
ar
X

iv
:2

50
3.

14
11

7v
1

 [
cs

.C
C

]
 1

8
M

ar
 2

02
5

Boolean Circuit Complexity and Two-Dimensional Cover Problems

Bruno P. Cavalar*

Department of Computer Science

University of Oxford

Igor C. Oliveira†

Department of Computer Science

University of Warwick

March 19, 2025

Abstract

We reduce the problem of proving deterministic and nondeterministic Boolean circuit size lower

bounds to the analysis of certain two-dimensional combinatorial cover problems. This is obtained by

combining results of Razborov (1989), Karchmer (1993), and Wigderson (1993) in the context of the

fusion method for circuit lower bounds with the graph complexity framework of Pudlák, Rödl, and

Savický (1988). For convenience, we formalize these ideas in the more general setting of “discrete

complexity”, i.e., the natural set-theoretic formulation of circuit complexity, variants of communication

complexity, graph complexity, and other measures.

We show that random graphs have linear graph cover complexity, and that explicit super-logarithmic

graph cover complexity lower bounds would have significant consequences in circuit complexity. We

then use discrete complexity, the fusion method, and a result of Karchmer and Wigderson (1993) to

introduce nondeterministic graph complexity. This allows us to establish a connection between graph

complexity and nondeterministic circuit complexity.

Finally, complementing these results, we describe an exact characterization of the power of the fusion

method in discrete complexity. This is obtained via an adaptation of a result of Nakayama and Maruoka

(1995) that connects the fusion method to the complexity of “cyclic” Boolean circuits, which generalize

the computation of a circuit by allowing cycles in its specification.

*E-mail: bruno.cavalar@cs.oxford.ac.uk
†
E-mail: igor.oliveira@warwick.ac.uk

1

http://arxiv.org/abs/2503.14117v1

Contents

1 Introduction 2

1.1 Overview . 2

1.2 Results . 3

2 Discrete Complexity 6

2.1 Definitions and notation . 6

2.2 Examples . 7

2.3 Basic lemmas and other useful results . 8

2.4 Transference of lower bounds . 9

2.5 Cyclic Discrete Complexity . 11

3 Characterizations of Discrete Complexity via Set-Theoretic Fusion 12

3.1 Definitions and notation . 12

3.2 Discrete complexity lower bounds using the fusion method 14

3.3 Set-theoretic fusion as a complete framework for lower bounds 15

3.4 An exact characterization via cyclic discrete complexity . 17

4 Graph Complexity and Two-Dimensional Cover Problems 19

4.1 Basic results and connections . 19

4.2 A simple lower bound example . 20

4.3 Nondeterministic graph complexity . 22

1 Introduction

1.1 Overview

Obtaining circuit size lower bounds for explicit Boolean functions is a central research problem in the-

oretical computer science. While restricted classes of circuits such as constant-depth circuits and monotone

circuits are reasonably well understood (see, e.g., [Juk12]), understanding the power and limitations of

general (unrestricted) Boolean circuits remains a major challenge.

The strongest known lower bounds on the number of gates necessary to compute an explicit Boolean

function f : {0, 1}n → {0, 1} are of the form C · n for a constant C ≤ 5. The largest known value of C
depends on the exact set of allowed operations (see [LY22, FGHK16] and references therein). To the best of

our knowledge, the existing lower bounds on gate complexity for unrestricted Boolean circuits with a single

output bit have all been obtained via the gate elimination method and its extensions. Unfortunately, it is not

expected that this technique can lead to much better bounds [GHKK16], let alone super-linear circuit size

lower bounds.

This paper revisits a classical approach to lower bounds known as the fusion method [Raz89, Kar93].

The latter reduces the analysis of the circuit complexity of a Boolean function to obtaining bounds on certain

related combinatorial cover problems. The method can also be adapted to weaker circuit classes, where it

has been successful in some contexts (see [Wig93] for an overview of results).1

An advantage of the fusion method over the gate elimination method is that it provides a tight charac-

terization (up to a constant or polynomial factor, depending on the formulation) of the circuit complexity of

1The fusion method can be seen as an instantiation of the generalized approximation method. For a self-contained exposition of

the connection between the fusion method and the approximation method, we refer the reader to [Oli18].

2

a function. In particular, if a strong enough circuit lower bound holds, then in principle it can be established

via the fusion method.

Contributions. We can informally summarize our contributions as follows:

1. We exhibit a new instantiation of the fusion method that reduces the problem of proving determin-

istic and nondeterministic Boolean circuit size lower bounds to the analysis of “two-dimensional”

combinatorial cover problems.

2. To achieve this, we introduce a framework that combines the fusion method for lower bounds with

the notion of graph complexity and its variants [PRS88, Juk13]. In particular, we observe that cover

complexity offers a particularly strong “transference” theorem between Boolean circuit complexity

and graph complexity.

3. As a byproduct of our conceptual and technical contributions, we obtain a tight asymptotic bound

on the cover complexity of a random graph, and introduce a useful notion of nondeterministic graph

complexity.

4. Finally, we describe an exact correspondence between cover complexity and circuit complexity. This

is relevant for the investigation of state-of-the-art circuit lower bounds of the form C · n, where C is

constant.

In the next section, we describe these results and their connections to previous work in more detail.

1.2 Results

Notation. Given a family B = {B1, . . . , Bm}, where each set Bi is contained in a finite fixed ground set

Γ, and a target set A, we let D(A | B) denote the minimum total number of pairwise unions and intersections

needed to construct A starting from B1, . . . , Bm. We say that D(A | B) is the discrete complexity of A with

respect to B (see Section 2.1 for a formal presentation). We will be interested in the discrete complexity of

non-trivial sets A, i.e., when A 6= ∅ and A 6= Γ.

This general definition can be used to capture a variety of problems. For instance, the monotone circuit

complexity of a function f : {0, 1}n → {0, 1} is simply D(f−1(1) | {x1, . . . , xn, ∅, 1̄}), where each symbol

from {x1, . . . , xn, ∅, 1̄} represents the natural corresponding subset of {0, 1}n. Similarly, we can capture

(non-monotone) Boolean circuit complexity by considering the family Bn = {x1, . . . , xn, x1, . . . , xn} of

subsets of {0, 1}n and the corresponding complexity measure D(f−1(1) | Bn).
2

Let N = 2n for some n ∈ N, and let [N] = {1, 2, . . . , N}. As another example in discrete complexity,

we can consider subsets R1, . . . , RN , C1, . . . , CN of the ground set [N]× [N], where each set Ri = {(i, j) |
j ∈ [N]} corresponds to the i-th “row”, and each set Cj = {(i, j) | i ∈ [N]} corresponds to the j-

th “column”. Then, given a set G ⊆ [N] × [N] and GN,N = {R1, . . . , RN , C1, . . . , CN}, the quantity

D(G | GN,N) is known as the graph complexity of G (see [PRS88, Juk13]).

For the discussion below, we will need another definition. We let D∩(A | B) denote the minimum

number of pairwise intersections sufficient to construct A from the sets in B. We say that D∩(A | B) is the

intersection complexity of A with respect to B. When B = Bn, we may refer to intersection complexity with

respect to B as AND complexity. We refer to Figure 1 for an example. It is possible to show that D∩(A | B)
and D(A | B) are polynomially related, with a dependency on |B| (see Section 2.3 for more details).

Given an arbitrary set A and a family B as above, one can introduce a complexity measure ρ(A,B)
that is closely related to D(A | B). In more detail, we define an appropriate bipartite graph ΦA,B =

2This captures the DeMorgan circuit complexity, where negations are at the bottom of the circuit.

3

Figure 1: A graphical representation of a set G ⊆ [5] × [5] of intersection complexity D∩(G | G5,5) ≤ 2
via G =

(

(R2 ∪R4) ∩ (C1 ∪ C3 ∪ C5)
)

∪
(

(C2 ∪ C4) ∩ (R1 ∪R3 ∪R5)
)

.

(Vpairs, Vfilters, E), called the cover graph of A and B, and let ρ(A,B) denote the minimum number of ver-

tices in Vpairs whose adjacent edges cover all the vertices in Vfilters. (Since the definition of the graph ΦA,B

is somewhat technical and won’t be needed in the subsequent discussion, it is deferred to Section 3.1). We

say that ρ(A,B) is the cover complexity of A with respect to B. This measure of complexity generalises the

cover problem introduced by [Kar93, Wig93] to capture circuit complexity.

Our first observation is that, by a straightforward adaptation of the fusion method for lower bounds

[Raz89, Kar93, Wig93] to our framework, the following relation holds:

ρ(A,B) ≤ D∩(A | B) ≤ ρ(A,B)2. (1)

In particular, cover complexity provides a lower bound on intersection complexity. We are particularly

interested in applications of the inequalities above to graph complexity. There are two main reasons for this.

Firstly, to each graph G ⊆ [N]× [N] one can associate a natural Boolean function fG : {0, 1}n×{0, 1}n →
{0, 1} (see Section 2.4), where N = 2n, and it is known that lower bounds on the graph complexity of G
yield lower bounds on the Boolean circuit complexity of fG [PRS88]. (There can be a significant loss on the

parameters of such transference results depending on the context. We refer to [Juk13] for more details. See

also the discussion before Remark 14 below.) Secondly, the cover problem defining ρ(G,GN,N) involves a

two-dimensional ground set [N]× [N], in contrast to the n-dimensional ground set {0, 1}n found in Boolean

function complexity. We hope this perspective can inspire new techniques, and indeed we show how this

perspective can be used to give a tight bound for a natural Boolean function in Section 4.2.

Our second observation is that a tight connection can be established between graph complexity and

Boolean circuit complexity by focusing on intersection complexity and cover complexity.

Lemma 1 (Transference of Lower Bounds). For every non-trivial bipartite graph G ⊆ [N] × [N] and

corresponding Boolean function fG : {0, 1}n × {0, 1}n → {0, 1}, we have

ρ(f−1
G (1),B2n) ≥ ρ(G,GN,N), and (2)

D(f−1
G (1) | B2n) ≥ D∩(G | GN,N). (3)

The second inequality is implicit in the literature on graph complexity. We include it in the statement of

Lemma 1 for completeness. Using Lemma 1, Equation (1), and another idea, we note in Section 2.4 that a

lower bound of the form C ·logN on ρ(G,GN,N) yields a lower bound of the form C ·m−O(1) on the AND

complexity of a related function F : {0, 1}m → {0, 1}. It is worth noting that lower bounds of the form

Cn for C > 1 on the AND complexity of explicit Boolean functions can be obtained using gate-elimination

techniques [Gol18], so the problem considered here does not suffer from a “barrier” at n gates as in the

setting of multiplicative complexity [Sch88]. We leave open the problem of matching (or more ambitiously

strengthening) existing Boolean circuit lower bounds obtained via gate elimination using our framework.

Complementing the approach to non-trivial circuit lower bounds discussed above, we show the following

result for non-explicit graphs.

4

Theorem 2 (Cover complexity of a random graph). Let N = 2n, and let G ⊆ [N] × [N] be a uniformly

random bipartite graph. Then, asymptotically almost surely,

ρ(G,GN,N) = Θ(N).

Since the state of the art in Boolean circuit lower bounds is of the form C · n for a small constant C , the

discussion above motivates the investigation of a tighter version of Equation (1). Next, we show that cover

complexity can be exactly characterized using the complexity of cyclic constructions. Roughly speaking,

Dœ(A | B) denotes the minimum number of unions and intersections in a cyclic construction of A from sets

in B, where a cyclic construction can be seen as the analogue of a Boolean circuit allowed to contain cycles.

We refer to Section 2.5 for the definition. Similarly, we can also consider Dœ
∩ (A | B), the intersection

complexity of cyclic constructions.

Theorem 3 (Exact characterization of cover complexity). Let A ⊆ Γ be a non-trivial set, and let B ⊆ P(Γ)
be a non-empty family of sets. Then

ρ(A,B) = Dœ
∩ (A | B).

This precise correspondence is obtained by refining an idea from [NM95], which obtained a characteri-

zation of a variant of cover complexity up to a constant factor. There are some technical differences though.

In contrast to their work, here we consider (monotone) semi-filters instead of a more general class of func-

tionals F ⊆ P(U) in the definition of cover complexity, and intersection complexity instead of Boolean

circuit complexity. Additionally, the result is presented in the set-theoretic framework of the fusion method

(which is closer to our notion of discrete complexity), while [NM95] employed a formulation via legitimate

models and the generalized approximation method.

As an immediate consequence of Theorem 3 and a cover complexity lower bound from [Kar93], it

follows that every monotone cyclic Boolean circuit that decides if an input graph on n vertices contains a

triangle contains at least Ω(n3/(log n)4) fan-in two AND gates.3 We refer to Section 3.4 for more details.

The tight bound in Theorem 3 highlights a mathematical advantage of the investigation of cyclic con-

structions and cyclic Boolean circuits. Interestingly, the strongest known lower bounds against unrestricted

(non-monotone) Boolean circuits obtained via the gate elimination method [LY22, FGHK16] also incorpo-

rate concepts related to cyclic computations.

Our last contribution is of a conceptual nature. The fusion method offers a different yet equivalent

formulation of circuit complexity. This allows us to port some of the abstractions and characterizations

provided by different notions of cover complexity to the setting of discrete complexity. As an example, we

introduce nondeterministic graph complexity through a dual notion of “nondeterministic” cover complex-

ity from [Kar93], and show a simple application to nondeterministic Boolean circuit lower bounds via a

transference lemma for nondeterministic complexity.4

Going beyond the contrast between state-of-the-art lower bounds for monotone and non-monotone com-

putations, it would also be interesting to obtain an improved understanding of which settings of discrete

complexity are susceptible to strong unconditional lower bounds.

Organization. The main definitions are given in Section 2. To make the paper self-contained, we include

a proof of Equation (1) in Section 3. The proof of Lemma 1 appears in Section 2.4 and Section 4.1. The

proof of Theorem 2 is presented in Section 4.1, while the proof of Theorem 3 is given in Section 3.4.

3This consequence does not immediately follow from the work of [NM95], as their formulation is not consistent with the use of

monotone functionals employed in the definition of ρ followed here and in [Kar93].
4Observe that the definition of nondeterministic complexity for Boolean functions relies on Boolean circuits extended with extra

input variables. It is not obvious how to introduce a natural analogue in the context of graph complexity, which relies on graph

constructions.

5

Finally, a discussion on nondeterministic graph complexity and a simple application of this notion appear in

Section 4.3.

Acknowledgements. We would like to thank Sasha Golovnev and Rahul Santhanam for discussions about

the AND complexity of Boolean functions. This work received support from the Royal Society University

Research Fellowship URF\R1\191059 and URF\R1\211106; the UKRI Frontier Research Guarantee Grant

EP/Y007999/1; and the Centre for Discrete Mathematics and its Applications (DIMAP) at the University of

Warwick.

2 Discrete Complexity

2.1 Definitions and notation

We adopt the convention that N def
= {0, 1, 2, . . .}, N+ def

= N \ {0}, [t]
def
= {1, . . . , t}, where t ∈ N+, and

P(·) is the power-set construction.

Let Γ be a nonempty finite set. We refer to this set as the ground set, or the ambient space. Let

B = {B1, . . . , Bm} be a family of subsets of Γ. We say that a set Bi ∈ B is a generator. Given a set

A ⊆ Γ, we are interested in the minimum number of elementary set operations necessary to construct A
from the generator sets in B. The allowed operations are union and intersection. Formally, we let D(A | B)
be the minimum number t ≥ 1 such that there exists a sequence A1, . . . , At of sets contained in Γ for

which the following holds: At = A, and for every i ∈ [t], Ai is either the union or the intersection of

two (not necessarily distinct) sets in B ∪ {A1, . . . , Ai−1}. We say that a sequence of this form generates

A from B. If there is no finite t for which such a sequence exists, then D(A | B) def
= ∞.5 Consequently,

D : P(Γ) × P(P(Γ)) → N+ ∪ {∞}. We say that D(A | B) is the discrete complexity of A with respect to

B.

We use D∩(A | B) to denote the minimum number of intersections in any sequence that generates A
from B. The value D∪(A | B) is defined analogously. We will often refer to these measures as intersection

complexity and union complexity, respectively. Given sets A1, . . . , As ⊆ Γ, we will write D(A1, . . . , As |
B) to refer to the minimum length of a sequence that generates all the sets Ai; the measure D∩(A1, . . . , As |
B) is defined analogously.

Fact 4. If A ∈ B, then D(A | B) = 1 and D∩(A | B) = D∪(A | B) = 0.

We have the following obvious inequality, which in general does not need to be tight (Fact 4 offers a

trivial example).

Fact 5. D(A | B) ≥ D∩(A | B) +D∪(A | B).

When the ambient space Γ is clear from the context, we let Ec ⊆ Γ denote the complement of a set

E ⊆ Γ. For convenience, for a set U ⊆ Γ, we use BU as a shorthand for B ∩ U . For a family of sets B, we

let BU
def
= {BU | B ∈ B}.

Let A1, . . . , At be a sequence of sets that generates A from B, where |B| = m. It will be convenient in

some inductive proofs to consider the extended sequence B1, . . . , Bm, A1, . . . , At that includes as a prefix

the generators from B. The particular order of the sets Bi is not relevant. While the extended sequence has

length m + t, we will refer to it as a sequence of complexity t. Similarly, if the number of intersections

employed in the definition of the sequence is k, we say it has intersection complexity k.

5A simple example is that of a non-monotone Boolean function represented by A ⊆ {0, 1}n and B as the family of generators

in monotone circuit complexity.

6

Given a construction of A from B specified by a sequence A1, . . . , At and its corresponding union

and intersection operations, we let Λ be the set of intersections in the sequence, where we represent an

intersection operation Aℓ = Ai ∩Aj by the pair (Ai, Aj).
For an ambient space Γ and B ⊆ P(Γ), we use 〈Γ,B〉 to represent the corresponding discrete space. We

assume for simplicity that Γ =
⋃

B∈B B. We extend the notation introduced above, and use D(A1, . . . , Aℓ |
B) to denote the discrete complexity of simultaneously generating A1, . . . , Aℓ from B. In other words, this

is the minimum number t such that there exists a sequence E1, . . . , Et of sets contained in Γ such that every

set Ai appears in the sequence at least once, and each Ej is obtained from the preceding sets in the sequence

and the sets in B either by a union or by an intersection operation.

Finally, note that we tacitly assume in most proofs presented in this section that D(A | B) is finite,

as otherwise the corresponding statements are trivially true. We will also assume in these statements that

A ⊆ ⋃

B∈B B = Γ in order to avoid trivial considerations.

2.2 Examples

2.2.1 Boolean circuit complexity

This is the classical setting where for each n ∈ N+, Γ = {0, 1}n is the set of vertices of the n-

dimensional hypercube, A corresponds to f−1(1) for a Boolean function f : {0, 1}n → {0, 1}, and B =
{B1, . . . , Bn, B

c
1, . . . , B

c
n}, where Bi = {v ∈ Γ | vi = 1}. By definition, D(A | B) captures the circuit

complexity of f . If we drop the generators Bc
i from the family B, and add the sets ∅ and 1̄

def
= {0, 1}n to it,

we get monotone circuit complexity instead of circuit complexity.

2.2.2 Bipartite graph complexity

Let Γ = [N] × [M], where N,M ∈ N+. A set G ⊆ Γ can be viewed either as a bipartite graph with

parts L = [N] and R = [M], or as an N × M {0, 1}-valued matrix. We let Ri ⊆ [N] × [M] denote the

matrix with 1’s in the i-th row, and 0’s elsewhere. Similarly, Cj ⊆ [N] × [M] denotes the matrix with

1’s in the j-th column, and 0’s elsewhere. (Each Ri and Cj is called a star in graph terminology). We

let GN,M = {R1, . . . , RN , C1, . . . , CM}. The value D(G | GN,M) is known as the star complexity of G
([PRS88], see also [Juk13] and references therein). We will refer to it simply as graph complexity. Notice

that, for every non-empty graph G, D∩(G | GN,M) ≤ min{N,M}.

We remark that a related notion of clique complexity is discussed in [Juk12]. In this notion, the generators

are sets of the form WS :=
⋃

i∈S Ri and ZT :=
⋃

j∈T Cj , for some S ⊆ [N] and T ⊆ [M]. Let KN,M =
{WS : S ⊆ [N]} ∪ {ZT : T ⊆ [M]}. Note that the intersection clique complexity of a graph G is equal to

its intersection graph complexity (i.e., D∩(G | KN,M) = D∩(G | GN,M)).6

One can also consider the graph complexity of non-bipartite graphs via an appropriate choice of gener-

ators (as in, e.g., [Juk13]), though we will not be concerned with this variant in this work.

2.2.3 Higher-dimensional generalizations of graph complexity

This is the natural extension of the ambient space [N] × [N] to [N]d, where d ∈ N+ is a fixed di-

mension. Every generator contained in [N]d is a set of elements described by a sequence of the form

(⋆, . . . , ⋆, a, ⋆, . . . , ⋆), where an element a ∈ [N] is fixed in exactly one coordinate. We let G(d)
N be the

corresponding family of generators. Notice that |G(d)
N | = dN . Given a d-dimensional tensor A ⊆ [N]d, we

denote its d-dimensional graph complexity by D(A | G(d)
N).

6We also remark that the decision tree clique complexity of a graph G (in which we are allowed to query an arbitrary generator

from KN,M) is known to capture exactly the communication complexity of an associated function fG [PRS88, Section 3].

7

To some extent, graph complexity and Boolean circuit complexity are extremal examples of non-trivial

discrete spaces, in the sense that the former minimizes the number of dimensions and maximizes the possible

values in each coordinate, while the latter does the opposite. The higher dimensional graphs generalize both

cases.

2.2.4 Combinatorial rectangles from communication complexity

The domain is [N] × [N], and its associated family RN,N of generators contains every combinatorial

rectangle R = U × V , where U, V ⊆ [N] are arbitrary subsets. In particular, |RN,N | = 22N , while

the number of subsets of [N] × [N] is 2N
2

. Observe that RN,N extends the set of generators employed

in graph complexity. Consequently, for G ⊆ [N] × [N], D(G | RN,N) ≤ D(G | GN,N). Moreover,

D∩(G | RN,N) = 0 for every graph.

Observe that there is an interesting contrast among all these different spaces: the ratio between the size of

the ambient space and the number of generators. For instance, in graph complexity the two are polynomially

related, in Boolean circuits the ambient space is exponentially larger, and in the discrete space involving

combinatorial rectangles the opposite happens. These natural discrete spaces exhibit three important regimes

of parameters in discrete complexity.

2.3 Basic lemmas and other useful results

By combining sequences, we have the following trivial inequality.

Fact 6. For every set E ⊆ Γ and ⋄ ∈ {∩,∪}, D⋄(A | B) ≤ D⋄(A | E,B) +D⋄(E | B).7

Proof. Let t1 = D⋄(A | E,B), witnessed by the sequence A1, . . . , At1 . Also, let t2 = D⋄(E | B), with a

corresponding sequence E1, . . . , Et2 . Then E1, . . . , Et2 , A1, . . . , At1 is a sequence of length t1+t2 showing

that D⋄(A | B) ≤ t1 + t2.

Observe that a construction of an arbitrary set A from B provides a construction of AU from the sets in

BU (recall that AU
def
= A ∩ U , etc.). Indeed, it is easy to see that if A1, . . . , At generates A from B, then

A1
U , . . . , A

t
U generates AU from BU .

Fact 7. D(AU | BU) ≤ D(A | B).

For convenience, we say that A1
U , . . . , A

t
U is the relativization of the sequence A1, . . . , At with respect

to U .

The following simple technical fact will be useful. The proof is an easy induction via extended se-

quences.

Fact 8. If A is non-empty, then D∩(A | B) = D∩(A | B ∪ {∅}).

The next lemma shows that intersection complexity and discrete complexity are polynomally related,

with a dependency on |B|. This was first observed for monotone circuits in [AB87].

Lemma 9 (Immediate from [Zwi96]). If 1 < D∩(A | B) = k < ∞, then

D(A | B) = O(k(|B|+ k)/ log k).

7We often abuse notation and write D(A | E,B) instead of D(A | {E} ∪ B).

8

We describe a self-contained, indirect proof of a weaker form of this lemma in Section 3.3 (Corollary

28).

Given A and B, there is a simple test to decide if D(A | B) is finite, i.e., if there exists a finite sequence

that generates A from B. Let B = {B1, . . . , Bm}. Given w ∈ Γ, we let vec(w) ∈ {0, 1}m be the vector

with vec(w)i = 1 if and only if w ∈ Bi. For a set C ⊆ Γ, let vec(C) = {vec(c) | c ∈ C}. For vectors

u, v ∈ {0, 1}n, we write u � v if ui ≤ vi for each i ∈ [n].8

Proposition 10 (Finiteness test). D(A | B) is finite if and only if there are no vectors u ∈ vec(A) and

v ∈ vec(Ac) such that u � v.

Proof. Let a ∈ A and b ∈ Ac be elements such that u = vec(a) � vec(b) = v. Suppose there is a

construction A1, . . . , At of A from B. It follows easily by induction that b ∈ At, which is contradictory.

On the other hand, if there is no element b and vector v with this property, it is not hard to see that A =
⋃

u∈vec(A)

⋂

i:ui=1Bi. This completes the proof of the proposition.

Finally, observe that standard counting arguments yield the existence of sets of high discrete complexity.

Lemma 11 (Complex sets). Let k = |Γ| and m = |B|. If 3s⌈log(m + s)⌉ < k, there exists a set A ⊆ Γ
such that D(A | B) ≥ s.

For instance, a random matrix M ⊆ [N] × [N] satisfies D(M | RN,N) = Ω(N), while a random

graph G ⊆ [N] × [N] has D(G | GN,N) = Ω(N2/ logN). It is easy to see that the former lower bound is

asymptotically tight. The tightness of the graph complexity bound is also known (cf. [Juk13, Theorem 1.7]).

2.4 Transference of lower bounds

The following lemma generalizes a similar reduction from graph complexity (see, e.g., [Juk13, Section

1.3]).

Lemma 12. Let 〈Γ1,B1〉 and 〈Γ2,B2〉 be discrete spaces, and φ : Γ1 → Γ2 be an injective function. Assume

that B2 = {B2
1 , . . . , B

2
m}. Then, for every A1 ⊆ Γ1,

D(φ(A1) | B2) ≥ D(A1 | B1)−D(φ−1(B2
1), . . . , φ

−1(B2
m) | B1)

≥ D(A1 | B1)−
∑

B∈B2

D(φ−1(B) | B1).

The result also holds with respect to the discrete complexity measures D∩ and D∪.

Proof. Let A2 = φ(A1). Since φ is injective, φ−1(A2) = A1. Let B2
1 , . . . , B

2
m, C1, . . . , Ct = A2 be an

extended sequence that describes a construction of A2 from B2, where t = D(A2 | B2). We claim that

φ−1(B2
1), . . . , φ

−1(B2
m), φ−1(C1), . . . , φ

−1(Ct) = A1

is an extended sequence that describes a construction of A1 from {φ−1(B2
1), . . . , φ

−1(B2
m)}. Indeed, this

can be easily verified by induction using that φ−1(C1 ∩ C2) = φ−1(C1) ∩ φ−1(C2) and φ−1(C1 ∪ C2) =
φ−1(C1) ∪ φ−1(C2). The result immediately follows by replacing the initial sets in the construction above

by a sequence that realizes D(φ−1(B2
1), . . . , φ

−1(B2
m) | B1).

8We note that vec(w) always has Hamming weight exactly 2 when B = GN,M and w ∈ [N] × [M]. There is a well-known

connection between slice functions and graph complexity (see, e.g., [Lok03]).

9

In particular, if we have a strong enough lower bound with respect to 〈Γ1,B1〉, and can construct an

injective map φ : Γ1 → Γ2 such that for each B ∈ B2 the value D(φ−1(B) | B1) is small, we get a lower

bound in 〈Γ2,B2〉. Moreover, if the original set A1 and the map φ are “explicit”, A2 = φ(A1) is explicit as

well.

We provide next a simple example that will be useful later in the text. Given a binary string w ∈ {0, 1}n,

which we represent as w = w1 . . . wn, let number(w) =
∑n−1

i=0 2i · wn−i be the number in {0, . . . , 2n −
1} encoded by w. Let N = 2n, and let binary : [N] → {0, 1}n be the bijection that maps the integer

number(w) + 1 to the corresponding string w ∈ {0, 1}n .

Lemma 13 (Tight transference from graph complexity to circuit complexity). Let 〈[N] × [N],GN,N 〉 and

〈{0, 1}2n,B2n〉 be the discrete spaces corresponding to N × N graph complexity and 2n-bit circuit com-

plexity, respectively, where N = 2n. Moreover, let φ : [N] × [N] → {0, 1}2n be the bijective map defined

by φ(u, v)
def
= binary(u)binary(v). For every G ⊆ [N]× [N],

D∩(φ(G) | B2n) ≥ D∩(G | GN,N).

In particular, graph intersection complexity lower bounds yield circuit complexity lower bounds.

Proof. By Lemma 12, it is enough to verify that for each B ∈ B2n, D∩(φ
−1(B) | GN,N) = 0. Recall from

Section 2.2.1 that B2n = {B1, . . . , B2n, B
c
1, . . . , B

c
2n}, where Bi = {v ∈ {0, 1}2n | vi = 1}. If Bi ∈ B2n

corresponds to the positive literal xi, then φ−1(Bi) is either a union of columns (when i > n) or a union

of rows (when i ≤ n) in graph complexity (cf. Section 2.2.2). Consequently, in this case D∩(φ
−1(Bi) |

GN,N) = 0 by Facts 4 and 6. On the other hand, for a Bc
i ∈ B2n, it is not hard to see that φ−1(Bc

i) also

corresponds to either a union of rows or a union of columns. This completes the proof.

An advantage of Lemma 13 over existing results connecting graph complexity and circuit complexity is

that it offers a tighter connection between these two models by focusing on a convenient complexity measure

(intersection complexity instead of circuit complexity).9

Remark 14 (Circuit lower bounds from graph complexity lower bounds). Let C ≥ 1 be a constant. We note

that a lower bound of the form C · logN on D∩(H | GN,N) for an explicit graph H can be translated into

the same lower bound on the circuit complexity of a related explicit Boolean function. In more detail, let

fH : {0, 1}2n → {0, 1} be the Boolean function corresponding to a bipartite graph H ⊆ [N] × [N]. Now

consider the function F : {0, 1}1+2n → {0, 1} defined as follows. The value F (b, z) = fH(z) if the input bit

b = 1, and F (b, z) = fH(z) = 1−fH(z) if b = 0. Note that if H can be computed in time poly(N) then the

corresponding function F is in E = DTIME[2O(m)], where m = 2n+1 is the input length of F . Moreover,

if D∩(H | GN,N) ≥ C · logN then any Boolean circuit computing F must contain at least C · 2n AND

and OR gates in total (assuming a circuit model with access to input literals and without NOT gates). This

follows from Lemma 13 and Boolean duality, i.e., that the AND complexity of a Boolean function coincides

with the OR complexity of its negation. Formally, letting Bℓ denote the standard set of generators in the

9In the Magnification Lemma of [Juk13], it is already implicitly shown that D∩(fG | B2n) ≥ D∩(G | GN,N). However, the

literature in graph complexity focuses on the relationship between D(fG | B2n) and D(G | GN,N), where there is a constant

factor loss. In particular, the best transference bound known is D(fG | B2n) ≥ D(G | GN,N) − (4 + o(1))N (see [Juk13],

citing [Cha94]). This means that only a Ω(N) lower bound on D(G | GN,N) would imply a meaningful bound on D(fG | B2n),
whereas our setting allows us to transfer a (1 + ε) logN graph complexity lower bound into a (1 + ε)n circuit lower bound.

10

Boolean circuit complexity of ℓ-bit Boolean functions, we have:

D(F | Bm) ≥ D∩(F | Bm) +D∪(F | Bm)

≥ D∩(fH | Bm) +D∪(fH | Bm)−O(1)

= D∩(fH | Bm) +D∩(fH | Bm)−O(1)

≥ 2 ·D∩(H | GN,N)−O(1)

≥ 2 · C · logN = C · 2n = C ·m−O(1).

Remark 15 (Graph complexity lower bounds from circuit complexity lower bounds). It is not hard to show

by Lemma 12 and a similar argument that a lower bound of the form ω(2n · n) on the circuit complexity of

a function h : {0, 1}2n → {0, 1} implies a ω(N) lower bound in graph complexity, where N = 2n as usual.

On the other hand, note that by a counting argument there exist graphs computed by a single (unbounded

fan-in) union whose corresponding 2n-bit Boolean function has circuit complexity Ω(2n/n). In particular,

it follows from Lemma 9 that a Boolean function can have exponential intersection complexity, while the

corresponding graph has zero intersection complexity.

2.5 Cyclic Discrete Complexity

We introduce a variant of the complexity measure D(· | ·) that allows cyclic constructions. Formally,

we use Dœ(A | B) to denote the cyclic discrete complexity of A with respect to B, defined as follows. We

consider a syntactic sequence I1, . . . , It, together with a fixed operation of the form Ii = Ki1 ⋆i Ki2 , where

Ki1 ,Ki2 ∈ {I1, . . . , It}∪B and ⋆i ∈ {∩,∪}, for each i ∈ [t]. (Notice that we do not require i1, i2 < i.) The

syntactic sequence is viewed as a formal description instead of an actual construction, and it is evaluated as

follows. Initially, I0i
def
= ∅ for each i ∈ [t]. Then, for every j > 0, Iji

def
= Ij−1 ∪ (Kj−1

i1
⋆i K

j−1
i2

), where

the sets in B remain fixed throughout the evaluation. We say that the syntactic sequence generates A from

B if there exists j ∈ N such that Ij
′

t = A for every j′ ≥ j. Finally, we let Dœ(A | B) denote the minimum

length t of such a sequence, if it exists. The complexity measure Dœ
∩ is defined analogously, and only takes

into account the number of intersection operations in the definition of the syntactic sequence.

Lemma 16 (Convergence of the evaluation procedure). Suppose I1, . . . , It together with the corresponding

⋆i operations define a syntactic sequence. Then, for every j ≥ t,

Ij+1
i = Iji .

In other words, the evaluation converges after at most t steps.

Proof. The evaluation is monotone, in the sense that an element v ∈ Γ added to a set during the j-th step of

the evaluation cannot be removed in subsequent updates. From the point of view of this fixed element, if it is

not added to a new set during an update, it won’t be added to new sets in subsequent updates. Consequently,

each set in the sequence converges after at most t iterations.

Corollary 17 (Cyclic discrete complexity versus discrete complexity). For every set A ⊆ Γ and family

B ⊆ P(Γ) of generators,

Dœ
∩ (A | B) ≤ D∩(A | B) ≤ Dœ

∩ (A | B)2.

Proof. For the first inequality, observe that from every construction of A from B we can define an acyclic

syntactic sequence that generates A from B. For the second inequality, simply unfold the evaluation of the

syntactic sequence into a sequence that generates A from B. Since the additional union operations coming

from the update step Iji = Ij−1 ∪ (Kj−1
i1

⋆i K
j−1
i2

) do not increase intersection complexity, the claimed

upper bound follows from Lemma 16.

11

We will employ cyclic discrete complexity in Section 3.4 to exactly characterize the power of the fusion

method as a framework to lower bound discrete complexity. We finish this section with a concrete example

that is relevant in the context of the fusion method (cf. Section 3.3).

Example: The Fusion Problem ΠR. Let [m] = {1, . . . ,m}, Y ⊆ [m] be a subset of [m], and R be a fixed

set of rules encoded by a set of triples of the form (a, b, c), where a, b, c ∈ [m] are arbitrary. The meaning

of a rule (a, b, c) is that the element c should be added to Y in case this set already contains elements a and

b. We let ΠR be the following computational problem: Given an arbitrary initial set Y ⊆ [m] as an input

instance, is the top element m eventually added to Y ? (Observe that this problem is closely related to the

GEN Boolean function investigated in [RM99] and related works.)

Note that, for every fixed set R of rules, ΠR can be decided by a cyclic monotone Boolean circuit that

contains exactly |R| fan-in two AND gates. Indeed, it is enough to consider a circuit over input variables

y1, . . . , ym that contains three additional layers of gates, described as follows. The first layer contains fan-in

two OR gates f1, . . . , fm, where each fi is fed by the input variable yi and by a corresponding gate hi in

the third layer. Each rule (a, b, c) ∈ R gives rise to a fan-in two AND gate ga,b,c in the second layer of the

circuit, where ga,b,c = fa ∧ fb. Finally, in the third layer we have for each i ∈ [m] a corresponding OR gate

hi, where

hi =
∨

u,v∈[m],(u,v,i)∈R

gu,v,i.

(We stress that unbounded fan-in gates are used only to simplify the description of the circuit.) It is easy to

see that the gate fm computes ΠR after at most O(|R|) iterations of the evaluation procedure.

3 Characterizations of Discrete Complexity via Set-Theoretic Fusion

The technique presented in this section can be seen as a set-theoretic formulation of some results from

[Raz89] and [Kar93]. The tighter characterization that appears in Section 3.4 is an adaptation of a result

from [NM95].

3.1 Definitions and notation

For convenience, let U
def
= Ac = Γ \ A, where Γ is the ambient space. We assume from now on that A

is non-trivial, i.e., both A and Ac are non-empty.

Definition 18 (Semi-filter). We say that a non-empty family F ⊆ P(U) of sets is a semi-filter over U if the

following hold:

• (upward closure) If U1 ∈ F and U1 ⊆ U2 ⊆ U , then U2 ∈ F .

• (non-trivial) ∅ /∈ F .

Definition 19 (Semi-filter above w). We say that F is above an element w ∈ Γ (with respect to B and

U = Ac) if the following condition holds. For every B ∈ B, if w ∈ B then BU ∈ F .

Figure 2 illustrates Definition 19 in the particularly simple and attractive 2-dimensional framework of

graph complexity considered in this work.

12

· • · • • · · · · · · • • · • · · • • • · ·
· · · • • • · · • • • • · • w · • • • • · ·
· · · · • · · · • · · • · · · · · • · • · ·
· • · • · • • · · · · · • · • • · • · · · ·
· · · · · · · • · • • • • · • · • • • · · ·
· · · • • · · · • · · · • · • · • · · • • ·

Figure 2: In this example, Γ = [6] × [22], B = G6,22 (as in Section 2.2.2), and the {·, •, w}-valued matrix

above encodes U = Gc (rectangles with •), where G ⊆ Γ (locations with · and w) can be interpreted as a

bipartite graph. If a semi-filter F over U is above w ∈ G (corresponding to coordinates (2, 15)), then it must

contain the distinguished subsets of U represented in blue (R2 ∩ U) and in orange (C15 ∩ U), respectively.

Intuitively, semi-filters will be used to produce counter-examples to the correctness of a candidate con-

struction of a set A from B that is more efficient than D∩(A | B). This will become clear in Section 3.2.

Definition 20 (Preservation of pairs of subsets). Let Λ = {(E1,H1), . . . , (Eℓ,Hℓ)} be a family of pairs of

subsets of U . We say that F preserves a pair (Ei,Hi) if Ei ∈ F and Hi ∈ F imply Ei ∩Hi ∈ F . We say

that F preserves Λ if it preserves every pair in Λ.

We now introduce a measure of the cover complexity of A ⊆ Γ with respect to a family B ⊆ P(Γ).

Definition 21 (Cover complexity). We let ρ(A,B) ∈ N ∪ {∞} be the minimum size of a collection Λ of

pairs of subsets of U such that there is no semi-filter F over U that preserves Λ and is above an element

a ∈ A (with respect to B and U).

The definition of cover complexity considered here is with respect to semi-filters (essentially, monotone

functions which are not equal to the constant function which outputs 1). In the context of circuit complexity,

notions of cover complexity with respect to other types of Boolean functions (such as ultrafilters and linear

functions) have been considered, yielding characterizations of different circuit models [Wig93]. If we ask

that in every pair at least one of the sets is the intersection of a generator with U , we obtain characteri-

zations of branching models [Wig95] (such as branching programs). In Section 4.3, we will consider the

2-dimensional cover problem with ultrafilters.

Cover Graph of A and B. In order to get more intuition about the notion of cover complexity, consider

an undirected bipartite graph ΦA,B = (Vpairs, Vfilters, E), where

Vpairs
def
= {(E,H) | E,H ⊆ U},

Vfilters
def
= {F ⊆ P(U) | F is a semi-filter and F is above some a ∈ A},

and there is an edge e ∈ E connecting (E,H) ∈ Vpairs and F ∈ Vfilters if and only if F does not preserve

(E,H). Then ρ(A,B) is the minimum number of vertices in Vpairs whose adjacent edges cover all the

vertices in Vfilters. For convenience, we say that ΦA,B is the cover graph of A and B.

Note that a set of vertices in Vpairs whose adjacent edges cover all of the vertices in Vfilters is also known

as a dominating set in graph theory. Moreover, identifying vertices with their neighbourhoods, the value of

ρ(A,B) is equivalent to the optimal value of a set cover problem.

13

3.2 Discrete complexity lower bounds using the fusion method

Theorem 22 (Fusion lower bound). Let A ⊆ Γ be non-trivial, and B ⊆ P(Γ) be a non-empty family of

generators. Then

ρ(A,B) ≤ D∩(A | B).
In other words, the cover complexity of a non-trivial set lower bounds its intersection complexity.

Before proving the result, it is instructive to consider an example. Assume Γ = [N]× [N] and B = RN

are instantiated as in Section 2.2.4, where we noted that D∩(G | RN) is always zero. Indeed, ρ(G,RN) = 0
for every non-trivial G ⊆ [N] × [N], since in the corresponding cover graph ΦG,RN

the vertex set Vfilters

is empty (observe that if a semi-filter is above some a ∈ G, then it must contain the empty set, which is

contradictory).

Proof. Let |B| = m and D∩(A | B) = k. Assume toward a contradiction that k < ρ(A,B). Let

C1, . . . , Cm, Cm+1, . . . , Cm+t = A (4)

be an extended sequence of complexity t that generates A from B, and suppose it has intersection complexity

k. Let U
def
= Ac = Γ \ A. Recall that, by assumption, both A and U are non-empty. Consider the

corresponding relativized sequence

C1
U , . . . , C

m
U , Cm+1

U , . . . , Cm+t
U = ∅. (5)

This extended sequence generates the empty set from BU and has intersection complexity k. Let Λ be the

set of intersection operations in this sequence. Note that each pair (Ci
U , C

j
U) ∈ Λ satisfies Ci

U , C
j
U ⊆ U ,

and that |Λ| ≤ k < ρ(A,B). Let ΦA,B = (Vpairs, Vfilters, E) be the cover graph of A and B. Since Λ ⊆ Vpairs

and |Λ| < ρ(A,B), there exists F ∈ Vfilters that is not covered by the pairs in Λ. Let a ∈ A be an element

such that F is above a.

We trace the construction in Equation 4 from the point of view of the element a. Let αi = 1 if and only

if a ∈ Ci. Observe that αm+t = 1, since a ∈ A. In order to derive a contradiction, we define a second

sequence βi that depends on the semi-filter F and on the relativized construction appearing in Equation 5.

We let βi = 1 if and only if Ci
U ∈ F (recall that F ⊆ P(U) and Ci

U ⊆ U). Since F is a semi-filter and

Cm+t
U = ∅, we get βm+t = 0. We complete the argument by showing that for every i ∈ [m + t], αi ≤ βi,

which is in contradiction to αm+t = 1 and βm+t = 0.

Claim 23. Suppose F is above a ∈ A with respect to B and U , and that F preserves Λ, the set of intersection

operations in Equation 5. Then for every i ∈ [m+ t], αi ≤ βi.

The proof is by induction on i. For the base case, we consider i ≤ m. Since B is non-empty, m ≥ 1.

Now if αi = 1, then a ∈ Ci = B for some B ∈ B. Since F is above a (with respect to B and U) and a ∈ B,

Ci
U = BU ∈ F , and consequently βi = 1. This completes the base case.

The induction step follows from the induction hypothesis and the upward closure of F in the case of a

union operation, and from the induction hypothesis and the fact that F preserves Λ in the case of an inter-

section operation. For instance, suppose that Ci = Ci1 ∩ Ci2 and Ci
U = Ci1

U ∩ Ci2
U , respectively, where

i1, i2 < i. Assume that αi = 1. Then a ∈ Ci, and consequently a ∈ Ci1 ∩ Ci2 . Using the induction

hypothesis, 1 = αi1 = αi2 = βi1 = βi2 . Therefore, Ci1
U ∈ F and Ci2

U ∈ F . Now using that (Ci1
U , Ci2

U) ∈ Λ

and that F preserves Λ, it follows that Ci
U = Ci1

U ∩ Ci2
U ∈ F . In other words, βi = 1. The other case is

similar.

This establishes the claim and completes the proof of Theorem 22.

14

3.3 Set-theoretic fusion as a complete framework for lower bounds

In this section, we establish a converse to Theorem 22.

Theorem 24 (Fusion upper bound). Let A ⊆ Γ be non-trivial, and B ⊆ P(Γ) be a non-empty family of

generators. Then

D∩(A | B) ≤ ρ(A,B)2.

Remark 25. It is important in the statements of Theorems 22 and 24 that the characterization of D∩(A | B)
in terms of ρ(A,B) does not suffer a quantitative loss that depends on |B|. This allows us to apply the results

in discrete spaces for which the number of generators in B is large compared to the size of the ambient space

Γ, such as in graph complexity.

Proof. Let U = Ac, let ρ(A,B) = t, and assume that this is witnessed by a family

Λ = {(H1, E1), . . . , (Ht, Et)}

of t pairs of subsets of U . We let

FΛ = {F ⊆ P(U) | F is a semi-filter that preserves Λ}.

Recall the definition of the cover graph ΦA,B of A and B (Section 3.1). Observe that, while Λ ⊆ Vpairs, it is

not necessarily the case that FΛ ⊆ Vfilters.

Claim 26. For every w ∈ Γ,

w ∈ A if and only if ∄F ∈ FΛ that is above w (w.r.t. B and U).

In order to see this, notice that if w ∈ A then indeed there is no such F ∈ FΛ, using the definitions of ρ

and Λ. On the other hand, for w /∈ A, it is easy to check that Fw
def
= {U ′ ⊆ U | w ∈ U ′} is a semi-filter that

preserves Λ and that is above w with respect to B and U .

This claim provides a criterion to determine if an element is in A. This will be used in a construction of

A from B showing that D∩(A | B) = O(ρ(A,B)2). The intuition is that, for a given w ∈ Γ, we must check

if there is F ∈ FΛ that is above w with respect to B and U . In order to achieve this, we inspect the minimal

family Gw ⊆ P(U) of sets that must be contained in any such (candidate) semi-filter.

For every w ∈ Γ, we require Gw to be above w, upward-closed, and to preserve Λ. The rules for

constructing Gw are simple:

• Base case. If w ∈ B for B ∈ B, then add BU = B ∩ U to Gw, together with every set U ′ such that

BU ⊆ U ′ ⊆ U .

• Propagation step. If both Ei and Hi are in Gw, add Ei ∩ Hi to Gw, together with every set U ′ such

that Ei ∩Hi ⊆ U ′ ⊆ U .

We apply the base case once, and repeatedly invoke the propagation step until no new sets are added to Gw.

Clearly, this process terminates within a finite number of steps.

Claim 27. For every w ∈ Γ, the empty set is added to Gw if and only if w ∈ A.

15

We argue that w /∈ A if and only if ∅ /∈ Gw. Clearly, if F is a semi-filter that is above w and preserves

Λ, we must have Gw ⊆ F . For w /∈ A, the process described above cannot possibly add ∅ to Gw, since by

Claim 26 there is a semi-filter F ∈ FΛ that is above w, and Gw ⊆ F . On the other hand, if this process

terminates without adding ∅ to Gw, it is easy to see that Gw is a semi-filter in FΛ that is above w, which in

turn implies that w /∈ A via Claim 26. This completes the proof of Claim 27.

We now turn this discussion into the actual construction of A from the sets in B. For convenience, we

actually upper bound D∩(A | B∪{∅}), i.e., we freely use ∅ as a generator in the description of the sequence

that generates A. This is without loss of generality due to Fact 8. Let

Ω
def
= BU ∪ {Ei}i∈[t] ∪ {Hi}i∈[t] ∪ {Hi ∩ Ei}i∈[t] ∪ {∅},

where we abuse notation and view Ω as a multi-set.10 For simplicity and in order to avoid extra terminology,

we slightly abuse notation, and distinguish sets that are identical by the symbols representing them. This

should be clear in each context, and the reader should keep in mind that we are simply translating the process

that defines each Gw into a construction of A.

Fix a set C from the multi-set Ω. For an integer j ≥ 1, we let Sj
C be the set of all w ∈ Γ that have C

in Gw before the start of the j-th iteration (propagation step) of the process described above. (Here we also

view the sets Sj
C as different formal objects.) We construct each set Sj

C from B ∪{∅} by induction on j. By

Claim 27, for a large enough ℓ ∈ N, we get Sℓ
∅ = A, our final goal.

In the base case, i.e., for j = 1, we first set T 1
BU

= B for each BU obtained from a set B ∈ B, and

T 1
I = ∅ for every other set I ∈ Ω. We then let

S1
C =

⋃

C′∈Ω,C′⊆C

T 1
C′ , (6)

for each C ∈ Ω. Observe that the base case satisfies the property in the definition of the sets Sj
C .

Assume we have constructed Sj−1
C , for each C ∈ Ω. We can construct each Sj

C from these sets as

follows:

T j
C = Sj−1

C ∪
⋃

{i∈[t] | C=Ei∩Hi}

(Sj−1
Ei

∩ Sj−1
Hi

), (7)

Sj
C =

⋃

C′∈Ω,C′⊆C

T j
C′ . (8)

Note that the definition of each Sj
C handles Λ-preservation and upward-closure, as in the propagation step.

It is not difficult to show using the induction hypothesis that each set Sj
C satisfies the required property (fix

an element w ∈ Γ, and verify that it appears in the correct sets). This completes the construction of A.

In order to finish the proof of Theorem 24, we analyse the complexity of this construction. First, since

each propagation step that introduces a new set to Gw adds at least one of the sets Ei∩Hi to Gw, and there are

at most t = |Λ| = ρ(A,B) such sets, it is sufficient in the construction above to take ℓ = t+1. In particular,

St+1
∅ = A. Finally, each propagation step (which is associated to a fixed stage j ∈ [t] of the construction)

only employs intersection operations for sets C of the form Ei ∩Hi (in the corresponding definition of T i
C).

Overall, among these sets, the j-th stage of the construction needs at most t intersections. To see this, note

that sets Sj
C with C = Ei ∩ Hi are only required to inspect the corresponding sets associated with pairs

(Ek,Hk) with k ∈ [t] such that C = Ek ∩Hk, and such pairs are disjoint among the different sets C of this

10This is helpful in the argument. For instance, more than one set B ∈ B might generate an empty set BU = B ∩ U ∈ Ω, but

we will need to keep track of elements such that w ∈ B and BU = ∅.

16

form. (There is no need to keep more than one such C representing the same underlying set as a syntactical

object in the construction.)

This immediately implies that A can be generated using at most t(t + 1) intersections. However, since

intersections are only added in steps j ∈ {2, . . . , t+ 1}, we obtain D∩(A | B) ≤ ρ(A,B)2, which completes

the proof.

We take this opportunity to observe the following immediate consequence of Theorems 22 and 24. (A

tighter relation between these measures is discussed in Section 2.3.)

Corollary 28 (Intersection complexity versus discrete complexity).

For every A ⊆ Γ and non-empty B, if D∩(A | B) = t then D∪(A | B) ≤ D(A | B) ≤ O(t+ |B|)3.

Proof. If A is empty and can be constructed from B, then it can also be constructed from B using |B|
intersections (and no union operation). If A = Γ the same is true with respect to unions. On the other

hand, for a non-trivial A, the result follows from Theorems 22 and 24, by noticing that in the construction

underlying the proof of Theorem 24 a total of at most O(t+ |B|)3 operations are needed.

Remark 29 (The fusion method and complexity in Boolean algebras). Our presentation allows us to con-

clude, in particular, that the fusion method provides a framework to lower bound the number of operations

in any (finite) Boolean algebra B. Indeed, by the Stone Representation Theorem (cf. [GH08]), any Boolean

algebra is isomorphic to a field of sets. Therefore, the problem of determining the number of ∨B and ∧B

operations necessary to obtain a non-trivial element a ∈ B from elements b1, . . . , bm ∈ B can be captured

via cover complexity by Theorems 22 and 24.

3.4 An exact characterization via cyclic discrete complexity

In this section, we show that cover complexity can be exactly characterized using the intersection com-

plexity variant of cyclic complexity. The tight correspondence is obtained by a simple adaptation of an idea

from [NM95].

Theorem 30 (Exact characterization of cover complexity). Let A ⊆ Γ be non-trivial, and B ⊆ P(Γ) be a

non-empty family of generators. Then

ρ(A,B) = Dœ
∩ (A | B).

Proof. The proof that Dœ
∩ (A | B) ≤ ρ(A,B) is essentially immediate from the proof of Theorem 24. It

is enough to observe that the construction of A from B via Λ described there can be transformed into a

syntactic sequence for A that employs at most |Λ| intersection operations. This is similar to the example

presented in Section 2.5.

We establish next that ρ(A,B) ≤ Dœ
∩ (A | B). The main difficulty here is that simply unfolding the

evaluation of the syntactic sequence introduces further intersection operations (Corollary 17), and we cannot

rely on Theorem 22. We argue as follows.

Let B = {B1, . . . , Bm}, and I1, . . . , It be a syntactic sequence that generates A from B using op-

erations ⋆i, where t = Dœ(A | B). By Lemma 16, the evaluation procedure converges to a sequence

C1, . . . , Cm, Cm+1, . . . , Cm+t = A, where Ci = Bi for i ∈ [m]. Moreover, each set Ii converges to the set

Ci+m, where i ∈ [t]. (This is not an extended sequence that generates A from B, since the corresponding

operations are not acyclic. However, the relation between the sets is clear.)

Claim 31. If Ii = Ki1 ⋆i Ki2 for i ∈ [t], then Cj = Cj′ ⋄j Cj′′ , where j = i+m and ⋄j = ⋆i, and Cj′ and

Cj′′ are the sets to which Ki1 and Ki2 converge, respectively.

17

In order to see this, recall that during the evaluation of the syntactic sequence Iℓ+1
i = Iℓi ∪ (Kℓ

i1
⋆i K

ℓ
i2
).

Since the evaluation is monotone, and C1, . . . , Cm, Cm+1, . . . , Cm+t is the convergent sequence, we even-

tually have Iℓ+1
i = Iℓi = (Kℓ

i1
⋆i K

ℓ
i2
). Consequently, Cj = Cj′ ⋆i C

j′′ after the indices are appropriately

renamed.

For U = Ac, let Λ
def
= {(Cj′

U , Cj′′

U) | j ∈ {m + 1, . . . ,m + t} and ⋄j = ∩} be a family of pairs of

subsets of U . In order to complete the proof, it is enough to show that Λ covers all semi-filters F ⊆ P(U)
that are above some element a = a(F) ∈ A.

Suppose this is not the case, i.e., there is a semi-filter F above a ∈ A such that F is not covered

by Λ. We proceed in part as in the proof of Theorem 22. For each i ∈ [m + t], let αi ∈ {0, 1} be 1
if and only if a ∈ Ci, and βi ∈ {0, 1} be 1 if and only if Ci

U ∈ F . We obtain a contradiction by a

slightly different argument, which is in analogy to the proof in [NM95]. Since the operations performed over

C1, . . . , Cm, Cm+1, . . . , Cm+t do not follow a linear order, and these sets are obtained after the convergence

of the evaluation procedure, we employ a top-down approach, as opposed to the bottom-up presentation that

appears in the proof of Theorem 22.

We define a partition (X,Y) of the indices of the sets C1, . . . , Cm+t. Note that αm+t = 1 and βm+t = 0
(cf. Theorem 22). Initially, X contains only the element m+ t. Now for each j ∈ X, if Cj = Cj′ ⋄j Cj′′,

αj′ = 1, and βj′ = 0, then we add the element j′ to X (and similarly for the index j′′). We repeat this

procedure until no more elements are added to X, and let Y
def
= [m+ t] \X.

We observe the following properties of this partition.

Claim 32. We have m+ t ∈ X and {1, . . . ,m} ⊆ Y . If an element j ∈ X, then αj = 1 and βj = 0.

The only non-trivial statement is that {1, . . . ,m} ⊆ Y . It is enough to argue that if ℓ ∈ [m] then it is

not the case that αℓ = 1 and βℓ = 0. But since Cℓ = Bℓ ∈ B and F is above a, if α = 1 (i.e., a ∈ Cℓ) then

β = 1 (i.e., Bℓ ∩ U ∈ F).

Claim 33. If j ∈ X and Cj = Cj′ ⋄j Cj′′ , where ⋄j ∈ {∩,∪} is arbitrary, then either j′ ∈ X or j′′ ∈ X.

Assume contrariwise that j ∈ X and j′, j′′ ∈ Y . First, suppose that ⋄j = ∩. Since αj = 1 and

Cj = Cj′ ∩Cj′′ , we have αj′ = αj′′ = 1. As j′, j′′ ∈ Y , by construction, we get βj′ = βj′′ = 1 (otherwise

one of the indices would be in X and not in Y). Consequently, by the definition of the sequence β, Cj
U /∈ F ,

while Cj′

U , Cj′′

U ∈ F . This contradictions the assumption that Λ does not cover F . Assume now that ⋄j = ∪.

Moreover, suppose w.l.o.g. that αj′ = 1, which can be done thanks to Cj = Cj′ ∪ Cj′′ and αj = 1. Since

j′ ∈ Y , we must have βj′ = 1. This means that Cj′

U ∈ F , and by the monotonicity of F and ⋄j = ∪, it

follows that Cj
U ∈ F . But this is in contradiction to βj = 0, which completes the proof of the claim.

Claim 34. Suppose that j, j′ ∈ X, Cj = Cj′ ∪ Cj′′, and j′′ ∈ Y . Then a /∈ Cj′′ .

The assumptions force αj = 1 and βj = 0, and that it is not the case that αj′′ = 1 and βj′′ = 0. We must

argue that αj′′ = 0 (i.e., a /∈ Cj′′), and to do so we show that βj′′ = 0. But if βj′′ = 1, the monotonicity of

F and Cj = Cj′ ∪ Cj′′ imply βj = 1, a contradiction. This completes the proof of this claim.

Finally, we combine these three claims, derived from the assumption that there is a semi-filter F above

a that is not covered by Λ, to get a contradiction. Recall that C1, . . . , Cm+t = A is the convergent se-

quence obtained from the syntactic sequence I1, . . . , It and its operations ⋆i, and that by assumption a ∈ A.

Therefore, our proof will be complete if we can show that a /∈ Cm+t.

In order to establish this final implication, we show the stronger statement that the element a is never

added to a set Cj during the update steps of the evaluation procedure if j ∈ X (since m+ t ∈ X by Claim

32), which is a contradiction. Before the first update, each such set is empty, as the only non-empty sets are

18

in B, and these have indices in Y (Claim 32). During an update of the elements of a set Cj with j ∈ X,

we consider two cases based on ⋄j ∈ {∪,∩}. If ⋄j = ∩, Claim 33 implies that at least one of the operands

comes from X, and thus by induction the update step will not include a in Cj . On the other hand, if ⋄j = ∪,

Claim 33 shows that at most one operand comes from Y . If there is no operand from Y , we are done using

the induction hypothesis. Otherwise, Claim 34 implies that a is not an element of this operand (as it is not

in the corresponding set even after the evaluation procedure converges). By the induction hypothesis, a is

not added to Cj . This finishes the proof of Theorem 30.

In particular, this result shows that the k-clique lower bound discussed in [Kar93] holds in the more

general model of cyclic Boolean circuits. Indeed, Karchmer shows a lower bound for ρ(A,B), where A is

the set of graphs with k-cliques and B is the monotone Boolean basis. Combined with the previous result,

this gives the following corollary.

Corollary 35 (Consequence of Theorem 30 and [Kar93]). Let k-clique : {0, 1}(n2) → {0, 1} be the function

that evaluates to 1 on an undirected n-vertex input graph G if and only if G contains a k-clique. Then every

monotone cyclic Boolean circuit that computes 3-clique contains at least Ω(n3/(log n)4) fan-in two AND

gates.

This lower bound against monotone cyclic circuits does not seem to easily follow from the proofs in

[Raz85, AB87].

4 Graph Complexity and Two-Dimensional Cover Problems

4.1 Basic results and connections

Proposition 36 (The intersection complexity of a random graph). Let G ⊆ [N]× [N] be a random bipartite

graph. Then, asymptotically almost surely,

D∩(G | GN,N) = Θ(N).

Proof. The upper bound is easy, and holds in the worst case as well (see Section 2.2.2). For the lower bound,

recall that a random graph G satisfies D(G | GN,N) = Ω(N2/ logN), which is an immediate consequence

of Lemma 11. By Lemma 9, it must be the case that D∩(G | GN,N) = Ω(N), which completes the

proof.

Recall the definition of cover complexity introduced in Section 3.1. Theorem 24 and Proposition 36

yield an Ω(
√
N) lower bound on the cover complexity of a random graph. It is possible to obtain a tight

lower bound using a more careful argument.

Theorem 37 (The cover complexity of a random graph). Let G ⊆ [N] × [N] be a random bipartite graph.

Then, asymptotically almost surely,

ρ(G,GN,N) = Θ(N).

Proof. The proof is based on a counting argument, and can be formalized using Kolmogorov complexity.

Observe that the proof of Theorem 24 describes a universal procedure that generates an arbitrary set A from

B using Λ. However, for a fixed family B such as B = GN,N , the only information the procedure needs is

the inclusion relation among the sets appearing in Λ and B. Crucially, the explicit description of the sets

that appear in Λ is not necessary to fully specify the corresponding set A that is generated by the universal

procedure. Indeed, observe that the core of the construction after the base case (which does not depend

on A) are the sub-indices appearing in Equations 6, 7, and 8, which are determined by the aforementioned

19

inclusion relations. These inclusions can be described by O(|Λ|(|B|+ |Λ|)) bits. Since a random graph has

description complexity Ω(N2) and |GN,N | = 2N , we must have |Λ| = Ω(N) asymptotically almost surely.

In other words, ρ(G,GN,N) = Ω(N) for a typical graph G ⊆ [N]× [N].

Let N = 2n. For a graph G ⊆ [N] × [N], we let fG : {0, 1}2n → {0, 1} be the Boolean function

associated with G, as described in Lemma 13 (in other words, f−1
G (1) = φ(G)).

Proposition 38 (Reducing circuit complexity lower bounds to two-dimensional cover problems). For any

non-trivial graph G ⊆ [N]× [N],

ρ(G,GN,N) ≤ D∩(f
−1
G (1) | B2n).

Proof. This follows from Theorem 22 and Lemma 13.

These results do not immediately imply that ρ(G,GN,N) ≤ ρ(f−1
G (1),B2n), since the connection be-

tween D∩ and ρ might not be tight. This can be shown by a direct argument.

Lemma 39 (A fusion transference lemma). Let G ⊆ [N]× [N] be a non-trivial graph. Then,

ρ(G,GN,N) ≤ ρ(f−1
G (1),B2n).

Proof. Let F
↑
fG

be the set that contains a semi-filter F over f−1
G (0) if and only if it is above some element

a ∈ f−1
G (1). Similarly, let F

↑
G contain a semi-filter F over G if and only if there is (u, v) ∈ G such that

F is above (u, v). Assume ΛfG is a family of pairs of subsets of f−1
G (0) that cover all semi-filters in F

↑
fG

.

Now let ΛG be the family of pairs of subsets of G induced by the pairs in ΛfG and the bijection between

[N]× [N] and {0, 1}2n. We claim that ΛG covers all semi-filters in F
↑
G.11

Recall that we identify an element (u, v) ∈ [N] × [N] with its corresponding input string φ(u, v) =
binary(u)binary(v) ∈ {0, 1}2n , which for convenience we will simply denote by uv. Assume this is not

the case, i.e., there is a semi-filter F ∈ F
↑
G that is above some edge (u, v) ∈ G and preserves ΛG (in other

words, it is not covered by ΛG). Let F ′ be the corresponding family of subsets of f−1
G (0) under φ. Observe

that F ′ is a semi-filter over f−1
G (0), and that it preserves ΛfG . Therefore, in order to get a contradiction it

is enough to verify that F ′ is above uv (with respect to the family of generators B2n ⊆ P({0, 1}2n)). This

follows easily using the upward-closure of F and the fact that F is above the edge (u, v) with respect to

GN,N , as we explain next.

For instance, assume that ui = 0 for some i ∈ [n]. We must prove that the corresponding set Bc
i ∩

f−1
G (0) ∈ F ′. From ui = 0, we get Ru ⊆ φ−1(Bc

i), and then Ru∩G ⊆ φ−1(Bc
i)∩G = φ−1(Bc

i ∩f−1
G (0)).

Since F is above (u, v) with respect to GN,N , Ru ∩ G ∈ F . Consequently, φ(Ru ∩ G) ∈ F ′. Now

φ(Ru ∩G) ⊆ φ(φ−1(Bc
i ∩ f−1

G (0))) = Bc
i ∩ f−1

G (0), and from the upward-closure of F ′, the latter set is in

F ′. The remaining cases are similar.

This result and Theorem 22 provide an alternative proof of Proposition 38. As we will see later in this

section, establishing a direct connection among cover problems can have further benefits (Section 4.3).

4.2 A simple lower bound example

Let N = 2n. Consider the graph GNEQ ⊆ [N] × [N], where (u, v) ∈ GNEQ if and only if u 6= v.

Figure 3 below describes the N = 8 case. We show a tight lower bound on ρ(GNEQ,GN,N). To prove this

result, we focus on a particular set of semi-filters. For convenience, we write G = GNEQ.

11Note that the semi-filters in F
↑

fG
and in F

↑

G differ in their definitions of “above”, as they are connected to different sets of

generators.

20

Figure 3: A graphical representation of GNEQ ⊆ [N] × [N] for N = 8. Proposition 40 shows that for this

value of N the intersection complexity is 3.

For e ∈ G, where e = (u, v), we let Fe be the upward closure (with respect to G) of the family that

contains the sets Ru
G

and Cv
G

, where Ru
G
= Ru ∩G and Cv

G
= Cv ∩G. More explicitly, a set W is in Fe iff

Ru
G
⊆ W or Cv

G
⊆ W . Notice that, in general (i.e., for an arbitrary graph), this might not be a semi-filter,

as one of the sets might be empty. But for our choice of G, this is a semi-filter above e. We let

FG
can

def
= {Fe | e ∈ G and Fe is a semi-filter }.

We say that FG
can is the set of canonical semi-filters of G (above an edge of G). Note that FG∗

can is well-defined

for any bipartite graph G∗ ⊆ [N]× [N]. We can thus ask, for a general bipartite graph G∗, how many pairs

of subsets of G∗ are needed to cover all semi-filters in FG∗

can? Let us denote this quantity by ρcan(G
∗,GN,N),

i.e., the canonical cover complexity of G∗. Clearly, this quantity lower bounds cover complexity.

Proposition 40. For the graph G = GNEQ defined above,

ρcan(G,GN,N) = ρ(G,GN,N) = D∩(G | GN,N) = n = logN.

Proof. The upper bound follows by transforming a circuit for the corresponding Boolean function fG : {0, 1}n×
{0, 1}n → {0, 1} into a construction of G. Observe that fG(u, v) =

∨

i∈[n] ui ⊕ vi, where ⊕ denotes the

parity operation, and that each ⊕-gate can be implemented using a single ∧-gate via a⊕b = (a∨b)∧(a∨b).
Therefore, ρcan(G,GN,N) ≤ ρ(G,GN,N) ≤ D∩(G | GN,N) ≤ n via Lemma 13 and Theorem 22.

For the lower bound on ρcan(G,GN,N), let Λ = {(E1,H1), . . . , (Ek,Hk)} be a family of k pairs of

subsets of G. We argue that if Λ covers all semi-filters in FG
can then k ≥ n. Recall that, for every e ∈ G, Fe

is a semi-filter above e, i.e., Fe ∈ FG
can. Fix a pair (E,H) ∈ Λ.

Claim 41. Let e = (u, v) ∈ G, and Fe ∈ FG
can. Then Fe is covered by (E,H) if and only if each singleton

set Ru
G

and Cv
G

is contained in precisely one of E and H , and none of the latter sets contains both of them.

First, we argue that Fe is covered under the condition in the claim. Assume without loss of generality

that Ru
G
⊆ E and Cv

G
⊆ H . Then, using the definition of Fe, we get that E ∈ Fe and H ∈ Fe. On the other

hand, by assumption, Ru
G

* E ∩ H and Cv
G

* E ∩ H . This implies that E ∩ H /∈ Fe. In other words,

(E,H) covers Fe.

Suppose now that (E,H) covers Fe. Then E,H ∈ Fe but E ∩ H /∈ F . It is easy to check that this

implies the condition in the statement of Claim 41.

Claim 41 immediately implies the following lemma.

Lemma 42. Every semi-filter in FG
can covered by (E,H) is also covered by (E \H,H \E).

21

Thus we can and will assume w.l.o.g. that all pairs appearing in Λ have disjoint sets Ei and Hi. Using

Claim 41 again, we obtain the following additional consequence.

Lemma 43. Every semi-filter in FG
can covered by a disjoint pair (E,H) is also covered by the pair (E,G\E).

Consequently, we will further assume that all pairs appearing in Λ form a partition of G. Let (E1,H1) ∈
Λ be one such pair. Since E1 and H1 form a partition of G, either |E1| ≥ N/2 or |H1| ≥ N/2. Assume

w.l.o.g that |E1| ≥ N/2. Let G1 ⊆ G be the subgraph of G obtained when the ambient space [N] × [N]
is restricted to Rows(E1) × Columns(E1), where Rows(E1) = {a ∈ [N] | (a, b) ∈ E1 for some b ∈ [N]},

and Columns(E1) is defined analogously.

Observe that for no element e1 ∈ G1, Fe1 is covered by (E1,H1). Furthermore, the elements in G1 span

at least 2n−1 different rows and at least 2n−1 different columns of [N]. Finally, each semi-filter Fe1 ∈ FG
can

for e1 ∈ G1 must be covered by some pair in Λ \ {(E1,H1)}. By a recursive application of the previous

argument, and using that in the base case n = 1 at least one pair of sets is necessary, it is easy to see

|Λ| ≥ n = logN . This completes the proof.

4.3 Nondeterministic graph complexity

Given a Boolean function f : {0, 1}n → {0, 1}, we let size(f) be the minimum number of fan-in two

AND/OR gates in a DeMorgan Boolean circuit computing f (we assume negations appear only at the input

level). We can define size∨(f) and size∧(f) in a similar way. Using our notation, size(f) = D(f | Bn),
size∨(f) = D∪(f | Bn), and size∧(f) = D∩(f | Bn).

We also define conondet-size∧(f) to be the minimum number of ∧-gates in a circuit D(x, y) such that

f(x) = 1 if and only if for all y we have D(x, y) = 1. Similarly, nondet-size∨(g) is the minimum number

of ∨-gates in a circuit C(x, y) such that g(x) = 1 if and only if there exists y such that C(x, y) = 1. Observe

that for every Boolean function h, conondet-size∧(h) = nondet-size∨(¬h).
Observe that the definition of nondeterministic complexity for Boolean functions relies on Boolean cir-

cuits extended with extra input variables. It is not entirely clear how to introduce a natural similar definition

in the context of graph complexity, i.e, a nondeterministic version of D(G | GN,N). We take a different path,

and translate an alternative characterization of nondeterministic complexity in the Boolean function setting

(based on the fusion method) to the graph complexity setting. First, we review the necessary concepts.

Definition 44 (Semi-ultra-filter). We say that a semi-filter F ⊆ P(U) is a semi-ultra-filter if for every set

A ⊆ U , at least one of A or U \A is in F .

For a function f : {0, 1}n → {0, 1}, let ρultra(f,Bn) denote the minimum number of pairs of subsets of

f−1(0) that cover all semi-ultra-filters over f−1(0) that are above an input in f−1(1). [Kar93] established

the following result.

Theorem 45. There exists a constant c ≥ 1 such that for every function f : {0, 1}n → {0, 1},

ρultra(f,Bn) ≤ conondet-size∧(f) = nondet-size∨(¬f) ≤ c · ρultra(f,Bn).

Roughly speaking, a variation of cover complexity can be used to characterize conondeterministic circuit

complexity. This motivates the following definition, which provides a notion of nondeterministic complexity

in arbitrary discrete spaces.

Definition 46 (Conondeterministic cover complexity). Given a discrete space 〈Γ,B〉 and a set A ⊆ Γ,

we let ρultra(A,B) denote the minimum number of pairs of subsets of U = Ac = Γ \ A that cover all

semi-ultra-filters over U that are above an element a ∈ A.

22

Observe that ρultra(A,B) ≤ ρ(A,B), since every semi-ultra-filter is a semi-filter. Conondeterministic

cover complexity sheds light into the strength of the simple lower bound argument presented in Section 4.2.

Proposition 47. Let GNEQ ⊆ [N]× [N] be the graph defined in Section 4.2. Then,

ρcan(GNEQ,GN,N) ≤ ρultra(GNEQ,GN,N).

Proof. For convenience, let G = GNEQ. Simply observe that every semi-filter Fe in FG
can is a semi-ultra-

filter. Indeed, for e = (u, v) ∈ G and an arbitrary set W ⊆ G, either W or G \W contains Ru
G

, since the

latter is a singleton set due to our choice of G.

Now we translate this result into a stronger lower bound in Boolean function complexity. This will be a

consequence of the following lemma.

Lemma 48 (A nondeterministic fusion transference lemma).

Let N = 2n. For every graph G ⊆ [N]× [N],

ρultra(G,GN,N) ≤ ρultra(fG,B2n),

where f : {0, 1}2n → {0, 1} is the Boolean function associated with G.

Proof. Recall that, in the proof of Lemma 39 (fusion transference lemma), if a semi-filter F in the graph

setting is not covered, then it gives rise to a semi-filter F ′ in the Boolean function setting that is not covered.

Crucially, if the original semi-filter is a semi-ultra-filter, so is the resulting semi-filter. The proof of this fact

is obvious, since φ : [N]× [N] → {0, 1}2n is a bijection.

Let NEQ2n : {0, 1}n×{0, 1}n → {0, 1} be the function such that NEQ2n(x, y) = 1 if and only if x 6= y,

and EQ2n be its negation. By combining the ideas of this section and Section 4.2, we get the following tight

inequalities.

Corollary 49 (A simple nondeterministic lower bound via graph complexity + fusion).

n ≤ ρcan(GNEQ,GN,N)

≤ ρultra(GNEQ,GN,N)

≤ ρultra(NEQ2n,B2n)

≤ conondet-size∧(NEQ2n)

≤ nondet-size∨(EQ2n)

≤ size∨(EQ2n)

≤ size∧(NEQ2n)

≤ n.

In particular, the nondeterministic union complexity of the Boolean function EQ2n is precisely n.

Observe that, by Theorem 30, a cyclic circuit computing NEQ2n also requires n fan-in two AND gates.

References

[AB87] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of Boolean functions.

Combinatorica, 7(1):1–22, 1987.

23

[Cha94] A. V. Chashkin. On the complexity of boolean matrices, graphs, and the boolean functions

corresponding to them. Discrete Mathematics and Applications, 4(3):229–258, 1994.

[FGHK16] Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov. A

better-than-3n lower bound for the circuit complexity of an explicit function. In Symposium on

Foundations of Computer Science (FOCS), pages 89–98, 2016.

[GH08] Steven Givant and Paul Halmos. Introduction to Boolean algebras. Springer, 2008.

[GHKK16] Alexander Golovnev, Edward A. Hirsch, Alexander Knop, and Alexander S. Kulikov. On

the limits of gate elimination. In International Symposium on Mathematical Foundations of

Computer Science (MFCS), pages 46:1–46:13, 2016.

[Gol18] Alexander Golovnev. Private communication, 2018.

[Juk12] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers. Springer, 2012.

[Juk13] Stasys Jukna. Computational complexity of graphs (book chapter). Advances in Network Com-

plexity, Quantitative and Network Biology, pages 99–153, 2013.

[Kar93] Mauricio Karchmer. On proving lower bounds for circuit size. In Structure in Complexity

Theory Conference (CCC), pages 112–118, 1993.

[Lok03] Satyanarayana V. Lokam. Graph complexity and slice functions. Theory Comput. Syst.,

36(1):71–88, 2003.

[LY22] Jiatu Li and Tianqi Yang. 3.1n - o(n) circuit lower bounds for explicit functions. In Symposium

on Theory of Computing (STOC), pages 1180–1193, 2022.

[NM95] Katsutoshi Nakayama and Akira Maruoka. Loop circuits and their relation to Razborov’s ap-

proximation model. Inf. Comput., 119(2):154–159, 1995.

[Oli18] Igor C. Oliveira. Notes on the method of approximations and the emergence of the fusion

method. Manuscript (available online), 2018.

[PRS88] Pavel Pudlák, Vojtech Rödl, and Petr Savický. Graph complexity. Acta Inf., 25(5):515–535,

1988.

[Raz85] Alexander A. Razborov. Lower bounds for the monotone complexity of some Boolean func-

tions. Soviet Math. Doklady, 31:354–357, 1985.

[Raz89] Alexander A. Razborov. On the method of approximations. In Symposium on Theory of Com-

puting (STOC), pages 167–176, 1989.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combinatorica,

19(3):403–435, 1999.

[Sch88] Claus-Peter Schnorr. The multiplicative complexity of Boolean functions. In International

Conference on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC),

pages 45–58, 1988.

[Wig93] Avi Wigderson. The fusion method for lower bounds in circuit complexity. In Combinatorics,

Paul Erdos is Eighty, Bolyai Math. Society, pages 453–467, 1993.

24

[Wig95] Avi Wigderson. Lectures on the fusion method and derandomization. Technical Report, 1995.

[Zwi96] Uri Zwick. On the number of ANDs versus the number of ORs in monotone Boolean circuits.

Inf. Process. Lett., 59(1):29–30, 1996.

25

	Introduction
	Overview
	Results

	Discrete Complexity
	Definitions and notation
	Examples
	Basic lemmas and other useful results
	Transference of lower bounds
	Cyclic Discrete Complexity

	Characterizations of Discrete Complexity via Set-Theoretic Fusion
	Definitions and notation
	Discrete complexity lower bounds using the fusion method
	Set-theoretic fusion as a complete framework for lower bounds
	An exact characterization via cyclic discrete complexity

	Graph Complexity and Two-Dimensional Cover Problems
	Basic results and connections
	A simple lower bound example
	Nondeterministic graph complexity

