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Abstract

The Minimum Circuit Size Problem (MCSP) asks for the size of the smallest boolean circuit
that computes a given truth table. It is a prominent problem in NP that is believed to be
hard, but for which no proof of NP-hardness has been found. A significant number of works
have demonstrated the central role of this problem and its variations in diverse areas such as
cryptography, derandomization, proof complexity, learning theory, and circuit lower bounds.

The NP-hardness of computing the minimum numbers of terms in a DNF formula consistent
with a given truth table was proved by W. Masek [Mas79] in 1979. In this work, we make the
first progress in showing NP-hardness for more expressive classes of circuits, and establish an
analogous result for the MCSP problem for depth-3 circuits of the form OR-AND-MOD5. Our
techniques extend to an NP-hardness result for MOD,,, gates at the bottom layer under inputs
from (Z/mZ)".
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1 Introduction

1.1 The Minimum Circuit Size Problem

In the Minimum Circuit Size Problem (MCSP), we are given the truth table of a Boolean
function as input together with a positive integer s, and the question is whether a circuit of size
at most s exists for the function represented by this truth table. It is easy to see that MCSP is in
NP: simply guess a circuit C' of size at most s, and check that C' computes each entry of the truth
table correctly.

When solving MCSP deterministically, though, it is unclear how to avoid exhaustive search
over the space of circuits of size at most s. A natural question arises: is MCSP NP-complete?
The answer to this problem remains far from clear. MCSP is one of the very few natural problems
in NP for which we have no strong evidence for or against NP-completeness. This is despite the
fact that MCSP has long been recognized as a fundamental problem since the earliest research on
complexity theory in the Soviet Union in the 1950s [Tra84]. Indeed, it is reported in [AKRR11]
that Levin delayed the publication of his NP-completeness results for Satisfiability because he was
hoping to show similar results for MCSP.

The difficulty of showing MCSP to be NP-hard was explicitly addressed in the work of Ka-
banets and Cai [KC00]. Roughly speaking, suppose we have a polynomial-time reduction f from
Satisfiability to MCSP that is “natural”, in the sense that the output length and output parameter
depend only on the input length, and the input length is polynomially bounded in the output
length — this is a property that all standard reductions have. Kabanets and Cai argued that by
applying f to a trivial family of unsatisfiable formulas, we can show that the class E of problems
solvable in linear exponential time requires superpolynomial circuit size. Given that the question
of proving super-polynomial circuit lower bounds for explicit functions is a longstanding open ques-
tion in complexity theory, this provides a significant obstacle to showing NP-hardness of MCSP via
natural reductions. Note, though, that the Kabanets-Cai result does not give any evidence against
NP-hardness of MCSP — it only suggests that NP-hardness might be hard to establish. There has
been a long sequence of works [AHK15, MW15, HP15, HW16, AH17] building on this result to give
further evidence of the difficulty of showing NP-hardness of MCSP.

One way around the Kabanets-Cai obstacle is to study the complexity of MCSP for circuit
classes for which strong circuit lower bounds are already known. Given a class € of circuits, let
¢-MCSP be the problem where, given a truth table and a number s, we wish to know if there is a
¢-circuit of size s computing the given truth table.

Studying €-MCSP for restricted classes € of circuits is independently motivated by algorith-
mic applications in circuit minimization, proof complexity [Krall, Chapter 30], learning theory
(cf. [PV88, AHM 08, Fel09, CIKK16]), and cryptography and circuit lower bounds [RR97] (see also
[BR17]). Tt was shown already in 1979 by Masek [Mas79] that DNF-MCSP is NP-hard.! There have
been different proofs of this result [Cz099, AHMT08], and extensions to hardness of approximation
[AHM ™08, Fel09, KS08]. Nevertheless, almost four decades after Masek’s result, and despite the sig-
nificant attention that the MCSP problem has received (see also [ABK 06, AD14, AGM15, OS17]),
NP-hardness of €-MCSP was not known for any natural class € of circuits more expressive than
DNFs.

Going beyond DNFs, for constant-depth threshold circuits and constant-depth Boolean circuits
of large enough depth, there is cryptographic evidence that €-MCSP is not in polynomial time (see

'For a self-contained presentation of a proof of NP-hardness of DNF-MCSP, see [AHM™08].



e.g. [AHM™08]). But for classes extending DNFs that are not known to compute pseudorandom
functions, no evidence of any sort for hardness was known. To quote Allender et al. [AHM™08§],
“Thus an important open question is to resolve the NP-hardness of both learnability results as well
as function minimization results above for classes that are stronger than DNF.”

1.2 Our Result

The main contribution in this work is the first NP-hardness result for €-MCSP for a class € of
depth-3 circuits, namely the class of (unbounded fan-in) OR o AND o MOD,,, circuits, where m is
any integer.

Theorem 1 (Main Result). For every m > 2, given the truth table of a function f: 7 — {0,1},
where L, = Z/mZ = {0,1,...,m — 1}, it is NP-hard under polynomial-time deterministic many-
one reductions to determine the size of the smallest OR o AND o MOD,,, circuit C' that computes f,
where circuit size is measured as the top fan-in of C.?

A few comments are in order. First, we elaborate on our computational model and complexity
measure. We work with circuits which have an OR gate at the top, AND gates at the middle level,
and MOD,,, gates at the bottom level. We refer to such circuits as OR-AND-MOD circuits, or
equivalently, DNF-MOD circuits. Such circuits operate in a natural way on inputs from Z7,. We
allow arbitrary constants from Z,, to feed in to gates at the bottom layer, and insist that inputs
to the middle AND layer are Boolean. In other words, a MOD,, gate outputs 1 if and only if its
corresponding linear equation over Z,, is satisfied, and the computations beyond the first layer
are all Boolean. For m = 2, this is precisely the traditional model of DNF of Parities (cf. [CS16],
[Juk06], [Juk12, Section 11.9], [ABG*14]).

The complexity measure we use is the top fan-in of the circuit, i.e., fan-in to the top OR gate. The
main reason we work with this measure is naturalness and convenience. As argued in [CS16], top
fan-in is the preferred measure for OR-AND-MODy circuits because: (i) it measures the number
of affine subspaces required to cover the 1s of the function, and thus has a nice combinatorial
meaning; (77) the number of MOD3 gates feeding in to any middle layer AND gate can be assumed
to be at most n without loss of generality, by using basic linear algebra, and thus the top fan-in
approximates the total number of gates to within a factor of n; and (74i) the size of a DNF is often
measured by the number of terms in it, and analogously it makes sense to measure the size of a
DNF of Parities by the top fan-in of the circuit.

Our results are not however critically dependent on the complexity measure we use, and admit
different extensions. Indeed, we demonstrate the robustness of our techniques by adapting them to
show a hardness result for computing the number of gates in OR-AND-MOD,, formulas, where p is
prime (Appendix B). Moreover, we mention that our approach can be modified to show a hardness
of approximation result (Appendix C).

The strategy for the proof of Theorem 1 is explained in Section 1.3. In short, we reduce from
a variant of the well-known set cover problem [Kar72]. The reduction consists of two stages, and
it is initially presented as a randomized reduction. As one ingredient in the derandomization of

2 As stated, Theorem 1 refers to the complexity of the optimization problem of finding the smallest circuit size for
a given truth table, rather than the MCSP decision problem as defined. Note however that these two computational
problems are easily seen to be polynomial-time equivalent to each other.



our approach, we show the existence of near-optimal (seed length O(logn + log1/e)) pseudoran-
dom generators against AND o MOD,,, circuits over Z}, of arbitrary size. This result might be of
independent interest, and we refer to the discussion in Section 1.3 for more details.

Before further exploring the ideas of our proof, we give some perspective on the result and
the possibility of extending it to more expressive circuit classes. Using the Kabanets-Cai [KC00]
connection between NP-hardness and circuit lower bounds mentioned before, it is not hard to show
that our reduction yields a 22" lower bound on the size of DNF-MODy circuits for a function
in E = DTIME[29()]. Such strong exponential lower bounds for explicit functions have long been
known for the model we consider (see e.g. [Gro98]). On the other hand, extending the NP-hardness
result even to slightly different classes such as depth-3 AC? circuits might be a challenge. It is still
unknown if E requires depth-3 AC? circuits of size 22" and using the Kabanets-Cai connection,
natural approaches to an NP-hardness result would imply such a lower bound.

What might be more feasible though is showing NP-hardness of €-MCSP for other related classes
¢ of circuits, and under weaker kinds of reductions, such as quasi-polynomial time reductions or
non-uniform reductions. For instance, it might be possible to extend our techniques to classes such
as THR o AND o MOD and depth-3 AC? circuits of small bottom fan-in. In these cases, exponential
lower bounds of the form 22(™) have been obtained (cf. [Gro98], [PSZ00)).

More broadly, we believe that showing NP-hardness of MCSP for more expressive classes € is an
important direction in better understanding circuit classes from the perspective of meta-complexity,
i.e., complexity questions about computational problems involving circuits and algorithms. There
are various criteria for measuring our understanding of a circuit class, for example, (i) Can we design
non-trivial satisfiability algorithms for circuits in the class? (i) Can we unconditionally construct
pseudo-random generators secure against circuits in the class? (4i) Can we learn the class using
membership queries under the uniform distribution? (iv) Can we prove lower bounds against proof
systems whose lines are encoded by circuits in the class? We suggest that the NP-hardness of
¢-MCSP is another strong indication that we understand a circuit class € well.

1.3 Overview of the Proof of Theorem 1

The rest of the paper is dedicated to the proof of Theorem 1, which will be completed in Section
4. Here we provide a high-level description of the reduction. For simplicity, our exposition mostly
focus on the case m = 2. After that, we explain the main difficulties in extending the result to
general m, and how these are addressed in our proof.

As mentioned above, Masek [Mas79] was the first to establish the NP-hardness of DNF mini-
mization, and Theorem 1 can be interpreted as an extension of Masek’s result to the more expressive
DNF-MOD circuits. The structure of our argument follows however a two-step reduction introduced
by Gimpel (cf. Allender et al. [AHMT08]), brought to our attention thanks to an alternative proof
of Masek’s result from [AHM™08]. More precisely, their work presents a new proof of the first stage
of Gimpel’s reduction, and provides a self-contained exposition of the entire argument.

Our NP-hardness proof for DNF-MOD circuits heavily builds on ideas of Gimpel and [AHM 08|,
but the extension to depth-3 requires new ideas and makes the argument much more involved. Let
(DNF o XOR)-MCSP be the computational problem described in Theorem 1 when m = 2, and let
(DNF o XOR)-MCSP* be its natural generalization to partial boolean functions. In other words, an
input to (DNF o XOR)-MCSP* encodes the truth table of a function f: {0,1}" — {0, 1, *}, and we
are interested in the size of the minimum (DNFoXOR)-circuit that agrees with f on f~1({0,1}). Let
r € N be a large enough constant. Our proof reduces from the NP-complete problem r-Bounded Set



Cover (cf. [GJ79]): Given a set system S C () that covers [n], determine the minimum number

¢ of sets S1,...,S¢ € S such that Ule S; = [n]. (We refer to Section 2.2 for a precise formulation
of these computational problems.)

In a bit more detail, we present a randomized (2-approximate) reduction from r-Bounded
Set Cover to (DNF o XOR)-MCSP*, and a randomized reduction from (DNF o XOR)-MCSP* to
(DNF o XOR)-MCSP. These reductions are then efficiently derandomized using an appropriate
pseudorandom generator. As opposed to previous works on the NP-hardness of DNF minimiza-
tion, our proof crucially explores the fact that r-Bounded Set Cover is NP-hard even to approximate
(by roughly a Inr-factor), a result from [Fei98, Tre01] (see Theorem 5, Section 2.2).

We discuss each reduction in more detail now. Common to both of them is a convenient char-
acterization of the sets C~1(1) C {0, 1}" of inputs that can be accepted by non-trivial AND o XOR
circuits C'. If m is prime, it is not hard to show that this is precisely the class of affine subspaces
of {0,1}"™. Consequently, for a non-trivial partial function f: {0,1}"™ — {0, 1, *}, its corresponding
DNFxor(f) complexity is exactly the minimum number ¢ of affine subspaces Ai,..., A; C {0,1}"
such that f~1(1) C€ U'_; 4; and UL_, A4; € f~'({1,%}) (see Section 2.1). The analysis of our
polynomial-time reductions, which will not be covered in this section, rely on this characterization
in fundamental ways.

Step 1. A randomized reduction from r-Bounded Set Cover to (DNF o XOR)-MCSP* (Section 3.1).

Given a set-system S C (<”T), we define a partial boolean function f: {0,1}' — {0, 1, *}, where
t = O(rlogn). This function is probabilistically constructed as follows. First, we associate to each
i € [n] a random vector v' € {0,1}*. For S € S, let v° = {v* | i € S}. Then, we let f be 1 on each
input v?, 0 on inputs that are not in the linear span of v° for every S € S, and * elsewhere.

Using this construction, we are able to show by a delicate analysis that if ¢ is sufficiently large,
the following holds with high probability: if S admits a cover of size K, then DNFxor(f) < K;
moreover, if DNFxor(f) < K, then § admits a cover of size < 2K. (We discuss the intuition for this
claim in Section 3.1.) This construction and the hardness of approximation result for r-Bounded
Set Cover imply that (DNF o XOR)-MCSP* is NP-hard under many-one randomized reductions.

Step 2. A randomized reduction from (DNF o XOR)-MCSP* to (DNF o XOR)-MCSP (Section 3.2).

Let f: {0,1}' — {0,1,*} be an instance of (DNF o XOR)-MCSP*. We probabilistically construct
from f arelated total function g: {0,1}*x{0,1}* — {0,1}, where r = t+2 and s = O(r+t). In more
detail, we encode for each x € {0, 1} its corresponding value f(z) € {0, 1,*} as a boolean function
gz on a hypercube {0,1}*. For an input x such that f(x) € {0,1}, we let g(20°) = ¢,(0°) = f(x),
where g,(-) = 0 elsewhere. On the other hand, if f(z) = %, we pick a random linear subspace
L, C {0,1}* of dimension r, and we encode f(z) as the characteristic function of L,.

Again, a careful argument allows us to establish the following connection between the partial
function f and the total function ¢g: with high probability over the choice of the random linear sub-
spaces (Lg)pe p-1(x)» DNFxor(g) = DNFxor(f)+]f " (%)|. (We discuss the intuition for this claim in
Section 3.2.) Consequently, it follows from this and the previous reduction that (DNFoXOR)-MCSP
is NP-hard under many-one randomized reductions.

Step 3. Efficient derandomization of the reductions (Section 4.1).

It is possible to prove that the first reduction is always correct provided that the collection



of random vectors v’ is mice with respect to the set-system S (Definition 12). Similarly, we can
prove that the second reduction is correct whenever the collection (Ly),e p-1(4) of linear subspaces is
scattered (Definition 18). It turns out that both conditions can be checked in polynomial time. This
implies that the previously discussed reductions are in fact zero-error reductions. Consequently, if
we can efficiently construct nice vectors and scattered families of linear subspaces, the reductions
can be made deterministic.

In order to achieve this, we use in both cases a subtle derandomization argument that relies on
(polynomial-time computable) e-biased distributions [NN93a]. Recall that such distributions can
fool arbitrary linear tests. By a more careful analysis, it is also known that they fool AND o XOR
circuits. We do not describe an AND o XOR circuit to check if a collection of vectors is nice, or to
check if a collection of linear subspaces is scattered. Still, we are able to show that if € < 27° then
some scattered collection of linear subspaces is encoded by a string in the support of an e-biased
distribution, and that the same holds with respect to a nice collection of vectors if ¢ < 27%. In par-
ticular, trying all possible seeds of an e-biased generator produces the combinatorial and algebraic
objects that are sufficient to derandomize our reductions. (We refer to Section 4.1 for more details.)

Overall, combining the (derandomized) reductions and using the hardness of approximation
result for 7-Bounded Set Cover mentioned above, it follows that (DNF o XOR)-MCSP is NP-hard
under many-one deterministic polynomial-time reductions.

The argument for arbitrary m > 2. Let (DNF o MOD,,,)-MCSP and (DNF o MOD,,,)-MCSP* be
the corresponding computational problems with respect to an arbitrary m > 2. (Recall that the
input boolean functions in this case are defined over Z.) As we explain next, additional difficulties
are present for general m.

An immediate challenge is that it is no longer clear if the analogue characterization (via affine
subspaces) of the class of subsets of Z accepted by non-trivial AND o MOD,,, circuits holds, and
this is crucially exploited when m = 2. The main issue is that, while in the latter case the result can
be established by elementary techniques using that Z3 is a vector space over Zs, for an arbitrary
m the underlying structure might be just a module. Without a basis, the result is less clear.

Nevertheless, it is possible to prove that the analogue result for AND o MOD,,, circuits hold
(cf. Lemma 2). The alternative and more general argument relies on a property of double orthogonal
complements in Z (Appendix A), and we refer to Section 2.1 for more details. Armed with this
characterization, the reductions discussed before can be adapted to arbitrary m. Finding the right
generalization of each definition requires some work, but after that, the randomized reductions for
m = 2 and arbitrary m > 2 can be presented in a unified and transparent way.

In order to conclude the proof of Theorem 1, we need to derandomize the new reductions. For
m = 2, the argument was based on an efficient construction of e-biased distributions supported
over {0,1}", and the fact that such distributions are also able to fool AND o XOR circuits over
{0,1}". Without going into further details, we mention that for arbitrary m it is sufficient to
use a pseudorandom generator that fools AND o MOD,,, circuits over Z;,. However, a generator
with near-optimal dependency on n and ¢ is needed if we are hoping to obtain a polynomial-time
reduction. We were not able to find such a result in the literature.?

3Existing generators seem to generate bits only, or are restricted to prime modulus, or can handle larger classes of
functions but are not efficient enough for our purposes. We refer to [GKM15] and the references therein for related
results.



We show in Section 4.2 that, for every m > 2, there is an efficient pseudorandom generator
G : {0,1}OUogntlogl/e) _ 7n that e-fools ANDoMOD,, circuits of arbitrary size. Our construction
relies on the efficient e-biased generators for Z from [AMNOS], together with a proof of the
following result: If G is an e-biased generator against Z!,, then G (me)-fools AND o MOD,,, circuits.
Again, we cannot rely on a adaptation of the similar claim for m = 2, which requires a basis. Our
proof proceeds instead by a careful analysis of certain exponential sums encoding the behaviour of
the circuit, and that can be used to connect the distinguishing probability to the guarantees offered

by the e-biased generator. We refer to Section 4.2 for more details.

2 Preliminaries

Notation. For an integer n > 1, let [n] denote {1,...,n}.
Some notions from group theory. Let m > 2 be a constant. Let Z,, := Z/mZ denote the
integers modulo m, where all operations on elements in Z,, = (+,{0,1,...,m — 1}) are taken mod

m. For any integer ¢t > 1, we regard Z! as an additive group with component-wise addition. A
non-empty subset H C Z! is called a linear subspace if H is a subgroup, that is, 0 € H and
x+y € H for any ,y € H. A subset A C Z! is called an affine subspace if A is a coset, that is,
there exist a € Z!, and a linear subspace H C Z! such that A= H +a:={h+a|he€ H}.

We stress that Z!, gives rise to a module and not to a vector space when m is a composite
number; however, we borrow some standard notation; for example, for a scalar ¢ € Z,, and a
“vector” v € Zt | let cv denote the scalar multiplication. Let (x,y) := 22:1 xyi (€ Zp,) for any
z,y € Zt, and t € N.

2.1 Circuit Size Measure and Its Characterization

For any integer m > 2, an OR o AND o MOD,,, (= DNF o MOD,,, ) circuit is a DNF formula
whose terms are AND o MOD,,, circuits. Here, the MOD,,, gate is a Boolean function such that
MOD,,,(z) = 1 if and only if > ; ; mod m = 0 on input = € {0,1}". We allow multiple input
wires and access to constant input bits in the circuit. Note that this allows for more general
equations to be computed by a bottom-layer modular gate.

The size of a circuit is usually defined as the number of gates. However, for us it is important to
define the size of a DNF o MOD,,, circuit as the top fan-in of the circuit, or equivalently, its number
of AND o MOD,,, terms. (Note that the same size measure was used in [CS16] in the case m = 2.)
For a Boolean function f: {0,1} — {0,1}, define DNFyop,, (f) as the minimum number of terms
of a DNF o MOD,,, circuit computing f, i.e., the fan-in of its OR gate.

In order to present our results in a unified way for any integer m > 2, we extend the input
{0,1}* of a DNF o MOD,,, circuit to the larder domain Z!, in a natural way: that is, we regard the
bottom MOD,,, gate as a function MOD,,,: Z; — {0,1} that outputs 1 if and only if the sum of
its input elements is congruent to 0 mod m. Again, more general equations can be obtained using
multiple input wires and access to constants in Z,,.

An AND o MOD,,, circuit C' accepts the set X C Zt if for any v € Z! , x € X if and only if
C outputs 1 on x. There is a nice combinatorial characterization of the set of inputs that such
circuits can accept.

Lemma 2 (Characterization of the power of AND o MOD,,, circuits). Let X C Z! be a nonempty
set. Then, an AND o MOD,,, circuit accepts X if and only if X is an affine subspace of Zt,.



This is a standard fact when m is a prime power (cf. [CS16] for m = 2), in which case Z!, is
a vector space. However, the same characterization holds when m > 2 is an arbitrary composite
number, as established below. The proof relies on the following fact about orthogonal complements
in the more general context of modules.

Fact 3 (Double orthogonal complement). Let H C Zt, be a linear subspace, and let H+ := {x €
Zt, | St wyi =0 for anyy € H } be its orthogonal complement. Then, (H+)* = H.

For completeness, we include a proof of this result in Appendix A. Assuming Fact 3, we proceed
to a proof of Lemma, 2.

Proof of Lemma 2. Let x := (z1,...,x¢) € Z, denote the input to the circuit.

Suppose that an AND o MOD,,, circuit /\i{:1 C}. accepts X, where each Cf is a MOD,, gate.
Each MOD,,, gate C} in the circuit defines a linear equation over (z1,...,x;). That is, there are
coefficients a}e, e 7a§€ € Zp, and an element by € Z,, such that 25:1 a};xi = b, if and only if C},
accepts the input z. Therefore, the circuit A le C}, accepts the intersection of such linear equations
over Zy,. Specifically, for a matrix A := (al) ke[K]iclt] and a vector b := (bg)re(x], the circuit accepts
all inputs = € Z!, such that Az = b; namely, X = {x € Z!, | Az = b}. Since X is nonempty, we
can take some element zg € X. Now, we can rewrite X as

X={2cZl, |Alx—20)=0}={yeZ, | Ay=0} + w0,

which is an affine subspace of Z!,.

For the converse direction, we use the notion of orthogonal complement. Suppose that X C Zt,
is an affine subspace. By definition, we can decompose X into a linear subspace H C Z!, and a
shift a € Z!, so that X = H + a.

We first claim that H can be accepted by some AND o MOD,,, circuit. To prove this, it is
sufficient to show the existence of some matrix A € ZE*! such that H = {z € Z!, | Az = 0}.
Since H is a linear subspace, by Fact 3, for any x € Z! |

t
x € H if and only if Z:z:, -y; = 0 for every y € H*.
i=1

. . |H+|xt
That is, we can define a matrix A € Z,

as (Yi)yert jep- (In other words, for each y € H*,
we add a MOD,,, gate that checks if 2221 x; - y; = 0, where each coefficient y; is simulated using
multiple input wires.)

To accept X, we just need to shift H by a. Indeed, for a vector b := Aa, we have X = H +a =
{x €Z!, | Az =b}; thus we can construct an AND o MOD,,, circuit accepting X by simulating the

condition Az = b. O

As a consequence of Lemma 2, for a function f: Z!, — {0,1}, the minimum size of a DNF o
MOD,,, circuit computing f equals the minimum number S of affine subspaces Ti,...,Ts C Zt,
such that Ule T; = f~1(1).



2.2 Computational Problems

The starting point of our NP-hardness results is the set cover problem on instances where each
set has size at most r.

Definition 4 (r-Bounded Set Cover Problem). For an integer r € N, the r-Bounded Set Cover
Problem is defined as follows:

e Input. An integer n € N and a collection S C 2" of nonempty subsets of the universe [n]
such that |S| < r for each S € S, and |Jges S = [n].

e Output. The minimum number £ of subsets S1,...,Sp € S such that Ule S; = [n].
For this problem, a tight inapproximability result based on NP-hardness is known.

Theorem 5 (Feige [Fei98], Trevisan [Tre0l]). Let r be a sufficiently large constant. It is NP-
hard (under polynomial-time many-one reductions) to approximate the solution of the r-bounded
set cover problem within a factor of lnr — O(Inlnr). That is, for any language L € NP, there
exists a polynomial-time machine that, on input x, outputs a threshold 0 and an instance S of the
r-bounded set cover problem such that if x € L then S has a cover of size at most 0, and if x & L
then S does not have a cover of size at most 6 - (Inr — O(Inlnr)).

We stress that the inapprozimability result is essential for us; we will present a reduction from
a 2-factor approximation of the r-bounded set cover problem to the minimum DNF o MOD,,, circuit
minimization problem.

Definition 6 (Minimum Circuit Size Problem for DNF o MOD,,,). For an integer m > 2, the
Minimum Circuit Size Problem for DNF o MOD,,,, abbreviated as (DNF o MOD,,,)-MCSP, is defined
as follows:

e Input. A Boolean function f: Zt, — {0,1}, represented as a truth table of length mt.
e Output. DNFvop,, (f)-

While our final theorem confirms that (DNFoMOD,,,)-MCSP is NP-hard, we will first prove NP-
hardness of the circuit minimization problem on instances of a partial function f : Z!, — {0,1, x}.
That is, we regard any input z € f~!(x) as “undefined.” For a partial function f: Z! — {0,1,x},
we say that a circuit C computes f if C(x) = f(z) for any = € f~1({0,1}). We extend the definition
of DNFmop,, (f) to the size of the minimum DNF o MOD,,, circuit computing the partial function
f: 7zt — {0,1,%}. The following problem is concerned with the circuit size of partial functions,
and we distinguish it from the problem above by adding a superscript .

Definition 7 (Minimum Circuit Size Problem for Partial Functions). For an integer m > 2, the
Minimum Circuit Size Problem™ for DNFoMOD,,,, abbreviated as (DNFoMOD,,,)-MCSP*, is defined
as follows:

e Input. A Boolean function f: Zt, — {0,1,x}, represented as a string of length mt over the
alphabet {0, 1, *}.

e Output. DNFmop,, (f)-

10



3 Hardness of (DNFoMOD,,)-MCSP Under Randomized Reductions
3.1 Reduction from r-Bounded Set Cover to (DNF o MOD,,,)-MCSP*

This subsection is devoted to proving the following theorem.

Theorem 8. (DNF o MOD,,,)-MCSP* is NP-hard under (zero-error) randomized polynomial-time
many-one reductions.

Let r be a large enough constant so that the approximation factor of Inr—O(InIn ) in Theorem 5
is larger than 2. We present a reduction from a 2-factor approximation of the r-bounded set cover
problem to (DNF o MOD,,,)-MCSP*.

Let us prepare some notation. Let & be an instance of the r-bounded set cover problem over
the universe [n] (in particular, (JgcgS = [n]). Let t € N be a parameter chosen later. For each
i € [n], pick v* €g Z! independently and uniformly at random. For any S C [n], let v° denote
{vi]i€ S} Let span(v®) := {3 ,cq¢i v | ¢; € Zy, for any i € S} denote the linear span of v°.
(Note that span(v®) is a linear subspace of Z{, whenever S # @.) In our reduction, an element
i € [n] is mapped to a random point v® of Z!, , and a set S € S corresponds to a linear subspace
span(v®).

For any set cover instance S, we define a function f : Z! — {0,1,%} as

(if z = v® for some i € [n])

1
f@): =40 (ifz ¢ Uges span(v¥))
«  (otherwise)

for any x € Z!,. The truth table of f is the output of our reduction.

It is not hard to see that DNFmop,, (f) is at most the minimum set cover size for S (Claim 9
below). Of course, the difficulty is in proving a circuit lower bound for f (Claim 10 below).

The idea is as follows: For simplicity of the exposition, let us focus on the case of m = 2,
and moreover let us first consider the case of a DNF o MODsy circuit C for f that accepts a union
of linear subspaces (instead of affine subspaces). More precisely, let C~!(1) be a union of linear
subspaces {T; }re(x]. Then T} is a subset of C1(1) C F71{1, %}) = Uges span(v®); furthermore,
each span(v?) is a random linear subspace of small dimension r; therefore, it is possible to show
that, with high probability, the set {i € [n] | v* € T}, } of points covered by T}, is contained in some
legal set S' € S of the set cover instance; hence the circuit size K is at least the minimum set cover
size.

In the case that a circuit C' accepts the union of affine subspaces, it is no longer true that, for
any affine subspace T such that T C (Jg.gspan(v?), the set {i € [n] | v! € T'} is covered by some
legal set S € S; indeed, for any two points v’ and v/, the set {v’, v/} (: v' @ {0,v' @ vj}) is an
affine subspace of Z%, whereas {7, j} is not necessarily legal in the set cover instance S. Nonetheless,
we can still prove that, with high probability, the set {i € [n] | v' € T } is covered by two legal sets
51,89 € S. As a consequence, the minimum number of affine subspaces needed to cover v!,..., v"
gives us a 2-factor approximation of the minimum set cover size for S. By Theorem 5, it follows
that (DNF o XOR)-MCSP* is NP-hard under randomized reductions. Details follow.

Claim 9 (Easy part). Suppose that S has a set cover of size K. Then DNFyop,, (f) < K.
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Proof. Let C C S be a set cover of size K. For each S € C, by Lemma 2, there exists an ANDoMOD,,,
circuit Cg such that Cg accepts span(v¥). Define a DNF o MOD,,, circuit C' := Vgee Cs. It is easy
to see that C' computes f. g

Conversely, we prove the following:

Claim 10 (Hard part). For some parameter t such that m* = (nm)°"), the following holds with
probability at least 1 (over the choice of (V") iem)):
Let K := DNFwmop,,(f). Then S has a set cover of size 2K.

The two claims above imply that 2DNFmop,, (f) is a 2-factor approximation for the set cover
problem: indeed, let s be the minimum set cover size for S; then we have s < 2DNFyop,, (f) < 2s.
It thus remains to prove Claim 10.

To prove Claim 10, let us clarify the desired condition that random objects (vi)ie[n] should
satisfy. For any I C [n], define the affine span of v! as

affine—span(vl) = {Zcivi | ¢i € Zyy, for i € I and Zci = 1}.
el el

The important property of the affine span is that, if an affine subspace A covers the set v! of points
in I C [n], then its affine span must also be covered by A.

Claim 11 (Property of the affine span). For any affine subspace A of Zt, and any I C [n], if
vl C A then affine-span(v!) C A.

Proof. Let us write A = H +a for some linear space H C Z!, and vector a € Z!,. Since v* € vl C A
for each i € I, there exists some vector h* € H such that v* = h* 4+ a. Take any coefficients (¢;)er
such that ¢; € Z,, and ) ;.; c; = 1. Then,

chi = Zci(hi +a) = Zcihi +a € H+a.
iel iel iel

O

By Lemma 2, the circuit size of f equals the minimum number of affine subspaces Ay, ..., Ax C
f1({1,%}) such that Ufil A; O f71(1). Intuitively, we would like to require that, if the set
ol (Q f_l(l)) of points is covered by some affine subspace A C f~1({1, %}), then there exist two
legal sets S1, S92 of the set cover instance S such that I C S; U S,. In fact, one of these sets can be
taken as a singleton:

Definition 12. We say that (v');cp,) is nice (with respect to S) if, for any I C [n],

affine-span(v!) C U span(v®) = I C S;U{is} (1)

for some S; € S and ir € [n].

We will prove that (v');ep,) is nice with probability at least 3. and that for any nice (V") iefn)»
the minimum size of DNF o MOD,,, is a 2-factor approximation of the minimum set cover size. We
prove the latter first:

12



Claim 13. Let (v');e[n be nice, and K := DNFyop,, (f). Then S has a set cover of size 2K.

Proof. Let C = \/f:1 C) be a DNF o MOD,,, circuit computing f, where each C; € AND o MOD,,
is nontrivial. By Lemma 2, C; !(1) is an affine subspace of Z¢,. For each C, we will choose 2 sets
from S so that the union of all these sets cover the universe [n].

Fix any Cy and let Ij, := {i € [n] | Cx(v*) = 1} be the set of all points covered by C.
Since Ck_l(l) is an affine subspace of Z{, and v’ C Ck_l(l), we have affine-span(vik) C C; (1)
by Claim 11. Since the circuit C' computes f, Cp '(1) € C~1(1) C f~1({1,%}) = Usgeg span(v®).
Thus we have affine-span(v’t) C | Jgcg span(v®), which means that the hypothesis of niceness (1) is
satisfied; hence there exist some subset Sk; € S and some element iy, € [n] such that I, C Siy U{i}.
Take any set Spo € S such that iy, € Sk (such a set Syp must exist because we assumed (Jgcg S =
[n]) Then I, C S U Sko.

Now we claim that | Ji—; Sg1 U Sko = [1] (and hence the set cover instance S has a cover of size
2K). Indeed, for any i € [n], we have f(v’) = 1 and hence C(v') = 1, which means that there exists
some subcircuit Cy such that C(v') = 1. Thus i € I C Sk1 U Ske for some k € [K]. g

It remains to show that a random choice of (v;);[,) is nice with high probability:

Claim 14. For each i € [n], pick v' €gr Z!, uniformly at random and independently. If t >
r+ ((r +2)logn +log |S| 4 1)/ logm, then (v');cp is nice with probability at least .

To prove Claim 14, we will use a union bound over all relevant subsets I C [n]; however, the
definition of niceness (1) appears to suggest that we need to take a union bound over exponentially
many subsets I. The next claim shows that this is in fact not the case.

Claim 15 (Characterization of niceness). (v*);cy) is not nice (with respect to S) if and only if
there exists some subset I C [n] such that all the following conditions hold:

1. I <r+2
2. 1 Z SU{i} for any S € S and i € [i], and
3. affine-span(v’) C (Jgegspan(v?).
In particular, there are at most n" ™2 subsets I C [n] over which we need to take a union bound.

Proof. By the definition of niceness, (vi)ie[n] is not nice if and only if there exists some subset
I C [n] such that affine-span(v’) C |Jgegspan(v®) whereas I ¢ SU {i} for any S € S and i € [i.
Therefore, it is clear that the three conditions imply that (v’)ie[n] is not nice; we prove below the
converse direction (the “only if” part of Claim 15).

A crucial observation is that, for any subset I C [n] of size at least r 4 2, the second condition
always holds: Indeed, recall that S is an instance of the r-bounded set cover instance; that is,
|S| <r for any S € S. Hence, for any S € S and i € [n], we have |S U {i}| <7+ 1; thus I cannot
be a subset of S U {i} simply because |I| > r + 2.

Now suppose that there exists some subset I C [n] satisfying the second and third conditions,
but not the first one, that is, [I| > r + 2. Take any subset I’ C [ such that |I'| = r 4+ 2. We
claim that I’ satisfies all three conditions: The first condition (|I'| < r + 2) is obvious. The second
condition holds because of the observation above. To see the third condition, by assumption, we
have affine-span(v?) C |Jgegspan(v®); hence, we also have affine-span(v!’) C affine-span(v!) C

USesspan(vS). O
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Now let us proceed to a proof of Claim 14.

Proof of Claim 14. We will bound the probability that a random (vi)ie[n} is not nice, by using the
union bound over all the subsets I C [n] such that the first and second conditions in Claim 15 hold.
To this end, fix any subset I C [n] such that [I| <r+2and I € SU{i} for any S € S and i € [n]
(in particular, I is not empty). We would like to bound the probability that the affine subspace of
vl is a subset of (Jgeg span(v®).

Take an arbitrary (e.g. the smallest) element ig € I. Define coefficients (¢;)ier as follows:
¢i:=1€Zpy forany i € I\ iy and ¢;, := (2 — |I|) mod m € Z,,. By this definition, we have
>ics i = 1; hence, .., c;v’ € affine-span(v’). Therefore,

< Pr [Z civ' € U span(vS)]

el SesS

< ZPr Zcivi € span(vS)] .

Ses el

Pr [affine—span(ful) C U span(v®)
vl v Ses

By the assumption on I, we have I € S U {ip} for any S € S; that is, there exists some index
js € I\ {io} \ S. Note that ¢;; =1 because jg € I \ {ip}. Therefore, the last probability is

ZPr [Z cv't € span(vs)] = ZPr V'S e span(v¥) — Z vt

ses iel Ses ien\{js}

- Z Pr |vis = Zdivi — Z civ’ for some (d;)ies

Ses i i€S i€\{js}
S IDIETEED SUEEED DIt
SES (ds)ics i€s iel\{js}

<|S]-m" - mt,

where the last inequality holds because the random vector v7s does not appear in the right sum-
mations.

Finally, by taking the union bound over all I such that [I| <r+2 (and I Z SU{i} forany S € S
and i € [n]), the probability that (v');c|, is not nice is bounded from above by n™*2.|S|-m"~* < 3.
O

Given these claims above, it is immediate to complete the whole proof.

Proof of Claim 10. We may assume without loss of generality that |S| < n” since S is an instance
of the r-bounded set cover problem. We set ¢t € N to be the smallest integer such that ¢t >
r+ ((r + 2)logn 4 log |S| 4+ 1)/ logm; then ¢t = O(rlog(nm)/logm). (Here the O notation hides
only a universal constant.) Combining Claims 13 and 14, we immediately obtain Claim 10. O
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Proof of Theorem 8. The encoding of the function f: Z!, — {0,1,*} is of size O(m?) = (nm)°"),
which is a polynomial in the input size poly(n, |S]).

Moreover, it is possible to make the reduction zero-error: Indeed, the condition of the niceness
can be checked in polynomial time, by using the characterization of Claim 15.

Finally, recall that the r-bounded set cover problem is NP-hard to approximate within a fac-
tor of 2 by Theorem 5 for a sufficiently large constant r € N. Hence, NP-hardness of (DNF o
MOD,,,)-MCSP* follows from Claims 9 and 10. O

3.2 Reduction from (DNF o MOD,,)-MCSP* to (DNF o MOD,,)-MCSP

Next, we present a reduction for the minimum circuit size problem for partial functions to that
for total functions:

Theorem 16. There is a (zero-error) randomized polynomial-time many-one reduction from (DNFo
MOD,,)-MCSP* to (DNF o MOD,,,)-MCSP.

Let f: Zt, — {0,1,%} be an instance of (DNF o MOD,,,)-MCSP*. Let r :=t+2 and s := [(2r +
2t)logm+2] = [4(t+1)logm+2]. We encode each value f(z) € {0,1, %} of the partial function f
as a function on a “hypercube” Z$,: namely, we construct a new total function g : Z! x 75, — {0,1}
such that f(x) corresponds to (g(x,y))yezs,. Specifically, if f(x) # *, then f(x) is encoded as a
hypercube whose origin 0° is assigned f(z) and other points are assigned 0; if f(z) = *, then we
pick a random linear subspace L, C Z? of dimension r and we encode f(x) as the characteristic
function of L.

Formally, for each z € f~!(x), we pick v.,...,v" €r Z¢ uniformly and independently at
random, and define a random linear subspace L, := span(v},...,v7). Then the output g : Z! x
Z:, — {0, 1} of our reduction is defined as

f(z) (i f(z) €{0,1} and y = 0°)
g(z,y):=q1 (if f(x) =% and y € L,)
0 (otherwise)

for any (z,y) € Zt, x Z3,.

The idea is as follows: Let us imagine how a minimum DNF o MOD,,, circuit C' computing g
looks like. We need to cover g~1(1) by as few affine subspaces as possible. Note that g~*(1) consists
of two parts: {(z,0%)} for each z € f~%(1), and {x} x L, for each z € f~!(*). In order to cover the
latter one, it is likely that we need to use the affine subspace {x} x L, itself for each = € f~!(x);
indeed, since each L, is a random linear subspace, under our constraints with high probability there
is no affine subspace which simultaneously covers (a large fraction of) two random affine subspaces
{2} x Ly and {2’} x L, for  # 2’ € f~!(*) (Claim 21 below). Therefore, the minimum circuit C
should contain a subcircuit which accepts {x} x L, for each x € f~!(x). Now it remains to cover
{(z,0°%)} for each z € f~1(1), but here we can optionally cover {(x,0%)} for each x € f~!(x) (which
has been already covered by {z} x L;). This is exactly the same situation as (DNFoMOD,,,)-MCSP*;
thus with high probability we have DNFyop,, (9) = DNFmop,, (f) + |f~1(x)|. Details follow.

Claim 17. DNFyop,,(9) < DNFyop,. (f) + |f 71 (x)].

4 0° denotes the zero of Z$, for any s € N.
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Proof. Suppose that a DNF o MOD,,, circuit C = \/kK:1 Cj, computes f. For each 2* € f~1(x), take
an AND o MOD,,, formula C,+ such that C.}(1) = {2*} x L.« (by Lemma 2). Define C’(z,y) :=
Vit (Cu@) Ay = 0) A+ Alys = 0)VVguepo1(s) Cor (2,y). It is easy to see that C'(z,y) = g(z,y
for any (x,y) € Zt, x Z3,. O

In order to prove the other direction, let us clarify the desired condition for random linear
spaces. We require that (L;),c f-1(») is pairwise “disjoint” and that each L, is nondegenerated.

Definition 18. We say that (Ly)zep-1(x) is scattered if |Ly| = m" and Ly N Ly = {0°} for any
distinct x,z' € f~1(x).

It is easy to prove that the collection of random linear spaces satisfies the condition above.
Claim 19. (Ly)gef-1(x) 8 scattered with probability at least %, provided that s > (2r+2t) logm+2.
Proof. We first bound the probability that (Lz),.c f-1(») 1s not pairwise disjoint.

Pr[ L, N Ly # {0°} for some distinct z,2" € f~'(x) ]
< Y PrilenLy #{0°}

z#x € f~1(*)

< Z Pr Z Civy, = Z divy, for some nonzero (¢;)icpy], (di)icpy]
z#x' € f~1(%) i=1 i=1

< m2t . m2r .9~ < i’

where, in the last line, we used the fact that the probability that >°_; c;vl = Y7, d;v?, is at most
27¢ for nonzero (i.e. ¢; # 0,d; # 0 for some 4,5 € [r]) coefficients (¢;);e[,, (di)ie[r}-5
Next, we bound the probability that |L,| < m". Indeed,

Pr[|Ly| <m’ for some z € f~'(x) |
< Z Pr Z civl, = 0° for some nonzero (ci)ielr
zef~1(x) i=1

1
<mt-m"-27% < -,

W
—

Overall, the probability that (L,),c f-1(x) 1s not scattered is less than i + i = ]

5
Note that the condition of being scattered can be checked in polynomial time. Indeed, for each
T € ffl(*), one can enumerate all the elements of L., which are at most polynomially many in
the input size mO®. Thus, our zero-error randomized reduction picks random linear subspaces
(Lz)gef—1(x) until we obtain a scattered collection of linear subspaces.
In the rest of the proof, we can thus assume that (L) p-1(«) is scattered. The next claim gives
the reverse inequality of Claim 17.

Claim 20. DNFyop,,(9) > DNFwvop,, (f) + |f~1(*)] if (La)pef-1(s) 8 scattered.

®Note that any equation axz = b (mod m) with a # 0 is satisfied with probability < 1/2 over a random choice of z.
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Let C = \/,If:1 Ck be a minimum DNF o MOD,, circuit computing g. (In particular, K =
DNFmop,, (9) < DNFmop,, (f)+|f71(*)| < m!™L) For each z € f~1(x), we first extract a subcircuit
Cy(e) that covers (a large fraction of) the random linear subspace L,. Let [(z) € [K] be one of the
indices such that |C’lzml)(1) N ({z} x Lg)| is maximized. That is, Cj,) covers the largest fraction

of the affine subspace {z} X Lz; in particular, since ¢k C. ' (1) D {z} x L, there are at least

|Ls|/K (=m"/K >m""! > 2) points in the set Cl?;)(l)ﬂ({:c} X Ly). Intuitively, the subcircuits
{Ciylzef ~1(x) } are supposed to cover random linear subspaces, and the rest of the subcircuits
computes f.

To make the intuition formal, we will prove the following two claims. The first asserts that,
under our constraints, no affine subspace can cover a large fraction of two distinct random linear

subspaces.
Claim 21. I: f~1(x) — [K] is injective.

The second claim asserts that, if an affine subspace Clz;,)(l) covers a large fraction of {2’} x Ly,
then it cannot cover a point (x,0°) such that f(z) = 1.

Claim 22. Cy(2,0%) =0 for any x € f~1(1) and 2’ € f~'(x).
Assuming these two claims, it is easy to prove Claim 20.

Proof of Claim 20. For each k € [K], define an AND o MOD,,, circuit C}, as C}(z) := Ci(z,0%) on
input z € Zt,. Define a DNF o MOD,,, circuit C’ := Ve x)\ (1) f(z)=x} Ck- By Claim 21, the
number of subcircuits in ¢’ is K — |f~1(x)].

We claim that C’ computes f. Indeed, for any = € f~!(1), we have C(x,0%) = g(z,0°) =
f(xz) = 1; hence, there is some k € [K] such that Ci(z,0°) = 1, which implies that C}(z) = 1
by the definition of C}. Claim 22 implies k ¢ {l(z') | f(2') = x}; thus C'(z) = 1. On the other
hand, for any x € f~1(0), we have C(z,0°%) = g(z,0°) = f(z) = 0; in particular, for any k € [K],
Ci(2,0%) = 0. Thus C}(z) = 0 for any k € [K], which implies C'(z) = 0. O

It remains to prove Claims 21 and 22. We prove the latter fist.

Proof of Claim 22. Assume, by way of a contradiction, that Cl(a;/)(x, 0%) = 1 for some x € f~1(1)
and 2’ € f~1(x). By the definition of (2'), there are at least 2 distinct points (2’,a) and (z',b)
in C’lz;,)(l) N ({2'} x Ly ). Since C’lz;,)(l) is an affine subspace, we have (2/,a) — (2/,b) + (x,0%) =
(x,a—b) € Clz;,)(l) (as in the proof of Claim 11). It follows that C(xz,a—0b) = 1. Since C' computes
g, we also have g(x,a — b) = 1, which contradicts the fact that a — b # 0° and the definition of g.

U

Proof of Claim 21. Assume that (1) = I[(z2) =: k for distinct inputs z1,22 € f~'(x). Take
any 2 distinct points (z1,a) and (z1,b) from C; '(1) N ({z1} x Ly,) and any point (z2,c) from
CY(1) N ({w2} x Ly,). Since Cp'(1) is an affine subspace, we have (z1,a) — (z1,b) + (z2,c) =
(z2,a —b+c) € C '(1). We also have (v2,a — b+ ¢) € {2} X Ly, since O} ' (1) N ({a2} x Z8,) C
g ' (1) N ({2} x Z8,) = {x2} X Ly,. Therefore, a — b+ c € L,,. Since ¢ € L,, and this is a linear
subspace, it follows that a — b € L,,. On the other hand, by the definition of a and b, we have
0° # a — b € L,,. However, this is a contradiction because 0° # a — b € Ly, N Ly, = {0°}. O
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Proof of Theorem 16. By Claims 17 and 20, we obtain DNFmop,, (9) = DNFmop,, (f) + |71 ()]
for a scattered collection (Lz)zep-1(+). Since s = O(tlogm), the truth table of g is of length
mits = mOtlogm) which is a polynomial in the input length for every constant m > 2. Finally,
since it is possible to check whether (Ly;),c f-1(x) 1s scattered in polynomial time, the reduction is
ZE€ro-€erTor. g

On our proof strategy and the restriction to functions over boolean inputs (m > 2).
The linear-algebraic and probabilistic techniques employed here naturally suggest to view a set of
inputs for the input instance f as a subset of the algebraic structure Z}', (a vector space or module,
depending on m). In order to establish a similar NP-hardness result with respect to functions on
the hypercube and AND-OR-MOD,, circuits, one is tempted to encode elements from the structure
Z7, as binary strings, and to consider a bijection ¢: Z7, <+ I" C {0, 1}* between vectors and binary
strings. However, a binary encoding allows a bottom-layer modular gate to access individual bits
of this encoding, and as a consequence, this gate might accept a set A C {0,1}* that does not
correspond under ¢ to the set of solutions of a modular equation over Z,,. When this is the case,
our argument no longer works.

Another natural approach would be to restrict the input function to boolean inputs, and to
directly view such inputs as elements in {0,1}" C Z . Here certain technical difficulties are
transferred to our probabilistic analysis involving affine subspaces of Z7} , and it is not immediately
clear to us how to modify the argument in this case.

For these reasons, when m > 2 our techniques do not seem to be directly applicable to functions
defined over boolean inputs only, and a more complicated argument might be necessary. Note
however that this does not exclude the existence of different and potentially simpler reductions
among these and other intermediary problems.

4 Derandomization and Pseudorandom Generators for ANDoMOD,,

In this section, we present a unified way of efficiently derandomizing the zero-error reductions
of Section 3. The crucial idea is that certain subconditions of being nice or scattered can be checked
by AND o MOD,,, circuits over Z,; hence, a pseudorandom generator for AND o MOD,, circuits can
be used to derandomize the reductions.

In order to achieve this, we show that there exists a quick pseudorandom generator with loga-
rithmic seed length that fools any AND o MOD,,, circuit (regardless of its size), a result that might
be of independent interest.

Theorem 23. For everye = e(n) > 0 and each m > 2, there exists a quick pseudorandom generator
G ={Gy: [I'y] = Z' }ren that e-fools any ANDoMOD,,, circuit over Z,, where I'y, = poly(n,1/e, m)
18 a positive integer.

Here we say that, for € > 0 and an integer m > 2, a function G,, : [I',] — Z7}, €-fools AND o MOD,,,
circuits if [E e, [C(Gn(7))] — Evepzn [C(v)]] < € for every AND o MOD,, circuit C; such a
function G, is called an e-pseudorandom generator for AND o MOD,,, circuits. We say that a family
{G) }nen of pseudorandom generators is quick if G, can be computed in poly(T',) time. (Recall
that [I',] denotes the set {1,...,T',}, which means that the seed-length of G, is logarithmic in n,
m, and 1/e when its input elements are represented as binary strings.)
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4.1 Derandomizing the Reductions

We defer a proof of Theorem 23 to the next subsection, and present its applications first: The
pseudorandom generator implies polynomial-time derandomizations of the reductions presented in
Section 3.

Theorem 24 (Restatement of Theorem 1). (DNF o MOD,,,)-MCSP is NP-hard under polynomial-
time many-one reductions.

Our basic strategy is as follows: Each reduction of Section 3 employs random variables that
take value on ZF | for different choices of k. To derandomize the reductions, we simply replace
these random variables by the output of the pseudorandom generator of Theorem 23; then we try
all possible I'), seeds of G,,, and check whether the generated random variables satisfy the desired
condition (which can be done in polynomial time). Below we give details for each reduction, starting
with the second.

Derandomizing the second reduction. We start with the reduction from (DNFoMOD,,,)-MCSP*
to (DNF o MOD,,,)-MCSP. The reduction required a scattered collection of linear subspaces, which
is provided by the probabilistic argument of Claim 19. Here we present a deterministic construction
of such a collection.

Theorem 25. For any integer m > 2, there exists a deterministic algorithm that, on inputs t
and r, outputs a scattered collection of r-dimensional linear subspaces (Lp)peim) for H = mt.
Specifically,

1. Ly, is a linear subspace of 73, for s := [(2r + 2t) logm + 2],
2. |Ly| =m", and

3. Ly N Ly = {0%} for any distinct h,h' € [H].

The running time of the algorithm is mC(r+t)logm)
In the proof of Theorem 16, we picked random vectors vl,... vl €g Z5, and defined L, :=
span(vl,...,v") for each x € f~1(x) C Z!,. We take a similar approach, but instead of generating

vectors uniformly at random, we use the output of the pseudorandom generator as the source of
randomness. Specifically, let v € [[';sg] be a seed of the pseudorandom generator of G,sp; define
vectors (vp, ..., v} )nem) = Grsu(7) € (Zr$)H; then, define Ly, := span(v},...,v}) for each h € [H].
We show that the probabilistic argument of Claim 19 still works even if the randomness is replaced
in this way:

Claim 26. Let G,z be the pseudorandom generator of Theorem 23 with error parameter e = 275,
Pick a seed v €g [U'rsp] uniformly at random, and define a collection (Lp)ne(m) of linear subspaces
as above. Then, (Lh)he[H] 1s scattered with nonzero probability.

Proof. Note that union bounds hold for any distribution; hence, by using the union bounds as in
Claim 19, the probability that (Lp)xe(m) is not pairwise disjoint is

Pr [ Ly N Ly # {0°} for some distinct h, h' € [H] |

S VRD DR R SRTES oAk @

h#W €[H] (¢i),(ds)
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where the second sum is taken over all nonzero coefficient vectors (¢;);c|,) and (d;);e[,) with entries

¢, d;i € L, If the random vectors (v})p; were uniformly distributed, the probability in (2) could be

bounded by 2% as in Claim 19; Here the probability is taken over a random seed v € [I';sp] of the

pseudorandom generator G,sp. The condition that 22:1 civﬁl = Z:Zl div}L, can be checked by some

AND o MOD,,, circuit that takes (”;1) h,i as input; thus the circuit is e-fooled by the pseudorandom

generator; as a consequence, the probability (2) is strictly less than m?* - m?" - (275 4+ ¢) < %
Similarly,

Pr[|Ly| <m" for some h € [H] |
< Z Z-Pr Zciva:OS]
i=1

he[H] (ci)
<mb-m"- (2746 < %

Overall, the probability that (Lp)ue(g] is not scattered is strictly less than % + % =1. O

Proof of Theorem 25. By Claim 26, there exists some seed v € [[';s] such that the output G5z (7)
defines a scattered collection (Lh)he[ ) of linear subspaces. By exhaustively searching all the seeds,
one can enumerate all the outputs of G4z in time poly(T,sz) = poly(rsH, 2% m). Moreover, one
can check whether G,spg(y) defines a scattered collection for each v € [I';sg] in time poly(H,m?®).
Overall, the running time of our construction is poly(m?®) = mO((r+t)logm) 0

The randomized reduction of Theorem 16 can be now derandomized, using the deterministic
construction of Theorem 25 for r :=¢ + 2.

Corollary 27. There is a polynomial-time (mPt°8™) time on input length O(m')) many-one
reduction from (DNF o MOD,,,)-MCSP* to (DNF o MOD,,,)-MCSP.

Derandomizing the first reduction. We now consider the reduction from the r-bounded set
cover problem to (DNF o MOD,,,)-MCSP*. Let [n] be the universe, and S C (@) be an input to the
set cover problem. Derandomizing the reduction amounts to a deterministic construction of a nice
collection (vi)ie[n} of vectors. We generate the random vectors using the pseudorandom generator
for AND o MOD,,, circuits, and show that the probabilistic argument of Claim 14 still works.

Claim 28 (Revised Claim 14). Let Gy, be the pseudorandom generator of Theorem 23 with error
parameter € < m~'. Pick a seed v €r [[tn] uniformly at random. Define (v!,... v") = G () €
(ZL)". Ift > 7+ ((r+2)logn +log|S| +1)/logm, then (v');cjn is nice with nonzero probability.

Proof. By using union bounds as in Claim 14, it is sufficient to prove

nt2.|S|-m" - Pr ij:Zdivi— Z cv'| <1 (3)
i€S i€\{js}

for coefficients (¢;)icr, (d;)ics and jg € I'\ S, where the probability is taken over a random seed ~.
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The condition vJ5 = Y ics d;vt — Zz’el\{js} ¢;v* can be checked by an AND o MOD,,, circuit that
takes (v!,...,v") € ZI" as input. By Theorem 23, we get

Pr |v/s = Zdivi — Z civi <mt+e
€S i€N\{js}

Consequently, due to our choice of ¢ and using € < m™!, the left-hand side of (3) is strictly less
than
n 2 |S|-m" - 2mTt <1,

which completes the proof. ]

In particular, there exists some seed v € [[y,] such that (v',...,v") = Gy, (7) is nice. The
number of seeds is at most I'y,, = poly(tn, 1/e,m) = poly(n,m!) = (nm)°), which is a polynomial
in the input length; hence, in polynomial time, one can try all possible seeds and find a nice
collection (vi)ie[n] of vectors. Thus the reduction of Theorem 8 can be derandomized:

Corollary 29. (DNF o MOD,,,)-MCSP* is NP-hard under polynomial-time many-one reductions.

Proof of Theorem 24. Immediate from Corollaries 29 and 27. g

4.2 Near-Optimal Pseudorandom Generators for AND o MOD,,,

This subsection contains a proof of Theorem 23. We assume basic familiarity with concepts
from analysis of boolean functions [O’D14]. For simplicity, we first focus on the case of m = 2,
which admits a simpler proof.

Proof for m = 2. An e-biased generator, introduced by Naor and Naor [NN93b], is a pseudorandom
generator for XOR functions. That is, we say that a function G: {0,1}* — {0,1}" is an e-biased

generator if | E e 10,137 [Xs(2)] = Ese ng0,135 [x5(G(5))]| < e forany S C [n], where x5(7) := ;g 7i-
While this definition only requires the generator to fool XOR functions, it can be shown that any
Boolean function with small ¢; Fourier norm can be fooled by e-biased generators.

Lemma 30 (see e.g., [DETT09, Lemma 2.5]). Every function f: {0,1}" — {0,1} can be eﬂfﬂl
fooled by any e-biased generator. Here, ||f||; := ngn] |£(9)].

o~

Proof Sketch. Use the Fourier expansion f(z) =) SCln] f(S)xs(x), and apply the triangle inequal-
ity. B O

Moreover, it is known that any AND o XOR circuit f has ﬂfﬂl =1

Lemma 31 (see e.g., [0’D14, Proposition 3.12]). ﬂfﬂl =1 for any Boolean function f: {0,1}" —
{0,1} computable by a nontrivial AND o XOR circuit.

Proof Sketch. Let H +a C {0,1}" be the (nonempty) affine subspace accepted by f. Take a basis
of H'. Write a characteristic function of f using the basis, and expand it to obtain a Fourier
expansion of f. O
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Combining these two lemmas, any e-biased generator fools AND o XOR circuits. Moreover, Naor
and Naor [NN93b] gave an explicit construction of an e-biased generator of seed length O(logn +
log(1/€)), from which Theorem 23 follows when m = 2.

In the proof sketched above, we exploited the fact that {0,1}" = Z% is a vector space: We took
a basis of a linear subspace in the proof of Lemma 31. In order to generalize the result to the case
of m > 2, we need a more direct proof which does not rely on a basis.

Proof for any m > 2. Azar, Motwani and Naor [AMN98] generalized the notion of e-biased
generator on {0,1}" to Z7 for any integer m > 2, and gave an explicit construction. We review
the generalized notion and their result below.

Definition 32 ([AMNO98]). For a probability distribution D over Z}, and a vector a € Z,, biasp(a)
is defined as follows: for g := ged(ay, ..., an,m),

biasp (a) i= - Pr [(a, ) = kg -

iasp(a) := — max r [{a,z) = kg] — —]|.
P g 0<k<m/g |z~D P

We say that a distribution D is e-biased if biasp(a) < € for every a € Z},. We say that a function
G: [I] — Z, is an e-biased generator if the distribution G(vy) for a random seed v €gr [I'] is
e-biased.

Theorem 33 ([AMNO98, Theorem 6.1]). For m(n) > 2 and € = €(n) > 0, there exists a quick
e-biased generator G = {Gy, : [I'y] = Z, }nen for some T'y, = poly(n,1/e,m).

We use the same pseudorandom generator G as in Theorem 33. In what follows, we will
show that any e-biased generator me-fools AND o MOD,,, circuits, which completes the proof of
Theorem 23.

Define e,,: Zy, — C* as e (k) := exp(2ny/—1 - k/m) for k € Zy,.

n

., we have

Lemma 34. For any distribution D on Z7, and any nonzero vector a € Z

E [em ((a,x>)]‘ < m - biasp(a).

z~D

Proof. The proof follows the same approach of [AMN98, Lemma 4.4]. Let g := ged(ay, ..., an, m).

Elen(@a=| X enlia) Py llaa) =k
0<k<m/g
_ — kg -5
| X enth) (P llaa) =i~ £)
0<k<m/g
g
< . = _Z
< ¥ lenlko)l: | Py fos) = kol - 2|
0<k<m/g
m . .
< —-1-g- biasp(a) = m - biasp(a),
where the first equality follows from the fact that (a,x) is a multiple of g for any = € Z, and in
the second equality we used that Zogk<m/g em(kg) =0 for g < m, which is true if a # 0". O
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As a consequence of the previous lemma, we can prove that any affine function can be “fooled”:

n
m’

n

n ., and any scalar

Lemma 35. For any e-biased probability distribution D on Z
beZy,

any vector a € Z

B, fen ((aca) 4 9] = B, fen (a2} + 9} < me
z~D IERZ%

Proof. When a = 0", both expectations are constant, and hence the lemma follows. Otherwise, we

have E,¢c,zn [em ((a,z))] = 0, since this expression can be written as a product of expectations,

and one of them evaluates to zero. Using Lemma 34, we obtain

E lem ((a,2))] = E [em ((a,2))]

x~D TERLTY,

E lem ((a,2) +0)] = E [em(<a7w>+b)]’=lem(b)|‘

x~D TERLTY,

=1

B len ((a.2))])

< mbiasp(a) < me.

0

Theorem 36. For any e-biased probability distribution D on Z, and any function f : Z7', — {0,1}
computable by some AND o MOD,,, circuit,

EU@)- E_[f@) <me
Proof. Suppose that an AND o MOD,,, circuit computing f has K MOD,, gates, and, for each
k € [K], let gi: Z' — Zp, denote the affine function that corresponds to the kth MOD,, gate.
That is, gx(z) = (ax, z) + by for some vector ay € Z7, and some scalar by € Z,,; moreover, for any
input z € Z}},, f(x) =1 if and only if gi(z) = 0 for all k£ € [K].
We employ the following construction. Let p(z) be the polynomial over C defined as follows.

1
p()=— J] (= em(@) (4)
a€Zm \{0}
m—1
1zm—1 1 ;
Tl T m ®
=0

where the second equality holds because the roots of the polynomial 2™ —1 are { e, (@) | & € Zyy, }.
Useful properties of this polynomial are that, by (4), we have p(e,,(«)) = 0 for any « € Z,, \ {0},
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and that p(en,(0)) = p(1) = 1 because of (5). Using the polynomial, we can write f as follows:

f@) = N lowlx) = 0]

acZk ke[K]
Now, by using Lemma 35, we obtain
E - E
E (@)~ E_[f@)
1
S K Elem > argr(@) || - xegznm em | Y argr(x)
acZk ke[K] ke[K]
< me,
where in the last inequality we used the fact that ;. ) argr(2) is an affine function. O
Proof of Theorem 23. The result is immediate from Theorems 33 and 36. O
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A Proof of Fact 3 — Double Orthogonal Complement in (Z/mZ)"

In this section we present the proof of Fact 3, which for convenience is reformulated as Theorem
37 stated below. Our presentation follows the proof outlined in [God].

Recall the following concepts. We consider the Abelian group G := (Z/mZ)" equipped with
component-wise addition modulo m, and let (x,y) := Zie[n] z;y; mod m, where z,y € G. For a

subgroup V of G, define V+ := {x € G | (z,y) = 0 for all y € V }, which is again a subgroup of G.
Theorem 37 (folklore). VXL =V for any subgroup V of G = (Z/mZ)".

It is easy to see V' C V1L indeed, for any = € V, we have (x,y) = 0 for each y € V* by the
definition of V1; hence € VL. Therefore, it is sufficient to show that the size of V11 is equal
to that of V. To this end, we prove the following claim.

Claim 38. |V*| = |G|/|V| for any subgroup V of G.

Note that, applying this claim twice, we obtain |[V+1| = |G|/|V| = |G|/(|G|/|V]) = |V|, which
completes the proof of Theorem 37. Claim 38 will be proved by combining the three claims below.

Let H be any finite Abelian group. A character of the group H is a homomorphism x: H — C*
Let H denote the dual group of H, that is, the group of all characters of H. (See e.g. [0’D14,
Section 8.5] for more details.) It is known that the order of a group H and the order of its dual
group H are the same.

Claim 39 ([0°D14, Corollary of Proposition 8.55 and Exercise 8.35]). |H| = |H| for any finite
Abelian group H.

For any subgroup V' of G, define V* :={ x € G | x(v) =1 for every v € V' }.
Claim 40. (7/1\/ > V* for any subgroup V of G.

Proof. We define an isomorphism ¢: 5/7/ — V*. Given x € CT/T/, we define p(x): G — C* by
o(x)(x) := x(x + V) for x € G. We claim that ¢(x) is indeed in V*: First, p(x): G — C* is a
homomorphism since p(x)(z +y) =x(z+y+V)=x(z+V)+(y+V)) =xx+V)x(y+V) for
any z,y € G. Second, ¢(x)(v) = x(v+V) =x(V) =1 for any v € V. (Here, we used the fact that
the homomorphism x maps the identity 0 +V € G/V to the identity 1 € C*.)
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We claim that ¢ is a homomorphism. Indeed, ¢(x1x2)(x) = (x1x2)(z+ V) = x1(x + V) xa(x +

V) = ¢e(x1)(@)e(x2)(z) for any x € G and any x1,x2 € G/V; hence ¢(x1x2) = ¢(x1)¢(x2)-

In order to prove that ¢ is a bijection, we construct an inverse map ¥: V* — G/V. Given
x € V*, define ¢¥(x)(a+ V) := x(a) for any coset a+V € G/V. Note that this map is well defined
since a+V = b+V implies a—b € V, and thus 1 = x(a—b) = x(a)/x(b). It is straightforward to see
that ¢ = ™'+ indeed, 1(¢(x))(a+V) = ¢(x)(a) = x(a+V) and p(¥(x))(a) = Y(x)(a+V) = x(a)

for any @ € G. Hence ¢ is both injective and surjective, and consequently, an isomorphism. O

Claim 41. V* 2 V< for any subgroup V of G = (Z/mZ)".

Proof. We first prepare some notation: For any i € [n], let e; € G be the vector whose value is 1
on the ith coordinate and is 0 on the other coordinates. Let w := exp(2my/—1/m) € C* denote the
mth root of unity.

We construct an isomorphism ¢: V1 — V*. Given x € V1, define p(z) € V* as ¢(2)(y) :=
w'®Y) for any y € G. Note that the image of ¢ is contained in V*: indeed, for any v € V-, we have
o(x)(v) = W =0 = 1.

We claim that ¢ is injective. It is easy to see that ¢ is a homomorphism; thus, it is sufficient
to prove that the kernel of ¢ is just 0 € V+. If p(z) is the constant function 1, then (z,y) = 0 for
any y € G in particular, letting y € {e1,...,e,}, we obtain = = 0.

Finally, we claim that ¢ is surjective. For any y € V* and any i € [n], there is some x; € Z/mZ
such that x(e;) = w": indeed, since 1 = x(0) = x(m-e;) = x(e;)™, x(e;) is one of the mth roots of
unity. Now we define x := 1", 2;¢; € G. Then, for any y € G, ¢(z)(y) = w®¥ = [[L
ITy x(ea)¥i =TT x(viei) = x(Ooie viei) = x(y); hence ¢(z) = x for some z € G. Moreover, for
any v € V, we have y(v) = w® = 1 since y € V*; thus we have (x,v) = 0, which implies that
eVt g

1 wTiYi —

Combining these three claims, we obtain [V+| = |V*| = |§/T/] = |G/V| = |G|/|V|, which
completes the proof of Claim 38.

B On Different Complexity Measures for DNF o MOD,, Circuits

In this section, we provide an example of the robustness of our arguments with respect to
variations of the complexity measure. Let p > 2 be a fixed prime. We sketch the proof of a
hardness result for a variant of the (DNF o MOD,)-MCSP* problem, described as follows. We
consider layered ORo AND o MOD,, formulas® over Z,,, and measure complexity by the total number
of (non-input) gates in the formula.” A bit more precisely, we adapt the proof of Theorem 8 from
Section 3.1, and show that this problem is also NP-hard under randomized reductions.

Since Z; is a vector space over the field Z,, we can define the dimension of an affine subspace:
For a linear subspace H C Z!, let dim(H) denote the dimension of H, and let codim(H) :=
dim(H+) =t — dim(H); then, for any a € Z},, define the dimension of an affine subspace H + a as
dim(H + a) := dim(H), and codim(H + a) := dim(H). Observe that this notion is well-defined.
Using dimension, we can characterize the number of gates in AND o MOD,, formulas.

SRecall that in a formula every non-input gate has fan-out one.
"Under our notion of layered formulas, an (AND o MOD,,)-circuit with a single MOD,, gate has size 2. While this
is convenient for the exposition, it is not particularly important for the result.
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Lemma 42. Let A be an affine subspace of an. Then, the minimum number of gates in any layered
AND o MOD,, formula accepting A is exactly 1 + codim(A).

Proof Sketch. As in the proof of Lemma 2, a layered ANDoMOD,, formula C' with 1+ s gates accepts
the set A = C71(1) of solutions of s linear equations over MOD,,. Let B € Z3*" be the matrix
that defines these linear equations. Then, we have dimker(B) = dim(A), and by the rank-nullity
theorem, we obtain codim(A) = ¢ — dim(A) = ¢t — dimker(B) = rank(B) < s.

Conversely, let A =: H + a for some linear subspace H and some a € ZZ, and let vq,...,7s
be a basis of H+, where s := codim(H). Then, using orthogonal complements, it is easy to check
that z € A if and only if (v;,z) = (7;,a) for all i € [s]. The latter condition can be written as an
AND o MOD,, layered formula with 1 + s gates. O

As a corollary, for any optimal layered (DNF o MOD,)-formula C' = ka:1 Cy for a function
[+ Zy —{0,1}, where Cy is an AND o MOD,, circuit for each k € [K], the total number of gates in
the formula is precisely 1 + K + Y4, codim(C; 1 (1)).

For convenience, given a function f: Z;, — {0,1,x}, let size(f) denote the complexity of f
according to our size measure. Now let us revise the proof of Theorem 8. Given an instance
SC ( <”r) of the r-bounded set cover instance, we construct a function f: Z;, — {0, 1, *} in exactly
the same way. Below we adapt the corresponding claims from Section 3.1. Then we employ the
new claims to argue that the NP-hardness result still holds.

Claim 43 (Adaptation of Claim 9). Assume that S has a set cover of size K. Then size(f) <
(t+ 1)K + 1.

Proof. Let C C S be a set cover of size K. For each § € C, let Cs be an AND o MOD,, circuit over
Z}, that accepts span(v®). Define a DNF o MOD,, circuit C :=\/g . Cs. Then the circuit size of C

is 1+ K + > | codim(Cg'(1)), which is obviously at most 1+ K (¢ + 1). O

Claim 44 (Adaptation of Claim 13). Let (v');cpn) be nice, and s := size(f). Then S has a set cover
of size 2(s — 1)/(t —r — (log |S|/logp) + 1).

Proof. Let C' = \/fz1 C, be an optimal DNF o MOD,, layered formula of size s computing f. Then,
as discussed above, we have s = 1 + K + Zszl codim(C; '(1)). On the other hand, the same
analysis from Claim 13 shows that S has a set cover of size < 2K. It thus remains to give an upper
bound on K.

Since C' computes f, we have C; 1(1) C C71(1) C f~1({1,%}) = Ugeg span(v®). By counting
the number of elements in Ck_l(l) and |Jgeg span(v®), we obtain pdim(clzl(l)) < |S|-p". Hence, we
have codim(C;, *(1)) >t — r — log|S|/ log p; therefore,

K

s > 1+K+Zcodim(0k_1(1)) > 1+ K+ K(t—r—log|S|/logp),
k=1
which implies K < (s —1)/(t — r — (log |S|/logp) + 1). O
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Let K be the minimum size of a cover for S. By the claims above, we have size(f) < tK and
K < 2size(f)/t, because t can be taken large enough compared to the other relevant parameters;
hence size(f)/t roughly gives us a 2-factor approximation. More precisely, we have size(f) <
t+1DK +1<2(t+ 1)K, and K < 2(size(f) — 1)/((t + 1)/2) < 4size(f)/(t + 1) for any t >
2r + 2log |S|/logp — 1. That is, the set cover size K satisfies

size(f) 4size(f)
20i+1) = K==

which gives an 8-factor approximation of K. Since we can take r to be a sufficiently large constant
in Theorem 5, the result holds.

C A Hardness of Approximation Result for (DNF o MOD,,)-MCSP

The reduction from (DNFoMOD,,,)-MCSP* to (DNFoMOD,,,)-MCSP presented in Section 3 is not

approzimation-preserving: given a partial function f: Zt, — {0,1,*}, it produces a total function

g: z&tosm) _, {0,1} such that DNFpyop,, (9) = DNFmop,, (f)+|f~1(x)|. The reduction introduces

an additive term | f ~!(*)|, and hence a (multiplicative) approximation of DNFyop,, (¢) does not give
a good approximation of DNFpmop,, (f). In order to fix this situation, we give an approximation-
preserving reduction. Our approach is inspired by a reduction described in [AHM™08].

Theorem 45 (Approximation-preserving version of Corollary 27). There is a polynomial-time
algorithm that, given the truth table of a partial function f: Zt, — {0,1,%}, produces the truth
table of a total function g: 7225 — {0,1} such that

DNFwmop,, (9) = | (+)| - (DNFwmop,, (f) + 1),
where s := [(6t + 4) logm + 2].

Proof. The idea of the proof is to amplify the circuit size for f; that is, we would like to force any
circuit C' computing g to also compute sub-functions corresponding to |f~!(x)| copies of f.

We can amplify the circuit size as follows. Let (Ly),e 7-1(x) be a scattered collection of lin-
ear subspaces of Z%,. Define a function ¢’ by ¢'(z,z,w) = f(x) if z € f~'(+) and w € L;
otherwise ¢'(x,z,w) := 0. Then, under an appropriate choice of parameters, it can be shown
that DNFyop,, (¢') = |f~(*)| - DNFmop,, (f). By combining an analogous reduction and the idea
behind the proof of Theorem 16, we can obtain a total function g such that DNFyop,,(9) =
DNFwmop,, (9') + [f ()] = [/ 7' (*)| - (DNFwmop,, (f) + 1).* Details follow.

We first obtain a scattered collection (Lz)zep-1(4) of r-dimensional linear subspaces of Zj, by
using Theorem 25 for 7 := 2t + 2. Then we define g: Z2t2% — {0,1} as

f(z) (if f(z) € {0,1} and y = 0° and f(z) =+ and w € L;)
g(z,y,z,w) =<1 (if f(z) =*and y € L,)
0 (otherwise)

for any ((z,v), (z,w)) € (Z5, x Zt,)>.

8 A black-box application of Corollary 27 produces a function g such that DNFumop,, (9) = DNFmop,, (¢')+ g’ =  (+)],
which is not sufficient for our purpose because |g’ ' ()| is larger than |f~(x)|.
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Claim 46 (Analogue of Claim 17). DNFyop,,(9) < |f~1(*)| - (DNFmop,, (f) + 1).

Proof. Suppose that a DNF o MOD,,, circuit C = \/fz1 Cj, computes f. For each 2* € f~1(x), take
an AND o MOD,,, circuit Cy+ accepting {z*} x L+ (by Lemma 2). Define

K
C'(x,y,z,w) = \/ \/(C’k(:v)/\yl =0A--ANys=0ACy+(z,w)) V \/ Co+(z,9).
zref~1(x) k=1 z*ef~1(x)
It is easy to see that C’ computes g. U

The rest of the proof is devoted to the reverse direction.
Claim 47 (Analogue of Claim 20). DNFyop,,(9) > |f~1(*)| - (DNFmop,, (f) + 1).

Let C = \/kK:1 Ci be a minimum DNF o MOD,,, circuit computing ¢g. In particular, K =
DNFmop,, (9) < |f71(x)| - (DNFmop,, (f) + 1) < m?*!. For each x € f~1(x), let I(z) € [K] be
one of the indices such that ]Clzj)(l) N ({x} x L, x ZL%)| is maximized. Since Ukelx] cl(1) 2
{x} X Ly x ZtFs, there are at least | L |- m!™s/K > m 5 /m2+1 > 2 points in the set C’lle)(l) N
({x} x Ly x ZEF).

Define Ty := {Cy(z) | f(x) = x}. For each z € f~!(x), let T be the set of all Cy such that
k € [K] and C}, accepts at least 2 elements from {(z,0°, 2)} x L, for some z € f~1(1). We will
show that the sets Ty, {T.}.cs-1(«) are pairwise disjoint, and hence K > [To[ +>_ ¢ -1, [T:[. We
will also prove that |Tp| = |f~1()| and |T| > DNFmop,, (f), which completes the proof.

Claim 48. [: f~1(x) — [K] is injective (hence |Ty| = |f~1(x)]).
Claim 49. ToNT, = @ for any z € f~1(*).
Since the proofs of these claims are essentially the same as in Claims 21 and 22, respectively

(except that we have extra coordinates taking values in Z!, x Z2 ), we omit them.

Claim 50. T, N T, = @ for any distinct elements 21,29 € f~1(x).

Proof. The proof is basically the argument from Claim 21. For completeness, we briefly repeat
it here. Towards a contradiction, assume that there exists a circuit C} in T, N7T,,. By the
definition of T}, and T,,, there exist elements x1,22 € f~1(1), a # b € L,,, and ¢ € L,, such that
Cr(x1,0% 21,a) = Ck(x1,0%, 21,b) = Ci(z2,0%, 29,¢) = 1. Since C’kfl(l) is an affine subspace, we
have (z1,0%, 21,a) — (x1,0%, z1,b) + (z2,0%, 29,¢) = (22,0%,20,a —b+¢) € Ck_l(l). Since C’k_l(l) N
({(z2,0% 29) } X Z2 ) C {(x2,0% 29)} X L,,, we get a — b+ c € L,,. However, given that ¢ € L,,, we
obtain 0° #a — b € L, N L,,, which contradicts L,, N L,, = {0°}. O

Fix any z € f~!(x). For each Cj, € T, define an ANDoMOD,, circuit Cj, so that C; (1) = {z €
Zt, | Cr(x,0% z,w) = 1 for some w € Z3, }. (Note that a projection of an affine subspace C} !(1) is
again an affine subpace because a projection is a homomorphism.) Now define C, := \/Ck T, Cy.

Claim 51. C, computes f for any z € f~(x). (In particular, |T,| > DNFmop,, (f)-)
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Proof. Fix any x € f~!(1). Since {(x,0% 2)} x L, is covered by Ukerx Ck_l(l), and |L,| = m",
K < m?*! and r = 2t + 2, there exists k € [K] such that there are at least 2 elements in
({(x,0%,2)} x L,) N C; ' (1); hence, by the definition of T}, we have Cj, € T,. Moreover, C}(z) = 1
by the definition of Cy; thus C,(z) = V¢, o, Cp(z) = 1.

Now fix any = € f~1(0). Since g(x,0% 2z, w) = 0 for every w € Z2,, we get Ci(w,0%, 2,w) = 0
for any Cj, € T.; thus C} () = 0, which implies that C.(x) = 0. O

Combining the claims above, we obtain

DNFmop, (9) = K > [To|+ Y |T:| > |f7' (%) - (DNFumop,, (f) + 1)
z€f~1(%)

This completes the proof of Theorem 45. O

We can then establish a hardness of approximation result for computing DNFyop,, (f). For a
function f: Z!, — {0,1}, define |f] := m!, which is the number of entries in the truth table of a
function f.

Theorem 52. There exists a constant ¢ > 0 such that if there is a quasipolynomial-time algorithm
which approximates DNFyop,, (f) to within a factor of cloglog|f|, then NP C DTII\/IE(Q(IOgn)o(n)_

Proof. As noted by Trevisan [Tre01], by choosing the parameters of Feige’s reduction [Fei98], one
can obtain hardness of approximation results for the r-bounded set cover problem. While Trevisan
only analyzed the case when r is constant (cf. Theorem 5), a similar analysis? shows that it is
NP-hard (under quasipolynomial-time many-one reductions) to approximate the r(n)-bounded set
cover problem on n points within a factor of ylogr(n) (= yloglogn) for r(n) := logn and some
small constant v > 0.

Suppose that DNFyop,,(g) can be approximated to within a factor of (v/6)loglog|g| by an
algorithm A, where g: Zt, — {0,1} is a total function. We show below that if A runs in quasipoly-
nomial time, then NP € DTIME(2(csm ™"y,

First, note that in order to conclude this it is enough to describe a quasipolynomial-time algo-
rithm B that approximates r-Bounded Set Cover to within a factor of vlogr(n) for r(n) = logn.
Let ([n],S) be an instance of the r-Bounded Set Cover Problem. Algorithm B applies the deter-
ministic n°()_time reduction provided by Corollary 29 to produce a partial Boolean function

f: Zﬁ(’"(n) logn) _, {0,1,%}. It then invokes the deterministic reduction from Theorem 45 to con-

struct from f a total function g: Zg(r(n) logn) _, {0, 1}. Finally, B uses the approximation algorithm
A to compute a (/6) loglog |g| approximation to DNFmop,, (g). Let g € N be the value output by
A. Algorithm B outputs K := 2g/|f~1(x)|.

Note that B runs in quasipolynomial time under our assumptions. It remains to show that it
approximates the solution of the original set cover problem within a factor of vloglogn. Let K

be the cost of an optimal solution to the initial set cover instance. Recall that 2DNFmop,, (f) is

9 Specifically, for the parameters and notation in [Fei98], given a 3CNF-5 formula on n variables, let k be a
sufficiently large constant, m := +/logn, and ¢ := cloglogm for a large constant c. Then the output of Feige’s
reduction is an instance of the set cover problem on N (:: m(5n)2) points such that each set is of size at most
m2°® < r(N) =log N, and the gap between yes instances and no instances is (1- %) Inm = Q(loglog N).
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a 2-factor approximation for K; that is, K < 2 - DNFpmop,, (f) < 2K. On the other hand, the
guarantees of the algorithm A imply that

DNFwmob,,(9) < g < DNFwmop,,(9) - (7/6)loglog |g|.

Since DNFmop,, (9) = |/~ (*)] - (DNFmop,, (f) + 1), we get

K < f_zlg(*) < (v/6)loglog|g| - (K +1)

Therefore, for large enough n and on non-trivial instances (i.e. K > 1), the value K output by B
approximates K to within a factor of 2 (v/6) loglog |g| < (7/3) - (logr(n) +loglogn+ O(logm)) <
(v/3) - 3loglogn. O

Finally, we note that when m is prime, it is possible to design a quasipolynomial-time approxi-
mation algorithm for DNFyop,, (f) with an approximation factor of O(log|f]).

Theorem 53. Let p be a prime number. There is a quasipolynomial-time algorithm which approz-
imates DNFymop, (f) to within a factor of In|f].

Proof. Let |f| = p' be the number of entries in the truth table of f, the input function. By the
results of Section 2.1, computing DNFyop, (f) is equivalent to solving a set cover instance. Recall
that set cover admits a polynomial-time approximation algorithm that achieves an approximation
factor of In N on instances over a universe of size N (cf. [Sla96]). Consequently, in order to prove
the result it is enough to verify that computing DNFymop, (f) reduces to a set cover instance with
domain size Ny := |f~1(1)| < |f| and of size at most quasipolynomial in |f|.

Indeed, for a non-zero function f: Zﬁ) — {0,1}, DNFmop, (f) is exactly the minimum number
of affine subspaces that cover f~1(1). Therefore, by relabelling elements, computing DNFwmop, (f)
reduces to a set cover instance ([N¢],Sy), where a set S € Sy if and only if S viewed as a subset of
ZZZ is an affine subspace contained in f~1(1). Each such affine subspace has dimension at most ¢,
and can be explicitly described by a basis v,...,vp € Z;, where ¢ < t, and a vector b € Zf,. Hence
there are at most pO(tQ) such spaces, and consequently, |Sy| < po(tz). In other words, we get a set
cover instance over a ground set of size < |f|, and this instance contains at most | f|?U°8 /) sets.

Finally, since the sets in Sy can be generated in time at most |f |O(1°g|f D, and the set cover
approximation algorithm runs in time polynomial in its input length, the result holds. ([l
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