⃗0}. By
the property of RSU(−) (item 2 of Theorem 4.9) and the fact that D avoids HSU

ℓ⃗
(P,A∗), we get

that, with probability at least 1− 1/p2m, for every i ∈ [pm − 1],

C ′A∗(i) = P ((A∗)i · v⃗). (2)

Similarly, by the property of Invert(−) (item 2 of Theorem 4.7) and the fact that D avoids
CryptoG

fA∗
s,M , we get that

Pr
x←{0,1}s

[
Invert

fA∗ ,D
s,M (x) = f−1A∗ (x)

]
≥ 1

poly(M)
.

By combining
g ≜ Invert

fA∗ ,D
s,M

with the algorithm DLCorr(−) from Lemma 4.6, we get that for every x⃗ ∈ Fm
p , with probability at

least 2/3 over the internal randomness of DLCorrg,

DLCorrg
(
p,m, 1poly(M), A∗, x⃗

)
= f−1A∗ (x⃗).

By using standard error reduction techniques (to reduce the error from 2/3 to 1/(10p2m)) and by
fixing the internal randomness (that hopefully works correctly for all pm inputs), we can obtain, in
time poly(p,m) and with probability at least 1 − 1/(10pm), a D-oracle circuit C ′′A∗ such that for
every x⃗ ∈ Fm

p ,
C ′′A∗(x⃗) = f−1A∗ (x⃗). (3)

That is, given x⃗ ∈ Fm
p \ {⃗0}, C ′′A∗(x⃗) outputs i ∈ [pm−1] such that (A∗)i · 1⃗ = x⃗. This is almost what

we need except that we want the circuit to output i such that (A∗)i · v⃗ = x⃗. We further construct
such a circuit C ′′′A∗ as follow. Given x⃗ ∈ Fm

p , we first compute

j ≜ C ′′A∗(v⃗) and k ≜ C ′′A∗(x⃗).

That is, v⃗ = (A∗)j · 1⃗ and x⃗ = (A∗)k · 1⃗. We then output i depending on the values of j and k. On
the one hand, if j < k, we let i ≜ k − j. Then

(A∗)i · v⃗ = (A∗)k−j · (A∗)j · 1⃗ = (A∗)k · 1⃗ = x⃗.
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On the other hand, if k ≤ j, we let i ≜ pm − 1− (j − k) , which yields

(A∗)i · v⃗ = (A∗)p
m−1−j+k · (A∗)j · 1⃗ = I · (A∗)k · 1⃗ = x⃗.

Now we have a circuit C ′′′A∗ that given x⃗ ∈ Fm
p \ {⃗0}, outputs i ∈ [pm− 1] such that (A∗)i · v⃗ = x⃗

and a circuit C ′A∗ that given i ∈ [pm − 1], computes P ((A∗)i · v⃗). We then construct the circuit

CA∗(x⃗) ≜

{
P (⃗0) if x⃗ = 0⃗

C ′A∗(C ′′′A∗(x⃗)) if x⃗ ∈ Fm
p \ {⃗0}.

Note that we can hardwire the value of P (⃗0). Also notice that if both Equations 2 and 3 are true
(which happens with probability at least 1− 1/(9pm)) we will get that for all x⃗ ∈ Fm

p ,

CA∗(x⃗) = P (x⃗).

However, we don’t know the matrix A∗. Instead, we will run the above procedure for each A ∈ S
to obtain a list C ≜ {CA}A∈S of candidate circuits CA. Then, with probability at least 1−1/(9pm),
C contains at least one circuit (in particular, CA∗) that computes the polynomial P .

Given the list of candidate circuits C, we now describe the second stage. First of all, given a
circuit CA ∈ C, we want to check if CA is sufficiently close to P .

Claim 4.10. There is a randomized algorithm IsClose that, given a circuit B : Fm
p → Fp, δ ∈ (0, 1],

and oracle access to the polynomial P , runs in time poly(|B|) · log(1/δ) such that

• if Prx⃗[B(x⃗) = P (x⃗)] = 1, the algorithm accepts with probability 1, and

• if Prx⃗[B(x⃗) = P (x⃗)] ≤ 3/4, the algorithm rejects with probability at least 1− δ.

Proof of Claim 4.10. The algorithm picks 3 log(1/δ) points uniformly at random from Fm
p and checks

if B and P agree on all those points. If so, the algorithm accepts; otherwise it rejects. Note that if
Prx⃗[B(x⃗) = P (x⃗)] ≤ 3/4, then the probability that it accepts is at most (3/4)3 log(1/δ) < δ. ⋄

For each CA ∈ C, we run IsCloseP (CA, δ ≜ 1/(4|C|pm)) and pick the first one that the algorithm
accepts. By the fact that C contains at least one circuit that computes P and by the property of the
algorithm IsClose (Claim 4.10), with probability at least 1− 1/(4pm), we will obtain some D-oracle
circuit Cclose such that

Pr
x⃗←Fm

p

[Cclose(x⃗) = P (x⃗)] > 3/4. (4)

Conditioned on Equation 4, by combining Cclose with the self-corrector PCorr(−) from Theorem 4.8,
we get that for every x⃗ ∈ Fm

p , PCorrCclose(p,m,∆, x⃗) = P (x⃗) with probability at least 2/3 (over the
internal randomness of PCorrCclose). Again, by using standard error reduction techniques and by
picking a randomness uniformly at random, we can obtain in time poly(p,m), with probability at
least 1− 1/(4pm), a D-oracle circuit C that computes P .

By a union bound, the above procedure gives, with probability at least 1 − 1/pm, a D-oracle
circuit that computes the polynomial P .

Finally, it is easy to verify that the running time is poly(p,m).

5 Improved Chen–Tell Targeted Hitting Set Generator

In this section, we prove Theorem 3.1, showing how to build a reconstructive hitting set generator
from any uniform low-depth circuit.

34



5.1 Layered-Polynomial Representation

The first step is to “arithmetize” our low-depth circuit into a layered-polynomial representation.
Roughly speaking, given a (uniform) circuit C of depth d and size T , we will produce a table of size
d′ × T ′ where d′ ≈ d and T ′ = poly(T ), such that the following key properties hold:

(Low-degree.) Each row is the “truth table” of a low-degree polynomial (thus admits self-correction
properties).

(Faithful representation.) Given oracle access to the d′-th row, we can compute the output of
C(1n) quickly.

(Downward self-reducibility.) For each 2 ≤ i ≤ d′, given oracle access to the (i− 1)-th polyno-
mial, we can quickly compute the output of the i-th polynomial on a given input. Moreover,
the entries of the first row (corresponding to i = 1) can be computed quickly.

Later, we will use these properties of the layered-polynomial representation to compile them into a
reconstructive HSG.

We now formally describe our layered-polynomial representation, which can be proved by mod-
ifying the construction in [CT21]. In the following, letting p be a power of 2, and f : Fℓ

p → Fp, we
use tt(f) to denote the length-(pℓ · log p) Boolean string that consists of pℓ blocks, where the i-th
block corresponds to the Boolean encoding of the i-th element in Fp.

Theorem 5.1 (Layered-Polynomial Representation). There exist universal constants c, c′, β > 1
such that the following holds. Let κ ∈ N and let T, d, n, h, p ∈ N all be sufficiently large such that
(1) d ≤ T and n ≤ T , and (2) h, p are both nice powers of 2 and log T ≤ h < p ≤ h27 ≤ T . (Recall
that p is a nice power of 2 if p = 22·3

λ for some λ ∈ N.)
Let ℓ⃗ ≜ (κ, T, d, n, h, p) be the input parameters, and let F ≜ Fp. For a Turing machine TM with

description size |TM| = κ · log T , let

CTM ≜ Circuit[T, κ · log T, n, n](TM).

Assuming CTM ̸= ⊥ and CTM has depth at most d, there are d′ ≜ cκ·log2 T ·(d+κ2 log T ) polynomials(
P ℓ⃗,TM
i

)
i∈[d′]

such that the following hold (below we write P ℓ⃗,TM
i as Pi for simplicity):

1. (Arithmetic setting.) Let H ⊂ F be the first h elements of F, and let m be the smallest
power of 3 such that hm ≥ T βκ. Each polynomial is from F3m to F and has total degree at
most ∆ = c · h · log3(T ).

2. (Faithful representation.) Fix an injective function id : [n] → Hm in an arbitrary but
canonical way.21 For every i ∈ [n], (CTM(1n))i = Pd′(id(i), 0

2m).

3. (Complexity of the polynomials.) Let Tpoly ≜ T c·κ and dpoly ≜ c · (d log T + κ2 log2 T ).
There is a Turing machine TMpoly of description length log Tpoly such that for

Cpoly ≜ Circuit
[
Tpoly, log Tpoly, log d

′, |F|3m · log |F|
]
(TMpoly),

it holds that (1) for every i ∈ [d′] Cpoly(i) = tt(Pi) and (2) Cpoly has depth dpoly.

Moreover, there is a polynomial-time algorithm Apoly

ℓ⃗
that takes TM ∈ {0, 1}κ log T as input,

and outputs the description of TMpoly.
21For simplicity, we will ignore the complexity of computing id and its inverse since it is negligible.

35



4. (Downward self-reducibility.) There is a max(n, h) · hc′-time algorithm Base that takes
inputs ℓ⃗, TM ∈ {0, 1}κ·log T , and w⃗ ∈ F3m, outputs P1(w⃗).

Also, there is an hc
′-time oracle algorithm DSR that takes inputs ℓ⃗, TM ∈ {0, 1}κ·log T , i ∈

{2, . . . , d′}, and w⃗ ∈ F3m, and oracle access to a polynomial P̃ : F3m → F, such that when it
is given Pi−1 as the oracle, it outputs Pi(w⃗).

Proof. Recall that we use ℓ⃗ to denote the input parameters (κ, T, d, n, h, p). We will follow the
proof of [CT21, Proposition 4.7], which in turn follows [Gol17] (see also [Gol18]). In the following,
we will simply use C to denote the (low-depth) circuit CTM = Circuit[T, κ · log T, n, n](TM) for
notational convenience, but we stress that C depends on both ℓ⃗ and TM (and so does the later
circuits constructed from C).

5.1.1 Construction of a Highly Uniform Circuit D

We first construct a circuit D that has better uniformity and preserves the functionality of C, i.e.,
D(1n) = C(1n). Given input 1n, D first computes a description of C = Circuit[T, κ · log T, n, n](TM)
(represented as a T × T × T tensor) and then computes the Eval function ⟨⟨C⟩, n, d⟩ 7→ C(1n). Let
s ≜ κ · log T and s′ ≜ O(s+log(3 log T )) be such that each configuration of TM on 3 log T -bit inputs
can be described by s′ bits.

The circuit D is constructed by composing the following three subcircuits. Let µ ∈ N be a
sufficiently large universal constant. We will describe and analyze their complexities (or state the
complexity bounds proved in [CT21,Gol17]).

1. (Computing the adjacency matrices for configurations.) The first circuit D(1) takes n
bits as input (which are supposed to be 1n), outputs a list of T 3 matrices from {0, 1}2s

′×2s′ ,
such that the (u, v, w)-th matrix22 M (u,v,w) satisfies the following condition: for every γ, γ′ ∈
{0, 1}s′ , M (u,v,w)[γ, γ′] = 1 if and only if Anxt(TM, s, (u, v, w), γ, γ′) (i.e., γ′ is the configuration
obtained by running TM for one step on configuration γ and input (u, v, w) with space bound
s). Recall we assumed that if γ is the accepting or the rejecting configuration, then its next
configuration is γ itself.

Complexity of D(1). D(1) can be implemented by a projection (i.e., depth dD(1) = 2 and
size TD(1) = T 3 · 22s′).23 Moreover, from Fact 2.2, given ℓ⃗ and TM, in polynomial time we can
compute a Turing machine TMD(1) ∈ {0, 1}(κ+µ)·log T such that

Circuit
[
TD(1) , sD(1) , n, T 3 · 22s′

]
(TMD(1)) = D(1),

where sD(1) = µ · s′.

2. (Computing the adjacency relation tensor of C via matrix multiplication.) The
second circuit D(2) takes a list of T 3 matrices from {0, 1}2s

′×2s′ as input, and outputs a tensor
from {0, 1}T×T×T followed by the encoding of a pair (n, d).

In more detail, given the output of D(1)(1n), for every (u, v, w) ∈ [T ]3, it determines whether
TM(u, v, w) = 1 by computing (M (u,v,w))2

s′ , which can be done by repeated squaring s′ times.
This gives the adjacent relation tensor of C.

22We use (u, v, w) ∈ [T ]3 to denote the integer (u− 1)T 2 + (v − 1)T + w ∈ [T 3].
23Note that we can implement projections and restrictions of input bits to 0 and 1 using two layers of NAND gates.
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Complexity of D(2). D(2) can be implemented by a circuit of depth dD(2) = µ · (s′)2 and
size TD(2) = T 3 · 2µs′ . Moreover, from [CT21,Gol17] (note that D(2) does not depend on TM),
given ℓ⃗, in polynomial time we can compute a Turing machine TMD(2) ∈ {0, 1}µ·log T such that

Circuit
[
TD(2) , sD(2) , T 3 · 22s′ , T 3 + |(n, d)|

]
(TMD(2)) = D(2),

where sD(2) = µ · s′.

3. (Computing Eval.) The final circuit D(3) takes ⟨⟨C⟩, n, d⟩ as input, and outputs Eval(⟨C⟩, n, d).
Complexity of D(3). D(3) can be implemented by a circuit of depth dD(3) = µ · d · log T
and size TD(3) = Tµ. Moreover, from [CT21,Gol17] (note that D(3) does not depend on TM),
given ℓ⃗, in polynomial-time we can compute a Turing machine TMD(3) ∈ {0, 1}µ·log T such that

Circuit
[
TD(3) , sD(3) , T 3 + |(n, d)|, n

]
(TMD(3)) = D(3),

where sD(3) = µ · s′.

Formally, we have
D = D(3) ◦D(2) ◦D(1).

Let β ∈ N be a sufficiently large constant such that β ≥ 100µ. The following claim summarizes
the required properties of D for us.

Claim 5.2. The following properties about the circuit D are true.

1. The depth of D is dD = β · (κ2 · log2 T + d · log T ) and the width of D is T ′D = T βκ.

2. The layered adjacency relation function Φ′ : [dD]×{0, 1}3 log(T
′
D) → {0, 1} of D can be decided

by a formula of depth O(log log T ) and size O(log3 T ). Moreover, there is an algorithm AΦ′

that given ℓ⃗ and TM as input, outputs the formula above in O(κ log T ) space.

3. There is a Turing machine TMD ∈ {0, 1}βκ log T such that

Circuit[TD, sD, n, n](TMD) = D, 24

where TD = T ′D · (dD + 1) and sD = βκ log T . Moreover, given ℓ⃗ and TM as input, the
description of TMD can be computed in polynomial time.

Proof of Claim 5.2. By construction, the size of D is bounded by poly(T ) · 2O(s′) ≤ TO(κ) (recall
that s′ = O(s+ log(3 log T )) and s = κ log T ), and its depth is bounded by O(s2 + d · log T ). The
first bullet then follows directly from the fact that β is sufficiently large.

Recall that the D(1) part of D has depth dD(1) = 2. To see the complexity of computing
Φ′(i,−,−,−) for i > 2, we note that the layers corresponding to D(2) and D(3) do not depend on
TM. Hence the complexity of computing their layered adjacent relation function follows directly
from [CT21, Claim 4.7.1].25 Also, the complexity of computing Φ′(i,−,−,−) for i ∈ {1, 2} follows

24Note that Circuit generates the unlayered version of D of size T ′
D · (dD + 1), Without loss of generality we can

assume the first T ′ gates are on the first layer, the next T ′ gates are on the second layer, and so on.
25We note that although [CT21,Gol17] only claims a polylog(T ) bound on the formula size, the formula is indeed

very simple and its size and depth can be easily bounded by O(log3 T ) and O(log log T ), respectively; see [Gol17, Page
8-9] for details.
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directly from Fact 2.2. To see the moreover part, again, the case for i > 2 follows from [CT21,
Claim 4.7.1], and the case for i ∈ {1, 2} follows from Fact 2.2.26

Finally, to obtain the algorithm that computes TMD, we simply apply the composition Acomp

(from Fact 2.4) twice to compose the circuits D(1), D(2), D(3) in order and add some dummy gates
to the circuit. The space bound and the description size bound can also be verified easily. ⋄

5.1.2 Arithmetization of D

The construction of the polynomials and their corresponding algorithms can then be done in
the same way as in [CT21]. We only state the necessary changes to establish our theorem.

Note that |F|m = pm ≤ poly(h27m) ≤ TO(βκ) ≤ TO(κ) (β is a universal constant), from our
assumption that p ≤ h27 and our choice of m.

First, we need an arithmetization of each Φ′i ≜ Φ′(i,−,−,−).

Claim 5.3. For i ∈ [dD] there exists a polynomial Φ̂i : F3m → F that satisfies the following:

1. For every (w⃗, u⃗, v⃗) = z1, ..., z3m ∈ H3m we have that Φ̂i(w⃗, u⃗, v⃗) = 1 if gate w⃗ in the ith layer
of D is fed by gates u⃗ and v⃗ in the (i− 1)th layer of D, and Φ̂i(w⃗, u⃗, v⃗) = 0 otherwise.

2. The degree of Φ̂i is at most O(h · log3 T ). Moreover, there exists an algorithm that on input
ℓ⃗,TM, i, w⃗, u⃗, v⃗, computes Φ̂i(w⃗, u⃗, v⃗) in poly(h) time.

3. For a universal constant c1 > 1, there exists a circuit CΦ̂ of size TΦ̂ ≜ T c1κ and depth c1κ·log T
that on input i ∈ [dD] outputs tt(Φ̂i) ∈ F|F|3m (represented as a Boolean string). Moreover,
there is a polynomial-time algorithm AΦ̂ that takes ℓ⃗ and TM ∈ {0, 1}κ log T as input, and
outputs the description of a Turing machine TMΦ̂ ∈ {0, 1}

c1κ log T such that

CΦ̂ = Circuit
[
TΦ̂, c1 · κ log T, log(dD + 1), |F|3m log |F|

]
(TMΦ̂).

Proof Sketch of Claim 5.3. We first define Φ̂i and then establish each item separately.

Construction of Φ̂i. Let FΦ′ be the O(log log T )-depth O(log3 T )-size formula computing Φ′ : [dD]×
{0, 1}3·log T ′

D → {0, 1} from Claim 5.2. For every i ∈ [dD], let Fi be the restriction of FΦ′ by fixing
the first input to be i. Then, we arithmetize Fi by replacing every NAND gate in Fi by an arithmetic
gate ÑAND : F2 → F computing ÑAND(u, v) ≜ 1 − uv. Denote the new formula (which is now an
arithmetic formula) by F̂i.

For each j, let πj : H → {0, 1} be the mapping that maps z ∈ H to the j-th bit of the en-
coding of z. Note that since H consists of the smallest h elements in F, we know that π(z) =
(π1(z), . . . , πlog h(z)) is a bijection between H and {0, 1}log h.27

For each j ∈ [log h], let π̂j : F→ F be the unique degree-(h−1) extension of πj to F, that can be
computed via standard interpolation via logspace-uniform circuits of O(log(h · log |F|)) = O(log T )
depth and polylog(T ) size [HAB02, HV06] (see [CT21, Claim 4.7.2] for the details). We also let
π̂(z) = (π̂1(z), . . . , π̂log h(z)). Then, we set

Φ̂i(z1, . . . , z3m) ≜ F̂i(π̂(z1), π̂(z2), . . . , π̂(z3m)).

26Strictly speaking we need to combine the formulas for two cases to obtain a single formula for Φ′. The overhead
of doing so is negligible so we omit this discussion here.

27More specifically, by our specific encoding of H as strings from {0, 1}log |F|, π(z) is simply the first log h bits of
the encoding of z, hence it can be computed by a projection.
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We also use FΦ̂i
to denote the arithmetic formula on the right side above that computes the

formula Φ̂i.
From the construction above, the first two items of the claim can be proved identically as [CT21,

Claim 4.7.2]. It remains to establish the third item.

Construction of CΦ̂. We hardwire the description of FΦ′ into CΦ̂. The circuit CΦ̂ takes i ∈ [dD]
as input, performs the above computation to obtain a description of the arithmetic formula FΦ̂i

,
and then outputs the truth table of FΦ̂i

by evaluating it on all vectors in F3m.
In more detail, computing the description of FΦ̂i

from the description of FΦ′ and i can be done
in O(log T ) depth and polylog(T ) size. CΦ̂ then evaluates FΦ̂i

on all vectors from Fm, which can
be done in poly(|F|m) size and O(log(|F|m)) depth. The third bullet (except for the moreover part)
then follows by setting c1 to be sufficiently large and recalling that |F|m ≤ TO(βκ).

Establishing the uniformity. Finally, we establish the moreover part of the third bullet. Let
µΦ̂ ∈ N be a sufficiently large universal constant that depends on the space complexity of the
algorithm AΦ′ from Claim 5.2.

Our algorithm AΦ̂ works as follows:

1. We first construct a Turing machine TM[1] with ℓ⃗ and TM hardwired. TM[1] corresponds to a
circuit C[1] that takes i ∈ [dD] as input and outputs i together with the description of FΦ′ .28

C[1] has depth d[1] = O(1) and size T[1] = polylog(T ). Let s[1] = µΦ̂ · κ log T , we have

C[1] = Circuit
[
T[1], s[1], log dD, log dD + |FΦ′ |

](
TM[1]

)
and TM[1] has description size at most |TM|+ µΦ̂ · log T = (κ+ µΦ̂) · log T .

Here, we crucially use the fact that the algorithm AΦ′ from Claim 5.2 runs in O(κ log T ) space
(and µΦ̂ is sufficiently large).

2. Then we construct a Turing machine TM[2] that corresponds to a circuit C[2] that takes
i ∈ [dD] together with the description of FΦ′ as input and outputs tt(Φ̂i). By the discussion
above, from ℓ⃗ we can compute a Turing machine TM[2] ∈ {0, 1}µΦ̂κ log T such that for T[2] =
poly(|F|m) ≤ TµΦ̂κ, d[2] = O(log(|F|m)) ≤ µΦ̂κ · log T , s[2] = µΦ̂κ log T , we have

C[2] = Circuit
[
T[2], s[2], log dD + |FΦ′ |, |F|3m

](
TM[2]

)
,

and C[2] has depth d[2].

3. Finally, AΦ̂ composes C[1] and C[2] by applying Fact 2.4 and outputs the obtained Turing
machine as TMΦ̂. Setting c1 sufficiently large completes the proof. ⋄

Then we define the following polynomials, according to [CT21, Definition 4.6].

Input polynomial. Let α0 : H
m → {0, 1} represent the string 1n0h

m−n, and let α̂0 : Fm → F be
the “arithmetization” of α0, defined by

α̂0(w⃗) =
∑

z⃗∈Hm′×{0}m−m′

δz⃗(w⃗) · α0(z⃗).

Here, m′ ≤ m is the minimal integer such that hm
′ ≥ n, and δz⃗ is Kronecker’s delta function (i.e.,

δz⃗(w⃗) =
∏

j∈[m]

∏
a∈H\{zj}

wj−a
zj−a ).

28Precisely, TM[1] simulates AΦ′ on input ℓ⃗ and TM to construct a projection that maps i to (i, FΦ′).
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Layer polynomials. For each i ∈ [dD], let αi : H
m → {0, 1} represent the values of the gates at

the ith layer of D in the computation of D(1n) (with zeroes in locations that do not index valid
gates). Recall that we consider circuits consisting of NAND gates, where for a, b ∈ {0, 1} we have
NAND(a, b) = 1− a · b. We define α̂i : Fm → F as

α̂i(w⃗) =
∑

u⃗,v⃗∈Hm

Φ̂i(w⃗, u⃗, v⃗) · (1− α̂i−1(u⃗) · α̂i−1(v⃗)) . (5)

Note that α̂i is the “arithmetization” of αi in the sense that for every w⃗ ∈ Hm, αi(w⃗) = α̂i(w⃗).

Sumcheck polynomials. For each i ∈ [dD], let α̂i,0 : F3m → F be the polynomial

α̂i,0(w⃗, σ1, ..., σ2m) = Φ̂i(w⃗, σ1,...,m, σm+1,...,2m) · (1− α̂i−1(σ1,...,m) · α̂i−1(σm+1,...,2m)) . (6)

For every j ∈ [2m], let α̂i,j : F3m−j → F be the polynomial

α̂i,j(w⃗, σ1, ..., σ2m−j) =∑
σ2m−j+1,...,σ2m∈H

Φ̂i(w⃗, σ1,...,m, σm+1,...,2m) · (1− α̂i−1(σ1,...,m) · α̂i−1(σm+1,...,2m)) , (7)

where σk,...,k+r = σk, σk+1, ..., σk+r. It is easy to check that α̂i,2m = α̂i.

We are now ready to define the sequence (Pi)i∈[d′] =
(
P ℓ⃗,TM
i

)
i∈[d′]

. We set d′ ≜ (2m+1) ·dD+1

and
(Pi)i∈[d′] = (α̂0, α̂1,0, . . . , α̂1,2m, α̂2,0, . . . , α̂2,2m, . . . , α̂dD,0, . . . , α̂dD,2m).

For those α̂i,j (and α̂0) that take less than 3m variables, we add some dummy variables at the end
to make all polynomials taking exactly 3m variables.

From the definitions of m and dD, we have m ≤ 3·βκ·log T+1 and dD = β ·(κ2 ·log2 T+d·log T ).
Hence, we have d′ = (2m+ 1) · dD + 1 ≤ cκ · log2 T · (d+ κ2 log T ) as desired.29

Below we verify the desired properties of the sequence (Pi)i∈[d′].

Arithmetic setting, faithful representation, and downward self-reducibility. First, the
degree bounds of all these polynomials follow directly from their definitions and from the degree
bound on Φ̂i (from Claim 5.3). The faithful representation property also follows directly from the
definition of αdD and α̂dD,2m = α̂dD . Finally, the downward self-reducibility of the polynomials fol-
lows from the complexity of computing Φ̂i (from Claim 5.3) and the definitions of these polynomials,
similarly to the proof of [CT21, Proposition 4.7].

5.1.3 Complexity of the Polynomials

Now we verify the complexity of computing these polynomials. The argument below is straight-
forward but tedious. We first give a high-level overview.

29We can add identical polynomials at the end to make d′ exactly cκ · log2 T · (d + κ2 log T ) as in the theorem
statement.
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High-level overview of the construction. To construct the circuit Cpoly that maps i′ ∈ [d′] to
tt(Pi), we will construct three subcircuits Cα, Ctt-Φ̂, and Carith such that:

1. Cα maps i′ ∈ [d′] to (tt(αi−1), i, j). Here, if i′ ≥ 2, then i ∈ {1, . . . , dD} and j ∈ {0, 1, . . . , 2m}
satisfies that Pi′ = α̂i,j and tt(αi−1) ∈ {0, 1}h

m denotes the values of the gates at the i-th
layer of D. If i′ = 1, then we consider i = j = 0 and Cα outputs (tt(α0), 0, 0).

2. Ctt-Φ̂ maps (tt(αi−1), i, j) to (tt(αi−1), i, j, tt(Φ̂i)).

3. Carith maps (tt(αi−1), i, j, tt(Φ̂i)) to tt(α̂i,j) ∈ F|F|3m .

Cpoly is then simply Carith ◦Ctt-Φ̂ ◦Cα. To compute the Turing machine TMpoly that corresponds
to Cpoly, we construct the Turing machines TMα, TMtt-Φ̂, and TMarith corresponding to the three
circuit above, and compose them using Fact 2.4.

Construction of Cα and TMα. First, we construct a circuit Cα that takes as input i′ ∈ [d′] and
outputs (tt(αi−1), i, j). To construct Cα, we first compute i and j from i′ using basic arithmetic,
and then truncate D up to its i-th layer. It is easy to see that given the Turing machine TMD that
specifies the circuit D, in polynomial-time we can construct a Turing machine TMα ∈ {0, 1}|TMD|+µ

such that (in what follows, we write |⟨i, j⟩| = log(dD + 1) + log(2m+ 1) for convenience):

Circuit[Tα, sα, log(d
′), hm + |⟨i, j⟩|](TMα) = Cα,

where Tα = µ · TD, sα = 2sD. Moreover, Cα has depth at most dα = 2 · dD.

Construction of Ctt-Φ̂ and TMtt-Φ̂. Let c1 be the universal constant from Claim 5.3. Next
we construct a circuit Ctt-Φ̂ that on input (tt(αi−1), i, j), outputs (tt(αi−1), i, j, tt(Φ̂i)). It is
straightforward to obtain this circuit from the circuit CΦ̂ constructed in Claim 5.3. In other words,
given ℓ⃗ and TMΦ̂ ∈ {0, 1}

c1κ log T as input (where TMΦ̂ is the Turing machine that generates CΦ̂ as
defined in Claim 5.3), we can compute a Turing machine TMtt-Φ̂ ∈ {0, 1}

2·c1κ log T such that

Circuit[Ttt-Φ̂, stt-Φ̂, h
m + |⟨i, j⟩|, hm + |⟨i, j⟩|+ |F|3m log |F|](TMtt-Φ̂) = Ctt-Φ̂,

where Ttt-Φ̂ = T 2c1κ, stt-Φ̂ = 2c1κ log T . Moreover, Ctt-Φ̂ has depth dtt-Φ̂ = 2c1κ log T .

Construction of Carith and TMarith. We construct a circuit Carith that maps (tt(αi−1), i, j, tt(Φ̂i))
to tt(α̂i,j) ∈ F|F|3m . (Recall that throughout this proof we view α̂i,j as a 3m-variable polynomial
by adding dummy variables at the end.) Suppose that i ≥ 1 (the base case i = j = 0 can be
handled similarly). If j = 0, Carith computes tt(α̂i,0) using Equation 6, otherwise (j ≥ 1) Carith

computes tt(α̂i,j) using Equation 7. (Note that both Equation 6 and Equation 7 only depend on
the values of α̂i−1 over Hm, which is exactly tt(αi−1) due to our arithmetization.) Since arithmetic
operations over F (including iterated addition, multiplication, and inverse) are in logspace-uniform
NC1 [HAB02,HV06],30 it follows that Carith is of Tarith ≜ poly(|F|m) size and darith ≜ O(m log |F|)
depth. Moreover, Carith does not depend on TM, and we can compute a Turing machine TMarith

from ℓ⃗ in time polylog(T ) such that

Circuit[Tarith, sarith, h
m + |⟨i, j⟩|+ |F|3m log |F|, |F|3m log |F|](TMarith) = Carith,

where sarith = µ · βκ log T .
Composing TMα, TMtt-Φ̂, and TMarith by applying Fact 2.4 twice gives the desired Turing

machine TMpoly that computes the desired circuit Cpoly.
30It is in fact in logtime-uniform TC0, but here we only need it to be in logspace-uniform NC1.
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Complexity of Cpoly and TMpoly. Finally, we verify that TMpoly and Cpoly satisfy our require-
ments. First, from the discussions above, we can bound the size of Cpoly by Tα + Ttt-Φ̂ + Tarith ≤
Tpoly = 2c·κ log T by picking a sufficiently large c. Note that m log |F| = log(pm) ≤ O(κ log T ). The
depth of Cpoly can be bounded by dpoly = dα + dtt-Φ̂ + darith ≤ c · (κ2 · log2 T + d · log T ) as desired.

From Fact 2.4, we have that

|TMpoly| ≤ 100 ·
(
|TMα|+ |TMtt-Φ̂|+ |TMarith|+ log(|F|3m)

)
≤ c · κ log T = log Tpoly

by setting c sufficiently large. The space complexity of TMpoly can be bounded by

100 ·
(
sα + stt-Φ̂ + sarith

)
≤ c · κ log T = log Tpoly

as well. This completes the proof.

5.2 Improved Chen–Tell Generator: Proof of Theorem 3.1

Now we are ready to prove Theorem 3.1 by plugging every polynomial from Theorem 5.1 into
our modified Shaltiel–Umans generator (Theorem 4.1).

Proof of Theorem 3.1. We first observe that we can assume ρ = 1 without loss of generality. To
see how the general case follows from the case that ρ = 1, letting M ′ = Mρ, we can simply define
Hct
n,T,d,M,κ,ρ as the set of strings obtained by truncating every string from Hct

n,T,d,M ′,κ,1 to their
first M bits. The reconstruction algorithm Rct

n,T,d,M,κ,ρ can then be obtained by slightly modifying
Rct
n,T,d,M ′,κ,1.

Let
ℓ⃗ct = (n, T, d,M, κ, 1)

be the input parameters from the theorem statement and c be a sufficiently large universal constant.
From the assumption, we have n ≤ T, d ≤ T , and c · log T ≤M ≤ T 1/c. Let

CTM = Circuit[T, κ · log T, n, n](TM).

The layered-polynomial representation. Let c0, c
′
0, β be the universal constants from Theo-

rem 5.1. Let h be the smallest nice power of 2 such that h ≥M , p ≜ h27, m be the smallest power
of 3 such that hm ≥ T βκ, and F = Fp. Note that p is also a nice power of 2 and h ≤M3.

We will invoke Theorem 5.1 with input parameters

ℓ⃗poly = (κ, T, d, n, h, p).

Note that from their definitions and our assumption M ≥ c log T , we have log T ≤ h < p ≤ h27 ≤
M81 ≤ T (assuming c ≥ 81 is large enough), meaning that the requirements on the input parameters
of Theorem 5.1 are satisfied.

We first apply Theorem 5.1 with input parameters ℓ⃗poly and Turing machine TM to obtain

d′ = c0κ · log2 T · (d+ κ2 log T ) polynomials (Pi)i∈[d′] =
(
P ℓ⃗,TM
i

)
i∈[d′]

.

Hitting set Hct. Let Hlayer and Rlayer denote the H and R algorithms from Theorem 4.1, respec-
tively.31 Let ∆ = c0h log

3(T ),
ℓ⃗layer = (p, 3m,M,∆)

31The superscript layer highlights the fact that they are applied to each layer of the polynomial representation of
the circuit.
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be the input parameters when applying Theorem 4.1. We can verify that p > ∆2(3m)7M9, i.e., the
requirement on the input parameters of Theorem 4.1 is satisfied.

We then define Hct
ℓ⃗ct
(TM) as the union of Hlayer

ℓ⃗layer
(Pi) for every i ∈ [d′]. Next we analyze the

complexity of computing Hct
ℓ⃗ct
(TM). First, from Theorem 5.1, letting Tpoly = T c0·κ and dpoly =

c0 · (d log T + κ2 log2 T ), there is a polynomial-time algorithm Apoly

ℓ⃗
that takes TM ∈ {0, 1}κ log T as

input, and outputs a description of Turing machine TMpoly ∈ {0, 1}log Tpoly such that for

Cpoly = Circuit
[
Tpoly, log Tpoly, log d

′, |F|3m · log |F|
]
(TMpoly)

it holds that (1) for every i ∈ [d′] Cpoly(i) = tt(Pi) and (2) Cpoly has depth dpoly.
Second, from Theorem 4.1, there is a logspace-uniform circuit family with input parameters

ℓ⃗layer, size poly(pm), and depth poly(log p,m,M) such that for every i ∈ [d′], it outputs Hlayer

ℓ⃗layer
(Pi)

when taking tt(Pi) as input. Note that poly(pm) ≤ TO(βκ) and poly(log p,m,M) ≤ poly(M).
Applying Fact 2.4 to compose the machines above and enumerating over all i ∈ [d′],32 we obtain
the desired circuit CH (note that c is sufficiently large).

Reconstruction Rct. For every i ∈ {2, . . . , d′}, the reconstruction algorithm Rct attempts to
construct a poly(p,m, log(Md′))-size D-oracle circuit Ei that computes Pi. A formal description of
Rct is as follows:

• We start with the circuit E1(x⃗) = Base(ℓ⃗,TM, x⃗) that computes the polynomial P1.

• For every i ∈ {2, . . . , d′}:

1. We first construct a procedure P̃i computing Pi using the D-oracle circuit ED
i−1 for Pi−1

and the downward self-reducibility for Pi. In particular, on input x⃗ ∈ F3m, let

P̃i(x⃗) ≜ DSRED
i−1(ℓ⃗,TM, i, x⃗).

2. Run
(
Rlayer

)D,P̃i

ℓ⃗layer
which outputs a D-oracle circuit ẼD

i in poly(p,m,M) time.

3. Let t ≜ c1 ·m · log p for a sufficiently large constant c1 > 1. Take t i.i.d. samples x⃗1, . . . , x⃗t
from F3m. Check that for every j ∈ [t], ẼD

i (x⃗j) = P̃i(x⃗j). If any condition does not hold,
the algorithm outputs ⊥ and aborts immediately.

4. Let Ei be a D-oracle circuit constructed as follows:

(a) Draw t = Θ(m log p) i.i.d. samples of random strings r1, . . . , rt used by PCorr. (Recall
that PCorr is the self-corrector for low-degree polynomials in Theorem 4.8.)

(b) Set Ei(x⃗) = MAJk∈[t] PCorr
Ẽi(p, 3m,∆, x⃗; rk) for all x⃗ ∈ F3m.

• For every j ∈ [n], output ED
d′ (id(j), 0

2m).

For ease of notation, for every i′ ∈ {2, . . . , d′}, we use τi′ to denote the randomness used when
running the algorithm above with i = i′, and we use τ≤i to denote τ1, . . . , τi. Also, if Ei is not
constructed by the algorithm (meaning that the algorithm aborts before constructing Ei), we set
Ei = ⊥.

32Enumerating all i ∈ [d′] only adds a O(log d′) additive overhead in depth and a O(d′) multiplicative blowup in
size, which are negligible.
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From Theorem 4.8, Theorem 4.1, and Theorem 5.1, the running time of the algorithm above
can be bounded by

poly(p,m, h, log(Md′)) · (d′ + n) ≤ poly(M) · (d′ + n) ≤ poly(M) · (d+ n).

The last inequality follows from the fact that M ≥ log T and hence d′ = c0κ · log2 T ·(d+κ2 log T ) ≤
poly(M) · d. Now we establish the soundness and completeness of the reconstruction. We show the
following claim.

Claim 5.4. Fix D : {0, 1}M → {0, 1}. For every i ∈ {2, . . . , d′}, for every fixed τ≤i−1, if ED
i−1

computes Pi−1 or i = 2,33 then with probability at least 1− 1/pm over τi the following holds:

• (Soundness.) If Ei ̸= ⊥, then ED
i computes Pi.

• (Completeness.) If D (1/M)-avoids Hlayer

ℓ⃗layer
(Pi), then ED

i computes Pi.

Before establishing the claim, we show it implies the completeness and soundness of the recon-
struction. To see the soundness, note that by induction over all i ∈ {2, . . . , d′}, with probability
at least 1 − d′/pm > 9/10, it holds that if Ed′ ̸= ⊥, then Ed′ computes Pd′ , meaning the re-
construction outputs the correct output CTM(1n). To see the completeness, note that an oracle
D : {0, 1}M → {0, 1} that (1/M)-avoids Hct

ℓ⃗
(TM) also (1/M)-avoids Hlayer

ℓ⃗layer
(Pi) for every i ∈ [d′].

Hence, by induction over i ∈ {2, . . . , d′}, with probability at least 1−d′/pm > 9/10, it holds that Ei

computes Pi for every i ∈ {2, . . . , d′}. Thus the reconstruction will output CTM(1n). The success
probability 9/10 can be amplified to 1− 2−M by running the reconstruction algorithm O(M) times
independently and outputting the answer that occurs most frequently.

Finally, we prove the claim.

Proof of Claim 5.4. We first establish the soundness. From the assumption that ED
i−1 computes Pi−1

or i = 2 and the downward self-reducibility property of Theorem 5.1, it follows that P̃i computes
Pi. Therefore, Ei ̸= ⊥ means that Ẽi has passed the test in Step 3, meaning that with probability
at least 1− p−4m over the randomness in Step 3, it holds that Ẽi agrees Pi on at least 3/4 fraction
of inputs from F3m. This then means that with probability at least 1− p−3m over the randomness
in Step 4(a), we have ED

i computes Pi.
The completeness follows immediately from Theorem 4.1. (Here ẼD

i already computes Pi with
probability at least 1− 1/pm.) ⋄

This completes the proof of Theorem 3.1.
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