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Abstract

Symmetry of Information (SoI) is a fundamental property of Kolmogorov complexity that
relates the complexity of a pair of strings and their conditional complexities. Understanding if
this property holds in the time-bounded setting is a longstanding open problem. In the nineties,
Longpré and Mocas [LM93] and Longpré and Watanabe [LW95] established that if SoI holds for
time-bounded Kolmogorov complexity then cryptographic one-way functions do not exist, and
asked if a converse holds.

We show that one-way functions exist if and only if (probabilistic) time-bounded SoI fails
on average, i.e., if there is a samplable distribution of pairs (x, y) of strings such that SoI for
pKt complexity fails for many of these pairs. Our techniques rely on recent perspectives offered
by probabilistic Kolmogorov complexity and meta-complexity, and reveal further equivalences
between inverting one-way functions and the validity of key properties of Kolmogorov com-
plexity in the time-bounded setting: (average-case) language compression and (average-case)
conditional coding.

Motivated by these results, we investigate correspondences of this form for the worst-case
hardness of NP (i.e., NP ⊈ BPP) and for the average-case hardness of NP (i.e., DistNP ⊈
HeurBPP), respectively. Our results establish the existence of similar dualities between these
computational assumptions and the failure of results from Kolmogorov complexity in the time-
bounded setting. In particular, these characterizations offer a novel way to investigate the main
hardness conjectures of complexity theory (and the relationships among them) through the lens
of Kolmogorov complexity and its properties.
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1 Introduction

1.1 Context and Motivation

A basic and fundamental property in Shannon’s information theory is Symmetry of Information
(SoI). Informally, SoI says that for any two random variables X and Y the amount of information
that X reveals about Y is the same as the amount of information that Y reveals about X. Formally,
it says that

I(X;Y ) = H(Y )−H(Y | X) = H(X)−H(X | Y ) ,

where H denotes the entropy function. Equivalently, symmetry of information is often written as:

H(X,Y ) = H(Y ) +H(X | Y ) = H(X) +H(Y | X) ,

where H(X,Y ) denotes the entropy of the jointly distributed random variable (X,Y ).
Symmetry of information is also a basic and fundamental property of Kolmogorov complexity,

which can be viewed as an algorithmic analogue of information theory. The Kolmogorov complexity
K(x) of a string x is the length of the smallest program p that outputs x (when p is fed to an a
priori fixed universal Turing machine). The conditional Kolmogorov complexity of x given y,
written K(x | y), is defined similarly, with the difference that y is provided as input to the universal
machine. Zvonkin and Levin [ZL70] (actually, [ZL70] credits Levin and Kolmogorov independently)
show that the SoI property from information theory also holds for Kolmogorov complexity, with
an additive logarithmic loss. Formally, for any strings x and y,

K(x, y) ≈ K(y) + K(x | y) ≈ K(x) + K(y | x) ,

up to an additive factor of order ±O(log(|x|+ |y|)) in each equation. Written this way, symmetry of
information roughly says that: (i) to describe both x and y it suffices to first describe y optimally
without considering x and then describe x optimally assuming access to a description of y; and (ii)
there is no significantly better way to describe a pair of strings x, y. Note that (i) is easily seen to
hold, while (ii) is non-trivial and states that

K(x, y) ≥ K(x | y) + K(y)−O(log(|x|+ |y|)) .

Symmetry of information has found numerous applications in a variety of areas (see the text-
books [SUV17, LV19] for a comprehensive introduction) and is widely regarded as one of the main
pillars of the theory of Kolmogorov complexity (see, e.g., [Lee06]).

Time-Bounded Kolmogorov Complexity. A disadvantage of Kolmogorov complexity is that
it does not take into account the complexity of generating the string x. This issue is particularly
significant in applications to algorithms and complexity theory, where the running time is a crucial
parameter. Remarkably, in his seminal paper [Kol65, Section 4], Kolmogorov also proposed the
study of t-time-bounded Kolmogorov complexity, denoted by Kt(x), which is the shortest size of a
program that prints x in time at most t. Similarly to Kolmogorov complexity, the theory of time-
bounded Kolmogorov complexity has been widely investigated and has led to several influential
results and applications (see, e.g., [Sip83, Ko91, ABK+06, AF09, Hir18, OPS19, LP20, Hir21]).

Motivated by the prominent role of symmetry of information in Kolmogorov complexity, the
existence of a time-bounded symmetry of information principle has been considered since the early
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years of algorithmic information theory. According to Levin (see [LR05]), already in the sixties
Kolmogorov suggested time-bounded versions of symmetry of information as an interesting re-
search question [Kol68]. Unfortunately, the classical proof that SoI holds for (time-unbounded)
Kolmogorov complexity requires an exhaustive search, and as such, the same argument is not ap-
plicable in the time-bounded setting.

One-Way Functions and Time-Bounded Symmetry of Information. In the nineties,
Longpré and Mocas [LM93] and Longpré and Watanabe [LW95] established a connection between
time-bounded SoI and the existence of cryptographic one-way functions. More precisely, they
proved that if SoI holds for time-bounded Kolmogorov complexity then one-way functions do not
exist. Since one-way functions are both necessary and sufficient for the existence of a variety of
fundamental cryptographic primitives, such as private-key encryption [GM84], pseudorandom gen-
erators [HILL99], digital signatures [Rom90], and commitment schemes [Nao91], their result further
highlights the significance of understanding the validity of SoI in the time-bounded setting.

Longpré and Mocas [LM93] asked if a converse result holds, i.e., if time-bounded symmetry of
information characterizes the non-existence of one-way functions. Similarly, Longpré and Watanabe
[LW95] mentioned that their ultimate goal would be to prove some if and only if statement regarding
symmetry of information. In the same paper, they showed that time-bounded SoI holds if P = NP,
which is stronger than the assumption that one-way functions do not exist. Recent papers (Hirahara
[Hir22b], Goldberg and Kabanets [GK22], and Goldberg, Kabanets, Lu, and Oliveira [GKLO22])
improved this by deriving time-bounded SoI from weaker assumptions on average-case complexity
of NP. However, establishing a characterization of the existence of one-way functions (or of any
other computational assumption) through SoI has remained elusive.

1.2 Results

We confirm the existence of a tight relationship between symmetry of information and cryp-
tography, by establishing the first characterization of one-way functions using SoI. More precisely,
our results show that one-way functions exist if and only if time-bounded SoI fails on average, i.e.,
if there is a samplable distribution of pairs (x, y) of strings such that time-bounded SoI fails for
many of these pairs.

In order to state unconditional characterizations, we work in the setting of probabilistic Kol-
mogorov complexity, i.e., our results are stated for the measures rKt and pKt. These measures
naturally extend the theory of time-bounded Kolmogorov complexity to the realm of probabilistic
algorithms. Intuitively, this is a more suitable perspective in our context, given that the secu-
rity of a one-way function refers to probabilistic polynomial-time adversaries. Nevertheless, under
standard derandomization assumptions our results can also be stated for the classical notion of Kt

complexity employed in early papers in the area.
Before formally stating our results, we briefly review the necessary notions from probabilistic

Kolmogorov complexity. We discuss additional related work in Section 1.5.

Probabilistic Kolmogorov Complexity. Thanks to the ubiquitous role of randomness in algo-
rithms and complexity, probabilistic Kolmogorov complexity has found a number of applications
in recent years (e.g., [Oli19, LO21, LOS21, GKLO22, LOZ22, Hir22b]). As alluded to above, we
consider two notions that extend (deterministic) time-bounded Kolmogorov complexity Kt to the
setting of randomized algorithms: rKt complexity and pKt complexity. We briefly review these
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notions below, referring to Section 2 for their formal definitions.
For a string x, we let rKt(x) denote the shortest size of a randomized program that prints x with

probability at least 2/3 when running for at most t steps. We refer to rKt(x) as the randomized
t-time bounded Kolmogorov complexity of x. Intuitively, there is a short and efficient randomized
program that prints x with high probability. The code of this program serves as a description of x.

On the other hand, we let pKt(x) denote the smallest integer k such that, with probability at
least 2/3 over the choice of a random string w ∼ {0, 1}t, there is a (deterministic) program that
when given w prints x within at most t steps. In other words, for a typical random string w, the
string x has a t-time bounded description of length at most k given w. We refer to pKt(x) as the
probabilistic t-time bounded Kolmogorov complexity of x. Informally, this notion can be interpreted
as Kt in the presence of a random string shared by all parties involved in a computation.

Under a standard derandomization assumption, Goldberg, Kabanets, Lu, and Oliveira [GKLO22]
proved that, for every string x, Kt(x), rKt(x), and pKt(x) are the same up to an additive factor of
O(log |x|) and at most a polynomial overhead in the running time t. (Roughly speaking, this is sim-
ilar in nature to the conjectured collapse NP = MA = AM.) For this reason, the results presented
next also hold for Kt complexity, under a standard derandomization assumption. However, as in
previous works, probabilistic Kolmogorov complexity allows us to obtain unconditional statements.
We refer to the survey [LO22] for more information about rKt and pKt and their applications in
algorithms and complexity theory.

1.2.1 One-Way Functions, Symmetry of Information, and Kolmogorov Complexity

As alluded to above, our main results establish a duality between the (non-)existence of one-way
functions and the validity of the symmetry of information principle in the time-bounded setting
for most pairs of strings. More generally, we establish that the preservation in the time-bounded
setting of average-case versions of other key principles from Kolmogorov complexity is completely
captured by one-way functions.

Theorem 1 (Duality Between One-way Functions and Properties of pK). The following are equiv-
alent.

1. Infinitely-often one-way functions do not exist.

2. (Average-Case Symmetry of Information) For every polynomial-time samplable distri-
bution family {Dn}n∈N, where each Dn is over {0, 1}n × {0, 1}n, and for every polynomial
q, there exists a polynomial p such that for every computable time bound t : N → N with
t(n) ≥ p(n) and for all large enough n,

Pr
(x,y)∼Dn

[
pKt(n)(x, y) ≥ pKt(n)(x | y) + pKt(n)(y)− log t(n)

]
≥ 1− 1

q(n)
.

3. (Average-Case Conditional Coding) For every polynomial-time samplable distribution
family {Dn}n∈N, where each Dn is over {0, 1}n × {0, 1}n, and for every polynomial q, there
exists a polynomial p such that for all large enough n,

Pr
(x,y)∼Dn

[
pKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

q(n)
.
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4. (Average-Case Language Compression) For every recursively enumerable set L ⊆ {{0, 1}n×
{0, 1}n}n∈N, every polynomial-time samplable distribution family {Dn}n∈N, where each Dn is
over {0, 1}n × {0, 1}n, and every polynomial q, there exists a polynomial p such that for all
large enough n,

Pr
(x,y)∼Dn

[
x ∈ Ly =⇒ pKp(n)(x | y) ≤ log |Ly|+ log p(n)

]
≥ 1− 1

q(n)
,

where Ly = {x ∈ {0, 1}n | (x, y) ∈ L}.

Observe that a coding theorem for pKt with optimal parameters is known to hold uncondi-
tionally [LOZ22]. In contrast, Theorem 1 Item 3 considers conditional coding, where we relate
conditional pKt complexity and conditional probability. This exhibits a contrast between (time-
unbounded) Kolmogorov complexity, where coding and conditional coding can be established, and
time-bounded Kolmogorov complexity, where coding holds but conditional coding does not hold
under a cryptographic assumption.

Note that in Theorem 1 (Items 2-4) we stated high probability versions of each property of
Kolmogorov complexity. As a consequence of our proof, we can show that the low probability (i.e.,
non-negligible) and high probability versions of these statements are all equivalent (see Section 3).
The result is also robust with respect to almost-everywhere versus infinitely-often statements, i.e.,
it is possible to prove that one-way functions do not exist if and only if the average-case Kolmogorov
complexity properties hold infinitely often (see Appendix A).

An interesting aspect of the average-case setting is that we can employ a statement of symmetry
of information where the same time bound t(n) appears on both sides of the inequality (Theorem 1
Item 2). In recent papers that establish worst-case SoI under an easiness assumption (e.g., [Hir22b,
GK22, GKLO22]), there is a loss of parameters and the inequalities are of the form pKt(n)(x, y) ≥
pKp(t(n))(x | y) + pKp(t(n))(y)− log p(t(n)), for some polynomial p(·).

Relevance to the Foundations of Cryptography. Our result reveals a deep relationship
between the existence of secure cryptography and the failure of the symmetry of information
principle for efficient computations. We discuss this in more detail now.

Consider the output of a polynomial-time computable function y = f(x), and assume for
simplicity that f is an injective function. Since given x we can efficiently recover y, x contains
all the necessary information about y. On the other hand, intuitively, we can break a candidate
one-way function f if y = f(x) contains sufficient information for us to efficiently recover x from
it. Longpré and Watanabe [LW95] made this intuition formal in the context of an arbitrary
polynomial-time computable function f , i.e., they proved that if SoI holds in the time-bounded
setting then secure one-way functions do not exist. In other words, the existence of one-way
functions necessarily breaks the symmetry of information between y and x in the time-bounded
setting. Indeed, this must hold for a non-negligible fraction of such pairs of strings.

Our result completes the picture by showing that a failure of symmetry of information
for a non-negligible fraction of pairs (x, y) of strings produced by a samplable distribution
is all we need to construct key cryptographic primitives such as one-way functions, private-
key encryption, digital signatures, commitment schemes, etc. In other words, the existence of
secure cryptography can be formally characterized by a break of the computational/information
symmetry between the input and output of an efficiently computable function with respect to
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polynomial-time computations.

In our next result, we consider two natural questions posed to us by Watanabe [Wat22]:

• Is it possible to get an unconditional equivalence between the non-existence of a one-way
function and symmetry of information for rK?

• The usual notions of time-bounded Kolmogorov complexity do not refer to the complexity of
producing a succinct encoding. Can we efficiently compute a short program that “witnesses”
the symmetry of information inequality rKt(x | y) ≲ rKt(x, y)− rKt(y)?

We are able to answer these questions in the quasi-polynomial-time regime. In the statement below,
a quasi-polynomial is a function of the form exp(logc n), for some constant c ∈ N.

Theorem 2 (Duality Between One-way Functions and Properties of rK). The following are equiv-
alent.

1. Infinitely-often polynomial-time-computable one-way functions secure against quasi-polynomial-
time randomized algorithms do not exist.

2. (Average-Case Symmetry of Information) For every polynomial-time samplable distri-
bution family {Dn}n∈N, where each Dn is over {0, 1}n×{0, 1}n, and for every quasi-polynomial
q, there exists a quasi-polynomial p such that for every computable time bound t : N→ N with
t(n) ≥ p(n) and for all large enough n,

Pr
(x,y)∼Dn

[
rKt(n)(x, y) ≥ rKt(n)(x | y) + rKt(n)(y)− log t(n)

]
≥ 1− 1

q(n)
.

3. (Average-Case Symmetry of Information with an Efficient Encoder) In addition to
Item 2, there exists a quasi-polynomial-time randomized algorithm M that takes (x, y) ∼ Dn

and, with probability ≥ 1−1/q(n) over the choice of (x, y) and the internal randomness of M ,
outputs the description of a randomized program of length ≤ rKt(n)(x, y)− rKt(n)(y)+ log t(n)
that takes y as input and outputs x with high probability in time p(n).

4. (Average-Case Approximation of K by rKquasipoly) For every polynomial-time samplable
distribution family {Dn}n∈N, where each Dn is over {0, 1}n × {0, 1}n, and for every quasi-
polynomial q, there exists a quasi-polynomial p such that for all large enough n,

Pr
(x,y)∼Dn

[
rKp(n)(x | y) ≤ K(x | y) + log p(n)

]
≥ 1− 1

q(n)
.

5. (Average-Case Approximation of K by rKquasipoly with an Efficient Encoder) In
addition to Item 4, there exists a quasi-polynomial-time randomized algorithm M that takes
(x, y) ∼ Dn as input and, with probability ≥ 1 − 1/q(n) over the choice of (x, y) and the
internal randomness of M , outputs the description of a randomized program of length ≤
K(x | y) + log p(n) that takes y as input and outputs x with high probability in time p(n).

7



In our opinion, Theorem 2 Item 4 is particularly striking. It shows that, under the ability
to invert one-way functions, time-bounded Kolmogorov complexity and Kolmogorov complexity
essentially coincide for most strings generated by a samplable distribution. In a sense, this explains
why all key properties of Kolmogorov complexity survive on average if one-way functions do not
exist.

An unexpected consequence of the equivalences in Theorem 2 is that if time-bounded SoI holds
on average then time-bounded SoI holds on average with an efficient encoder.

For succinctness, we emphasized different aspects of Kolmogorov complexity in the equivalences
appearing in Theorem 1 and Theorem 2. We stress that it is not difficult to adapt our techniques so
that in both statements we obtain the same set of results (e.g., an average-case conditional coding
statement in Theorem 2 or the approximation of K by pK in Theorem 1). The only fundamental
difference between these characterizations is that for rK our techniques can only be applied in the
quasi-polynomial regime.

1.2.2 Complexity Theory Through the Lens of Kolmogorov Complexity

Inspired by these results, we begin investigating whether other central questions in complexity
theory could also be captured through structural properties of time-bounded Kolmogorov complex-
ity. First, we consider the average-case complexity of NP. Since the assumption that NP is easy
on average is stronger than the assumption that one-way functions do not exist, it is natural to
suspect that a stronger form of the aforementioned average-case principles might hold in this case.

While in Theorem 1 Items 2-4 we sampled a pair (x, y) of strings from D, our next result
will consider a more general way of sampling (x, y). In more detail, we consider a distribution C
supported over {0, 1}n and a distribution D supported over {0, 1}n × {0, 1}n. In order to sample
a pair (x, y), we first sample y ∼ C, then sample x ∼ D(· | y). It turns out that such a change
completely captures the difference between inverting one-way functions and solving problems in NP
on average.

Theorem 3 (Duality Between DistNP vs HeurBPP and Kolmogorov Complexity). The following
are equivalent.

1. DistNP ⊆ HeurBPP.

2. (Independent Average-Case Conditional Coding) For every polynomial-time samplable
distribution families {Dn}n∈N and {Cn}n∈N, where each Dn is over {0, 1}n×{0, 1}n, and each
Cn is over the support of the second half of Dn, and for every polynomial q, there exists a
polynomial p such that for all large enough n,

Pr
y∼Cn,x∼Dn(·|y)

[
pKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

q(n)
.

3. (Independent Average-Case Language Compression) For every recursively enumerable
set L ⊆ {{0, 1}n × {0, 1}n}n∈N, for every polynomial-time samplable distribution families
{Dn}n∈N and {Cn}n∈N, where each Dn is over {0, 1}n × {0, 1}n, and each Cn is over the
support of the second half of Dn, and for every polynomial q, there exists a polynomial p such
that for all large enough n,

Pr
y∼Cn,x∼Dn(·|y)

[
x ∈ Ly =⇒ pKp(n)(x | y) ≤ log |Ly|+ log p(n)

]
≥ 1− 1

q(n)
.
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We also show that the assumption that DistNP ⊆ HeurBPP implies a stronger form of Average-
Case Symmetry of Information called Independent Average-Case Symmetry of Information (see
Theorem 32 in Section 5). However, this result is not yet an equivalence. We discuss this in more
detail in Section 1.4.

Finally, we consider the worst-case complexity of NP, and the possibility of capturing this setting
through Kolmogorov complexity.

Theorem 4 (Duality Between NP vs BPP and Kolmogorov Complexity). The following are equiv-
alent.

1. NP ⊆ BPP.

2. (Worst-Case Conditional Coding) For every polynomial-time samplable distribution fam-
ily {Dn}n∈N, where each Dn is over {0, 1}n × {0, 1}n, there exists a polynomial p such that
for all large enough n and (x, y) ∈ Support(Dn),

pKp(n)(x | y) ≤ log
1

Dn(x | y)
+ log p(n).

3. (Worst-Case Language Compression) For every polynomial-time computable set L ⊆
{{0, 1}n × {0, 1}n}n∈N, there exists a polynomial p such that for all large enough n and all
x, y ∈ {0, 1}n,

x ∈ Ly =⇒ pKp(n)(x | y) ≤ log |Ly|+ log p(n).

Moreover, the above equivalence continues to hold if we replace pK with rK in Item 2 and Item 3.

Similarly to Theorem 3, the role of symmetry of information in the setting of Theorem 4 remains
unclear. We refer to Section 1.4 for a discussion on this.

These duality results uncover a far-reaching correspondence between computational assump-
tions and key aspects of time-bounded Kolmogorov complexity. In particular, these characteriza-
tions offer a novel way to investigate the main hardness conjectures of complexity theory (and the
relationships among them) through the lens of Kolmogorov complexity and its properties.

1.3 Techniques

In this section, we explain the main ideas behind our proofs. We focus on Theorems 1, 2, and
3.

Theorem 1: OWFs vs Average-Case SoI for pKt via Conditional Coding. The equiva-
lence between the non-existence of one-way functions and average-case symmetry of information
is proved via average-case conditional coding. That is, we first show that one-way functions do
not exist if and only if average-case conditional coding holds. We then argue that symmetry of
information and conditional coding are equivalent in the average-case setting.

Part 1: OWFs vs Conditional Coding. First, we explain how the non-existence of one-way functions
implies average-case conditional coding. Consider an arbitrary samplable distribution {Dn}n over
{0, 1}n × {0, 1}n and assume one-way functions do not exist. Our goal is to, on average when
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(x, y) is sampled from Dn, give a short (length roughly log 1
Dn(x|y)) and efficient (time at most p(n))

description of x given access to y.
To gain some intuition, let us ignore the efficient part for now and recall how to prove the

conditional coding theorem in the time-unbounded setting. First, we can assume without loss of
generality that Dn(x | y) ≥ 2−n, since otherwise the desired bound on the complexity of x given
y is trivial. One description of x would be to first describe the probability p = Dn(x | y) that x
is sampled from Dn(· | y) and then describe the index of x in the set {x′ : Dn(x

′ | y) ≥ p}, which
contains at most 1/p = 1/Dn(x | y) elements. In general, this gives an (inefficient) description
for x of length at least n bits (to describe the value Dn(x | y)) plus log 1

Dn(x|y) bits (to describe

the index). Thus, this description’s length is worse than the trivial bound of n + O(1) for x! To
improve this, one uses a standard trick in Kolmogorov complexity: instead of describing Dn(x | y),
one describes the largest power of two less than or equal to Dn(x | y). Let α be this value. Then,
given α, one can also specify the index of x in the set {x′ : Dn(x

′ | y) ≥ α}. This gives a description
for x given y of length at most log n (to describe α) plus at most log 1

α = O(1) + log 1
Dn(x|y) , as

desired. However, this description is not an efficient one. Indeed, even assuming one-way functions
do not exist, it is unclear how to easily compute the i-th element of the set {x′ : Dn(x

′ | y) ≥ α}
on average.

Instead, we take a different approach that relies on hashing. Our description of x given y will
still include α, but instead of specifying the index of x in the set {x′ : Dn(x

′ | y) ≥ α}, we will
specify the hash value v = H(x) of x where H is a randomly chosen pairwise independent hash
function. Setting parameters appropriately, we can guarantee that with high probability that v is
of length log 1

Dn(x|y) + O(1) and that v ̸= H(x′) for all x′ ∈ {x′ : Dn(x
′ | y) ≥ α}. Thus, the value

v uniquely specifies x in the set {x′ : Dn(x
′ | y) ≥ α} and so this gives a description of x given y of

length (log 1
Dn(x|y) +O(1)) + log n+ logn (the first term comes from specifying v, the second from

specifying α, and the third from specifying H).
We show that this description is also efficient on average assuming one-way functions do not

exist. A first attempt might be to consider the candidate one-way function that takes as input
randomness r, a parameter α, and a random hash function H, and outputs (H(x), y,H, α) where
(x, y) is sampled from Dn using the randomness r. Since one-way functions do not exist, this
function can be inverted on average. Thus, to try to go from the description (v, α,H) back to x
one could try to run the inverter to find an x′ such that H(x′) = v. The difficulty is that x′ is not
guaranteed to be in the set {x′ : Dn(x

′ | y) ≥ α} and so x′ might not equal x, even though they
both hash to v!

To get around this, we show that, assuming one-way functions do not exist, there exists an
efficient algorithm B such that on average B(x, y) outputs a constant factor approximation of
Dn(x | y). Crucially, however B(x, y) never overestimates Dn(x | y) (even in the worst-case). To
prove the existence of B we build on [IL89, IL90]. Assuming we have B, we can then consider the
candidate one-way function that takes as input randomness r, a parameter α, and a random hash
function H, then samples (x, y) from Dn using the randomness r and outputs ⊥ if B(x, y) ≤ α and
otherwise outputs (H(x), y,H, α). This means that the one-way function always outputs ⊥ on any
x′ where Dn(x

′ | y) < α. Using this new candidate one-way function, we can fix the aforementioned
difficulty in the previous paragraph and efficiently go from the description (v, α,H) back to x, as
desired.

We note that pK complexity is particularly useful when implementing the plan described above,
since we need random bits (e.g., to obtain H) and additional information that depends on the
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choice of these random bits (e.g., the hash value v = H(x) once we have H).
To show that average-case conditional coding theorem allows us to break any candidate one-

way function f : {0, 1}n → {0, 1}n, we consider a (polynomial-time samplable) distribution D which
samples (x, f(x)), where x is uniformly random. Note that this distribution can be equivalently
viewed as first sampling y := f(z) for a uniformly random z and then sampling x ∼ D(· | y), where,
crucially, D(· | y) is uniformly distributed on f−1(y). Now assuming that average-case conditional
coding holds, we have for most pairs (x, y) sampled from D,

pKpoly(n)(x | y) ≲ log
1

D(x | y)
.

Then, by an averaging argument, for most y := f(z) (where z is uniformly random) the above
condition holds with high probability over x sampled from D(· | y). Since D(· | y) is uniformly
distributed on f−1(y), this means that for most (say at least half) x ∈ f−1(y), it is the case that

pKpoly(n)(x | y) ≲ log
1

D(x | y)
= log |f−1(y)|. (1)

A useful property of probabilistic Kolmogorov complexity is that if pKpoly(n)(a | b) is at most k,
where a, b ∈ {0, 1}n, then there is a universal randomized algorithm USamp that, given b as input,
runs in poly(n) time and outputs a with probability at least 1/O

(
n · 2k

)
(see Definition 21 and

Proposition 22). Then combining this fact with Equation (1), we get that for at least half of the
x ∈ f−1(y), USamp(y) outputs x with probability at least 1/O

(
n · |f−1(y)|

)
, which implies that it

outputs some x′ ∈ f−1(y) with probability at least 1/O(n). This gives an efficient algorithm that
finds a pre-image of y with high probability, for most y.

Part 2: Conditional Coding vs Symmetry of Information. It remains to show the equivalence
between average-case conditional coding and average-case symmetry of information. We describe
how to get the latter from the former. Roughly speaking, if average-case conditional coding holds,
then we have for every polynomial-time samplable distribution D over {0, 1}n × {0, 1}n and for
almost all pairs (x, y) sampled from D,

pKpoly(n)(x | y) ≲ log
1

D(x | y)
.

By the fact that D(x | y) = D(x, y)/D′(y), where D′ is the marginal distribution of D on the second
half, we can rewrite the above as

pKpoly(n)(x | y) ≲ log
1

D(x, y)
− log

1

D′(y)
. (2)

Remember that for symmetry of information, we aim to show

pKpoly(n)(x | y) ≲ pKpoly(n)(x, y)− pKpoly(n)(y). (3)

Therefore, it suffices to show that pKpoly(n)(x, y) ≳ log 1
D(x,y) and that pKpoly(n)(y) ≲ log 1

D′(y) .

Note that the second inequality is exactly the (ordinary) coding theorem for pKpoly, which holds
unconditionally thanks to [LOZ22]. For the first inequality, we use an “incompressibility” property
of Kolmogorov complexity, which says that for every distribution E , almost all elements z sampled
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from E have (resource-unbounded) Kolmogorov complexity at least log 1
E(z) minus some small ad-

ditive term (see Lemma 9). Since it can be shown that pKpoly(n)(x, y) is lower bounded by K(x, y)
(modulo some additive logarithmic term), we get that the first inequality holds for almost all (x, y)
sampled from D.

Similarly, to show that average-case symmetry of information implies average-case conditional
coding, we can “reverse” the above argument and show Equation (2) from Equation (3), in which
case we need to show pKpoly(n)(x, y) ≲ log 1

D(x,y) and pKpoly(n)(y) ≳ log 1
D′(y) . These again follow

from the coding theorem and the “incompressibility” property for pKpoly.

Theorem 2: OWFs vs Average-Case SoI for rKt via Meta-Complexity. To show the
equivalence between average-case SoI for rKt and the non-existence of quasi-polynomial-time vari-
ants of one-way functions, we employ a general approach of showing symmetry of information from
meta-complexity [Hir22b]. It was shown in [Hir22b] that the existence of an efficient algorithm that
approximates resource-bounded Kolmogorov complexity implies a corresponding version of SoI. We
apply a similar proof technique to the average-case setting, and show that Item 1 implies Item 4 in
Theorem 2, i.e., rKpoly is approximated by K if a one-way function does not exist. For simplicity,
we consider polynomial-time bounds in this proof overview.

The key technical ingredient is a pseudorandom generator construction Gk : {0, 1}n×{0, 1}d →
{0, 1}k [TV07]. A pseudorandom generator construction takes a “hard” string x ∈ {0, 1}n and a
seed z ∈ {0, 1}d and outputs a pseudorandom sequence Gk(x; z) with the following reconstruction
property. If a function D distinguishes the output distribution of Gk(x; -) from the uniform dis-
tribution, then the D-oracle Kolmogorov complexity of x is small. In other words, if the D-oracle
Kolmogorov complexity of x is large, then the output distribution Gk(x; -) looks pseudorandom to
D. Following [Hir22b], we use the specific pseudorandom generator construction of [RRV02], which
satisfies the reconstruction property that

rKpoly(n),D(x) ≤ k +O(log3 n) (4)

and the seed length is d = O(log3 n). Moreover, a pseudorandom generator construction has an
“advice function”, which outputs the witness for Equation (4), namely, the description of a D-oracle
randomized program of length k + O(log3 n) that prints x with high probability. This property
enables us to show SoI with an efficient encoder.

We instantiate the approach of [Hir22b] using the approximation algorithm of [IRS21]. Under
the assumption that there is no one-way function, it was shown in [IRS21] that for every polynomial-
time samplable distribution D, there exists an efficient average-case algorithm A that approximates
the resource-unbounded Kolmogorov complexity K(x) of a string x ∼ D. We observe that this
algorithm enables us to approximate the conditional Kolmogorov complexity K(x | y) as well
because

K(x | y) ≈ K(x, y)− K(y)

by the symmetry of information for K. Let A be an average-case algorithm that approximates
K(x | y) on input (x, y) ∼ D.

Using the algorithm A, let us explain how to prove rKpoly(x | y) ≈ K(x | y) for most (x, y) ∼ D.
The idea is to try to distinguish the pseudorandom generator construction Gk(x; -) from the uniform
distribution by using the approximation algorithm A. On the one hand, observe that

A(Gk(x; z), y) ≈ K(Gk(x; z) | y) ≲ K(x | y) + |z|
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because Gk(x; z) is computable given x, z and k as input. Note that |z| = O(log3 n), which is
negligible. On the other hand, by a standard counting argument, we have

A(w, y) ≈ K(w | y) ≳ k

for a random w ∼ {0, 1}k. These two inequalities show that when k ≳ K(x | y), the algorithm
A(-, y) can distinguish Gk(x; -) from the uniform distribution. By the reconstruction property from
Equation (4), we obtain rKpoly(n)(x | y) ≤ k ≈ K(x | y), which completes the proof.

In fact, there are important technical details hidden in the outline above. We need to choose
k ≈ K(x | y) depending on (x, y), which is chosen randomly from a distribution D. Thus, the
distribution (Gk(x; z), y) may not be polynomial-time samplable in general. This is problematic
for us because A is guaranteed to work correctly only with respect to polynomial-time samplable
distributions. The issue is not present in the worst-case setting [Hir22b]. Fortunately, it turns
out that there is a simple way to circumvent this issue. We consider a distribution that randomly
chooses k ∼ [2n] as the input distribution of A. Using that A works correctly with high probability,
we can use A to approximate K(Gk(x; z) | y) for every k ∈ [2n] for a randomly chosen (x, y) ∼ D.

Once we obtain the approximation of rKpoly by K, SoI for rKpoly easily follows from SoI for K.
To prove that SoI for rKpoly implies the non-existence of one-way functions, a natural idea is to

try to follow our approach for Theorem 1. However, an unconditional (ordinary) coding theorem
for rK is currently unknown, and this was an important ingredient in that argument. Instead, we
adapt the proof ideas of [LW95] to the average-case setting. In general, they proved that if SoI
for Kpoly holds with an additive error of e(n), then any one-way function can be inverted in time
nO(1) · 2O(e(n)). In our case, the reconstruction property of Equation (4) incurs an additive error of
O(log3 n), which makes the running time of the inverter quasi-polynomial. More generally, this is
why the equivalence is proved in the quasi-polynomial time regime.

This completes our sketch of the proof of Theorem 2.

The proof overviews presented above highlight two perspectives that can be leveraged to ob-
tain a characterization of the existence one-way functions via average-case symmetry of infor-
mation: (i) employing conditional coding as a bridge between the two statements, and (ii) a
meta-computational approach through meta-complexity. The two approaches come with different
benefits, and shed light on distinct aspects of the duality between the statements. In terms of gen-
erality, we note that the meta-computational approach can also be implemented in the setting of
pKt, which provides a different proof of Theorem 1. On the other hand, the same method does not
seem to work in a worst-case complexity setting, since in the worst-case the time-unbounded and
time-bounded Kolmogorov complexities of a string can be quite far from each other. In contrast,
the conditional coding perspective can be employed to prove Theorem 4 (see Section 6).

Theorem 3: Characterizing DistNP vs HeurBPP via Conditional Extrapolation. The
average-case easiness of NP is derived from the independent version of conditional coding and
language compression in a way that is similar to the other characterization results for one-way
functions and the worst-case complexity of NP. Remember that the independent version of the
statements comes with two samplable distributions C and D, where D is over {0, 1}n×{0, 1}n, and
C is over conditionings of the second half element of D. To solve an NP problem L on average
under a samplable distribution E , we set D to the distribution of (x, y ◦ b), where x ∼ {0, 1}n,
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y ∼ E , and b = 1 if and only if x is a witness for y ∈ L (otherwise, b = 0).1 By letting C be the
distribution of y ◦ 1 for y ∼ E , a pair (x, y) selected as y ◦ 1 ∼ C and x ∼ D(· | y ◦ 1) is distributed
over the witness-instance pairs for L. Crucially, the marginal distribution of y corresponds to E ,
and in case y is a positive instance, the marginal distribution of x is uniform over the witnesses for
y. Using this, the average-case easiness of L follows from the observation that the efficient search
of witness from the language compression holds even in the average-case settings with respect to
witness-instance pairs.

To show the opposite direction, we introduce a new concept of conditional extrapolation, which
may be of independent interest. The conditional extrapolation for a joint distribution D over
{0, 1}∗ × {0, 1}∗ is a probabilistic algorithm CondExt that is given a string y in the support of the
second half of D and selects a sample x according to D(· | y) with a small statistical error (note
that D(· | y) is not efficiently samplable in general even if D is samplable). We are interested in
achieving this when y is sampled from a different distribution C. In more detail, we consider the
following statement involving distributions C and D:

Conditional Extrapolation. There exists a probabilistic polynomial-time algorithm CondExt
such that for all ε−1, δ−1 ∈ N,

Pr
y∼C

[
L1
(
CondExt(y; 1ε

−1
, 1δ

−1
),D(· | y)

)
≤ ε

]
≥ 1− δ,

where we use the notation L1 to refer to the total variation distance between two distributions.
As a key lemma in our proof of equivalence, we show that DistNP ⊆ HeurBPP holds if and

only if conditional extrapolation is feasible for every samplable joint distribution D on average
over the choice of the conditional string y, where y is selected according to an arbitrary samplable
distribution C. The proof of the lemma is based on an adaptation of the proof of the well-known
equivalence result between one-way functions and distributional one-way functions [IL89], where we
apply a heuristic scheme for the search version of the circuit SAT problem instead of an inverting
algorithm.

Conditional extrapolation yields the implication from the average-case easiness of NP to the
independent version of conditional coding, language compression, and symmetry of information.
More specifically, we apply the conditional extrapolation to join two independent samplable dis-
tributions C and D and make a samplable distribution of (x, y) for y ∼ C and x ∼ D(· | y) by
regarding the sampling process as y ∼ C and x ∼ CondExt(y). Namely, by conditional extrapola-
tion, we can derive the independent version of the statements from the corresponding average-case
statements for joint samplable distributions. Since the latter is shown under the non-existence of
one-way functions (a consequence of DistNP ⊆ HeurBPP), we obtain the independent version of the
statements from DistNP ⊆ HeurBPP.

1.4 Open Problems

A summary of our results appears in Appendix B. Note that in the context of one-way functions
we have obtained a precise characterization through average-case symmetry of information, average-
case conditional coding, and average-case language compression. On the other hand, the exact role
of symmetry of information remains mysterious in the correspondences for the worst-case easiness

1The actual construction is a little more involved in order to meet the conditions in the statement; e.g., C is over
the support of the second half of D.
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of NP and for the average-case easiness of NP. In light of Theorem 3 and Theorem 32, we ask the
following question.

Problem 5. Is Independent Average-Case Symmetry of Information equivalent to DistNP ⊆
HeurBPP?

Next, we consider worst-case (time-bounded) symmetry of information. Hirahara [Hir22b],
Goldberg and Kabanets [GK22], and Goldberg, Kabanets, Lu, and Oliveira [GKLO22] showed
that the errorless average-case easiness of DistNP implies worst-case symmetry of information.
For instance, [GKLO22] proved that worst-case symmetry of information holds for pKt under the
assumption that DistNP ⊆ AvgBPP. While we believe that some of our results can be adapted
to show correspondences between DistNP ⊆ AvgBPP and certain “certified” average-case versions
of key principles from Kolmogorov complexity, a proof that worst-case symmetry of information
implies a corresponding easiness assumption for NP remains elusive.

Problem 6. Is there a natural computational assumption that is equivalent to Worst-Case Sym-
metry of Information?

It would also be interesting to obtain an unconditional analogue of Theorem 2 in the polynomial
time regime. This is connected to the advice complexity of the reconstruction procedure from
[RRV02], which incurs a poly-logarithmic additive factor in our bounds on Kolmogorov complexity.

1.5 Related Work

In this section we discuss the broader context surrounding our results, providing pointers to
related research directions and the most relevant recent developments.

As mentioned above, Longpré and Watanabe [LW95] showed that if P = NP then worst-case
time-bounded SoI holds. This result has been improved by [GK22, Hir22b] (see also the subsequent
paper [GKLO22]), where it was shown that the same conclusion holds under the weaker assumption
that NP admits errorless heuristic schemes. In contrast, our results establish the first equivalence
between a natural computational assumption (inverting one-way functions) and average-case time-
bounded SoI.

Longpré [Lon86] proved that symmetry of information holds for a space-bounded notion of Kol-
mogorov complexity, while Ronneburger [Ron04] established that it fails for Levin’s Kt complexity.
Lee and Romashchenko [LR05] investigate symmetry of information for variants of distinguish-
ing complexity (CDt), including non-deterministic distinguishing complexity and non-deterministic
distinguishing complexity with randomness. On the other hand, here we are concerned with vari-
ants of time-bounded Kolmogorov complexity that are equivalent to Kt under standard hardness
assumptions. Liu and Pass [LP22] proved that a general form of time-bounded symmetry of infor-
mation for strings x and y of different lengths fails when Kt complexity is defined with respect to
RAM-machines (as opposed to Turing machines).

Liu and Pass [LP20] (see also [LP21, RS21, IRS21]) showed an equivalence between inverting
one-way functions and the error-prone average-case easiness of computing Kt complexity. Our
results (Theorem 1 and Theorem 2) are incomparable to theirs, as we do not consider an equivalence
between two computational assumptions (inverting one-way functions and easiness of computing
Kt), i.e., we relate instead one-way functions and the validity of key principles from Kolmogorov
complexity in the time-bounded setting. It is worth noting that several additional characterizations
of one-way functions are known, e.g., [IL89, IL90, HILL99, Gol90].
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Several papers have considered coding [AF09, LO21, LOZ22] and language compression [BLM00,
BFL01, BLvM05, Hir21] in the time-bounded setting. While an optimal coding theorem for pKt is
known unconditionally [LOZ22], the existence of a result of this form for rKt and Kt is currently
only known under a derandomization assumption (see, e.g., [AF09]). Weak forms of language
compression hold for variants of distinguishing complexity (see [BLvM05]). In general, our results
and the literature on this topic indicate that language compression most likely does not hold for
time-bounded Kolmogorov complexity measures.

One of the proofs discussed in Section 1.3 relies on techniques from meta-complexity, a rapidly
developing area which investigates the complexity of computational problems and tasks that are
themselves about computations and their complexity. We refer to the surveys [All21, Hir22a] for
an overview of recent results in this area.
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2 Preliminaries

2.1 Basic Definitions and Notation

For a string w ∈ {0, 1}∗, we use |w| ∈ N to denote its length. The empty string is denoted by
ϵ. For any w ∈ {0, 1}∗ and any i ≤ |w|, we let w[i] denote the i-bit prefix of w.

Probability Distributions. Due to our investigation of conditional coding, we will be mostly
interested in distributions supported over pairs of strings. Unless stated otherwise, we use D =
{Dn}n∈N to denote an ensemble of polynomial-time samplable distributions, where each Dn is
supported over {0, 1}ℓ1(n) × {0, 1}ℓ2(n), and ℓ1 and ℓ2 are polynomials satisfying ℓ1(n), ℓ2(n) ≥ n.2

We let PSamp be the collection of ensembles of distributions that can be sampled in polynomial
time. When n is clear from context, we might simply write D instead of Dn. We use D(2) to refer
to the marginal distribution of the second half element of D.

We use Dn(x, y) to denote the probability that the pair (x, y) is sampled from Dn. Similarly,
Dn(x | y) denotes the probability x is sampled from Dn given y is sampled.

One-Way Functions. We will be concerned with one-way functions that are secure against
uniform probabilistic polynomial-time algorithms (PPTs). As usual, we say that an efficiently
computable collection f = {fn}n≥1 satisfying fn : {0, 1}n → {0, 1}poly(n) is a one-way function
(OWF) if for every PPT algorithm A and constant c ≥ 1 and for every sufficiently large n, we have

Pr
x∼{0,1}n

[f(A(1n, f(x))) = f(x)] ≤ n−c. (5)

2Recall that D can be sampled in polynomial time if there is a polynomial-time algorithm Samp such that
Samp(1n, r) is distributed according to Dn when r is a uniformly random string of length poly(n).
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It is well known that the existence of one-way functions does not crucially depend on the success
probability in this definition (i.e., weak and strong one-way functions are equivalent) and on the
output length of each fn (we can assume output length m = n without loss of generality). We refer
to [Gol01] for more details.

Similarly, we say that f is an infinitely-often one-way function (i.o. OWF) if for every PPT A
and constant c ≥ 1 as above, there are infinitely many values of n such that Equation (5) holds.

Time-Bounded Kolmogorov Complexity. Let U be a Turing machine. Given a positive integer
t and a string x ∈ {0, 1}∗, we let

Kt
U (x) = min

p∈{0,1}∗

{
|p| | U(p, ϵ) outputs x in at most t steps

}
.

We say that Kt
U (x) is the t-time-bounded Kolmogorov complexity of x (with respect to U). As

usual, we fix U to be a time-optimal machine [LV19], and drop the index U when referring to
time-bounded Kolmogorov complexity measures. In addition, we use K(x) to denote the (time-
unbounded) Kolmogorov complexity of x.

It will be useful to consider a randomized variant of Kt where instead of having a deterministic
machine that prints x, we consider a randomized machine that generates x with high probability.
Given a probability parameter δ ∈ [0, 1] and a positive integer t, we let

rKt
δ(x) = min

p∈{0,1}∗

{
|p| | Pr

r∼{0,1}t
[U(p, r) outputs x in at most t steps] ≥ δ

}
.

denote the t-time-bounded randomized Kolmogorov complexity of x. For simplicity, we omit δ when
δ = 2/3, i.e., when x is printed with high probability.

We also make use of another probabilistic variant of Kt(x) introduced by Goldberg, Kabanets,
Lu, and Oliveira [GKLO22], which we define next. For a string x, the probabilistic t-time-bounded
Kolmogorov complexity of x is defined as

pKt(x) = min

{
k ∈ N

∣∣∣∣ Pr
r∼{0,1}t(|x|)

[
∃ p ∈ {0, 1}k s.t. U(p, r) outputs x within t(|x|) steps

]
≥ 2

3

}
.

(6)

It is known that the deterministic and probabilistic time-bounded Kolmogorov complexities of a
string essentially coincide, under a plausible circuit lower bound assumption: for every string x
and time bound t(n) ≥ n, pKt(x) ≤ Kt(x) and Kpoly(t)(x) ≤ pKt(x) + O(log |x|) [GKLO22]. We
refer to [LO22] for more background on probabilistic time-bounded Kolmogorov complexity and its
applications.

These definitions can be extended to conditional Kolmogorov complexity in the natural way.
For instance, in pKt(x | y) the machine U is also given access to the input string y in Equation (6)
above. For concreteness, we assume that y is given in a separate input tape.

Average-case Complexity. Recall that a pair (L,D) is a distributional problem if L ⊆ {0, 1}∗
and D = {Dn}n∈N is a distribution family, where each Dn is over {0, 1}∗.

We let DistNP denote the set of distributional problems (L,D) with L ∈ NP and D ∈ PSamp.
A distributional problem (L,D) is said to admit a (error-prone) heuristic scheme if there exists

a probabilistic polynomial-time algorithm A such that for every n, k ∈ N,

Pr
x∼Dn,A

[
A(x; 1n, 1k) ̸= L(x)

]
≤ 1/k.
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We let HeurBPP denote the set of distribution problems that admit a heuristic scheme. For more
information about average-case complexity, we refer to [BT06].

2.2 Technical Lemmas

Kolmogorov Complexity and Coding Results. We will need the following results.

Theorem 7 (Efficient Coding Theorem [LOZ22]). For every polynomial-time samplable distribution
family {Dn}n, there exists a polynomial p such that for every x ∈ Support(Dn)

pKp(n)(x) ≤ log
1

Dn(x)
+ log p(n).

Lemma 8 ([GKLO22]). There is a universal constant c > 0 such that the following holds. For
every time bound t ∈ N and x ∈ {0, 1}n,

K(x | t) ≤ pKt(x) + c log n.

Lemma 9. The following two hold.

1. For any distribution family {Dn}n over {0, 1}n,

Pr
x∼Dn

[
K(x) < log

1

Dn(x)
− α

]
<

1

2α
.

2. For any distribution family {Dn}n over {0, 1}n × {0, 1}n and any y ∈ support(D(2)
n ), where

D(2)
n is the marginal distribution of Dn on the second half,

Pr
x∼Dn(·|y)

[
K(x | y) < log

1

Dn(x | y)
− α

]
<

1

2α
.

Proof. We show the second item. The first item can be shown in a similar way.

Fix any y ∈ support(D(2)
n ), we have

E
x∼Dn(·|y)

[
2K(x|y)

Dn(x | y)

]
=

∑
x∈Support(Dn(x|y))

Dn(x | y) ·
2K(x|y)

Dn(x | y)
=

∑
x∈Support(Dn)

2K(x|y) ≤ 1,

Where the last inequality follows from Kraft’s inequality.
By Markov’s inequality, we obtain that

Pr
x∼Dn(·|y)

[
2K(x|y)

Dn(x | y)
> 2α

]
<

Ex∼Dn(·|y)

[
2K(x|y)

Dn(x|y)

]
2α

<
1

2α
,

which implies

Pr
x∼Dn(·|y)

[
K(x | y) < log

1

Dn(x | y)
− α

]
<

1

2α
,

as desired.
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Pairwise Independent Hash Family. We review below a standard result result about hash
functions.

Definition 10 (Pairwise Independent Hash Family). For m,n ∈ N, a family of hash functions
H := {h : {0, 1}n → {0, 1}m} is called pairwise independent if, for any distinct x, x′ ∈ {0, 1}n, and
any y, y′ ∈ {0, 1}m, we have

Pr
h∼H

[
h(x) = y ∧ h(x′) = y′

]
=

1

22m
.

Theorem 11 (See e.g., [Vad12, Problem 3.3]). Let m,n ∈ N. There is a family of pairwise
independent hash functions Hn,m := {hw : {0, 1}n → {0, 1}m}w, where each hw is indexed by a
w ∈ {0, 1}n+m. Moreover, given n,m,w, and x, hw(x) can be computed in time poly(n,m).

Proposition 12. Let n,m,α ∈ N and let H := {h : {0, 1}n → {0, 1}m+α} be a pairwise independent
hash family. Then for every S ⊆ {0, 1}n with |S| ≤ 2m, with probability at least 1− 1/2α, we have

H(x) ̸= H(x′) for all x′ ∈ S \ {x}.

Proof. Fix some x′ ∈ S \ {x}. Because the hash family is pairwise independent, the probability
that H(x) = H(x′) is at most 1/2m+α. Union-bounding over all x′ ̸= x in S (there are at most
2m − 1 of them), we get that the probability that H(x) ̸= H(x′) for all x′ ∈ S \ {x} is at least
1− 1/2α.

3 One-Way Functions, Average-Case Conditional Coding, Lan-
guage Compression and Symmetry of Information

Theorem 13. The following are equivalent.

1. Infinitely-often one-way functions do not exist.

2. (Strong Average-Case Conditional Coding) For every polynomial-time samplable dis-
tribution family {Dn}n, where each Dn is over {0, 1}n × {0, 1}n, and for every polynomial q,
there exists a polynomial p such that for all n,

Pr
(x,y)∼Dn

[
pKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

q(n)
.

3. (Weak Average-Case Conditional Coding) For every polynomial-time samplable distri-
bution family {Dn}n, where each Dn is over {0, 1}n × {0, 1}n, there exists polynomials p and
q such that for all n,

Pr
(x,y)∼Dn

[
pKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1

q(n)
.

4. (Strong Average-Case Language Compression) For every recursive enumerable set L ⊆
{{0, 1}n × {0, 1}n}n, every polynomial-time samplable distribution family {Dn}n, where each
Dn is over {0, 1}n×{0, 1}n, and every polynomial q, there exists a polynomial p such that for
all n,

Pr
(x,y)∼Dn

[
x ∈ Ly =⇒ pKp(n)(x | y) ≤ log |Ly|+ log p(n)

]
≥ 1− 1

q(n)
.
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5. (Weak Average-Case Language Compression) For every polynomial-time recursive enu-
merable set L ⊆ {{0, 1}n×{0, 1}n}n and every polynomial-time samplable distribution family
{Dn}n, where each Dn is over {0, 1}n×{0, 1}n, there exist polynomials p and q such that for
all n,

Pr
(x,y)∼Dn

[
x ∈ Ly =⇒ pKp(n)(x | y) ≤ log |Ly|+ log p(n)

]
≥ 1

q(n)
.

6. (Strong Average-Case Symmetry of Information) For every polynomial-time samplable
distribution family {Dn}n, where each Dn is over {0, 1}n × {0, 1}n, and for every polynomial
q, there exists a polynomial p such that for all computable time bound t with t(n) ≥ p(n) and
for all n,

Pr
(x,y)∼Dn

[
pKt(n)(x, y) ≥ pKt(n)(x | y) + pKt(n)(y)− log t(n)

]
≥ 1− 1

q(n)
.

7. (Weak Average-Case Symmetry of Information) For every polynomial-time samplable
distribution family {Dn}n, where each Dn is over {0, 1}n × {0, 1}n, there exist polynomials p
and q such that for all computable time bound t with t(n) ≥ p(n) and for all n,

Pr
(x,y)∼Dn

[
pKt(n)(x, y) ≥ pKt(n)(x | y) + pKt(n)(y)− log t(n)

]
≥ 1

q(n)
.

Proof. We first show that the first 5 items (non-existence of infinitely-often OWFs, average-case
conditional coding, and average-case language compression) are equivalent, as follows. Item 1
implies Item 2 (via Lemma 14). Item 2 implies Item 3, and Item 4 implies Item 5 trivially. Item 2
implies Item 4, and Item 3 implies Item 5 (via Lemma 18 and Lemma 19 respectively). Item 5
implies Item 1 (via Lemma 20).

We then establish equivalence between average-case conditional coding and average-case sym-
metry of information, by showing that Item 2 implies Item 6 (via Lemma 23), and that Item 7
implies Item 3 (via Lemma 24).

3.1 Strong Average-Case Conditional Coding from Inverting OWFs

Lemma 14 (Item 1 ⇒ Item 2 in Theorem 13). If infinitely-often one-way functions do not exist,
then strong average-case conditional coding holds.

We need the following technical theorem.

Theorem 15 ([IL90, IL89]; see also [IRS21, Theorem 20]). Assume infinitely-often one-way func-
tions do not exist. Let {Dm}m be a family of polynomial-time samplable distributions, where each
Dm is over {0, 1}m, and let α0 ≥ 1 be any constant. There exist a constant c ≥ 1 and a randomized
polynomial-time algorithm A such that for all m,

Pr
z∼Dm,A

[
A(z) ≥ Dm(z)

c

]
≥ 1− 1

mα0
,

and for all z ∈ {0, 1}m

Pr
A

[A(z) ≤ Dm(z)] ≥ 1− 1

mα0
.
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Lemma 16. Assume infinitely-often one-way functions do not exist. Let {Dn}n be a family of
polynomial-time samplable distributions, where each Dn is over {0, 1}n × {0, 1}n, and let α ≥ 1 be
any constant. There exist a constant c ≥ 1 and a randomized polynomial-time algorithm B such
that for all n,

Pr
(x,y)∼Dn,B

[
B(x, y) ≥ Dn(x | y)

c
and B(x′, y) ≤ c · Dn(x

′ | y) for all x′ ∈ Support(Dn(· | y))
]
≥ 1− 1

nα
.

Proof. Let D′
n be the marginal distribution of Dn on the second half of the output, i.e., D′

n samples
(x, y) ∼ Dn and outputs y.

Let α0 := 6α. Let AD be the algorithm that, given (x, y) ∈ {0, 1}n × {0, 1}n, runs for poly(n)
times the algorithm from Theorem 15 with respect to Dn and takes the median. Let AD′ be the
algorithm that, given y ∈ {0, 1}n, runs the algorithm from Theorem 15 with respect to D′

n. Finally,
let B be the algorithm that, given input (x, y) ∈ {0, 1}n×{0, 1}n, outputs ÃD(x, y)/ÃD′(y), where
ÃD(x, y) = max{ÃD(x, y), 1/2

t(n)}, ÃD′(y)max{ÃD(x, y), 1/2
t(n)}, and t corresponds to amount of

randomness used by the machine that samples {Dn}. Also, B can use the same randomness for
running both AD and AD′ .

We argue the correctness of B. First consider an algorithm A from Theorem 15 with respect
to Dn. By averaging, we have

Pr
(x,y)∼Dn

[
Pr
A

[
A(x, y) ≥ Dn(x, y)

c

]
≥ 1− 1

nα0/2

]
≥ 1− 1

nα0/2
. (7)

Also, for all (a, b) ∈ {0, 1}n × {0, 1}n

Pr
A

[A(a, b) ≤ Dn(a, b)] ≥ 1− 1

nα0
. (8)

By standard concentration bound, we note that the randomized algorithm AD (which repeats A
for poly(n) times and takes the median) makes the “success” probability of A in both Equation (7)
and Equation (8) become 1− 1/ exp(n). In particular, we have

Pr
(x,y)∼Dn

[
Pr
AD

[
AD(x, y) ≥

Dn(x, y)

c

]
≥ 1− 1/ exp(n)

]
≥ 1− 1

nα0/2
,

which implies

Pr
(x,y)∼Dn,AD

[
AD(x, y) ≥

Dn(x, y)

c

]
≥ 1− 1

nα0/3
, (9)

Also, by applying a union bound over all (a, b) on the new Equation (8) but with exponentially
small failure probability, we get

Pr
AD

[AD(a, b) ≤ Dn(a, b) for all (a, b)] ≥ 1− 1

nα/2
. (10)

By combining Equation (9) and Equation (10), we get

Pr
(x,y)∼Dn,AD

[
AD(x, y) ≥

Dn(x, y)

c
and AD(a, y) ≤ Dn(a, y) for all a ∈ {0, 1}n

]
≥ Pr

(x,y)∼Dn,AD

[
AD(x, y) ≥

Dn(x, y)

c
and AD(a, b) ≤ Dn(a, b) for all (a, b)

]
≥ 1− 1

2nα
. (11)
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Note that since every element in the support of Dn has probability mass at least 1/2t(n), for ÃD
(which outputs the larger of AD and 1/2t(n)), Equation (11) yields

Pr
(x,y)∼Dn,ÃD

[
ÃD(x, y) ≥

Dn(x, y)

c
and ÃD(a, y) ≤ Dn(a, y) for all a ∈ Support(Dn(· | y))

]
≥ 1− 1

2nα
. (12)

On the other hand, for the algorithm AD′ , we have

Pr
(x,y)∼Dn,AD′

[
D′

n(y)

c
≤ AD′(y) ≤ D′

n(y)

]
= Pr

y∼D′
n,AD′

[
D′

n(y)

c
≤ AD′(y) ≤ D′

n(y)

]
≥ 1− 1

nα0
. (13)

Again, since every element in the support of D′
n has probability mass at least 1/2t(n), Equation (13)

still holds if we replace AD′ with ÃD′ (which outputs the larger of AD′ and 1/2t(n)).
Fix any (x, y) in the support of Dn and any randomness for running B. Note that when both

ÃD(x, y) ≥
Dn(x, y)

c
and ÃD(a, y) ≤ Dn(a, y) for all a ∈ Support(Dn(· | y))

and
D′

n(y)

c
≤ ÃD′(y) ≤ D′

n(y)

are true, we have for the algorithm B,

Dn(x | y)
c

:=
Dn(x, y)

c
· 1

D′
n(y)

≤ B(x, y) ≤ Dn(x, y) ·
c

D′
n(y)

=: c · Dn(x | y),

and also
B(a, y) ≤ Dn(a, y) ·

c

D′
n(y)

:= c · Dn(a | y) for all a ∈ Support(Dn(· | y)).

By a union bound, the above happens with probability at least 1− 1/nα.

We are now ready to show Lemma 14.

Proof of Lemma 14. Let {Dn} be any polynomial-time samplable distribution family, and let M
be the machine such that M(1n,UncD ) is distributed according to Dn.

Let α be an arbitrary constant, and let B be the algorithm from Lemma 16 with respect to
{Dn}n. Also, we view B as a deterministic algorithm that takes ncB bits of randomness, where cB
is some constant.

Let us define the following polynomial-time computable function f .

On input (rD, rB, w) ∈ {0, 1}n
cD × {0, 1}3ncD × {0, 1}ncB , we first run M(1n, rD) to

obtain some (x, y). We then run B(x, y; rB) to obtain p0 ∈ [0, 1] and let p be the
greatest power of two less than p0/c, where c is the constant from Lemma 16. Finally,
we interpret w as the encoding of a hash function H from a pairwise independent hash
family, mapping n bits to log(1/p) + α log n bits3 and output (H(x), y, p, rB, w).

3This can done by using the construction of pairwise independent hash family from Theorem 11. Note that we
can obtain a hash function H from the family using only the first n+ log(1/p) + α bits of w.
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For an output z := (H(x), y, p, rB, w) of f , we say that z is good if

1. p ≥ Dn(x | y)/(2c2), and

2. for every (rD, rB, w) ∈ f−1(z), we have M(1n, rD) = (x, y). In other words, there does not
exist (x′, y) such that x′ ̸= x, but M(1n, r′D) = (x′, y) and f(r′D, rB, w) = (H(x), y, p, rB, w).

Claim 17. We have

Pr
rD,rB ,w

[f(rD, rB, w) is good ] ≥ 1− 2

nα
.

Proof of Claim 17. Consider Lemma 16, we have

Pr
rD,rB

(x,y):=M(1n,rD)

[
B(x, y; rB) ≥

Dn(x | y)
c

and B(a, y; rB) ≤ c · Dn(a | y) for all a ∈ Support(Dn(· | y))
]

≥ 1− 1

nα
.

Whenever this event happens, we have in the output of f ,

Dn(x | y)
2c2

≤ B(x, y; rB)

2c
≤ p <

B(x, y; rB)

c
≤ Dn(x | y),

and for all (x′, y, rB) that produces the same p, it must be the case that Dn(x
′ | y) > p. We call

such a pair (rD, rB) successful if the above holds.
We have

Pr
rD,rB ,w

[f(rD, rB, w) is not good ]

≤ Pr
rD,rB ,w

[f(rD, rB, w) is not good | (rD, rB) is successful] + Pr
rD,rB

[(rD, rB) is not successful]

≤ Pr
rD,rB ,w

[f(rD, rB, w) is not good | (rD, rB) is successful] +
1

nα
. (14)

Fix any (rD, rB) that is successful. Consider a random w, Let

(H(x), y, p, rB, w) := f(rD, rB, w),

where (x, y) := M(1n, rD) and H is obtained from w (viewed as the encoding of a hash function
from a pairwise independent hash family), mapping n bits to log(1/p) + α log n bits. Note that by
Proposition 12, with probability at least 1−1/nα, H is a “good” hash function that isolates x from
the other elements in the set

Sy,p := {a : Dn(a | y) ≥ p}.

Now suppose (H(x), y, p, rB, w) is not good, this means there exists (x′, y), which is obtained from
M(1n, r′D) for some r′D, such that together with rB and w, produces (H(x′), y, p, rB, w) withH(x′) =
H(x). Note that since (rD, rB) is successful, this implies that D(x′ | y) > p, which means H fails
to isolates x within Sy,p. Therefore, we conclude that

Pr
rD,rB ,w

[f(rD, rB, w) is not good | (rD, rB) is successful] ≤ 1/nα,

which, combined with Equation (14), completes the proof of the claim.
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Since infinitely-often one-way functions do not exist (hence infinitely-often weak one-way func-
tions do not exist), for all α, there exists a PPT algorithm Invert that breaks f for all n with
probability at least 1 − 1/nα (over a random input (rD, rB, w) to f and the internal randomness
of Invert). Consider the PPT algorithm Rec that runs Invert, obtains some (rD, rB, w) and output
x from (x, y) := M(1n, rD). Note that if (H(x), y, p, rB, w) is good, then on a successful inversion,
Rec will output x. Therefore, we have

Pr
(x,y)∼Dn

rB ,w,Rec

[
Rec(H(x), y, p, rB, w) = x and p ≥ Dn(x | y)

2c2

]
≥ 1− 3

nα
,

where we take a union bound over the probability that the output is not good (which is less than
2/nα) and that Invert fails (which is less than 1/nα). By an averaging argument, with probability
at least 1−

√
3/nα over (x, y) ∼ Dn, we have

Pr
rB ,w,Rec

[
Rec(H(x), y, p, rB, w) = x and p ≥ Dn(x | y)

2c2

]
≥ 1−

√
3

nα
≥ 2

3
. (15)

Note that Equation (15) implies an upper bound for pKt(x | y), for some polynomial t. Indeed, for
each such (x, y), if we sample rB, w and the internal randomness Rec uniformly at random, then
with high probability there exist v := H(x) and p, where

|v| = log p+ α log n ≤ log
1

Dn(x | y)
+ log 2c2 + α log n,

and p can be encoded using O(log n) bits, such that, given y, one can print x, by simulating
Rec(v, y, p, rB, w). Finally, note that α was chosen to be arbitrary. Therefore, the above gives a
strong average-case coding theorem as desired.

3.2 Average-Case Conditional Coding implies Average-Case Language Com-
pression

Lemma 18 (Item 2 ⇒ Item 4 in Theorem 13). Strong average-case conditional coding theorem
implies strong average-case language compression.

Proof. Assuming strong average-case conditional coding, we have that for some polynomial p0,

Pr
(x,y)∼Dn

[
pKp0(n)(x | y) ≤ log

1

Dn(x | y)
+ log p0(n)

]
≥ 1− 1

2q(n)
.

Also, by Lemma 9, there exists a polynomial p1 such that

Pr
(x,y)∼Dn

[
K(x | y) ≥ log

1

Dn(x | y)
− log p1(n)

]
≥ 1− 1

2q(n)
.

Therefore, with probability at least 1− 1/q(n) over (x, y) ∼ Dn,

pKp0(n)(x | y) ≤ K(x | y) + log(p0(n) · p1(n)). (16)

Also, it is easy to see that for every x, y ∈ {0, 1}n,

x ∈ Ly =⇒ K(x | y) ≤ log |Ly|+O(1).
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Then whenever Equation (16) is true, we have

x ∈ Ly =⇒ pKp0(n)(x | y) ≤ log |Ly|+ log(p0(n) · p1(n)) +O(1),

which implies that there exists a polynomial p such that

x ∈ Ly =⇒ pKp(n)(x | y) ≤ log |Ly|+ log p(n),

as desired.

Lemma 19 (Item 3 ⇒ Item 5 in Theorem 13). Weak average-case conditional coding theorem
implies weak average-case language compression.

Proof Sketch. The proof can be adapted from that of Lemma 18 in a straightforward manner. We
omit the details here.

3.3 Inverting OWFs from Weak Average-Case Language Compression

Lemma 20 (Item 5 ⇒ Item 1 in Theorem 13). If weak average-case language compression holds,
then infinitely-often one-way functions do not exist.

We need the following notion of a universal sampler.

Definition 21 (Universal Time-Bounded Sampler). Let n, t ∈ N and y ∈ {0, 1}∗. The universal
sampler USamp(1n, 1t, y) does the follow.

1. Pick a uniformly random k ∼ [O(n)],

2. Pick a uniformly random r ∼ {0, 1}t,

3. Pick a uniformly random d ∼ {0, 1}k,

4. Outputs x which is the output of a universal oracle Turing machine (fixed in advance) U , on
input d with an oracle to the bits of y and r (i.e. Uy,r(d)), running for t steps.

Note that USamp runs in polynomial time. The following proposition follows easily from the
definitions of pKt and USamp.

Proposition 22. For every n, t, ℓ ∈ N, x ∈ {0, 1}n and y ∈ {0, 1}∗, if pKt(x | y) ≤ k, then
USamp(1n, 1t, y) outputs x with probability Ω

(
1/(n · 2k)

)
, where USamp is the universal sampler

defined in Definition 21.

We now show Lemma 20.

Proof of Lemma 20. First of all, consider any polynomial-time computable set L ⊆ {{0, 1}n ×
{0, 1}n}n and any polynomial-time samplable distribution Dn whose support is L. By weak average-
case language compression, there exist a polynomial p and a constant c > 0 such that for all n,
with probability at least 1/nc over (x, y) ∼ Dn,

pKp(n)(x | y) ≤ log |Ly|+ log p(n), (17)
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Say y is good if with probability at least 1/(2nc) when we sample x from Dn(· | y), we have that
Equation (17) holds for (x, y). By a simple counting argument, with probability at least 1/(2nc)
when (x, y) is sampled according to Dn, y is good.

We work by contradiction. Suppose f : {0, 1}n → {0, 1}n is an infinitely-often one-way function.
Let Dn be the distribution given as follows: sample x ∼ {0, 1}n uniformly at random and output
(x, f(x)). Also, let L be the polynomial-time computable set L := {(x, f(x))}x∈{0,1}∗ .

Note that by construction, for y ∈ {0, 1}n that is in the image of f , we have Ly := f−1(y).
Also, Dn(· | y) is uniformly distributed on Ly. By the above discussion, with probability at least
1/(2nc) over x ∼ {0, 1}n, y := f(x) is good in the sense that for at least 1/(2nc) of the x′ ∈ Ly, it
holds that

pKp(n)(x′ | y) ≤ log |Ly|+ log p(n), (18)

Let Sy ⊆ Ly be the set of x′ such that Equation (18) holds. Note that if y is good,

|Sy| ≥
|Ly|
2nc

.

Fix any good y. By Proposition 22 and Equation (18), USamp(1n, 1p(n), y) outputs each x′ ∈ Sy

with probability at least
1

O(n · p(n) · |Ly|)
.

Hence the probability that USamp(1n, 1p(n), y) outputs some x′ ∈ Sy is at least

|Sy| ·
1

O(n · p(n) · |Ly|)
≥ 1

O(p(n) · nc)
.

In other words, with probability at least 1/(2nc) over x ∼ {0, 1}n (in which case f(x) is good),
USamp(1n, 1p(n), f(x)) outputs some pre-image of f(x) with probability at least 1/O(p(n) · nc),
which breaks the security of f .

3.4 Average-Case Conditional Coding Implies Average-Case Symmetry of In-
formation

Lemma 23 (Item 2 ⇒ Item 6 in Theorem 13). Strong average-case conditional coding implies
strong average-case symmetry of information.

Proof. Let {Dn} be any polynomial-time samplable distribution family, where each Dn is over
{0, 1}n × {0, 1}n and let t be any computable time bound such that t(n) ≥ p(n), where p is some
sufficiently large polynomial specified later. We want to show that strong average-case symmetry
of information holds for {Dn}. Let D′

n be the marginal distribution of Dn on the second half of
the output. Assuming strong average-case coding theorem, for every constant c > 0, there exists a
polynomial p0, such that for all n, with probability at least 1− 1/(2nc) over (x, y) ∼ Dn, we have

pKp0(n)(x | y) ≤ log
1

Dn(x | y)
+ log p0(n)

= log
D′

n(y)

Dn(x, y)
+ log p0(n)

= log
1

Dn(x, y)
− log

1

D′
n(y)

+ log p0(n). (19)
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Now let b > 0 be a sufficiently large constant, we have

Pr
(x,y)∼Dn

[
pKt(n)(x, y) < log

1

Dn(x, y)
− b log n

]
≤ Pr

(x,y)∼Dn

[
K(x, y) <

(
log

1

Dn(x, y)
− b log n

)
+O(log n)

]
(by Lemma 8)

<
1

nc
. (by Item 1 of Lemma 9)

In other words, with probability least 1− 1/nc over (x, y) ∼ Dn, we have

log
1

Dn(x, y)
≤ pKt(n)(x, y) + b log n. (20)

Also note that sinceDn is polynomial-time samplable, so isD′
n. By the coding theorem (Theorem 7),

there exists a polynomial p1 such that

pKp1(n)(y) ≤ log
1

D′
n(y)

+ log p1(n). (21)

Substituting Equation (20) and Equation (21) into Equation (19), we get that with probability at
least 1− 1/nc over (x, y) ∼ Dn, we have

pKp0(n)(x | y) ≤
(
pKt(n)(x, y) + b log n

)
−
(
pKp1(n)(y)− log p1(n)

)
+ log p0(n),

which implies
pKt(n)(x | y) ≤ pKt(n)(x, y)− pKt(n)(y) + log t(n),

as long as p is a sufficiently large polynomial.

3.5 Average-Case Symmetry of Information Implies Average-Case Conditional
Coding

Lemma 24 (Item 7⇒ Item 3 in Theorem 13). Weak average-case symmetry of information implies
weak average-case conditional coding.

Proof. The proof is similar to that of Lemma 23 but works “backwards”. We present the details
for completeness.

Let {Dn} be any polynomial-time samplable distribution family, where each Dn is supported
over {0, 1}n×{0, 1}n. We want to show that weak average-case conditional coding holds for {Dn}.
Let D′

n be the marginal distribution of Dn on the second half of the output, i.e., D′
n samples

(x, y) ∼ Dn and outputs y.
Assuming weak average-case symmetry of information, there exist a polynomial p0 and a con-

stant c > 0, such that for all polynomial t that is greater than p0 and for all n, with probability at
least 1/nc over (x, y) ∼ Dn, we have

pKt(n)(x | y) ≤ pKt(n)(x, y)− pKt(n)(y) + log t(n) (22)
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On the one hand, by applying the coding theorem (Theorem 7) toDn, given that t is a sufficiently
large polynomial,

pKt(n)(x, y) ≤ log
1

Dn(x, y)
+ log t(n). (23)

On the other hand, let b > 0 be a sufficiently large constant, we have

Pr
(x,y)∼Dn

[
pKt(n)(y) < log

1

D′
n(y)

− b log n

]
≤ Pr

y∼D′
n

[
K(y) <

(
log

1

D′
n(y)

− b log n

)
+O(log n

]
(by Lemma 8)

<
1

2nc
. (by Item 1 of Lemma 9)

In other words, with probability least 1− 1/(2nc) over (x, y) ∼ Dn, we have

pKt(n)(y) ≥ log
1

D′
n(y)

− b log n. (24)

Substituting Equation (24) and Equation (23) into Equation (22), we get that with probability
at least 1/(2nc) over (x, y) ∼ Dn, we have

pKt(n)(x | y) ≤
(
log

1

Dn(x, y)
+ log t(n)

)
−
(
log

1

D′
n(y)

− b log n

)
+ log t(n)

= log
D′

n(y)

Dn(x, y)
+ log t(n) + b log n+ log t(n)

= log
1

Dn(x | y)
+ (b+ 2) · log t(n),

which implies that there exists a polynomial p such that

pKp(n)(x | y) ≤ log
1

Dn(x | y)
+ log p(n),

as desired.

4 One-Way Functions and Average-Case Symmetry of Informa-
tion for rKquasipoly

We present the characterization of the existence of a one-way function secure against quasi-
polynomial-time adversaries by average-case symmetry of information for rKpoly.

Theorem 25. The following are equivalent.

1. Infinitely-often polynomial-time-computable one-way functions secure against quasi-polynomial-
time randomized algorithms do not exist.

2. (Approximation of K by rKquasipoly) For every polynomial-time samplable distribution fam-
ily {Dn}n, where each Dn is over {0, 1}n × {0, 1}n, and for every quasi-polynomial q, there
exists a quasi-polynomial p such that for all n,

Pr
(x,y)∼Dn

[
rKp(n)(x | y) ≤ K(x | y) + log p(n)

]
≥ 1− 1

q(n)
.
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3. (Approximation of K by rKquasipoly with an Efficient Encoder) In addition to Item 2,
there exists a quasi-polynomial-time randomized algorithm M that takes (x, y) ∼ Dn as input
and, with probability 1− 1/q(n) over the choice of (x, y) and the internal randomness of M ,
outputs the description of a randomized program of length K(x | y) + log p(n) that takes y as
input and outputs x in time p(n).

4. (Average-Case Symmetry of Information) For every polynomial-time samplable distri-
bution family {Dn}n, where each Dn is over {0, 1}n×{0, 1}n, and for every quasi-polynomial
q, there exists a quasi-polynomial p such that for all computable time bounds t with t(n) ≥ p(n)
and for all n,

Pr
(x,y)∼Dn

[
rKt(n)(x, y) ≥ rKt(n)(x | y) + rKt(n)(y)− log t(n)

]
≥ 1− 1

q(n)
.

5. (Average-Case Symmetry of Information with an Efficient Encoder) In addition to
Item 4, there exists a quasi-polynomial-time randomized algorithm M that takes (x, y) ∼ Dn

and, with probability 1− 1/q(n) over the choice of (x, y) and the internal randomness of M ,
outputs the description of a randomized program of length rKt(n)(x, y) − rKt(n)(y) + log t(n)
that takes y as input and outputs x in time p(n).

Proof. Item 1 ⇒ Item 3 is due to Lemma 28.
Item 3 ⇒ Item 2 and Item 5 ⇒ Item 4 are obvious.
Item 2 ⇒ Item 4 and Item 3 ⇒ Item 5 can be proved as follows. Using the assumption, with

high probability over (x, y) ∼ Dn, we have

rKp(n)(x | y) ≤ K(x | y) + log p(n).

and
rKp(n)(y) ≤ K(y) + log p(n).

By summing the two inequalities, we obtain

rKp(n)(x | y) + rKp(n)(y) ≤K(x | y) + K(y) + 2 log p(n)

≤K(x, y) +O(log p(n))

≤ rKt(n)(x, y) +O(log p(n)),

where the second inequality holds by the symmetry of information for Kolmogorov complexity.
Noting that rKp(n)(x | y) + rKp(n)(y) ≥ rKt(n)(x | y) + rKt(n)(y), the claim follows.

Item 4 ⇒ Item 1 is due to Lemma 29.

4.1 Approximating K by rKquasipoly from Inverting Quasi-Polynomial OWFs

We use the following pseudorandom generator construction.

Lemma 26. There exists a polynomial p such that, for all sufficiently large n,m, t ∈ N such that
m ≤ 2n and t ≥ n, there exists a “pseudorandom generator construction”

Gm : {0, 1}n × {0, 1}d → {0, 1}m
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such that for every x ∈ {0, 1}n and any function D : {0, 1}m × {0, 1}t → {0, 1}, if∣∣∣∣∣∣∣ Pr
z∼{0,1}d
w′∼{0,1}t

[
D(Gm(x; z);w′) = 1

]
− Pr

w∼{0,1}m
w′∼{0,1}t

[
D(w;w′) = 1

]∣∣∣∣∣∣∣ ≥
1

m
,

then
rKp(t),D(x) ≤ m+O(log3 n).

Here, d = O(log3 n) and Gm can be computed in time poly(n). Moreover, there exists a D-oracle
randomized polynomial-time algorithm αm that takes x as input and outputs the description of a
D-oracle randomized program of length m+O(log3 n) that prints x in time p(t).

Proof Sketch. As in [Hir22b], we use the pseudorandom generator construction of [RRV02] (where
a list-decodable error-correcting code is used in place of an error-correcting code). Then we obtain
a triple (Gm, Am, R) such that

Gm : {0, 1}n × {0, 1}d → {0, 1}m,

Am : {0, 1}n × {0, 1}d → {0, 1}m,

R : {0, 1}m × {0, 1}d × {0, 1}r → {0, 1}n

with the following properties: For every x ∈ {0, 1}n and any D : {0, 1}m × {0, 1}t → {0, 1} such
that ∣∣∣∣∣∣∣ Pr

z∼{0,1}d
w′∼{0,1}t

[
D(G(x; z);w′) = 1

]
− Pr

w∼{0,1}m
w′∼{0,1}t

[
D(w;w′) = 1

]∣∣∣∣∣∣∣ ≥
1

m
,

it holds that

Pr
w∼{0,1}r
z∼{0,1}d

[
x = RD(Am(x, z), z, w)

]
≥ 1

poly(m)
=: ϵ.

Here, we have d = O(log3 n) and r = O(t). Moreover, Gm and Am can be computed in time poly(n)
and RD can be computed in time poly(n) with oracle access to D. By an averaging argument, with
probability at least ϵ/2 over a random choice of z ∼ {0, 1}d, it holds that

Pr
w∼{0,1}r

[
x = RD(Am(x, z), z, w)

]
≥ ϵ

2
. (25)

For any z that satisfies this, we may construct a randomized D-oracle program MD that prints
x with probability ϵ/2 as follows: MD takes Am(x, z) and z as hard-wired input and simulates
RD(Am(x, z), z, w) for a random choice of w ∼ {0, 1}r. By Equation (25), this algorithm MD

witnesses
rK

poly(t),D
ϵ/2 (x) ≤ m+O(log3 n)

for some polynomial poly. By using the randomness-efficient coding of [LO21], the success proba-
bility ϵ

2 can be amplified to 2
3 with additional O(log(1/ϵ)) bits of information; thus, we get

rKp(t),D(x) ≤ m+O(log3 n)
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for some polynomial p.
To see the “moreover” part, observe that whether z satisfies Equation (25) or not can be

approximately checked in polynomial time with oracle access to D by randomly sampling w. For
such z, the algorithm αm outputs the description of MD whose success probability is amplified by
[LO21].

We also use a conditional version of [IRS21]. For simplicity, we state it for polynomial-time
algorithms, but the analogous result holds for quasi-polynomial-time algorithms.

Lemma 27. If there exists no infinitely-often one-way function, then for every polynomial-time
samplable distribution family {Dn}n, there exist a randomized polynomial-time algorithm AD and
a polynomial p such that for all n ∈ N,

Pr
(x,y)∼Dn

[K(x | y) ≤ A(x, y) ≤ K(x | y) + log p(n)] ≥ 1− 1

p(n)
.

Proof. By [IRS21], for every polynomial-time samplable distribution family {En}n, there exist a
randomized polynomial-time algorithm AE and a polynomial p such that for all n ∈ N,

Pr
x∼En

[K(x) ≤ A(x) ≤ K(x) + log p(n)] ≥ 1− 1

p(n)
.

For a given distribution D, let E be the uniform mixture of the two distributions, (x, y) and
y for (x, y) ∼ E . Define a new algorithm A′ to be one that takes (x, y) as input and outputs
AE(x, y)−AE(y).

We prove that A′ approximates K(x | y) on average. Fix n ∈ N and let ϵ := 1/p(n). By the
definition of E , with probability at least 1− 2ϵ over a random choice of (x, y) ∼ D, it holds that

K(x, y) ≤ AE(x, y) ≤ K(x, y) +O(log n)

and
K(y) ≤ AE(y) ≤ K(y) +O(log n)

Under this event, we also have

K(x, y)− K(y)−O(log n) ≤ A′(x, y) = AE(x, y)−AE(y) ≤ K(x, y)− K(y) +O(log n).

By the symmetry of information for Kolmogorov complexity, we have

K(x | y)−O(log n) ≤ K(x, y)− K(y) ≤ K(x | y) +O(log n).

The claim follows from these two inequalities.

Lemma 28 (Item 1⇒ Item 3 in Theorem 25). If infinitely-often one-way functions secure against
quasi-polynomial randomized algorithms do not exist, then for every polynomial-time samplable
distribution family {Dn}n, where each Dn is over {0, 1}n × {0, 1}n, and for every quasi-polynomial
q, there exists a quasi-polynomial p such that for all n,

Pr
(x,y)∼Dn

[
rKp(n)(x | y) ≤ K(x | y) + log p(n)

]
≥ 1− 1

q(n)
.

Moreover, there exists a quasi-polynomial-time randomized algorithm M that takes (x, y) ∼ Dn as
input and, with probability 1− 1/q(n) over the choice of (x, y) and the internal randomness of M ,
outputs the description of a randomized program of length K(x | y) + log p(n) that takes y as input
and outputs x in time p(n).
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Proof. By Lemma 27, for every polynomial-samplable distribution E and every quasi-polynomial q,
there exist a quasi-polynomial p and a randomized quasi-polynomial-time algorithm AE such that
for all n ∈ N,

Pr
(x,y)∼E

[K(x | y) ≤ AE(x, y) ≤ K(x | y) + log p(n)] ≥ 1− 1

q(n)
.

Consider the distribution F of (x, y, k, z, w), where (x, y) ∼ D, k ∼ [2n], and z ∼ {0, 1}d, and
w ∼ {0, 1}k. Here, d = O(log3 n) is (an upper bound of) the seed length of Gk from Lemma 26. Let
E1 be the distribution of (Gk(x; z), y) for (x, y, k, z, w) ∼ F . Similarly, let E2 be the distribution of
(w, y) for (x, y, k, z, w) ∼ F . We define E to be the uniform mixture of E1 and E2.

Since the pseudorandom generator construction Gk of Lemma 26 is computable, we have

K(Gk(x; z) | y) ≤ K(x | y) + |z|+O(log n) ≤ K(x | y) + log p(n),

where the last inequality holds by choosing a large enough quasi-polynomial p ≥ q. Therefore, we
obtain

Pr
(x,y,k,z,w)∼F

[AE(Gk(x; z), y) ≤ K(x | y) + 2 log p(n)] ≥ 1− 2

q(n)
,

where the factor 2 in 2
q(n) comes from the fact that E1 is identical to E with probability 1

2 . By a

union bound over all k∗ ∈ [2n], we obtain

Pr
(x,y,k,z,w)∼F

[∀k∗ ∈ [2n], AE(Gk∗(x; z), y) ≤ K(x | y) + 2 log p(n)] ≥ 1− 4n

q(n)
.

In particular, for a given (x, y), let k∗ = k∗(x, y) := K(x | y) + 3 log p(n). Then, we have

Pr
(x,y,k,z,w)∼F

[AE(Gk∗(x; z), y) ≤ k∗ − log p(n)] ≥ 1− 4n

q(n)
. (26)

By a simple counting argument, we have K(w | y) ≥ |w| − log q(n) > |w| − log p(n) with
probability at least 1− 1

q(n) over a choice of w ∼ {0, 1}k. Thus, we obtain

Pr
(x,y,k,z,w)∼F

[AE(w, y) > k∗ − log p(n)] ≥ 1− 4n

q(n)
. (27)

Let Dk,y : {0, 1}k × {0, 1}t → {0, 1} be the function such that Dk,y(w; r) := 1 if and only
if AE(w, y; r) ≤ k − log p(n), where r denotes the internal randomness of AE . It follows from
Equations (26) and (27) that

Pr [Dk∗,y(Gk∗(x; z); r) = 1]−Pr [Dk∗,y(w; r) = 1] ≥ 1− 8n

q(n)
,

where the probabilities are over (x, y, k, z, w) ∼ F and r ∼ {0, 1}t. By an averaging argument, with
probability at least 1− 16

q(n) over a random choice of (x, y) ∼ D, it holds that

Pr [Dk∗,y(Gk∗(x; z); r) = 1]−Pr [Dk∗,y(w; r) = 1] ≥ 1

2
.

Under this event, applying Lemma 26 to Dk∗,y, we obtain

rKp′(n)(x | y) ≤ k∗ +O(log3 n)
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for some quasi-polynomial p′. Since k∗ = K(x, y) + 3 log p(n), it follows that

Pr
(x,y)∼D

[
rKp′(n)(x | y) ≤ K(x | y) +O(log p(n))

]
≥ 1− 16n

q(n)
.

The “moreover” part follows from the “moreover” part of Lemma 26.

4.2 Inverting Quasi-Polynomial OWFs from Average-Case Symmetry of Infor-
mation for rKquasipoly

Lemma 29 (Item 4 ⇒ Item 1 in Theorem 25). If Average-Case Symmetry of Information for
rKquasipoly (Item 4 in Theorem 25) holds, then infinitely-often polynomial-time-computable one-way
functions secure against quasi-polynomial-time randomized algorithms do not exist.

Proof. Let f be an arbitrarily polynomial-time computable length-preserving function. We show
that if Item 4 holds, then there exists a quasi-polynomial-time adversary A that inverts f with
probability at least 1− 1/n over the choice of input x for f and randomness for A.

We consider a polynomial-time samplable distribution D = {Dn}, where for each n ∈ N, Dn is
a distribution of (x, f(x)) for x ∼ {0, 1}n. Under the assumption that Item 4 holds, it holds that,
for any sufficiently large quasi-polynomial p and for any n ∈ N,

Pr
(x,f(x))∼Dn

[
rKp(n)(x, f(x)) ≥ rKp(n)(x | f(x)) + rKp(n)(f(x))− log p(n)

]
≥ 1− 1

8n
.

Since f is polynomial-time computable, we can select a sufficiently large quasi-polynomial p
such that rKp(n)(x, f(x)) ≤ rKp(n)/2(x) for every n ∈ N and every x ∈ {0, 1}n. Therefore,

Pr
(x,f(x))∼Dn

[
rKp(n)/2(x) ≥ rKp(n)(x | f(x)) + rKp(n)(f(x))− log p(n)

]
≥ 1− 1

8n
.

For every t ∈ N and every x, y ∈ {0, 1}∗, let rQt(x | y) be a probability that U(π, r | y) outputs
x in t steps for i ∼ [t], π ∼ {0, 1}i, and r ∼ {0, 1}t. By the definition of rKt, we have that
rQt(x | y) ≥ (2/3) · t−12−rKt(x|y) for every t ∈ N and every x, y ∈ {0, 1}∗.

Therefore, we have

Pr
(x,f(x))∼Dn

[
rQp(n)(x | f(x)) ≥ 2rK

p(n)(f(x))

(3/2) · p(n)2 · 2rKp(n)/2(x)

]
≥ 1− 1

8n
. (28)

We first show Item 1 by assuming the following claim.

Claim 30. There exists a quasi-polynomial q such that for every n ∈ N

Pr
x∼{0,1}n

[
2rK

p(n)(f(x))

2rK
p(n)/2(x)

≥ 1

p(n)q(n) · |f−1(f(x))|

]
≥ 1− 1

8n
.

Let p′ be a quasi-polynomial defined as p′(n) = (3/2)p(n)3q(n). By inequality (28), Claim 30,
and the union bound, we have that, for every n ∈ N,

Pr
x∼{0,1}n

[
rQp(n)(x | f(x)) ≥ 1

p′(n) · |f−1(f(x))|

]
≥ 1− 1

4n
.
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Let G ⊆ {0, 1}n be the subset of x ∈ {0, 1}n that satisfies the event in the expression above,
i.e., x ∈ G iff rQp(n)(x | f(x)) ≥ 1/(p′(n)|f−1(f(x))|) holds. Let B := {0, 1}n \G. Then, it trivially
holds that Prx′∼{0,1}n [x

′ ∈ B] ≤ 1/(4n).
We can assume that a random choice x′ ∼ {0, 1}n is performed as the following two-step

procedure: (i) x ∼ {0, 1}n and (ii) x′ ∼ |f−1(f(x))|. Then, by Markov’s inequality,

Pr
x∼{0,1}n

[
Pr

x′∼|f−1(f(x))|

[
x′ ∈ B

]
>

1

2

]
≤ 1

2n
.

Let G′ ⊆ {0, 1}n be the subset of x ∈ {0, 1}n that does not satisfy the event in the expression
above, i.e., x ∈ G′ iff Prx′∼|f−1(f(x))| [x

′ ∈ B] ≤ 1/2 iff Prx′∼|f−1(f(x))| [x
′ ∈ G] ≥ 1/2. Then, it

holds that Prx∼{0,1}n [x ∈ G′] ≥ 1− 1/(2n).
Furthermore, for any x ∈ G′, we have∑

x′∈f−1(f(x))

rQp(n)(x′ | f(x)) ≥
∑

x′∈G∩f−1(f(x))

rQp(n)(x′ | f(x))

≥
∑

x′∈G∩f−1(f(x))

1

p′(n) · |f−1(f(x))|

=
|G ∩ f−1(f(x))|
p′(n) · |f−1(f(x))|

=
1

p′(n)
Pr

x′∼|f−1(f(x))|

[
x′ ∈ G

]
≥ 1

2p′(n)
,

where the last inequality holds since x ∈ G′. Thus,

Pr
x∼{0,1}n

 ∑
x′∈f−1(f(x))

rQp(n)(x′ | f(x)) ≥ 1

2p′(n)

 ≥ Pr
x∼{0,1}n

[x ∈ G′] ≥ 1− 1

2n
. (29)

Based on the inequality above, we construct the quasi-polynomial-time adversary A that inverts
f as follows: On input 1n and y, where y = f(x) for x ∼ {0, 1}n, the adversary A executes the
universal Turing machine U(π, r | y) in p(n) steps for i ∼ [t], π ∼ {0, 1}i, and r ∼ {0, 1}t, and
obtains x′ ∼ U(π, r | y) repeatedly. For each obtained sample x′, the adversary A checks whether
f(x′) = y, and if so, A outputs the inverse element x′. If A cannot obtain any inverse element after
poly(n, p′(n)) sampling processes, then A outputs ⊥.

We discuss the correctness of A. Suppose that a hidden random seed x ∈ {0, 1}n satisfies the
condition in inequality (29) (this event occurs with probability at least 1 − 1/(2n)). Then, by
inequality (29), for each sampling process according to U(x, r | f(x)), the probability that the
sample x′ satisfies that f(x′) = f(x) is∑

x′∈f−1(f(x))

rQp(n)(x′ | f(x)) ≥ 1

2p′(n)
.

Therefore, by repeating the sampling process poly(n, p′(n)) times, we can amplify the success prob-
ability that some inverse element is sampled to 1 − 1/(2n). By the union bound, the success
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probability of A(1n, y) is at least 1 − 1/n over the choice of y = f(x) and the randomness of A
(for sampling). It is easily verified that A halts in polynomial time in n, p(n), and p′(n), which is
a quasi-polynomial in n.

The remaining is the proof of Claim 30.

Proof of Claim 30. Fix n ∈ N arbitrarily. For every x ∈ {0, 1}n, by considering the trivial program
that outputs the embedded string x, it holds that

rKp(n)/2(x) ≤ n+O(1).

Therefore,

2rK
p(n)/2(x)/O(1) ≤ 2n. (30)

Now, we evaluate 2rK
p(n)(x). Let D′

n be the distribution of f(x) for x ∼ {0, 1}n, i.e., the marginal
distribution of the second half element of Dn. It is easy to verify that for every y ∈ Imf ,

D′
n(y) =

|f−1(y)|
2n

.

By simple calculations,

E
y∼D′

n

[
2−rKp(n)(y)

D′
n(y)

]
=

∑
y∈Support(D′

n)

2−rKp(n)(y)

≤ (2/3)−1p(n) ·
∑

y∈Support(D′
n)

rQp(n)(y)

≤ 2p(n).

By Markov’s inequality,

Pr
x∼{0,1}n

[
2−rKp(n)(f(x))

D′
n(f(x))

≤ 16p(n)n

]
= Pr

y∼D′
n

[
2−rKp(n)(y)

D′
n(y)

≤ 16p(n)n

]
≥ 1− 1

8n
. (31)

For every x ∈ {0, 1}n satisfying inequality (31), we have

2rK
p(n)(f(x)) ≥ 1

16p(n)n · D′
n(f(x))

=
2n

16p(n)n · |f−1(f(x))|

≥ 2rK
p(n)/2(x)

O(1) · 16p(n)n · |f−1(f(x))|
,

where the last inequality follows from inequality (30).
By rearranging the above, we conclude that

Pr
x∼{0,1}n

[
2rK

p(n)(f(x))

2rK
p(n)/2(x)

≥ 1

O(1) · 16p(n)n · |f−1(f(x))|

]
≥ 1− 1

8n
,

as desired.

This completes the proof of Lemma 29.
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5 DistNP vs HeurBPP, Independent Average-Case Conditional Cod-
ing and Language Compression

In this section, we show the following relationships between the average-case easiness of NP and
the independent variants of average-case conditional coding, language compression, and symmetry
of information.

Theorem 31. The following are equivalent.

1. DistNP ⊆ HeurBPP.

2. (Independent Average-Case Conditional Coding) For every samplable distribution
families {Dn}n∈N and {Cn}n∈N, where each Dn is over {0, 1}n × {0, 1}n, and each Cn is

over Support(D(2)
n ), and for every polynomial q, there exists a polynomial p such that for all

large enough n ∈ N,

Pr
y∼Cn,x∼Dn(·|y)

[
pKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

q(n)
.

3. (Independent Average-Case Language Compression) For every computable set L ⊆
{{0, 1}n × {0, 1}n}n, for every samplable distribution families {Dn}n∈N and {Cn}n∈N, where
each Dn is over {0, 1}n×{0, 1}n, and each Cn is over Support(D(2)

n ), and for every polynomial
q, there exists a polynomial p such that for all n,

Pr
y∼Cn,x∼Dn(·|y)

[
x ∈ Ly =⇒ pKp(n)(x | y) ≤ log |Ly|+ log p(n)

]
≥ 1− 1

q(n)
.

4. (Conditional Extrapolation) For every samplable distribution families {Dn}n∈N and {Cn}n∈N,
where each Dn is over {0, 1}n×{0, 1}n, and each Cn is over Support(D(2)

n ), there exists a prob-
abilistic polynomial-time algorithm CondExt such that for all n, ε−1, δ−1 ∈ N,

Pr
y∼Cn

[
L1

(
CondExt(y; 1ε

−1
, 1δ

−1
),Dn(· | y)

)
≤ ε

]
≥ 1− δ.

Theorem 32. If DistNP ⊆ HeurBPP holds, then the following holds:

5. (Independent Average-Case Symmetry of Information) For every samplable distribu-
tion families {Dn}n∈N and {Cn}n∈N, where each Dn is over {0, 1}n × {0, 1}n, and each Cn is

over Support(D(2)
n ), and for every polynomial q, there exists a polynomial p such that for all

enough large n ∈ N and for all computable time bound t : N→ N with t(n) ≥ p(n) and for all
n,

Pr
y∼Cn,x∼Dn(·|y)

[
pKt(n)(x, y) ≥ pKt(n)(x | y) + pKt(n)(y)− log t(n)

]
≥ 1− 1

q(n)
.

The proofs of Theorems 31 and 32 are presented in the subsequent sections. In Section 5.1, we
show Item 1 ⇒ Item 4. In Section 5.2, we show Item 4 ⇒ Items 2, 3, and 5. In Section 5.3, we
show Item 2 ⇒ Item 1 and Item 3 ⇒ Item 1.
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5.1 Conditional Extrapolation from Average-Case Easiness of NP

In this section, we extend the well-known reduction from inverting functions to distributionally
inverting functions [IL89] to the case of average-case easiness of NP and show the following lemma.

Lemma 33 (Item 1 ⇒ Item 4 in Theorem 31). If DistNP ⊆ HeurBPP holds, then for every
samplable distribution families {Dn}n∈N and {Cn}n∈N, where each Dn is over {0, 1}n×{0, 1}n, and
each Cn is over Support(D(2)

n ), there exists a probabilistic polynomial-time algorithm CondExt such
that for all n, ε−1, δ−1 ∈ N,

Pr
y∼Cn

[
L1

(
CondExt(y; 1ε

−1
, 1δ

−1
),Dn(· | y)

)
≤ ε

]
≥ 1− δ.

To show Lemma 33, we use the following search-to-decision reduction.

Theorem 34 (Search-to-Decision Reduction [BCGL92]). If DistNP ⊆ HeurBPP, then for every
(L,D) ∈ DistNP, where L is determined by an NP relation RL ⊆ {0, 1}∗ × {0, 1}∗, there exists a
probabilistic polynomial-time algorithm M such that for every n, ε−1 ∈ N,

Pr
x∼Dn

[
x /∈ L ∨Pr

M
[RL(x,M(x, 1n, 1ε

−1
))] ≥ 1− 2−n

]
≥ 1− ε.

Proof of Lemma 33. Let C = {Cn}n∈N and D = {Dn}n∈N be arbitrary samplable distributions
satisfying the conditions in Lemma 33. Let ℓ(n) be a polynomial that represents the seed length
required for sampling according to Dn. Based on the standard way to transform Turing machines
into uniformly computable circuits, we obtain a uniformly computable polynomial-size circuit family
D = {Dn}n∈N, where Dn : {0, 1}ℓ(n) → {0, 1}n × {0, 1}n for each n ∈ N, such that the distribution

of Dn(r) for r ∼ {0, 1}ℓ(n) is statistically equivalent to Dn. We use the notation D
(1)
n (resp.

D
(2)
n ) to refer to the subcircuit of D that outputs the first (resp. second) half of the element, i.e.,

Dn(r) = (D
(1)
n (r), D

(2)
n (r)) for every r ∈ {0, 1}ℓ(n).

We define an NP language InvCirc as follows: For every x ∈ {0, 1}∗ and every (binary represen-
tation of) circuit C,

⟨x,C⟩ ∈ InvCirc ⇐⇒ ∃r ∈ {0, 1}∗ such that C(r) = x.

We define a samplable distribution E = {En}n∈N as follows. For each n,m ∈ N, let Hn,m be the
pairwise independent hash family that maps n bits to m bits. For each n ∈ N, we define En as a
distribution of ⟨h, i, y, v ◦ 0ℓ(n)+log2 n−i⟩, where h ∼ Hℓ(n),ℓ(n)+log2 n, i ∼ [ℓ(n) + log2 n], y ∼ Cn, and
v ∼ {0, 1}i. For readability, we identify v ◦ 0ℓ(n)+log2 n−i with v when n and i are clear in context.
For each n ∈ N, we let En denote a circuit that is given r ∈ {0, 1}ℓ(n), h′ ∈ Hℓ(n),ℓ(n)+log2 n, i

′ ∈
[ℓ(n)+log2 n] and outputs ⟨h′, i′, D(2)

n (r), h′(r)[i′]◦0ℓ(n)+log2 n−i′⟩. Since Dn is uniformly computable

in polynomial time, D
(2)
n and En are also uniformly computable in polynomial time. Thus, the

distribution family {⟨En, En⟩}n∈N is samplable, and (InvCirc, {⟨En, En⟩}n) ∈ DistNP.
By the assumption that DistNP ⊆ HeurBPP and Theorem 34, there exists a probabilistic

polynomial-time algorithm M such that for every n, ε−1 ∈ N,

Pr
z=⟨h,i,y,v⟩∼En

[
⟨⟨h, i, y, v⟩, En⟩ /∈ InvCirc ∨ Pr

M
[En(M(z, 1n, 1ε

−1
)) = ⟨h, i, y, v⟩] ≥ 1− 2−n

]
≥ 1− ε
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For simplicity, we assume that M does not fail, i.e., we assume that

Pr
z=⟨h,i,y,v⟩∼En

[
⟨h, i, y, v⟩ /∈ ImEn ∨ En(M(z, 1n, 1ε

−1
)) = ⟨h, i, y, v⟩

]
≥ 1− ε.

This assumption is valid in the following sense: The algorithm CondExt (specified later) executes
M only polynomially many times. Thus, the probability that M does not satisfy the above is
negligible. Therefore, this affects the result negligibly, and we can manage this by selecting slightly
better parameters.

The outline of the proof is the following: First, we construct an algorithm M ′ that approximates

the number of inverses of a given y ∼ Cn with respect to D
(2)
n based on M . Then, we construct the

extrapolation algorithm CondExt based on M and M ′.
We construct the approximation algorithm M ′ as follows: On input y ∼ Cn and 1δ

−1
, where

δ−1 ∈ N is an additional error parameter, M ′ executes M(⟨⟨hi,j , i, y, vi,j⟩, En⟩, 1n, 1(ℓ(n)+log2 n)γ2
)

for each i ∈ [ℓ(n) + log2 n] and j ∈ [ℓ(n)], where hi,j ∼ Hℓ(n),ℓ(n)+log2 n, vi,j ∼ {0, 1}i, and γ :=

max{δ−1, 16}. Then, M ′ outputs the maximum value of i (denoted by i∗) satisfying that M
succeeds in finding an inverse with respect to En for some j ∈ [ℓ(n)], i.e., i∗ is the maximum value
f i satisfying that there exists j ∈ [ℓ(n)] such that

En(M(⟨hi,j , i, y, vi,j⟩, 1n, 1(ℓ(n)+log2 n)γ2
)) = ⟨hi,j , i, y, vi,j⟩.

If there is no such i∗, then let i∗ = 0.
It is easy to verify that M ′ halts in polynomial time. Let Ry = {r ∈ {0, 1}ℓ(n) : D(2)(r) = y},

Ny := |Ry|, and ny := ⌊logNy⌋. Then, M ′ satisfies the following claim.

Claim 35. For every parameter δ−1 ∈ N, it holds that

Pr
y∼Cn,M ′

[
ny + 2 ≤ i∗ ≤ ny + log δ−1

]
≥ 1− 2(ℓ(n)2 + ℓ(n) log2 n+ 1) · δ

Proof of Claim 35. First, we show the upper bound. Fix y and each hi,j arbitrarily. For each i
and j, the number of hash values of Ry, i.e., |{hi,j(r)[i] : r ∈ Ry}| is at most |Ry| = Ny. Notice
that M can find an inverse of ⟨hi,j , i, y, vi,j⟩ only if vi,j corresponds to one of the at most Ny hash
values. Thus, M is successful with probability at most Ny · 2−i over the choice of vi,j ∼ {0, 1}i.
Particularly, for every i > ny +log δ−1 and every j ∈ [ℓ(n)], the success probability of M is at most

Ny · 2−i < 2ny+1 · 2−(ny+log δ−1) = 2δ.

By the union bound, with probability at least 1 − 2ℓ(n)(ℓ(n) + log2 n)δ, the algorithm M fails to
find an inverse for all i ∈ [ℓ(n) + log2 n] with i > ny + log δ−1 and for all j ∈ [ℓ(n)]. In this case, it
holds that i∗ ≤ ny + log δ−1.

Next, we show the lower bound. Let i = ny + 2. For readability, we omit parameters 1n and

1(ℓ(n)+log2 n)γ2
for M below. Remember that

Pr
y,h,i′,v

[
⟨h, i′, y, v⟩ /∈ ImEn ∨ En(M(⟨h, i′, y, v⟩)) = ⟨h, i′, y, v⟩

]
≥ 1− (ℓ(n) + log2 n)−1γ−2,

where y ∼ Cn, h ∼ Hℓ(n),ℓ(n)+log2 n, i
′ ∼ [ℓ(n) + log2 n], and v ∼ {0, 1}i.
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By Markov’s inequality, with probability at least 1− γ−1 ≥ 1− δ over the choice of y ∼ Cn,

Pr
h,i′,v

[
⟨h, i′, y, v⟩ /∈ ImEn ∨ En(M(⟨h, i′, y, v⟩)) = ⟨h, i′, y, v⟩

]
≥ 1− (ℓ(n) + log2 n)−1γ−1.

Since i′ corresponds to i = ny + 2 with probability (ℓ(n) + log2 n)−1, we have

Pr
h,v

[⟨h, i, y, v⟩ /∈ ImEn ∨ En(M(⟨h, i, y, v⟩)) = ⟨h, i, y, v⟩] ≥ 1− γ−1.

We fix any y ∈ {0, 1}n satisfying the above inequality. Remember that Ry = {r ∈ {0, 1}ℓ(n) :
D(2)(r) = y}. For every r, r′ ∈ Ry with r ̸= r′, the collision probability that h(r)[i] = h(r′)[i] is
2−i over the choice of h. By the union bound, for every r ∈ Ry, the probability that there exists
another r′ ∈ Ry \ {r} satisfying that h(r)[i] = h(r′)[i] is at most |Ry| · 2−i = |Ry| · 2−ny−2 ≤ 2−1.
For each r ∈ Ry and h ∈ Hℓ(n),ℓ(n)+log2 n, let Ar,h be a random variable that takes 1 iff there exists
no r′ ∈ Ry \ {r} such that h(r)[i] = h(r′)[i] (otherwise, Ar,h = 0). Then, it holds that

E
h

∑
y∈Ry

Ay,h

 =
∑
y∈Ry

E
h
[Ay,h] ≥

Ny

2
.

For each h, the number of hash values of Ry, i.e., |{h(r)[i] : r ∈ Ry}| is at least
∑

y∈Ry
Ay,h.

Thus, the random value v ∼ {0, 1}i corresponds to one of the hash values with probability at least
2−i ·

∑
y∈Ry

Ay,h. Therefore, we have

Pr
h,v

[⟨h, i, y, v⟩ ∈ ImEn] ≥ E
h

2−i ·
∑
y∈Ry

Ay,h

 ≥ Ny

2 · 2i
≥ 2ny

2 · 2ny+2
=

1

8

Since γ ≥ 16, we obtain that

Pr
h,v

[En(M(⟨h, i, y, v⟩)) ̸= ⟨h, i, y, v⟩|⟨h, i, y, v⟩ ∈ ImEn]

= Pr
h,v

[⟨h, i, y, v⟩ ∈ ImEn ∧ En(M(⟨h, i, y, v⟩)) ̸= ⟨h, i, y, v⟩|⟨h, i, y, v⟩ ∈ ImEn] ≤ 8γ−1 ≤ 2−1,

and

Pr
h,v

[En(M(⟨h, i, y, v⟩)) = ⟨h, i, y, v⟩]

≥ Pr
h,v

[⟨h, i, y, v⟩ ∈ ImEn] ·Pr
h,v

[En(M(⟨h, i, y, v⟩)) = ⟨h, i, y, v⟩|⟨h, i, y, v⟩ ∈ ImEn]

≥ 1

8
· 1
2
≥ 1

16
.

Since (hi,j , vi,j) is selected at independently random for each j ∈ [ℓ(n)], there is no (hi,j , vi,j) for
which M is successful with probability at most (1− 1/16)ℓ(n) ≤ 2−Ω(ℓ(n)). Notice that if this event
does not occur, then i∗ ≥ i = ny + 2. Thus, we conclude that

Pr
y∼Cn,M ′

[i∗ ≥ ny + 2] ≥ (1− δ)(1− 2−Ω(ℓ(n))) ≥ 1− 2δ,
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where we assume that δ ≥ 2−Ω(ℓ(n)); otherwise, we can directly compute Ny and ny by trying all
r ∈ {0, 1}ℓ(n) in time 2ℓ(n) ≤ poly(δ−1).

By the union bound, we have

Pr
y∼Cn,M ′

[
ny + 2 ≤ i∗ ≤ ny + log δ−1

]
≥ 1− 2ℓ(n)(ℓ(n) + log2 n)δ − 2δ

= 1− 2(ℓ(n)2 + ℓ(n) log2 n+ 1)δ.

This completes the proof of Claim 35.

We construct the extrapolation algorithm CondExt based onM andM ′: On input y ∼ Cn, 1ε
−1
, 1δ

−1
,

(i) CondExt executes i∗ ← M ′(y, 12δ
−1γ0γ1) and sets ĩ := i∗ + 2 log γ2 − 1, where γ0 = 2(ℓ(n)2 +

ℓ(n) log2 n + 1), γ1 = 4ε−1, and γ2 = max{8ε−1, 2}, (if M ′ outputs 0, then CondExt outputs
an empty symbol ϵ and halts); (ii) CondExt picks h ∼ Hℓ(n),ℓ(n)+log2 n and repeats the following

execution m := 4γ0γ1γ
2
2δ

−1ℓ(n) times: execute

M(⟨⟨h, ĩ, y, v⟩, En⟩, 1n, 12δ
−1(ℓ(n)+log2 n)γ3)

for r ∼ {0, 1}ĩ (where r is selected independently for each trial) and γ3 = 4γ0γ1γ
4
2δ

−1. If M
outputs a valid inverse (r′, h, ĩ) of ⟨h, ĩ, y, v⟩ (the validity can be easily verified), then CondExt
outputs C(1)(r′) and halts; and (iii) if no inverse was found within the m trials, then CondExt
outputs an error symbol ⊥ or an arbitrarily string and halts. It is not hard to verify that CondExt
halts in polynomial time.

We verify the correctness of CondExt. For readability, we omit the unary parameters for CondExt,
M ′, and M .

By Claim 35,

Pr
y∼Cn,M ′

[
ny + 2 ≤ i∗ ≤ ny + log δ−1γ0γ1 + 1

]
≥ 1− δ

2
· 2(ℓ(n)2 + ℓ(n) log2 n+1)γ−1

0 γ−1
1 = 1− δ

2
γ−1
1

Thus, by Markov’s inequality, the following holds with probability at least 1− δ/2 over the choice
of y ∼ Cn:

Pr
M ′

[
ny + 2 ≤ i∗ ≤ ny + log δ−1γ0γ1 + 1

]
≥ 1− γ−1

1 (32)

Furthermore, on step (ii), we have

Pr
y,h,i,v

[⟨h, i, y, v⟩ /∈ ImEn ∨ En(M(⟨h, i, y, v⟩)) = ⟨h, i, y, v⟩] ≥ 1− δ

2(ℓ(n) + log2 n)
· γ−1

3 ,

where y ∼ Cn, h ∼ Hℓ(n),ℓ(n)+log2 n, i ∼ [ℓ(n) + log2 n], and v ∼ {0, 1}i. By Markov’s inequality, the
following holds with probability at least 1− δ/2 over the choice of y ∼ Cn:

Pr
h,i,v

[⟨h, i, y, v⟩ /∈ ImEn ∨ En(M(⟨h, i, y, v⟩)) = ⟨h, i, y, v⟩] ≥ 1− 1

(ℓ(n) + log2 n)
· γ−1

3 .

In this case, it holds that

∀i ∈ [ℓ(n) + log2 n] Pr
h,v

[⟨h, i, y, v⟩ /∈ ImEn ∨ En(M(⟨h, i, y, v⟩)) = ⟨h, i, y, v⟩] ≥ 1− γ−1
3 , (33)
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because each i is selected with probability (ℓ(n) + log2 n)−1.
By the union bound, with probability 1− δ over the choice of y ∼ Cn, inequalities (32) and (33)

are satisfied. For the theorem, it suffices to show that, under this condition,

L1 (CondExt(y),Dn(· | y)) ≤ ε.

Thus, we fix y that satisfies (32) and (33) arbitrarily and show the above.
On the execution of CondExt, let B an event that M ′ does not output i∗ satisfying that

ny + 2 ≤ i∗ ≤ ny + log δ−1γ0γ1 + 1

Then, we show the following claims:

Claim 36. Pr[B] ≤ ε/4.

Claim 37. Under the condition that ¬B, it holds that L1 (CondExt(y),Dn(· | y)) ≤ 3ε/4

These claims imply Lemma 33 as

L1 (CondExt(y),Dn(· | y)) ≤ 1 ·Pr[B] + 3ε/4 ·Pr[¬B] ≤ ε.

Thus, the remaining of the proof is to show Claims 36 and 37.

Proof of Claim 36. The claim immediately follows from inequality (32) and γ1 = 4ε−1.

Proof of Claim 37. Under the condition ¬B, we have

ny + 2 log γ2 + 1 ≤ ĩ ≤ ny + 2 log γ2 + log δ−1γ0γ1.

For each r ∈ Ry and h ∈ Hℓ(n),ℓ(n)+log2 n, we use the notation Ar,h again to refer to the binary
random variable that takes 1 iff there exists no r′ ∈ Ry \ {r} such that h(r)[̃i] = h(r′)[̃i]. Then, for

each r ∈ Ry, it holds that Prh[Ar,h = 0] ≤ Ny · 2−ĩ by the union bound; thus,

E
h

∑
r∈Ry

Ar,h

 =
∑
r∈Ry

E
h
[Ar,h] ≥ Ny · (1−Ny2

−ĩ) ≥ Ny · (1− 2ny2−(ny+2 log γ2+1)) ≥ Ny · (1−
1

2γ22
).

By Markov’s inequality,

Pr
h

∑
r∈Ry

Ar,h ≥ (1− 1

γ2
) ·Ny

 ≥ 1− 1

2γ2
.

Furthermore, by inequality (33),

Pr
h,v

[
⟨h, ĩ, y, v⟩ /∈ ImEn ∨ En(M(⟨h, ĩ, y, v⟩)) = ⟨h, ĩ, y, v⟩

]
≥ 1− γ−1

3 .

By Markov’s inequality, with probability at least 1− 1/(2γ2) over the choice of h,

Pr
v

[
⟨h, ĩ, y, v⟩ /∈ ImEn ∨ En(M(⟨h, ĩ, y, v⟩)) = ⟨h, ĩ, y, v⟩

]
≥ 1− 2γ2γ

−1
3 . (34)
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Let Sh = {r ∈ Ry : Ar,h = 1} and Th = {h(r)[̃i] : r ∈ Sh}. Notice that |Sh| = |Th| =
∑

r∈Ry
Ar,h

holds. We call a hash function h satisfying inequality (34) and |Th| ≥ (1 − γ−1
2 ) ·Ny a good hash

function. By the union bound, h is good with probability at least 1 − γ−1
2 over the choice of

h ∼ Hℓ(n),ℓ(n)+log2 n.
We fix a good hash function h arbitrarily. Then,

Pr
v∼{0,1}ĩ

[v ∈ Th] = |Th| · 2−ĩ ≥ (1− γ−1
2 ) · 2ny · 2−(ny+2 log γ2+log δ−1γ0γ1) = (2γ0γ1γ

2
2)

−1δ,

where we use the fact that γ2 ≥ 2.
If v ∈ Th, then ⟨h, ĩ, y, v⟩ ∈ ImEn. Therefore, we have

Pr
v

[
En(M(⟨h, ĩ, y, v⟩)) ̸= ⟨h, ĩ, y, v⟩|v ∈ Th

]
= Pr

v

[
⟨h, ĩ, y, v⟩ ∈ ImEn ∧ En(M(⟨h, ĩ, y, v⟩)) ̸= ⟨h, ĩ, y, v⟩|v ∈ Th

]
≤ 2γ2γ

−1
3 ·2γ0γ1γ

2
2δ

−1 = γ−1
2 .

Let S′
h = {r ∈ Sh : M(⟨h, ĩ, y, h(r)[̃i]⟩)) = ⟨h, ĩ, y, h(r)[̃i]⟩} and T ′

h = {h(r)[̃i] : r ∈ S′
h}. Then, we

have |S′
h| = |T ′

h| and |S′
h| ≥ (1− γ−1

2 )|Sh| ≥ (1− γ−1
2 )2Ny ≥ (1− 2γ−1

2 )Ny.
Under the condition that v ∈ T ′

h, CondExt obtains r ∈ S′
h from M at uniformly random over S′

h.
The total variation distance between the uniform distribution over S′

h and the uniform distribution
over Ry is at most 2γ−1

2 . Therefore, under the condition Ih that M finds a valid inverse (r′, h, ĩ) of
⟨h, ĩ, y, v⟩ (i.e., D(2)(r′) = y), the total variation distance between the conditional probability D̃ of
r′ and the uniform distribution over Ry (denoted by URy) is bounded as follows:

L1(D̃, Ry|Ih) ≤ 2γ−1
2 + 1 ·Pr

v
[v /∈ T ′

h|v ∈ {h(r)[̃i] : r ∈ Ry}] ≤ 2γ−1
2 + 2γ−1

2 Ny ·N−1
y = 4γ−1

2 ≤ ε/2.

In this case,

L1(CondExt(y),D(· | y)|Ih) = L1(D
(1)(D̃), D(1)(Ry)|Ih) ≤ L1(D̃, Ry|Ih) ≤ ε/2.

Next, we show that, for every good h, the algorithm M finds a valid inverse (i.e., the condition

Iy is satisfied) at some trial with probability at least 1 − 2−Ω(ℓ(n)) over the choices of v ∼ {0, 1}ĩ.
This implies the claim as

L1(CondExt(y),D(1)(· | y)) ≤ 1 ·Pr
h
[h is not good] + L1(CondExt(y),D(1)(· | y)|h is good, Ih)

+ 1 ·Pr[M finds no valid inverse for all m trials|h is good]

≤ γ−1
2 + ε/2 + 2−Ω(ℓ(n))

≤ ε/8 + ε/2 + ε/8 = 3ε/4,

where we assume that ε/8 ≥ 2−Ω(ℓ(n)); otherwise, we can try all r ∈ {0, 1}ℓ(n) and perfectly simulate
D(1)(· | y) in time 2ℓ(n) ≤ poly(ε−1).

Remember that

Pr
v
[v ∈ Th] ≥ (2γ0γ1γ

2
2)

−1δ and Pr
v

[
En(M(⟨h, ĩ, y, v⟩)) = ⟨h, ĩ, y, v⟩|v ∈ Th

]
≥ 1− γ−1

2 ≥ 2−1.

Therefore,

Pr
v

[
En(M(⟨h, ĩ, y, v⟩)) = ⟨h, ĩ, y, v⟩

]
≥ Pr

v

[
En(M(⟨h, ĩ, y, v⟩)) = ⟨h, ĩ, y, v⟩|v ∈ Th

]
·Pr

v
[v ∈ Th]

≥ (4γ0γ1γ
2
2)

−1 · δ.
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Therefore, M fails to find some inverse with probability at most 1 − (4γ0γ1γ
2
2)

−1 · δ. Thus, the
probability that M finds no inverse in all m trials is at most

(1− (4γ0γ1γ
2
2)

−1 · δ)m ≤ (1− (4γ0γ1γ
2
2)

−1 · δ)4γ0γ1γ2
2δ

−1ℓ(n) ≤ 2−Ω(ℓ(n)),

as desired.

This completes the proof of Lemma 33.

5.2 Consequences of Conditional Extrapolation

We show that conditional extrapolation (Item 4) implies Items 2, 3 and 5 in Theorems 31
and 32. We will use the following proposition, which was observed in [IL90].

Proposition 38. If Conditional Extrapolation (Item 4 in Theorem 31) holds, then there exists no
infinitely-often one-way functions.

Proof. Let f be an arbitrarily polynomial-time computable length-preserving function. Let C =
{Cn}n∈N (resp. D = {Dn}n∈N) be a samplable distribution, where each Cn (resp. each Dn) is a
distribution of f(x) for x ∼ {0, 1}n (resp. (x, f(x)) for x ∼ {0, 1}n).

By the assumption, there exists a probabilistic polynomial-time algorithm CondExt such that
for all n, ε−1, δ−1 ∈ N,

Pr
y∼Cn

[
L1

(
CondExt(y; 1ε

−1
, 1δ

−1
),Dn(· | y)

)
≤ ε

]
≥ 1− δ.

For every y ∈ Support(Cn) = Imfn, the conditional distribution Dn(· | y) is a uniform dis-
tribution over f−1(y). Therefore, for a given y = fn(x) (where x ∼ {0, 1}n), the algorithm
CondExt(y; 12n, 12n) outputs an inverse element with probability at least 1 − (1/(2n) + 1/(2n)) =
1− 1/n.

Lemma 39 (Item 4 ⇒ Items 2 in Theorem 31). If Conditional Extrapolation (Item 4 in Theo-
rem 31) holds, then for every samplable distribution families {Dn}n∈N and {Cn}n∈N, where each

Dn is over {0, 1}n × {0, 1}n, and each Cn is over Support(D(2)
n ), and for every polynomial q, there

exists a polynomial p such that for all large enough n ∈ N,

Pr
y∼Cn,x∼Dn(·|y)

[
pKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

q(n)
.

Proof. Let C = {Cn}n∈N and D = {Dn}n∈N be arbitrary samplable distributions satisfying the
conditions in Lemma 39. Let q be an arbitrary polynomial.

By Conditional Extrapolation, there exists a probabilistic polynomial-time algorithm CondExt
such that for all n ∈ N,

Pr
y∼Cn

[
L1

(
CondExt(y; 18q(n), 18q(n)),Dn(· | y)

)
≤ 1

8q(n)

]
≥ 1− 1

8q(n)
. (35)

We define a distribution family E = {En}n∈N as follows: each En is a distribution of (x, y) for y ∼ Cn
and x ∼ CondExt(y; 18q(n), 18q(n)). Since CondExt is a probabilistic polynomial-time algorithm, the
distribution family E is samplable. Let E∗ = {E∗n}n∈N be a distribution family, where each E∗n is a
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distribution of (x, y) for y ∼ Cn and x ∼ D(· | y). Then, by inequality (35), we have that, for each
n ∈ N,

L1(En, E∗n) ≤
1

8q(n)
+

1

8q(n)
=

1

4q(n)
.

By Conditional Extrapolation and Proposition 38, there is no infinitely-often one-way function.
Thus, by Theorem 13 (Item 1⇒ Item 2) for the samplable distribution E , there exists a polynomial
p such that for all large enough n,

Pr
(x,y)∼En

[
pKp(n)(x | y) ≤ log

1

En(x | y)
+ log p(n)

]
≥ 1− 1

4q(n)
.

Since L1(En, E∗n) ≤ 1/(4q(n)), we have

Pr
y∼Cn,x∼Dn(·|y)

[
2pK

p(n)(x|y)En(x | y) ≤ p(n)
]
≥ Pr

(x,y)∼En

[
2pK

p(n)(x|y)En(x | y) ≤ p(n)
]
− 1

4q(n)

≥ 1− 1

2q(n)
.

For Lemma 39, it suffices to show that

Pr
y∼Cn,x∼Dn(·|y)

[Dn(x | y) ≤ 8q(n) · En(x | y)] ≥ 1− 1

2q(n)
, (36)

because it implies that, by the union bound,

Pr
y∼Cn,x∼Dn(·|y)

[
2pK

p(n)(x|y)Dn(x | y) ≤ 8p(n)q(n)
]
≥ 1− 1

q(n)

and

Pr
y∼Cn,x∼Dn(·|y)

[
pKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log 8p(n)q(n)

]
≥ 1− 1

q(n)
.

We show inequality (36). Notice that En(x | y) = Pr[CondExt(y; 18q(n), 18q(n)) = x]. Therefore,
by inequality (35),

Pr
y∼Cn

[
L1 (En(· | y),Dn(· | y)) ≤

1

8q(n)

]
≥ 1− 1

8q(n)
.

We fix y that satisfies the event above arbitrarily, i.e., L1 (En(· | y),Dn(· | y)) ≤ 1/(8q(n)) holds.
We have

E
x∼En(·|y)

[
Dn(x | y)
En(x | y)

]
≤

∑
x

Dn(x | y) ≤ 1.

Thus, by Markov’s inequality,

Pr
x∼En(·|y)

[Dn(x | y) ≤ 8q(n) · En(x | y)] = Pr
x∼En(·|y)

[
Dn(x | y)
En(x | y)

≤ 8q(n)

]
≥ 1− 1

8q(n)
.

Since L1 (En(· | y),Dn(· | y)) ≤ 1/(8q(n)),

Pr
x∼Dn(·|y)

[Dn(x | y) ≤ 8q(n) · En(x | y)] ≥ Pr
x∼En(·|y)

[Dn(x | y) ≤ 8q(n) · En(x | y)]−
1

8q(n)

≥ 1− 1

4q(n)
.
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By the union bound, we conclude that

Pr
y∼Cn,x∼Dn(·|y)

[Dn(x | y) ≤ 8q(n) · En(x | y)] ≥ 1− 3

8q(n)
≥ 1− 1

2q(n)
,

as desired.

Lemma 40 (Item 4 ⇒ Items 3 in Theorem 31). If Conditional Extrapolation (Item 4 in Theo-
rem 31) holds, then for every computable set L ⊆ {{0, 1}n × {0, 1}n}n, for every samplable distri-
bution families {Dn}n∈N and {Cn}n∈N, where each Dn is over {0, 1}n×{0, 1}n, and each Cn is over

Support(D(2)
n ), and for every polynomial q, there exists a polynomial p such that for all n,

Pr
y∼Cn,x∼Dn(·|y)

[
x ∈ Ly =⇒ pKp(n)(x | y) ≤ log |Ly|+ log p(n)

]
≥ 1− 1

q(n)
.

Proof. Let L ⊆ {{0, 1}n × {0, 1}n}n be an arbitrary computable set. Let C = {Cn}n∈N and D =
{Dn}n∈N be arbitrary samplable distributions satisfying the conditions in Lemma 40. Let q be an
arbitrary polynomial.

By Conditional Extrapolation, there exists a probabilistic polynomial-time algorithm CondExt
such that for all n ∈ N,

Pr
y∼Cn

[
L1

(
CondExt(y; 14q(n), 14q(n)),Dn(· | y)

)
≤ 1

4q(n)

]
≥ 1− 1

4q(n)
. (37)

We define a distribution family E = {En}n∈N as follows: each En is a distribution of (x, y) for y ∼ Cn
and x ∼ CondExt(y; 14q(n), 14q(n)). Since CondExt is a probabilistic polynomial-time algorithm, the
distribution family E is samplable. Let E∗ = {E∗n}n∈N be a distribution family, where each E∗n is a
distribution of (x, y) for y ∼ Cn and x ∼ D(· | y). Then, by inequality (37), we have that, for each
n ∈ N,

L1(En, E∗n) ≤
1

4q(n)
+

1

4q(n)
=

1

2q(n)
.

By Conditional Extrapolation and Proposition 38, there is no infinitely-often one-way function.
Thus, by Theorem 13 (Item 1⇒ Item 4) for the samplable distribution E , there exists a polynomial
p such that for all n,

Pr
(x,y)∼En

[
x ∈ Ly =⇒ pKp(n)(x | y) ≤ log |Ly|+ log p(n)

]
≥ 1− 1

2q(n)
.

Since L1(En, E∗n) ≤ 1/(2q(n)), we conclude that

Pr
y∼Cn,x∼Dn(·|y)

[
x ∈ Ly =⇒ pKp(n)(x | y) ≤ log |Ly|+ log p(n)

]
≥ 1− 1

q(n)
,

as desired.

We can also show Theorem 32 in the same way as Lemma 40, where the only difference is that
we use Item 1 ⇒ Item 6 in Theorem 13 instead of Item 1 ⇒ Item 4.
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5.3 Average-Case Easiness of NP from Conditional Coding and Language Com-
pression

We verify that the independent variants of average-case conditional coding and language com-
pression are sufficient for the average-case easiness of NP.

To derive DistNP ⊆ HeurBPP, we use the following useful lemma.

Lemma 41 ([Imp95, Proposition 3]). If every distributional NP problem has a probabilistic polynomial-
time heuristic algorithm of failure probability at most n−2 over the choice of instances (where n is
an instance size4), then DistNP ⊆ HeurBPP.

First, we show Item 3 ⇒ Item 1 in Theorem 31.

Lemma 42 (Item 3⇒ Item 1 in Theorem 31). Suppose that for every computable set L ⊆ {{0, 1}n×
{0, 1}n}n, for every samplable distribution families {Dn}n∈N and {Cn}n∈N, where each Dn is over

{0, 1}n × {0, 1}n, and each Cn is over Support(D(2)
n ), and for every polynomial q, there exists a

polynomial p such that for all n,

Pr
y∼Cn,x∼Dn(·|y)

[
x ∈ Ly =⇒ pKp(n)(x | y) ≤ log |Ly|+ log p(n)

]
≥ 1− 1

q(n)
.

Then, DistNP ⊆ HeurBPP holds.

Proof. Let (L, {Cn}n∈N) be an arbitrary distributional NP problem such that each Cn is over {0, 1}n.
By Lemma 41, it suffices to construct a probabilistic polynomial-time A such that for every n ∈ N,

Pr
y∼Cn

[
Pr
A

[A(y) = L(y)] ≥ 3/4

]
≥ 1− n−2.

Let VL be the polynomial-time computable verifier for L. Without loss of generality (by
padding), we assume that the length of every yes instance y ∈ L and the length of every wit-
ness x for y ∈ L are the same, i.e., |x| = |y| (with respect to VL). For every y ∈ L, let Ly be a set
of VL-witness x for y.

First, we assume the following claim and construct the algorithm A for (L, {Cn}n∈N).

Claim 43. Under the assumption (i.e., independent average-case language compression), there
exists a polynomial p(n) such that for every n ∈ N,

Pr
y∼Cn

[
y ∈ L =⇒ Pr

x∼Ly

[
pKp(n)(x | y) ≤ log |Ly|+ log p(n)

]
≥ 3/4

]
≥ 1− 1

n2
. (38)

We consider the following algorithm A: On a given instance y ∈ {0, 1}n, the algorithm A
samples x ∼ Usamp(1n, 1p(n), y) repeatedly O(np(n)) times, where Usamp is the universal sampler
in Definition 21, and outputs 1 iff some sample x satisfies that VL(y, x) = 1 (otherwise, A outputs
0). A is trivially a probabilistic polynomial-time algorithm.

To verify the correctness of A. Fix n ∈ N arbitrarily. For the correctness, it suffices to show that
for every y satisfying the event in inequality (38), the probability that A(y) = L(y) is at least 3/4.

4Although the original statement is for errorless and deterministic algorithms and for samplable distributions over
instances whose size varies, it is not hard to verify that the same proof works for HeurBPP and distributions over
instances of fixed size by a simple padding argument.
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Notice that A(y) always output 0 for every y /∈ L since there is no x satisfying that VL(y, x) = 1.
Therefore, we only consider an arbitrary y ∈ L satisfying the event in inequality (38), i.e.,

Pr
x∼Ly

[
pKp(n)(x | y) ≤ log |Ly|+ log p(n)

]
≥ 3/4.

Let Gy ⊆ Ly be a subset of x ∈ Ly satisfying the event above. By Proposition 22, the probability
that some witness x ∈ Ly is sampled from Usamp(1n, 1p(n), y) is at least

Ω

(
1

n

)
·
∑
x∈Ly

1

2pK
p(n)(x|y)

≥ Ω

(
1

n

)
·
∑
x∈Gy

1

2pK
p(n)(x|y)

≥ Ω

(
1

n

)
·
∑
x∈Gy

1

p(n)|Ly|

≥ Ω

(
1

np(n)

)
· |Gy|
|Ly|

≥ Ω

(
1

np(n)

)
· 3
4
.

Since A repeats sampling from Usamp(1n, 1p(n), y) O(np(n)) times, the failure probability that A
fails to find a witness for y is reduced to 1/4.

Thus, the remaining is the proof of Claim 43.

Proof of Claim 43. Consider a polynomial-time computable set L′ := {(x1, y1) : VL(y, x) = 1}.
Note that for any input y ∈ L ∩ {0, 1}n−1, L′

y1 ⊆ {0, 1}n is the set of x1 for x ∈ Ly. Let
C′ = {C′n}n∈N be a samplable distribution such that each C′n is a distribution of y1 for y ∼ Cn−1. Let
D = {Dn}n∈N be a samplable distribution such that each Dn is a distribution of (x, y) determined
by x′, y′ ∼ {0, 1}n−1 as

(x, y) =


(x′1, y′1) if VL(y

′, x′) = 1

(0n, y′1) if x′ = 0n−1 and VL(y
′, x′) = 0

(x′0, y′0) otherwise.

For each n ∈ N, the distribution C′n is over {0, 1}n, the distribution Dn is over {0, 1}n × {0, 1}n,
and

Support(C′n) ⊆ {y1 : y ∈ {0, 1}n−1} ⊆ Support(D(2)
n ).

Therefore, by the assumption (i.e., independent average-case language compression), there exists
a polynomial p such that for all n ∈ N,

Pr
y∼C′

n,x∼Dn(·|y)

[
x ∈ L′

y =⇒ pKp(n)(x | y) ≤ log |L′
y|+ log p(n)

]
≥ 1− 1

8n2
.

Fix n ∈ N arbitrarily. It is not hard to verify that for every y ∈ Support(Cn), the conditional
distribution Dn(· | y1) is statistically equivalent to the uniform distribution over L′

y1 ∪ {0n+1}.
Therefore,

Pr
y∼Cn,x∼L′

y1∪{0n+1}

[
x ∈ L′

y1 =⇒ pKp(n+1)(x | y) ≤ log |L′
y1|+ log p(n+ 1)

]
≥ 1− 1

8(n+ 1)2
.
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Let p′(n) = p(n+ 1). By Markov’s inequality and the fact that |L′
y1| = |Ly|,

Pr
y∼Cn

[
Pr

x∼L′
y1∪{0n+1}

[
x ∈ L′

y1 ∧ pKp′(n)(x | y) > log |Ly|+ log p′(n)
]
≤ 1/8

]
≥ 1− 1

(n+ 1)2
≥ 1− 1

n2
.

Fix an arbitrary y ∈ Support(Cn) that satisfies the event above. If y ∈ L, then it holds that
L′
y1 ̸= ∅ and Prx∼L′

y1∪{0n+1}[x ∈ L′
y1] ≥ 1/2. Therefore, if y ∈ L, then

Pr
x∼Ly

[
pKp′(n)(x | y) > log |Ly|+ log p′(n)

]
= Pr

x∼L′
y1

[
x ∈ L′

y1 ∧ pKp′(n)(x | y) > log |Ly|+ log p′(n)
]

≤ 1/8 · (1/2)−1 = 1/4.

Hence, we conclude that

Pr
y∼Cn

[
y ∈ L =⇒ Pr

x∼Ly

[
pKp′(n)(x | y) ≤ log |Ly|+ log p′(n)

]
≥ 3/4

]
≥ 1− 1

n2
,

as desired.

This completes the proof of Lemma 42.

We also show Item 2 ⇒ Item 1 in Theorem 31 in a similar way.

Lemma 44 (Item 2 ⇒ Item 1 in Theorem 31). Suppose that for every samplable distribution
families {Dn}n∈N and {Cn}n∈N, where each Dn is over {0, 1}n × {0, 1}n, and each Cn is over

Support(D(2)
n ), and for every polynomial q, there exists a polynomial p such that for all large enough

n ∈ N,

Pr
y∼Cn,x∼Dn(·|y)

[
pKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

q(n)
.

Then, DistNP ⊆ HeurBPP holds.

Proof. Let (L, {Cn}n∈N) be an arbitrary distributional NP problem such that each Cn is over {0, 1}n.
Let VL be the polynomial-time computable verifier for L. Without loss of generality (by padding),
we assume that the length of every yes instance y ∈ L and the length of every witness x for y ∈ L
are the same, i.e., |x| = |y| (with respect to VL). For every y ∈ L, let Ly be a set of VL-witness x
for y.

It suffices to show the following claim by the same argument as in the proof of Lemma 42.

Claim 45. Under the assumption (i.e., independent average-case conditional coding), there exists
a polynomial p(n) such that for every n ∈ N,

Pr
y∼Cn

[
y ∈ L =⇒ Pr

x∼Ly

[
pKp(n)(x | y) ≤ log |Ly|+ log p(n)

]
≥ 3/4

]
≥ 1− 1

n2
.

Proof of Claim 45. Let C′ = {C′n}n∈N be a samplable distribution such that each C′n is a distribution
of y1 for y ∼ Cn−1. Let D = {Dn}n∈N be a samplable distribution such that each Dn is a distribution
of (x, y) determined by x′, y′ ∼ {0, 1}n−1 as

(x, y) =


(x′1, y′1) if VL(y

′, x′) = 1

(0n, y′1) if x′ = 0n−1 and VL(y
′, x′) = 0

(x′0, y′0) otherwise.

48



For each n ∈ N, the distribution C′n is over {0, 1}n, the distribution Dn is over {0, 1}n × {0, 1}n,
and

Support(C′n) ⊆ {y1 : y ∈ {0, 1}n−1} ⊆ Support(D(2)
n ).

Therefore, by the assumption (i.e., independent average-case conditional coding), there exists
a polynomial p such that for all n ∈ N,

Pr
y∼C′

n,x∼Dn(·|y)

[
pKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

8n2
.

Fix n ∈ N arbitrarily. For every y ∈ L, let L′
y = {x1 : x ∈ Ly}. It is not hard to verify that

for every y ∈ Support(Cn), the conditional distribution Dn(· | y1) is statistically equivalent to the
uniform distribution over L′

y ∪ {0n+1}. Therefore,

Pr
y∼Cn,x∼L′

y∪{0n+1}

[
pKp(n+1)(x | y) ≤ log |L′

y ∪ {0n+1}|+ log p(n+ 1)
]
≥ 1− 1

8(n+ 1)2
.

Let p′ be a polynomial defined as p′(n) = p(n + 1). By Markov’s inequality and the fact that
|L′

y| = |Ly|,

Pr
y∼Cn

[
Pr

x∼L′
y∪{0n+1}

[
pKp′(n)(x | y) > log(|Ly|+ 1) + log p′(n)

]
≤ 1/8

]
≥ 1− 1

(n+ 1)2
≥ 1− 1

n2
.

Fix an arbitrary y ∈ Support(Cn) that satisfies the event above. If y ∈ L, then it holds that
L′
y ̸= ∅, Prx∼L′

y∪{0n+1}[x ∈ L′
y] ≥ 1/2, and |Ly|+ 1 ≤ 2|Ly|. Therefore, if y ∈ L, then

Pr
x∼Ly

[
pKp′(n)(x | y) > log 2|Ly|+ log p′(n)

]
≤ Pr

x∼Ly

[
pKp′(n)(x | y) > log(|Ly|+ 1) + log p′(n)

]
= Pr

x∼L′
y

[
pKp′(n)(x | y) > log(|Ly|+ 1) + log p′(n)

]
≤ 1/8 · (1/2)−1 = 1/4.

Hence, we conclude that

Pr
y∼Cn

[
y ∈ L =⇒ Pr

x∼Ly

[
pKp′(n)(x | y) ≤ log |Ly|+ log p′(n) + 1

]
≥ 3/4

]
≥ 1− 1

n2
,

as desired.

This completes the proof of Lemma 44.

6 NP vs BPP, Worst-Case Conditional Coding and Language Com-
pression

Theorem 46. The following are equivalent.

1. NP ⊆ BPP.

49



2. (Worst-Case Conditional Coding) For every polynomial-time samplable distribution fam-
ily {Dn}n, where each Dn is over {0, 1}n × {0, 1}n, there exists a polynomial p such that for
all large enough n, and (x, y) ∈ Support(Dn)

pKp(n)(x | y) ≤ log
1

Dn(x | y)
+ log p(n).

3. (Worst-Case Language Compression) For every polynomial-time computable set L ⊆
{{0, 1}n × {0, 1}n}n, there exists a polynomial p such that for all n and all x, y ∈ {0, 1}n,

x ∈ Ly =⇒ pKp(n)(x | y) ≤ log |Ly|+ log p(n).

Moreover, the above holds if we replace pK with rK.

Proof. We show below that Item 1 implies Item 2 (via Lemma 47), that Item 2 implies Item 3 (via
Lemma 51) and that Item 3 implies Item 1 (via Lemma 52).

To see the “moreover” part, first note that we have pKt(x) ≤ rKt(x) for every x ∈ {0, 1}∗ and
t ∈ N. Then it suffices to show that assuming NP ⊆ BPP, there exists a polynomial τ such that
rKτ(t)(x) ≤ pKt(x)+log τ(t). Indeed, if NP ⊆ BPP, then PH ⊆ BPP, which implies EH ⊆ BPE. Also,

it is easy to see that EΣP
3 contains a language that requires NP-oracle circuits of size at least 2Ω(n), for

almost all input lengths n. Therefore, we have BPE ̸⊆ i.o.NSIZE
[
2Ω(n)

]
. By [GKLO22, Proposition

66 (Item 3)], this implies that there is a polynomial τ such that rKτ(t)(x) ≤ pKt(x) + log τ(t), for
every x and t.

6.1 Conditional Coding from Easiness of NP

Lemma 47 (Item 1 ⇒ Item 2 in Theorem 46). If NP ⊆ BPP, then worst-case conditional coding
holds.

We need the following theorem for estimating probabilities of an efficiently samplable distribu-
tion.

Theorem 48 ([Sto85]). For every polynomial-time samplable distribution family {Vn}n, where each
Vn is over {0, 1}poly(n), there exists a polynomial-time deterministic algorithm A with access to a
ΣP
2 -oracle such that for every input z ∈ {0, 1}poly(n),

Vn(z)/1.01 ≤ A(z) ≤ 1.01 · Vn(z).

Lemma 49. For every polynomial-time samplable distribution family {Dn}n, where each Dn is
over {0, 1}n × {0, 1}n, there exists a polynomial-time deterministic algorithm B with access to a
ΣP
2 -oracle such that for input (x, y) ∈ Support(Dn),

Dn(x | y)/2 ≤ B(x, y) ≤ 2 · Dn(x | y).

Proof. Since Dn(x | y) = Dn(x, y)/Dn(y) for every (x, y) ∈ Support(Dn), where Dn(y) refers to the
marginal distribution of Dn over the second half of the input, to obtain the desired approximation
it is enough to estimate probabilities of two efficiently samplable distributions. The result then
follows from Theorem 48.
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We are now ready to prove Lemma 47.

Proof of Lemma 47. Let {Dn}n be a polynomial-time samplable distribution family. Fix any (x, y)
in the support of Dn. Let p be greatest power of two less than Dn(x | y). Note that

Dn(x | y)
2

≤ p < Dn(x | y). (39)

Let
S := {z : Dn(z | y) ≥ p/4}.

Observe that |S| ≤ 4/p ≤ 8/Dn(x | y).
Let m := ⌈log |S|⌉, and let H be a pairwise independent hash family with O(n)-bit seed length

mapping n bits to m+ log n bits (see Theorem 11). By Proposition 12, a random hash function in
the family isolates x from the other elements in S with probability at least 1− 1/n

We now show that

pKp(n)(x | y) ≤ log
1

Dn(x | y)
+ log p(n),

where p is a polynomial (that depends on {Dn}n).
Consider a random hash function H ∈ H, mapping n-bits to m + log n bits. (A description of

m will be hard-coded to the program that reconstructs x. The integer n can be recovered from |y|
or hard-coded as well.) If H is good in the sense that it isolates x from the other elements in S,
which happens with high probability, then we show that we can use v := H(x) and p to reconstruct
x given y. Before arguing this, note that v can be described using

m+ log n = ⌈log |S|⌉+ log n ≤ log
1

Dn(x | y)
+O(log n)

bits, while the value p can be described using log log(1/p) ≤ log nO(1) = O(log n) bits because we
chose p to be a power of two and Dn is polynomial-time samplable. (In total, as explained below,
this leads to a description of length log(1/Dn(x | y)) +O(log n) bits as desired.)

Let B be the polynomial-time algorithm equipped with a ΣP
2 -oracle in Lemma 49 that, given

(a, b) ∈ Support(Dn), estimates Dn(a | b) up to a (multiplicative) factor of 2.

Claim 50. If H isolates x from the other elements in S, then x is the unique string in the support
of Dn(· | y) that satisfies both B(x, y) ≥ p/2 and H(x) = v.

Proof of Claim 50. On the one hand, by the correctness of B (recall Lemma 49) and Equation (39),
we have

B(x, y) ≥ Dn(x | y)
2

>
p

2
.

On the other hand, suppose there exists some x′ in the support of Dn(· | y) such that x′ ̸= x
but B(x′, y) ≥ p/2 and H(x′) = H(x). By the correctness of B, this implies that

Dn(x
′ | y) ≥ B(x′, y)

2
≥ p

4
,

which means x′ ∈ S. However, since H isolates x from the other elements in S, we cannot have
H(x′) = H(x). This completes the proof of Claim 50.
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Now we show how to compute x using the description (v := H(x), p,H,m, y), assuming that H
isolates x within S. We define the following language L:

(i, v, p,H,m, y) ∈ L ⇐⇒ ∃x ∈ Support(Dn(· | y)) s.t. B(x, y) ≥ p/2, H(x) = v and xi = 1.

It is easy to see that L ∈ ΣP
3 . By our assumption that NP ⊆ BPP, we get that PH ⊆ BPP and

consequently L ∈ BPP. Then we can recover the i-th bit of x by checking whether (i, v, p,H,m, y) ∈
L.

The correctness follows easily from Claim 50. On the other hand, since H is random and does
not contribute to the description length, given the discussion above it is easy to see that the desired
pKpoly(x | y) upper bound also holds.

6.2 Conditional Coding implies Language Compression

Lemma 51 (Item 2 ⇒ Item 3 in Theorem 46). Worst-case conditional coding implies worst-case
language compression.

Proof. Consider the distribution family {Dn}n, where Dn is given by the following sampling algo-
rithm:

1. Sample a uniformly random x ∼ {0, 1}n−1 ,

2. Sample a uniformly random y ∼ {0, 1}n−1,

3. Output

{
(x0, y0), if x ∈ Ly

(1n, 1n), otherwise.

Note that for every y ∈ {0, 1}n, Dn(· | y0) is uniformly distributed on {x0 : x ∈ Ly}. By worst-case
conditional coding, there is a polynomial p0 such that for every x ∈ Ly

pKp0(n)(x0 | y0) ≤ log
1

Dn(x0 | y0)
+ log p0(n) = log |Ly|+ log p0(n),

which implies
pKp(n)(x | y) ≤ log |Ly|+ log p0(n)

for some polynomial p.

6.3 Easiness of NP from Language Compression

Lemma 52 (Item 3 ⇒ Item 1 in Theorem 46). If worst-case language compression holds, then
NP ⊆ BPP.

Proof. Without loss of generality (by padding), we show how to solve every language L′ ∈ NP
where a yes instance y ∈ L′ ∩ {0, 1}n admits some witness x of length n (with respect to a fixed
verifier VL′).

Consider the polynomial-time computable set L := {(x, y) : VL′(y, x) = 1}. Fix any input
y ∈ L ∩ {0, 1}n. Note that Ly ⊆ {0, 1}n is the set of VL′-witnesses for y. By worst-case language
compression, there exist a polynomial p such that for every x ∈ Ly,

pKp(n)(x | y) ≤ log |Ly|+ log p(n).
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Then by Proposition 22, for each x ∈ Ly, USamp(1n, 1p(n), y) outputs x with probability at least

1

O(n · p(n) · |Ly|)
.

Hence the probability that USamp(1n, 1p(n), y) outputs some x ∈ Ly is at least

|Ly| ·
1

O(n · p(n) · |Ly|)
≥ 1

O(n · p(n))
.

In other words, USamp(1n, 1p(n), y) outputs a witness of y with probability at least 1/poly(n).
By standard amplification, this yields an efficient randomized algorithm for solving L′ with high
probability.
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A Infinitely-Often Characterization via Extrapolation

In this section, we consider infinitely-often versions of the properties of Kolmogorov complexity
stated in Theorem 13. Instead of saying that the property holds for all n, the infinitely-often version
only requires that it holds for infinitely many n.

Theorem 53. The following are equivalent.

1. One-way functions do not exist.

2. Infinitely-often strong average-case conditional coding holds.

3. Infinitely-often weak average-case conditional coding holds.

4. Infinitely-often strong average-case language compression holds.

5. Infinitely-often weak average-case language compression holds.

6. Infinitely-often strong average-case symmetry information holds.

7. Infinitely-often weak average-case symmetry information holds.
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Proof. The proof is analogous to that of Theorem 13. In fact, it is easy to see that all the proofs
in Section 3 work even in the infinitely-often setting, except for the one in Section 3.1 that shows
strong average-case conditional coding holds assuming infinitely-often secure one-way function do
not exist. In Lemma 56, we show that if (almost-everywhere secure) one-way function do not exist,
then infinitely-often strong average-case conditional coding holds.

We need the following theorem regarding extrapolation.

Theorem 54 (Implicit in [IL90, IL89]). If almost everywhere (resp. infinitely-often) secure one-
way functions do not exist, then for every samplable distribution family {Dn}n∈N, where each Dn

is over {0, 1}n×{0, 1}n, there exists a probabilistic polynomial-time algorithm Ext such that for all
ε−1, δ−1 ∈ N and for infinitely many (resp. all) n,

Pr
y∼D(2)

n

[
L1

(
Ext(y; 1ε

−1
, 1δ

−1
),Dn(· | y)

)
≤ ε

]
≥ 1− δ,

where D(2)
n denotes the marginal distribution of the second element of Dn.

We also need the following variant of the coding theorem for pK.

Theorem 55 ([LOZ22]). Let D be a distribution over {0, 1}n. Suppose D can be sampled using a
randomized program MD that runs in poly(n) time. Then there exists a polynomial p such that for
every x ∈ {0, 1}n,

pKp(n) (x |MD) ≤ log
1

D(x)
+ log p(n).

Lemma 56 (Item 1 ⇒ Item 2 in Theorem 53). If one-way functions do not exist, then infinitely-
often strong average-case conditional coding holds. That is, for every polynomial-time samplable
distribution family {Dn}n, where each Dn is over {0, 1}n × {0, 1}n, and for every polynomial q,
there exists a polynomial p such that for infinitely many n,

Pr
(x,y)∼Dn

[
pKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

q(n)
.

Proof. Let D(2)
n denote the marginal distribution of the second element of Dn.

Since there is no one-way function, by Theorem 54, there exists a polynomial-time randomized
algorithm Ext such that for infinitely many n,

Pr
y∼D(2)

n

[
L1

(
Ext

(
y; 14q(n), 12q(n)

)
,Dn(· | y)

)
≤ 1

4q(n)

]
≥ 1− 1

2q(n)
.

Fix any n for which Ext satisfies the above condition, and let D′
y be the distribution given by

Ext
(
y; 14q(n), 12q(n)

)
. Then we have with probability at least 1− 1/(2q(n)) over y ∼ D(2)

n ,

L1
(
D′

y,Dn(· | y)
)
≤ 1

4q(n)
.

Fix any y such that the above holds, we claim the following.
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Claim 57. We have

Pr
x∼Dn(·|y)

[
D′

y(x) ≥
Dn(x | y)
4q(n)

]
≥ 1− 1

2q(n)

Proof. Since L1
(
D′

y,Dn(· | y)
)
≤ 1/(4q(n)) hods for y, we have

Pr
x∼D(·|y)

[
Dn(x | y)
D′

y(x)
> 4q(n)

]
≤ 1

4q(n)
+ Pr

x∼D′
y

[
Dn(x | y)
D′

y(x)
> 4q(n)

]
. (40)

Also,

E
x∼D′

y

[
Dn(x | y)
D′

y(x)

]
=

∑
x∈Support(D′

y)

D′
y(x) ·

Dn(x | y)
D′

y(x)
=

∑
x∈Support(D′

y)

Dn(x | y) ≤ 1.

Then By Markov’s inequality, we obtain that

Pr
x∼D′

y

[
Dn(x | y)
D′

y(x)
> 4q(n)

]
<

Ex∼D′
y

[
Dn(x|y)
D′

y(x)

]
4q(n)

≤ 1

4q(n)
. (41)

Combining Equation (40) and Equation (41) completes the proof of the claim.

Note thatD′
y is poly(n)-time samplable given y, since Ext runs in polynomial time. By the coding

theorem for pK (Theorem 55), there exists some polynomial p0 such that for every x ∈ {0, 1}n,

pKp0(n)(x | y) ≤ log
1

D′
y(x)

+ log p0(n).

Combining this with Claim 57, we get that with probability at least 1−1/(2q(n)) over x ∼ Dn(· | y),

pKp0(n)(x | y) ≤ log
1

D′
y(x)

+ log p0(n) ≤ log
1

D(x | y)
+ log(4q(n)) + log p0(n).

Therefore, by a union bound, with probability at least 1− 1/q(n) over (x, y) ∼ Dn, we have

pKp(n)(x | y) ≤ log
1

D(x | y)
+ log p(n),

where p is some polynomial.

B Summary of the Dualities Between Complexity Theory and
Kolmogorov Complexity

In this section, we summarize the dualities between complexity theory and the preservation of
key properties of Kolmogorov complexity in the time-bounded setting. For simplicity, we focus on
our results for pKt complexity in the polynomial-time regime.
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⇐⇒ =⇒

NP ⊆ BPP
Worst-Case Conditional Coding

Worst-Case Language Compression
Worst-Case SoI 5

DistNP ⊆ HeurBPP
Independent Average-Case Conditional Coding

Independent Average-Case Language Compression

Independent

Average-Case SoI

̸ ∃ i.o.OWFs

Average-Case Conditional Coding

Average-Case Language Compression

Average-Case SoI

Conditional Coding:

1. (Worst-Case Conditional Coding) There exists a polynomial p such that for all n, and
(x, y) ∈ Support(Dn)

pKp(n)(x | y) ≤ log
1

Dn(x | y)
+ log p(n).

2. (Independent Average-Case Conditional Coding) Let {Dn}n∈N and {Cn}n∈N be sam-
plable distribution families, where each Dn is over {0, 1}n × {0, 1}n, and each Cn is over the
support of the second half of Dn. For every polynomial q, there exists a polynomial p such
that for all n,

Pr
y∼Cn,x∼Dn(·|y)

[
pKp(n)(x | y) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

q(n)
.

3. (Average-Case Conditional Coding) Let {Dn}n∈N be samplable distribution family,
where each Dn is over {0, 1}n × {0, 1}n. For every polynomial q, there exists a polynomial p
such that for all n,

Pr
(x,y)∼Dn

[
pKp(n)(y | x) ≤ log

1

Dn(x | y)
+ log p(n)

]
≥ 1− 1

q(n)
.

Language Compression:

1. (Worst-Case Language Compression) Let L ⊆ {{0, 1}n × {0, 1}n}n∈N be a polynomial-
time computable set. There exists a polynomial p such that for all n, and y ∈ {0, 1}n,

y ∈ Ly =⇒ pKp(n)(x | y) ≤ log |Ly|+ log p(n).

6In fact, in order to establish worst-case SoI it suffices to assume DistNP ⊆ AvgBPP. See [Hir22b, GK22, GKLO22].
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2. (Independent Average-Case Language Compression) Let L ⊆ {{0, 1}n × {0, 1}n}n∈N
be a recursively enumerable set. Let {Dn}n∈N and {Cn}n∈N be samplable distribution families,
where each Dn is over {0, 1}n × {0, 1}n, and each Cn is over the support of the second half of
Dn. For every polynomial q, there exists a polynomial p such that for all n,

Pr
y∼Cn,x∼Dn(·|y)

[
y ∈ Ly =⇒ pKp(n)(x | y) ≤ log |Ly|+ log p(n)

]
≥ 1− 1

q(n)
.

3. (Average-Case Language Compression) Let L ⊆ {{0, 1}n×{0, 1}n}n∈N be a recursively
enumerable set. Let {Dn}n∈N be samplable distribution family, where eachDn is over {0, 1}n×
{0, 1}n. For every polynomial q, there exists a polynomial p such that for all n,

Pr
(x,y)∼Dn

[
x ∈ Ly =⇒ pKp(n)(x | y) ≤ log |Ly|+ log p(n)

]
≥ 1− 1

q(n)
.

Symmetry of Information:

1. (Worst-Case Symmetry of Information) There exists a polynomial p such that for all
t ≥ 2n and for all n and all x, y ∈ {0, 1}n,

pKt(x, y) ≥ pKp(t)(x | y) + pKp(t)(y)− log p(t).

2. (Independent Average-Case Symmetry of Information) Let {Dn}n∈N and {Cn}n∈N be
samplable distribution families, where each Dn is over {0, 1}n × {0, 1}n, and each Cn is over
the support of the second half of Dn. For every polynomial q, there exists a polynomial p
such that for every computable time bound t : N→ N with t(n) ≥ p(n) and for all n,

Pr
y∼Cn,x∼Dn(·|y)

[
pKt(n)(x, y) ≥ pKt(n)(x | y) + pKt(n)(y)− log t(n)

]
≥ 1− 1

q(n)
.

3. (Average-Case Symmetry of Information) Let {Dn}n∈N be samplable distribution fam-
ily, where each Dn is over {0, 1}n×{0, 1}n. For every polynomial q, there exists a polynomial
p such that for every computable time bound t : N→ N with t(n) ≥ p(n) and for all n,

Pr
(x,y)∼Dn

[
pKt(n)(x, y) ≥ pKt(n)(x | y) + pKt(n)(y)− log t(n)

]
≥ 1− 1

q(n)
.
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