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Abstract: We investigate monotone circuits with local oracles [Krajíček,
2016], i.e., circuits containing additional inputs yi = yi(~x) that can perform
unstructured computations on the input string ~x. Let µ ∈ [0,1] be the
locality of the circuit, a parameter that bounds the combined strength of
the oracle functions yi(~x), and Un,k,Vn,k ⊆ {0,1}m be the set of k-cliques
and the set of complete (k−1)-partite graphs, respectively (similarly to
[Razborov, 1985]). Our results can be informally stated as follows.

(i) For an appropriate extension of depth-2 monotone circuits with local
oracles, we show that the size of the smallest circuits separating Un,3
(triangles) and Vn,3 (complete bipartite graphs) undergoes two phase
transitions according to µ .

(ii) For 5≤ k(n)≤ n1/4, arbitrary depth, and µ ≤ 1/50, we prove that the
monotone circuit size complexity of separating the sets Un,k and Vn,k

is nΘ(
√

k), under a certain restrictive assumption on the local oracle
gates.

The second result, which concerns monotone circuits with restricted
oracles, extends and provides a matching upper bound for the exponential
lower bounds on the monotone circuit size complexity of k-clique obtained
in [Alon and Boppana, 1987].

Key words and phrases: monotone circuits, proof complexity, k-clique problem

1 Introduction and motivation

We establish initial lower bounds on the power of monotone circuits with local oracles
(monotone CLOs), an extension of monotone circuits introduced in [10] motivated by
problems in proof complexity. Interestingly, while the model has been conceived as part
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of an approach to establish new length-of-proofs lower bounds, our results indicate that
investigating such circuits can benefit our understanding of classical results obtained
in the usual setting of monotone circuit complexity, where no oracle gates are present
(see the discussion on the Alon-Boppana exponential lower bounds for k-clique [1]
presented later in this section).

Before describing the circuit model and our contributions in more detail, which re-
quire no background in proof complexity, we explain the main motivation that triggered
our investigations.

Relation to proof complexity. A major open problem in proof complexity is to obtain
lower bounds on proof length in Fd [⊕], depth-d Frege systems extended with parity
connectives (cf. [8]). It is known that strong enough lower bounds for F3[⊕], the depth-3
version of this system, imply related lower bounds for each system Fd [⊕], where d ∈ N
is arbitrary [4]. A natural restriction of F3[⊕] for which proving general lower bounds
is still open is the proof system R(Lin/F2) (cf. [5], [10]). It corresponds to an extension
of Resolution where clauses involve linear functions over F2.1

In order to attack this and other related problems, [10] proposed a generalization of
the feasible interpolation method to randomized feasible interpolation. Among other
results, [10] established that lower bounds on the size of monotone circuits with local
oracles separating the sets Un,k and Vn,k (defined below) imply lower bounds on the
size of general (dag-like) R(Lin/F2) proofs. In addition, it was shown that strong
lower bounds in the new circuit model would provide a unifying approach to important
length-of-proofs lower bounds established via feasible interpolation (cf. [10, Section 6],
[11]).

Motivated by these connections and by the important role of feasible interpolation
in proof complexity, we start in this work a more in-depth investigation of the power and
limitations of monotone circuits with local oracles. We focus on the complexity of the
k-clique problem over the classical sets of negative and positive instances considered
in monotone circuit complexity [12, 1]. While the monotone complexity of k-clique
has been investigated over other input distributions of interest (cf. [14]), we remark that
the structure of these instances is particularly useful in proof complexity (cf. [9, 11, 2]).
The corresponding tautologies have appeared in several other works.

We provide next a brief introduction to the circuit model and to the set of instances
of k-clique that are relevant to our results.

An extension of monotone circuits. A monotone circuit with local oracles C(~x,~y) is
a monotone boolean circuit containing extra inputs y j (local oracles) that compute an
arbitrary monotone function of ~x. In order to limit the power of these oracles, there
is a locality parameter µ ∈ [0,1] that controls the sets of positive and negative inputs
on which the inputs yi can be helpful. In more detail, we consider circuits computing
a monotone function f : {0,1}m→ {0,1}, and associate to each input yi a rectangle
Ui×Vi, with Ui ⊆ f−1(1) and Vi ⊆ f−1(0). We restrict attention to sets of rectangles
whose union have measure at most µ according to an appropriate distribution D that
depends on f . We are guaranteed that yi(Ui) = 1 and yi(Vi) = 0 but, crucially, the

1Lower bonds for tree-like R(Lin/F2)-proofs were established in [5].
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computation of C(~x,~y) must be correct no matter the interpretation of each yi outside
its designated sets Ui and Vi.

The k-clique function and the sets Un,k and Vn,k. We focus on the monotone boolean
function f : {0,1}m→ {0,1} that outputs 1 on an n-vertex graph G ∈ {0,1}m if and
only if it contains a clique of size k, where m =

(n
2

)
. More specifically, we investigate its

complexity as a partial boolean function over Un,k∪Vn,k, where Un,k is the set of inputs
corresponding to k-cliques over the set [n] of vertices, and Vn,k is the set of complete
ζ -partite graphs over [n], where ζ = k−1. Roughly speaking, for this choice of f , we
measure the size of a subset B ⊆Un,k×Vn,k using the product distribution obtained
from the uniform distribution over the k-cliques in Un,k, and the distribution supported
over Vn,k obtained by sampling a random coloring χ : [n]→ [k−1] of [n] using exactly
ζ = k−1 colors, and considering the associated complete ζ -partite graph G(χ).2

A more rigorous treatment of the circuit model and of the problem investigated in
our work appears in Section 2.

1.1 Our results

We observe a phase transition for an extension of depth-2 monotone circuits with local
oracles that separate triangles from complete bipartite graphs.

Theorem 1.1 (Phase transitions in depth-2). Let s = s(n,µ) be the minimum size of
a depth-2 monotone circuit (DNF) on inputs ~x, yi(~x), and g j(~y) that separates Un,3
and Vn,3, where the y-inputs have locality ≤ µ , and each g j is an arbitrary monotone
function on~y. Then, for every ε > 0,

s =


1 if µ = 1,
Θε(n2) if 1/2+ ε ≤ µ ≤ 1− ε,

Θε(n3) if 0 ≤ µ ≤ 1/2− ε.

Furthermore, the upper bounds on s(n,µ) do not require the extra inputs g j(~y).

Observe that the lower bounds remain valid in the presence of the functions g j(~y).
In other words, in the restricted setting of depth-2 circuits, a small locality parameter
does not help, even if arbitrary monotone computations that depend on the output of the
local oracle gates are allowed in the circuit. (As explained in Section 3, the monotone
functions g j(~y) can be handled in a generic way, and add no power to the model.)

The proof of Theorem 1.1 is presented in Section 3. The argument considers
different bottlenecks in the computation based on the value of µ . In our opinion, the
main conceptual message of Theorem 1.1 is that an interesting complexity-theoretic
behavior appears already at depth two. Indeed, the oracle gates can interact with the
standard input variables in unexpected ways, and the main difficulty when analyzing

2Some authors consider as negative instances the larger set of complete ζ -partite graphs where ζ

ranges from 1 to k−1. For technical reasons, we work with exactly (k−1)-partite graphs (cf. Claim 2.1).
In most lower bound contexts this is inessential, as a random coloring χ : [n]→ [k−1] under a bounded
k(n) contains non-empty color classes except with an exponentially small probability.
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general monotone CLOs is the arbitrary nature of these gates, which are limited only by
the locality parameter.3

We obtain stronger results for larger k = k(n) and with respect to unrestricted
monotone circuits (i.e., arbitrary depth), but our approach requires an extra condition
on the set of rectangles that appear in the definition of the oracle gates. Our assumption,
denoted by Ad , says that if each oracle variable yi is associated to the rectangle Ui×Vi,
then the intersection of every collection of d +1 sets Ui is empty.

Theorem 1.2 (Upper and lower bounds for monotone circuits with restricted oracles).
For every k = k(n) satisfying 5≤ k ≤ n1/4, the following holds.

1. If D(~x,~y) is a monotone circuit with local oracles that separates Un,k and Vn,k and
its y-variables have locality µ ≤ 1/16 and satisfy condition Ad , then size(D) =

nΩ(
√

k/d).

2. For every ε > 0, there exists a monotone circuit with local oracles C(~x,~y) of
size nOε (

√
k) separating Un,k and Vn,k whose y-variables have locality µ ≤ ε and

satisfy condition A1.

The proof of Theorem 1.2 appears in Section 4. The lower bound extends results
on the monotone circuit size complexity of k-clique for large k = k(n) obtained in [1].4

Indeed, our argument relies on their analysis of Razborov’s approximation method [12],
with extra work required to handle the oracle gates. The upper bound is achieved by an
explicit description of a monotone CLO generalizing the construction from Theorem
1.1. The following corollary, stated for reference, is immediate from Theorem 1.2.

Corollary 1.3. Let 5 ≤ k(n) ≤ n1/4, µ = 1/50, and assume rectangles are mapped
to local oracle gates in a way that no k-clique is associated to more than a constant
number of rectangles. Then the monotone circuit size complexity of separating the sets
Un,k and Vn,k is nΘ(

√
k).

(We note that the constant 1/50 appearing in this statement is not particularly
important, and that any small enough constant locality parameter µ suffices.) To our
knowledge, Corollary 1.3 provides the first explanation for the tightness of the Alon-
Boppana [1] exponential lower bounds for k-clique. In particular, in order to prove
monotone circuit lower bounds for this problem stronger than n

√
k in the regime where

k(n)� poly(logn), one has to consider either a different set of instances, or employ a
technique that does not apply to circuits with local oracles of constant locality.5

We discuss some directions for future investigations in Section 5, where we also
say a few more words on the connection to proof complexity.6

3It is plausible that the analysis behind the proof of Theorem 1.1 extends to larger k, but we have not
pursued this direction in the context of depth-2 circuits. See also the related discussion on Section 5.

4For k ≤ logn, near-optimal results were proved in [12].
5We remark that much tighter monotone lower bounds of the form nk/poly(logn) are known in the

regime where k is constant or slightly super-constant [12, 1]. Interestingly, these results do not generalize
to circuits with local oracles due to the different choice of parameters employed in the corresponding
legitimate lattices.

6We have made no attempt to optimize the constants and the asymptotic notation appearing in Theorems
1.1 and 1.2.
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2 Notation and basic facts

Let [e] denote the set {1,2, . . . ,e}, e ∈ N. For a set B, we use
(B
`

)
to denote the family

of subsets of B of size exactly `. The function log(·) refers to logarithm in base 2.
For a set V , we use v∼V to denote a uniformly distributed element from V . We are
interested in the computation of partial boolean functions over {0,1}m. For A⊆{0,1}m,
a function f : A→ {0,1} is monotone if x,y ∈ A and x� y (i.e, xi ≤ yi for all i ∈ [m])
imply f (x)≤ f (y).

Monotone CLOs. A monotone boolean circuit C(x1, . . . ,xn,y1, . . . ,ye) on n variables
and e local oracles (monotone CLO for short) is a (non-empty) directed acyclic graph
containing ≤ n+ e+2 sources and one sink (the output node). The non-source nodes
have in-degree 2. Source nodes are labeled by elements in {x1, . . . ,xn}∪{y1, . . . ,ye}∪
{0,1}, and each non-source node is labeled by a gate symbol in {∧,∨}. We say that C
has size s if the total number of nodes in the underlying graph is s, including source
nodes. The computation of C on an input string (a,b) ∈ {0,1}n×{0,1}e is defined in
the natural way.

The formulation above is consistent with the statement of Theorem 1.2. In Theorem
1.1, which concerns bounded-depth circuits, we allow the internal {∧,∨}-nodes to have
unbounded fan-in.

We consider the computation of C(~x,~y) on input pairs where each bit in the second
input~y is a function of~x. Furthermore, we will restrict our analysis to monotone com-
putations over a set A⊆ {0,1}n of interest. For this reason, to specify the computation
of C on a string x ∈ A, we will associate to each local oracle variable yi a corresponding
monotone function fi : A→{0,1}.

In order to obtain a non-trivial notion of circuit complexity in this model, we use a
real-valued parameter µ ∈ [0,1] to control the family of admissible functions fi. Each
function fi separates a particular pair of sets Ui ⊆ f−1(1)⊆ A and Vi ⊆ f−1(0)⊆ A, but
C must be correct no matter the choice of the functions fi separating these sets. The
parameter µ captures the measure of

⋃
iUi×Vi. This is formalized by the definitions

introduced next.

Correctness and locality. Let f : {0,1}n → {0,1}, U ⊆ f−1(1), V ⊆ f−1(0), W =
(U,V ), and A = U ∪V . Moreover, let U1, . . . ,Ue ⊆U and V1, . . . ,Ve ⊆ V be sets of
inputs, and for convenience, let W= (Wi)i∈[e] denote the sequence of pairs Wi = (Ui,Vi).
Finally, let D be a probability distribution supported over U ×V . We say that W has
locality µ with respect to D if, for B=

⋃
i∈[e]Ui×Vi,

Pr
(u,v)∼D

[
(u,v) ∈B

]
≤ µ.

We say that a pair W ′ = (U ′,V ′) is included in the pair W = (U,V ) if U ′ ⊆ U
and V ′ ⊆ V , and that a sequence W = (Ui,Vi)i∈[e] of pairs is included in W if each
member Wi = (Ui,Vi) of W is included in W . Let g : A → {0,1} be an arbitrary
monotone boolean function over A = U ∪V . We say that g separates a pair (U ′,V ′)
if g(U ′) = 1 and g(V ′) = 0. Let F = ( f1, . . . , fe) be a sequence of functions, where
each fi ∈ A→ {0,1} is monotone. We say that F separates W if each fi separates
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(Ui,Vi). For convenience, we also say in this case that F is a W-separating sequence of
functions.

Given a monotone CLO pair (C,W) as above, and a W-separating sequence F of
monotone functions, let

C(~x,F) def
= C(x1, . . . ,xn, f1(~x), . . . , fe(~x))

denote the function in A→ {0,1} that agrees with the output of C when each oracle
input yi is set to fi(x). Observe that C(x,F) is a monotone function over A = U ∪V ,
since C is a monotone circuit and each fi is a monotone function over A. We will
sometimes abuse notation and view C(x,F) as a circuit. We say that the pair (C,W)
computes the function f : A→{0,1} if for every W-separating sequence F of monotone
functions, we have C(a,F) = f (a) for all a ∈ A. (We stress that the monotone CLO
pair must be correct on every input string, and on every W-separating sequence.)

Finally, let f ∈ {0,1}n → {0,1} be a monotone function, A = U ∪V for sets
U ⊆ f−1(1) and V ⊆ f−1(0), and W = (U,V ). We say that f can be computed over
A ⊆ {0,1}n by a monotone circuit with local oracles of size s and locality µ (with
respect to a distribution D) if there exists a monotone circuit C(~x,~y) of size ≤ s and a
sequence W = (Ui,Vi)i∈[e] of length e ≤ s that is included in W and has locality ≤ µ

such that the monotone CLO pair (C,W) computes f over A.
For convenience of notation, we will sometimes write yi = y[Ui,Vi] to indicate a

local oracle over the pair W = (Ui,Vi).

Defining Un,k, Vn,k, and Dn,k. Let m =
(n

2

)
, where n ≥ 4, and let k ∈ N be an integer

satisfying 3≤ k < n. We view [n] as a set of vertices, and [m] as its associated set of
(undirected) edges. For B⊆ [n], we use KB ∈ {0,1}m to denote the graph (also viewed
as a string) corresponding to a clique over B. Let

Un,k
def
=

{
KB ∈ {0,1}m | B ∈

(
[n]
k

)}
, and

Vn,k
def
= {H ∈ {0,1}m | H is a non-trivial complete ζ -partite graph, where ζ = k−1},

An,k
def
= Un,k∪Vn,k.

Clearly, Un,k∩Vn,k = /0. It is convenient to associate to each coloring χ : [n]→ [k−1] a
corresponding graph G(χ), where e = {v1,v2} ∈ E(G(χ)) if and only if χ(v1) 6= χ(v2).
Let

V χ

n,k
def
= {χ | χ : [n]→ [k−1]}

be the family of all possible colorings of [n] using at most k− 1 colors. Under
our definitions, for a given coloring χ ∈ V χ

n,k we have G(χ) ∈ Vn,k if and only if
|χ([n])| = k− 1. We measure the locality of monotone CLO pairs (C,W) separat-

ing Un,k and Vn,k with respect to a product distribution Dn,k
def
= DU

n,k ×DV
n,k, whose

components are defined as follows. DU
n,k is simply the uniform distribution over the

k-cliques in Un,k, while DV
n,k assigns to each fixed graph H ∈ Vn,k probability mass

DV
n,k(H)

def
= Pr

χ∼V χ

n,k
[G(χ) = H | G(χ) ∈Vn,k].7 (This is simply the uniform distribu-

7Note that the probability that a random coloring χ : [n]→ [k−1] contains less than k−1 non-trivial
color classes is exponentially small in n for the values of k(n) investigated in Theorems 1.1 and 1.2.
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tion over Vn,k, but this is not the most convenient point of view in some estimates.)

The sequence F?. The definition introduced above agrees with the formulation of
monotone circuits with oracles from [10]. We stress that a source of difficulty when
computing a function f : A→{0,1} using a monotone circuit C(~x,~y) and a sequence
W= (Wi) of pairs included in W = ( f−1(0), f−1(1)) is that C(x,F) must be correct for
every W-separating sequence F = ( fi) of monotone functions. In order to prove lower
bounds against a monotone CLO pair (C,W), we will consider a particular instantiation
of the monotone functions fi : A→{0,1}, discussed next.

Let yi = y[Ui,Vi] be a local oracle variable associated with the pair Wi = (Ui,Vi).
We define the function f ?Wi

: A→{0,1} as follows:

f ?Wi
(x) =

{
1 if x ∈Ui∪ (V \Vi),
0 otherwise.

Observe that f ?Wi
(Ui) = 1 and f ?Wi

(Vi) = 0. In particular, f ?i
def
= f ?Wi

separates the pair Wi.

We use F? def
= ( f ?i ) to denote the corresponding sequence of functions for a given choice

of W= (Wi).
For an arbitrary monotone function f : A→{0,1}, Ui ⊆U ⊆ f−1(1), and Vi ⊆V ⊆

f−1(0), f ?i is not necessarily monotone. However, for the problem investigated in our
work f ?i is always monotone, as stated next.

Claim 2.1. Let 3≤ k < n. For every pair Wi = (Ui,Vi) with Ui ⊆Un,k and Vi ⊆Vn,k, the
function f ?i : An,k→{0,1} is monotone.

Proof. It is enough to observe that, under these assumptions, there are no distinct
strings a1,a2 ∈ An,k satisfying a1 � a2. Here we crucially used that the (k−1)-partite
graphs in Vn,k have exactly k−1 non-empty parts.

The use of F? to prove lower bounds against monotone CLO pairs (C,W) computing
a monotone function f : A→ {0,1} is justified by the following observation, which
describes an extremal property of F?.

Claim 2.2. Let F = ( fi) be an arbitrary W-separating sequence of monotone functions
fi : A→{0,1}. If C(x,F) is incorrect on an input a ∈ A, then C(x,F?) is also incorrect
on a.

Proof. Assume that a ∈U . Consequently, f (a) = 1, and the assumption that C(x,F)
is incorrect means that C(x,F) = 0. Using that each fi separates Wi = (Ui,Vi) and the
definition of f ?i , we get f ?i (a)≤ fi(a). By the monotonicity of the circuit C, it follows
that C(a,F?)≤C(a,F). Thus C(a,F?) is incorrect on input a as well. The case where
a ∈V is analogous.

Therefore, F? is the hardest separating-sequence, meaning that any circuit that
computes f under F? computes f under any separating-sequence.

Remark 2.3 (Simulating negated inputs). It is possible to simulate negated input
variables in C using oracles gates. For instance, if x{1,2} corresponds to the input edge
{1,2}, we define an oracle gate y[U ′,V ′] with U ′ = {KB ∈Un,k | ¬x{1,2}(KB) = 1} and
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V ′ = {H ∈Vn,k | ¬x{1,2}(H) = 0}. It is well-known that Un,k and Vn,k can be separated
by counting input edges and using a single negation gate. However, it is easy to see that,
by combining the latter construction with the trick above, we get monotone circuits
with oracles of huge locality.

Indeed, for the problem investigated here, monotone circuits with local oracles can
be seen as an intermediary model between monotone and non-monotone circuits, where
the locality parameter µ restricts the computation of the extra input variables yi.

In order to be precise, we rephrase the hypothesis Ad employed in Theorem 1.2
using the notation introduced in this section.

The assumption Ad . Let d ∈N, and (C,W) be a monotone CLO pair with W= (Wi)i∈I ,
Wi = (Ui,Vi), Ui ⊆U and Vi ⊆ V . We say that (C,W) satisfies Ad if there exists no
u ∈U and I′ ⊆ I, |I′|> d such that u ∈

⋂
i′∈I′Ui′ .

3 Phase transitions in depth-2: Proof of Theorem 1.1

Our argument relies on Claims 2.1 and 2.2 described in Section 2. We start with a
straightforward adaptation of a lemma from [10].

Lemma 3.1. Let C(~x,~y) be a monotone circuit, A =U ∪ V be a disjoint union, W =
(U,V ), and W = (Wi)i∈[e] be a sequence of pairs included in W, where each Wi =
(Ui,Vi). Then,

1. Over inputs a ∈ A, for every i, j ∈ [e], the following holds:

f ?(Ui,Vi)
∨ f ?(U j,Vj)

= f ?(Ui∪U j,Vi∩Vj)
.

f ?(Ui,Vi)
∧ f ?(U j,Vj)

= f ?(Ui∩U j,Vi∪Vj)
.

2. Let B def
=
⋃

i∈[e]Ui×Vi ⊆U ×V , and i, j ∈ [e]. Then (Ui ∩U j)× (Vi ∪Vj) ⊆ B

and (Ui∪U j)× (Vi∩Vj)⊆B.

Proof. Immediate from the definitions.

First, we prove a weaker version of Theorem 1.1 that forbids the extra inputs g j(~y).
Then we use Lemma 3.1 to observe that our argument extends to the more general class
of circuits.

Let ε > 0 be a fixed constant, and n be sufficiently large.

Case 1: µ = 1. Obviously, there is a trivial monotone CLO pair (C,W) with local-
ity µ = 1 that separates Un,3 and Vn,3: C contains a single node y1, and W1 = (Un,3,Vn,3).

Case 2: 1/2+ ε ≤ µ ≤ 1− ε . We start with the upper bound. In other words, we
construct a monotone CLO of size O(n2) and locality ≤ 1/2+ o(1).8 Let x{i, j} for
i 6= j ∈ [n] denote the input variable corresponding to edge {i, j} ∈

([n]
2

)
. Consider the

following monotone circuit:

8This construction is inspired by discussions in [13].
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C(~x,~y) def
=
∨
i< j

(x{i, j}∧ y{i, j}).

We associate to each y{i, j} = y[U{i, j},V{i, j}] the sets

U{i, j}
def
= {KB ∈Un,3 | {i, j} ⊆ B and these are the smallest elements in B}, and

V{i, j}
def
= {H ∈Vn,3 | vertices i and j are in different parts of H}.

Observe that C has size O(n2).
First, we argue that this monotone CLO is correct. If the input graph is a triangle

KB ∈ {0,1}m with B = {i, j,k}, where i < j < k, then x{i, j}(KB) = 1. Moreover, for
any monotone function f{i, j} that separates (U{i, j},V{i, j}), we must have f{i, j}(KB) = 1,
since KB ∈U{i, j} by construction. Thus C(KB,F) must accept KB for all separating
sequences F = ( f{i, j}). Now let H ∈Vn,3 be a complete bipartite graph over [n] with
non-empty parts V H

1 and V H
2 partitioning [n]. We show that for i < j it holds that

x{i, j}(H)∧ y{i, j}(H) = 0. If for some x{i, j} we have x{i, j}(H) = 1, then i, j are in
different parts of H. By construction, any f{i, j} separating the pair (U{i, j},V{i, j}) must
output 0 on H. Consequently, the output of the circuit on H is 0, under any sequence F
of separating functions.

Next, we upper bound the locality of the y-variables. Let B=
⋃

i< j U{i, j}×V{i, j} ⊆
Un,3×Vn,3. Let (KB,H) be a fixed input pair in Un,3×Vn,3. Observe that this pair is in
B if and only if there exist i, j ∈ [n] with i < j such that:

(1) {i, j} ∈ B,
(2) these are the smallest elements in B, and
(3) the vertices i and j belong to different parts of H.

Therefore, the locality µ of the monotone CLO defined above is upper bounded by

Pr
(KB,H)∼Dn,3

[∃ i < j satisfying (1),(2),(3)] ≤ ∑
i< j

Pr[(i, j) satisfies (1),(2),(3)]

(using independence) = ∑
i< j

Pr
H∼DV

n,3

[(i, j) satisfies (3)] · Pr
KB∼DU

n,3

[(i, j) satisfies (1),(2)]

= Pr
χ∼V χ

n,3

[χ(1) 6= χ(2) | χ([n]) = {1,2}] ·∑
i< j

n− j(n
3

)
= (1/2+o(1)) ·1 ≤ 1/2+ ε.

We argue next the lower bound on circuit size for this range of µ . In other words,
we prove that if µ ≤ 1− ε then the circuit size is Ωε(n2). Let (C,W) be a monotone
CLO pair, where C(~x,~y) is a monotone DNF with t ≤ s terms, W = (Wi)i∈[e], e ≤ s,
Wi = (Ui,Vi), and each Wi is included in the pair (Un,3,Vn,3). Further, let B=

⋃
iUi×Vi.

Assume the pair (C,W) computes 3-clique over An,3. In order to establish a lower
bound, we consider the sequence F?, as defined in Section 2. Then, using Lemma 3.1,
we can write this circuit in an equivalent way as follows:

C(~x,F?) =
∨
j∈[t]

∧
e∈S j

xe∧ f ?(U ′j,V ′j )(~x)

 , (3.1)
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where S j ⊆
([n]

2

)
and U ′j×V ′j ⊆ B, for each j ∈ [t]. This is without loss of generality,

since terms that did not originally include a y-variable can be represented using f ?(Un,3, /0)
,

which is equivalent to the constant 1 function over inputs in An,3.
Next, observe that if |S j|> 3 for some j ∈ [t] then the corresponding term cannot

accept an input from Un,3. Thus we can assume without loss of generality that 0 ≤
|S j| ≤ 3. Partition the terms of C(~x,F?) into sets T`, 0≤ `≤ 3, with T` containing all
terms for which |S j|= `.

Every triangle KB accepted by a term from T0 forces a measure ≥ 1/
(n

3

)
in B, since

the corresponding functions f ?(U ′j,V ′j ) must satisfy V ′j =Vn,3 in order for the term not to
accept a complete bipartite graph H ∈Vn,3. Consequently, using that µ ≤ 1− ε , a total
number of at most r = (1− ε)

(n
3

)
triangles can be accepted by terms in T0.

Now each term in T2 or in T3 accepts at most one triangle, and each term in T1
accepts at most n triangles. Therefore, using the preceding paragraph, in order for the
circuit to accept all

(n
3

)
triangles in Un,3, we must have:

|T1| ·n+ |T2|+ |T3| ≥
(

n
3

)
− r = Ω(n3).

This implies that at least one of |T1|, |T2|, and |T3| must be Ω(n2). In particular, the
original circuit must have size at least Ω(n2).

Case 3: 0 ≤ µ ≤ 1/2− ε . The O(n3) size upper bound at µ = 0 is achieved by the
trivial monotone circuit for 3-clique. For the lower bound, we adapt the argument
presented above. Using the same notation, we assume there is a correct circuit as
described in (3.1). By the same reasoning, |S j| ≤ 3 for each j ∈ [t]. Furthermore, we
can assume that the edges corresponding to each S j are contained in some triangle from
Un,3.

Rewrite C(~x,F?) as an equivalent circuit C′:

C′(~x,F?)
def
=

∨
`∈I≤2

(∧
e∈S`

xe∧ f ?(U`,V`)
(~x)

)
∨
∨
i∈I3

(∧
e∈Si

xe∧ f ?(Ui,Vi)
(~x)

)
, (3.2)

where I≤2 contains the indexes of the original sets S j such that the edges obtained from
S j touch at most 2 vertices, and I3 contains the indexes corresponding to sets S j whose
edges span exactly 3 vertices.

First, suppose there exists ` ∈ I≤2 such that DV
n,3(V`)≤ 1/2−ε/4. This implies that

f ?` rejects a subset of Vn,3 of measure at most 1/2− ε/4. Moreover, using that ` ∈ I≤2,∧
e∈S` xe rejects a subset of Vn,3 of measure at most 1/2+ ε/8. Consequently, the `-th

term of the original circuit C(~x,F?) must accept some negative input from Vn,3. This
violates the assumption that the initial monotone CLO pair computes 3-clique over An,3.

We get from the previous argument that for every ` ∈ I≤2, DV
n,3(V`) ≥ 1/2− ε/4.

Consider now the quantity η = |
⋃

`∈I≤2
U`|/|Un,3|, and observe that µ ≥ η · (1/2−ε/4)

by the previous density lower bound. Since we are in the case where µ ≤ 1/2− ε , we
obtain η ≤ 1−Ωε(1).

In turn, using the definition of η and of F?, it follows that the left-hand side of
C′(~x,F?) in (3.2) accepts at most a η-fraction of Un,3. By the correctness of C(x,F?),
the right-hand side of the equivalent circuit C′(~x,F?) must accept at least a Ωε(1)-
fraction of the triangles in Un,3. Now observe that for each i ∈ I3, the corresponding
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term
∧

e∈Si
xe accepts exactly one triangle. Therefore, we must have |I3| ≥ Ωε(

(n
3

)
).

This completes the proof that t = Ω(n3).

In order to prove lower bounds in the presence of g j(~y) input variables, observe that
the following holds. First, all lower bounds were obtained using F?. Due to Lemma 3.1,
each g j(~y) is equivalent over An,3 to f ?(U ′j,V ′j ), for an appropriate pair (U ′j,V

′
j) satisfying

U ′j×V ′j ⊆B. Finally, in addition to the locality bound, the inclusion in B is the only
information about the y-variables that was employed in the proofs. In other words, each
g j(~y) can be treated as a new y-variable in the arguments above, without affecting the
locality bounds.

This extends the lower bound to the desired class of circuits, and completes the
proof of Theorem 1.1.

4 Circuits with restricted oracles: Proof of Theorem 1.2

We start with the upper bound.

Lemma 4.1. Let 3 ≤ k ≤ n1/4 and 2 ≤ ` < k. There exists a monotone circuit with
local oracles E(~x,~y) of size O(

(n
`

)
·
(
`
2

)
) and locality µ ≤ exp(−Ω(`2/k)) that computes

k-clique over An,k. Furthermore, the local oracles associated to E satisfy condition A1.

Proof. We generalize a construction in the proof of Theorem 1.1. For every set B∈
([n]

k

)
,

let F(B) ∈
(B
`

)
be the lexicographic first `-sized subset of B. Consider the following

monotone circuit with local oracles:

E(~x,~y) def
=

∨
D∈([n]` )

( ∧
e∈(D

2)

xe∧ yD

)
,

where to each yD we associate a pair (UD,VD) with UD×VD ⊆Un,k×Vn,k, defined as
follows:

UD
def
= {KB ∈Un,k | F(B) = D} and VD

def
= {H ∈Vn,k | KD ⊆ H}.

By construction, UD∩UD′ = /0 for distinct D,D′ ∈
([n]
`

)
. In other words, assumption

A1 is satisfied. Further, the size of E is O(
(n
`

)
·
(
`
2

)
). The correctness of this monotone

CLO can be established by a straightforward generalization of the argument from
Section 3. It remains to estimate its locality parameter µ .

Fix a set D ∈
([n]
`

)
, and let γD

def
= DV

n,k(VD). By symmetry, γD = γD′ for every D′ ∈([n]
`

)
. Since distinct sets UD are pairwise disjoint and locality is measured with respect

to the product distribution Dn,k = DU
n,k×DV

n,k, the locality of the oracle rectangles
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associated with E is at most γD. This value can be upper bounded as follows:

γD = Pr
H∼DV

n,k

[KD ⊆ H] = Pr
χ∼V χ

n,k

[KD ⊆ G(χ) | G(χ) ∈Vn,k]

=
Prχ [KD ⊆ G(χ)∧G(χ) ∈Vn,k]

Prχ [G(χ) ∈Vn,k]

≤
Prχ [KD ⊆ G(χ)]

Prχ [ |χ([n])|= k−1 ]

(using 3≤ k ≤ n1/4 and n→ ∞) ≤ (1+o(1)) · (k−1)(k−2) . . .(k− `)

(k−1)`

≤ (1+o(1)) · (k−b`/2c)`/2

(k−1)`/2

= (1+o(1)) ·
(

1− b`/2c−1
k−1

)`/2

(using (1− x)≤ e−x and 0≤ x≤ 1) ≤ exp(−Ω(`2/k)).

This completes the proof of Lemma 4.1.

The upper bound in Theorem 1.2 follows immediately from Lemma 4.1, by taking a
large enough `= O(

√
k). Observe that, more generally, one can get a trade-off between

circuit size and locality.

We move on now to the lower bound part, which relies on a sequence of lemmas.
For a set X ⊆ [n], we let dXe def

=
∧
{i, j}∈(X

2)
x{i, j} be the corresponding clique indicator

circuit. For convenience, we define dXe def
= 1 if X is a singleton or the empty set. Also,

note that dXe= dXe∧ f ?Un,k, /0 over An,k. Under this notation, we don’t need to consider
standalone terms in the lemma below, which adapts to our setting a result from [10].

Lemma 4.2. Let W = (Wi) with Wi = (Ui,Vi) be a sequence of pairs included in
(Un,k,Vn,k). Let C(~x,~y) be a monotone circuit with local oracles of the form

C(x,y) =
∨
i∈[t]

(
dXie∧ y[Ui,Vi]

)
,

where t is arbitrary, |Xi| ≤ b
√

kc, k(n) ≥ 5, and all rectangles Ui×Vi ⊆ B, for some
set B⊆Un,k×Vn,k of locality µ ≤ 1/16. Then, for large enough n, the following holds.

1. Either C(x,F?) accepts a subset of Vn,k of measure at least 1/10, or

2. C(x,F?) rejects a subset of Un,k of measure at least 1/10.

Proof. If t = 0 the circuit computes a constant function, and consequently one of the
items above must hold. Otherwise, for each i ∈ [t], since Ui×Vi ⊆ B and Dn,k =
DU

n,k×DV
n,k, we have that either DU

n,k(Ui)≤ µ1/2 or DV
n,k(Vi)≤ µ1/2. We consider two

cases.
First, assume there is i ∈ [t] such that DV

n,k(Vi)≤ µ1/2 ≤ 1/4. Then,

Pr
H∼DV

n,k

[(dXie∧ f ?i )(H)= 1] ≥ 1−Pr[dXie(H)= 0]−Pr[H ∈Vi] ≥ 3/4−Pr[dXie(H)= 0].
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The latter probability is 0 if |Xi| ≤ 1. Otherwise, it can be upper bounded by

Pr
χ∼V χ

n,k

[ |χ(Xi)|< |Xi| | G(χ) ∈Vn,k ] ≤ (1+o(1)) · ∑
{a,b}∈(Xi

2 )

Pr
χ∼V χ

n,k

[χ(a) = χ(b)]

(since |Xi| ≤ b
√

kc) ≤ (1+o(1)) ·
(
b
√

kc
2

)
· k−1
(k−1)2 .

This shows that item 1 above holds, using k ≥ 5 and the previous estimate.
If there is no i ∈ [t] satisfying DV

n,k(Vi) ≤ µ1/2, by the observation in the first
paragraph of this proof we get that DU

n,k(Ui)≤ µ1/2 and DV
n,k(Vi)> µ1/2 for all i ∈ [t].

Recall that the measure of B is at most µ ≤ 1/16. Therefore, it must be the case that
|
⋃

iUi|/|Un,k| ≤ µ1/2, as each KB in this union contributes at least µ1/2 to the measure
of B. Due to our choice of F? and the structure of C, C(~x,F?) will accept at most a
(1/4)-fraction of Un,k, and item 2 holds.

Crucially, Lemma 4.2 requires no upper bound on the number of terms appearing
in C, and this will play a fundamental role in the argument below.

For the rest of the proof, let D(~x,~y) be a monotone CLO of size s that computes
k-clique over An,k, and Wi = (Vi,Ui) for i≤ e be its associated pairs, where e≤ s. As
usual, we set B=

⋃
iUi×Vi. Recall the extra condition on the local oracle gates.

Assumption Ad: If J ⊆ [e] and |J|> d, then
⋂

j∈J U j = /0.

We can assume without loss of generality that different oracle variables appearing
in the description of the circuit are associated to distinct subsets of Un,k. Indeed, due
to monotonicity (cf. Claim 2.2), we can always take a larger subset of Vn,k if different
oracle variables are associated to the same subset of Un,k. A bit more precisely, if
yi = yi[U ′,Vi] and y j = y j[U ′,Vj], we can redefine these local oracles to use the pair
(U ′,Vi ∪Vj). This does not increase the overall locality, and does not change the
correctness of the computation. Note that this transformation produces oracle variables
associated to the same pair of subsets, but since we use boolean circuits instead of
boolean formulas, oracle variables don’t need to be repeated in the description of the
circuit.

For J ⊆ [e], we use DJ(~x) to denote the circuit with y j substituted by 1 if j ∈ J, and
by 0 otherwise. In particular, each DJ is a monotone circuit in the usual sense, i.e., it
does not contain local oracle gates. Moreover, size(DJ)≤ size(D).

Lemma 4.3. Under Assumption Ad , for every input graph G ∈ An,k,

D(G,F?) =
∨

J∈( [e]
≤d)

DJ(G)∧ f ?(UJ ,VJ)
(G),

where UJ
def
=
⋂

j∈J U j and VJ
def
=
⋃

j∈J Vj (here an empty intersection is Un,k and an empty
union is /0, corresponding to the case where J = /0).

Proof. First, observe that for inputs in An,k,

D(~x,F?)≡
∨

J⊆[e]

(
DJ(~x)∧

∧
j∈J

f ?j (~x)∧
∧
j/∈J

¬ f ?j (~x)
)
,
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JAN KRAJÍČEK AND IGOR C. OLIVEIRA

using our definition of DJ(~x). As we explain below, this circuit is further equivalent to
a circuit where we drop the negated part:

D(~x,F?)≡
∨

J⊆[e]

(
DJ(~x)∧

∧
j∈J

f ?j (~x)
)
.

Clearly, by eliminating some “literals” we can only accept more inputs. However, by
monotonicity the latter is not going to happen. Indeed, if we have a term and a negative
input H ∈Vn,k such that DJ(H)∧

∧
j∈J f ?j (H) = 1 but

∧
j/∈J¬ f ?j (H) = 0, then there is a

set J′ with J ⊆ J′ ⊆ [e] such that DJ′(H)∧
∧

j∈J′ f ?j (H)∧
∧

j/∈J′ ¬ f ?j (H) = 1, where we
have used the monotonicity of D(~x,~y) in order to claim that DJ′(H)≥ DJ(H). This is
impossible, since by assumption D(~x,F?) separates Un,k and Vn,k.

Using Lemma 3.1, we know that
∧

j∈J f ?j = f ?(UJ ,VJ)
, for UJ and VJ as in the statement

of the lemma. Under assumption Ad , whenever |J|> d we get UJ = /0. Therefore,

D(~x,F?)≡
∨

J∈( [e]
≤d)

(
DJ(~x)∧ f ?(UJ ,VJ)

(~x)
)
∨

∨
J∈( [e]

>d)

(
DJ(~x)∧ f ?( /0,VJ)

(~x)
)
. (4.1)

Using the equivalences established above and the correctness of the original circuit,
the circuit in (4.1) accepts every input in Un,k, and rejects every input in Vn,k. Now
observe that the right-hand terms of the circuit cannot accept an input in Vn,k, due to
the presence of the functions f ?( /0,VJ)

. Thus such terms can be discarded, and the circuit
obtained after this simplification still accepts Un,k and rejects Vn,k. This completes the
proof of the lemma.

Observe that UJ ×VJ ⊆ B for every J ⊆ [e], due to Lemma 3.1. In particular,
the simplification above is well-behaved with respect to the new oracle rectangles
introduced in the transformation.

The next steps of our argument rely on results from Alon and Boppana [1] related
to the approximation method [12]. We follow the terminology of the exposition in
Boppana and Sipser [3, Section 4.2]. For the rest of the proof, we let ` def

= b
√

kc,
p def
= d10

√
k logne, and m def

= (p− 1)` · `!. (Recall that ` is the size of each indicator
set dXie, m is the maximum number of indicators in each approximator, and p is an
auxiliary parameter.9)

Approximate each individual circuit DJ(~x) as in Boppana-Sipser, obtaining a corre-
sponding depth-2 approximator D̃J(~x). Since each DJ(~x) is a monotone circuit of size
at most s, our choice of Un,k and Vn,k and the argument in [3] provide the following
bounds.

Lemma 4.4. [3, Lemma 4.3]. For each J ⊆ [e], the number of positive test graphs

G ∈Un,k for which DJ(G)≤ D̃J(G) does not hold is at most E+ def
= s ·m2 ·

(n−`−1
k−`−1

)
.

Lemma 4.5. [3, Lemma 4.4]. For each J ⊆ [e], the number of negative test graphs

(colorings) χ ∈V χ

n,k for which DJ(G(χ))≥ D̃J(G(χ)) does not hold is at most E− def
=

s ·m2 · [
( l

2

)
/(k−1)]p · (k−1)n.

9Do not confuse this definition of m with the number of edges in the input graph, which will not be
needed in the rest of the proof.
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Now define using D and the individual approximators D̃J a corresponding monotone
circuit D̃(~x,~y) with access to the functions f ?(UJ ,VJ)

:

D̃(~x,F?)
def
=

∨
J∈( [e]

≤d)

(
D̃J(~x)∧ f ?(UJ ,VJ)

(~x)
)
. (4.2)

Clearly, D(G,F?) 6= D̃(G,F?) on an input G ∈ An,k only if for some approximator D̃J

we have D̃J(G) 6= DJ(G). Furthermore, at most ∑
d
j=0
(e

j

)
≤ (e+1)d ≤ (s+1)d distinct

circuits DJ are approximated. Combining this with Lemmas 4.4 and 4.5, a union bound,
and the fact that the original circuit is correct on every input graph in An,k, we get:

Pr
G∼DU

n,k

[D̃(G,F?) = 1] ≥ 1− (s+1)d · E
+(n

k

) ,
and similarly,

Pr
H∼DV

n,k

[D̃(H,F?) = 0] ≥ (1−o(1)) · Pr
χ∼V χ

n,k

[D̃(G(χ),F?) = 0∧G(χ) ∈Vn,k]

≥ (1−o(1)) ·
(
1−Pr

χ
[D̃(G(χ),F?) = 1]−o(1)

)
≥ (1−o(1)) ·

(
1− (s+1)d · E−

(k−1)n

)
.

We can assume each one of these probabilities→ 1 as n→ ∞, since otherwise we
get that s≥ nΩ(

√
k/d) using the values of E−, E+, p, `, and m, completing the proof of

Theorem 1.2. In more detail, let δ > 0 be an arbitrary small constant, and suppose that:

(s+1)d ·
s ·m2 ·

(n−`−1
k−`−1

)(n
k

) ≥ δ or (s+1)d ·
s ·m2 · [

( l
2

)
/(k−1)]p · (k−1)n

(k−1)n ≥ δ .

Due to the upper bound on k in the statement of Theorem 1.2, using estimates entirely
analogous to the ones employed in [3] (which are routine and left to the reader), it
follows in each case that:

(s+1)d+1 ≥ nΩ(
√

k).

This justifies the claim made above on the convergence of the probabilities.
Now expand each term D̃J(~x)∧ f ?(UJ ,VJ)

(~x) in D̃(~x,F?) (Equation 4.2), using that

(see [3]) each circuit D̃J(~x) is either a union of clique indicators of bounded size:

D̃J(~x)≡
∨

i∈[mJ ]

dXJ
i e

for mJ ≤m and an appropriate choice of sets XJ
i ⊆ [n] satisfying 0≤ |XJ

i | ≤ `, or D̃J ≡ 0.
This produces a circuit equivalent to D̃(~x,F?) over inputs in An,k, and it can be written
in the following form:

D̃(~x,F?)≡
∨
i∈[t]

(
dXie∧ f ?(U ′i ,V ′i )(~x)

)
(4.3)
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Here t can be arbitrarily large, but observe that U ′i ×V ′i ⊆ B for every i ∈ [t] (due
to Lemmas 3.1 and 4.3). We don’t assume that (U ′i ,V

′
i ) 6= (U ′i′ ,V

′
i′) when i 6= i′, and

similarly for Xi and Xi′ .
Finally, we know that the circuit in Equation 4.3 accepts a subset of Un,k of measure

1− o(1), and that it rejects a subset of Vn,k of measure 1− o(1). By construction,
each clique indicator in the description of D̃ has size at most ` ≤ b

√
kc. Together

with U ′i ×V ′i ⊆B for every i ∈ [t] and the upper bound on the locality of B, we get a
contradiction to Lemma 4.2.

The proof of Theorem 1.2 is complete. Observe that, under the same assumptions,
it is possible to obtain a slightly stronger trade-off of the form: ed · s ≥ nΩ(

√
k).

5 Concluding remarks

We discuss below some questions and directions motivated by our results, and elaborate
a bit more on the connection to proof complexity.

Monotone circuit complexity. The main open problem in the context of circuit com-
plexity is to understand the size of monotone circuits of small locality separating the
sets Un,k and Vn,k, under no further assumption on the y-variables. It is not clear if
the hypothesis Ad in Theorem 1.2 is an artifact of our proof. As far as we know, it is
conceivable that smaller circuits can be designed by increasing the overlap between the
sets Ui.10

However, if one is more inclined to lower bounds, we mention that the fusion
approach described in [7] can be easily adapted to monotone circuit with local oracles,
and that this point of view might be helpful in future investigations of unrestricted
monotone CLOs.

Another question of combinatorial interest is whether the phase transitions observed
in Theorem 1.1 extend to more expressive classes of monotone circuits beyond depth
two. More broadly, are the phase transitions observed here particular to k-clique, or an
instance of a more general phenomenon connected to computations using monotone
circuits extended with oracle gates?

Corollary 1.3 suggests the following problem. Is it possible to refine the approach
from [1], and to prove that the monotone circuit size complexity of k-clique is nΩ(k)

for a larger range of k? In a related direction, it would be interesting to understand if
monotone CLOs can shed light into the difficulties in proving stronger monotone circuit
size lower bounds for other boolean functions of interest, such as the matching problem
on graphs (see e.g. [1, Section 5] and [6, Section 9.11]).

Proof complexity. Back to the original motivation from proof complexity, we have
been unable so far to transform proofs in R(Lin/F2) into monotone CLOs satisfying
Ad , for d ≤ k1/2−ε , or certain variations of Ad under which Theorem 1.2 still holds.

10We notice that non-monotone polynomial size circuits containing oracles of small locality can compute
any boolean function (see [10, Section 3]). A similar phenomenon appears in the adaptation of real-valued
monotone circuits to general real-valued circuits [11, Section 7], but in that case strong lower bounds are
known against monotone real-valued circuits.
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Observe that, using the connections established in [10], this would be sufficient for
exponential lower bounds on proof size.

The reduction from randomized feasible interpolation actually provides a distri-
bution on monotone CLOs Cr with a common bound on their sizes such that each is
correct and they satisfy:

Pr
r
[(u,v) ∈Br]≤ µ for every fixed pair (u,v) ∈U×V,

where Br is the union of the oracle rectangles in Cr. An averaging argument then
yields a fixed monotone CLO whose locality is bounded by µ . One might lose some
information useful for a lower bound in this last step depending on the choice of the
distribution D supported over U×V .

Even though our initial attempts at establishing new length-of-proofs lower bounds
have been unsuccessful, we feel that in order to prove limitations for R(Lin/F2) and
for other proof systems via randomized feasible interpolation it should be sufficient to
establish lower bounds against monotone CLOs under an appropriate assumption on
the oracle gates. (In particular, the existence of monotone CLOs of small size and small
locality separating Un,k and Vn,k does not imply that the approach presented in [10] is
fruitless.) For instance, while Ad is a semantic condition on the (unstructured) sets Ui

and Vi, one can try to explore the syntactic information obtained on these sets from a
given proof, such as upper bounds on the circuit complexity of separating each pair Ui

and Vi, or other related structural information.
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