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Abstract

We introduce and study the following natural total search problem, which we call the heavy
element avoidance (Heavy Avoid) problem: for a distribution on N bits specified by a Boolean
circuit sampling it, and for some parameter δ(N) ≥ 1/poly(N) fixed in advance, output an
N -bit string that has probability less than δ(N). We show that the complexity of Heavy Avoid
is closely tied to frontier open questions in complexity theory about uniform randomized lower
bounds and derandomization. Among other results, we show:

1. For a wide range of circuit classes C, including ACC0,TC0, NC1 and general Boolean cir-
cuits, EXP does not have uniform randomized C-circuits if and only if Heavy Avoid for uni-
form implicit C-samplers has efficient deterministic algorithms infinitely often. This gives
the first algorithmic characterization of lower bounds for EXP against uniform random-
ized low-depth circuits. We show similar algorithmic characterizations for lower bounds in
PSPACE, NP and EXPNP.

2. Unconditionally, there are polynomial-time pseudodeterministic algorithms that work in-
finitely often for several variants of Heavy Avoid, such as for uniform samplers of small
randomness complexity. In contrast, the existence of a similar algorithm that solves Heavy
Avoid for arbitrary polynomial-time samplers would solve a long-standing problem about
hierarchies for probabilistic time.

3. If there is a time and depth efficient deterministic algorithm for Heavy Avoid, then BPP =
P. Without the depth-efficiency requirement in the assumption, we still obtain a non-trivial
form of infinitely-often deterministic simulation of randomized algorithms. These results
are shown using non-black-box reductions, and we argue that the use of non-black-box
reductions is essential here.
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1 Introduction

Let C be a Boolean circuit sampling a distribution D on N -bit strings. Say that an N -bit string
y is δ-heavy in D if y occurs with probability at least δ in D. Assuming that some 2δ-heavy string
exists, for δ ≥ 1/poly(N), how hard is it to find a δ-heavy string given C as input?

We call this natural search problem the heavy element finding (Heavy Find) problem. It is not
difficult to see that the complexity of Heavy Find is closely related to the complexity of deran-
domization. There is a simple randomized polynomial-time algorithm for Heavy Find: we use C
to draw O(N/δ2) independent samples from D and output the string that occurs with the greatest
multiplicity in the multiset of samples. A standard application of Chernoff–Hoeffding bounds shows
that assuming that a 2δ-heavy string exists, the output of the algorithm will be a string that is
δ-heavy in D with high probability.

Moreover, a deterministic polynomial-time algorithm for Heavy Find implies BPP = P. Indeed,
let M be a probabilistic polynomial-time Turing machine with error bounded by 1/4 and x be an
input to M . We can define a circuit sampler Cx which interprets its input as randomness r for the
computation of M on x, outputting 1N if M accepts on x using randomness r and 0N otherwise.
Observe that if M accepts x, the unique solution to Heavy Find on input Cx with parameter
δ = 1/3 is 1N , and if M rejects x, the unique solution to Heavy Find on input Cx with parameter
1/3 is 0N . Thus, a deterministic polynomial-time algorithm for Heavy Find allows us to decide if
M accepts x, also in deterministic polynomial time.1

We now turn our original question on its head: given C as input, how hard is it to find a string
that is not δ-heavy? We call this the heavy element avoidance (Heavy Avoid) problem. Heavy
Avoid is the complementary search problem to Heavy Find: a string y ∈ {0, 1}N is a solution to
Heavy Avoid if and only if it is not a solution to Heavy Find. The complexity of Heavy Avoid is
the primary focus of this paper.

Superficially, Heavy Avoid seems to be a much simpler problem to solve than Heavy Find.
First, when δ > 2−N , Heavy Avoid is a total search problem, i.e., the promise that a non-heavy
N -bit string exists is automatically satisfied. In this paper, we mainly focus on the regime where
δ ≥ 1/poly(N), hence this is always true if N is large enough. Second, there is a trivial algorithm
that list-solves Heavy Avoid: Since the number of δ-heavy strings is at most 1/δ, at least one of
the lexicographically first ⌈1/δ⌉ + 1 strings of length N is guaranteed to be a solution to Heavy
Avoid. Third, there is a very efficient randomized algorithm for Heavy Avoid with overwhelming
success probability: output a uniformly random string of length N . Note that by the previous
observation that the number of δ-heavy strings is at most 1/δ, this randomized algorithm fails on
at most 1/δ ≤ poly(N) of its random choices.

Our main contribution is to introduce Heavy Avoid as a natural search problem of interest, and
show that despite its seeming simplicity, Heavy Avoid has applications to several frontier questions
in complexity theory regarding uniform randomized lower bounds and derandomization. Indeed,
we show that in many settings the existence of algorithms for Heavy Avoid is equivalent to a com-
plexity lower bound. The study of Heavy Avoid also illuminates recent almost-all-inputs-hardness
assumptions in the theory of derandomization [CT21], and leads to novel white-box reductions in
settings where black-box reductions are hard to show. Moreover, the connections between Heavy
Avoid and complexity lower bounds can be used to derive efficient unconditional pseudodeterminis-
tic algorithms (in the sense of [GG11]) for Heavy Avoid in several settings, i.e., efficient randomized
algorithms that output some fixed solution to Heavy Avoid with high probability.

1Readers who are familiar with derandomization might already see that the derandomization also holds for the
promise version of BPP (prBPP). In fact, it is not hard to show that Heavy Find can be solved in deterministic
polynomial time if and only if prBPP collapses to prP, the promise version of P.
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1.1 Results

We now discuss our results in greater detail. We present algorithmic characterizations of uniform
lower bounds via Heavy Avoid, unconditional pseudodeterministic algorithms for Heavy Avoid, and
connections between derandomization with minimum assumptions and Heavy Avoid. Thus, our
results can be divided naturally into three sets.

• In Section 1.1.1, we present algorithmic characterizations of lower bounds against uniform
probabilistic circuits via Heavy Avoid. That is, deterministic algorithms for Heavy Avoid (in
certain settings and with certain parameters) are equivalent to such lower bounds. In fact,
we obtain very general characterizations that hold for classes such as EXP,PSPACE,EXPNP

and NP, against uniform randomized circuit classes such as ACC0, TC0, or SIZE[poly]. This
suggests that the analysis of Heavy Avoid could be useful in attacking frontier open questions
such as EXP ⊈ BP-ACC0 and EXPNP ⊈ BPP.

• In Section 1.1.2, we use our algorithmic characterizations together with other ideas to give
unconditional pseudodeterministic algorithms for several variants of Heavy Avoid.

• In Section 1.1.3, we give applications of Heavy Avoid to derandomization, including novel
white-box reductions from promise problems that are hard for prRP or prBPP to Heavy Avoid,
as well as connections to “almost-all-inputs-hardness” assumptions that have been explored
in recent work on derandomization.

We consider both uniform and non-uniform versions of Heavy Avoid. In the uniform version,
the search algorithm is given N in unary, and needs to find a δ-light2 element in DN , where
D = {DN}N∈N is an ensemble of distributions over N -bit strings that are sampled by some uniform
sequence of circuits from a circuit class. Since D is sampled by a uniform sequence of circuits, we
do not need to give the circuit sampler explicitly to the search algorithm—the search algorithm
can compute the circuit sampler by itself. In this uniform variant of the problem, fix a parameter
δ : N → [0, 1], (D, δ)-Heavy-Avoid is the problem of finding a δ(N)-light element in DN , given 1N

as input. This variant is the one we consider in Sections 1.1.1 and 1.1.2.
In the non-uniform variant of the problem, the search algorithm is given as input a circuit

sampler C from some circuit class C, and needs to output a δ-light element in the distribution
sampled by C. This is the version we mostly consider for the results in Section 1.1.3.

There are also two kinds of samplability we consider: implicit and explicit. In the implicit
version, our sampler C is Boolean: given randomness r as input together with an index i ∈ [N ],
it outputs the i’th bit of the string sampled on randomness r. In this setting, the circuit size is
typically less than N . In the explicit version, the circuit C is given randomness r as input and has
N output bits: it outputs the string sampled on randomness r. In this setting, the circuit size is at
least N , since there are N output bits. Note that when we show an implication from solving Heavy
Avoid to proving lower bounds, the implication is stronger when we consider implicit solvers, since
the algorithmic problem is easier to solve for implicit samplers.3 An implicit solver C(r, i) can
easily be converted to an equivalent explicit solver

CExplicit(r) := C(r, 1)C(r, 2) . . . C(r,N).

2A δ-light element is one that is not δ-heavy.
3We measure the complexity of solving the search problem as a function of N , even in the implicit-sampler setting.
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1.1.1 Equivalences Between Complexity Separations and Algorithms for Heavy Avoid

It is a long-standing open question to prove lower bounds against non-uniform circuits – we
still have not ruled out the possibility that every language computable in exponential time with
an NP oracle (EXPNP) has polynomial-size circuits. What is more embarrassing is our inability to
separate EXPNP from BPP (see, e.g., [Wil13b, Wil19] for discussions), despite the belief shared by
many researchers that BPP = P [NW94, IW97].4 Moreover, the state of affairs is the same regarding
lower bounds against uniform probabilistic circuits from restricted circuit classes: for example, it is
open whether EXP can be simulated by DLOGTIME-uniform probabilistic ACC0 circuits or EXPNP

can be simulated by DLOGTIME-uniform probabilistic TC0 circuits.5

Our first set of results gives equivalences between such explicit lower bounds against uniform
probabilistic circuits and efficient deterministic algorithms for Heavy Avoid. The equivalences work
in a wide variety of settings, for a range of circuit classes including ACC0,TC0,NC1 and general
Boolean circuits, and for explicit lower bounds in several standard complexity classes of interest such
as EXP,EXPNP,PSPACE and NP. Notably, these results give new algorithmic characterizations of
uniform lower bound questions by the existence of efficient algorithms for a natural search problem.
Thus they could potentially be useful in attacking frontier open questions such as the EXP vs
(uniform probabilistic) ACC0 question, or the EXPNP vs BPP question.

We use BP-C to denote the set of languages computed by DLOGTIME-uniform probabilistic
C-circuits.

Theorem 1.1 (Informal). Let C be a nice6 class of Boolean circuits. The following equivalences
hold:

(i) EXP ⊈ BP- C if and only if (D, δ)-Heavy-Avoid with δ(N) = 1/polylog(N) can be solved in
deterministic polynomial time on infinitely many input lengths for any D that admits implicit
DLOGTIME-uniform C-samplers of size polylog(N).

(ii) EXPNP ⊈ BP- C if and only if (D, δ)-Heavy-Avoid with δ(N) = 1/polylog(N) can be solved in
deterministic polynomial time with an NP oracle on infinitely many input lengths for any D
that admits implicit DLOGTIME-uniform C-samplers of size polylog(N).

(iii) PSPACE ⊈ BP- C if and only if (D, δ)-Heavy-Avoid with δ(N) = 1/polylog(N) can be solved
in deterministic logarithmic space on infinitely many input lengths for any D that admits
implicit DLOGTIME-uniform C-samplers of size polylog(N).

(iv) NP ⊈ BP- C if and only if (D, δ)-Heavy-Avoid with δ(N) = 1/polylog(N) can be solved by
DLOGTIME-uniform unbounded fan-in circuits of quasi-polynomial size and constant depth on
infinitely many input lengths for any D that admits implicit DLOGTIME-uniform C-samplers
of size polylog(N).

For the PSPACE lower bounds, analogous algorithmic characterizations hold for almost every-
where uniform lower bounds and for lower bounds against uniform randomized sub-exponential size

4Since BPP is strictly contained in SIZE[poly] [Adl78], the open problem of separating EXPNP from BPP is strictly
more embarrassing than separating EXPNP from SIZE[poly]! See also [Wil19, Table 1] for a related perspective.

5It follows from EXPNP ⊈ ACC0 [Wil14, CLW20], which is a non-uniform circuit lower bound, that EXPNP cannot
be simulated by DLOGTIME-uniform probabilistic ACC0 circuits. (Note that we do not know how to prove such lower
bounds by exploiting the circuit uniformity condition.)

6In brief, a nice circuit class is one that contains AC0[⊕], is closed under composition, and admits universal circuits
for the corresponding class.

3



circuits. Perhaps interestingly, it follows from our arguments that the existence of efficient algo-
rithms for (D, δ)-Heavy-Avoid in the settings considered in Theorem 1.1 is robust with respect to
the threshold parameter δ(N): the existence of algorithms for any δ(N) = o(1) yields the existence
of algorithms of similar complexity for δ(N) = 1/polylog(N).

Theorem 1.1 has direct corollaries that characterize frontier open questions in complexity theory.

Corollary 1.2 (Informal). The following results hold:

(i) EXPNP ⊈ BP-TC0 if and only if Heavy-Avoid for implicit DLOGTIME-uniform TC0-samplers
can be solved in deterministic polynomial time with access to and NP oracle on infinitely many
input lengths.

(ii) PSPACE ⊈ BP-ACC0 if and only if Heavy-Avoid for implicit DLOGTIME-uniform ACC0-
samplers can be solved in logarithmic space on infinitely many input lengths.

Previously, algorithmic characterizations of non-uniform lower bounds were known for classes
such as NEXP [IKW02, Wil16] and EXPNP [Kor21, RSW22], and such characterizations for uniform
randomized lower bounds against general circuits (that is, against BPP) were known for EXP
[IW01] and NEXP [Wil16]. We are not aware of any previous algorithmic characterization of super-
polynomial non-uniform or uniform randomized lower bounds for NP.

As a consequence of our results, we also observe a sharp threshold phenomenon in the setting of
quantified derandomization of search problems (see Section 1.3 below for related work on quantified
derandomization and some discussions, and Section 3.3 for a proof of this corollary).

Corollary 1.3. For every function e(N) = ω(1), there is a unary BPP search problem S such that:

• S(1N ) can be solved in randomized poly(N) time by an algorithm that uses N random bits
and errs on at most e(N) random bit sequences;

• If there exists a randomized polynomial-time algorithm for S with non-zero success probability
that errs on at most O(1) random bit sequences for any input, then EXP ̸= BPP.

1.1.2 Unconditional Pseudodeterministic Algorithms for Heavy Avoid

Recall that a randomized algorithm is pseudodeterministic if it outputs the same answer with
high probability. In the next result, we use the results of the previous subsection together with
other ideas to obtain unconditional pseudodeterministic algorithms for different variants of Heavy
Avoid.

Theorem 1.4. Let D = {DN}N≥1 be a distribution ensemble, where each DN is supported over
{0, 1}N . The following results hold:

(i) Let C be a nice class of Boolean circuits, and suppose D admits implicit DLOGTIME-uniform
C-samplers of size polylog(N). Then, for every function δ(N) = 1/(logN)k, where k ∈ N,
either (D, δ)-Heavy-Avoid can be solved in logarithmic space on infinitely many input lengths,
or (D, δ)-Heavy-Avoid can be solved pseudodeterministically by DLOGTIME-uniform BP- C-
circuits of size polylog(N) on all input lengths.7

In particular, when C is the class of general Boolean circuits and δ(N) = 1/(logN)k, there
is a polynomial-time pseudodeterministic algorithm for the (D, δ)-Heavy-Avoid problem that
succeeds on infinitely many inputs.

7In other words, the corresponding DLOGTIME-uniform BP- C-circuit E(i) is given i ∈ [N ] = {0, 1}logN and
outputs the i-th bit of the solution with high probability.
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(ii) Suppose D admits a polynomial-time sampler of randomness complexity (logN)O(1). Then,
for every function δ(N) = 1/(logN)k, where k ∈ N, there is a polynomial-time pseudode-
terministic algorithm for the (D, δ)-Heavy-Avoid problem that succeeds on infinitely many
inputs.8

(iii) Suppose D admits a polynomial-time sampler. Then, for every function δ(N) = 1/Nk,
where k ∈ N, and for every constant ε > 0, there is a pseudodeterministic algorithm for the
(D, δ)-Heavy-Avoid problem that runs in time 2N

ε
and succeeds on infinitely many inputs.

Moreover, in all items the corresponding algorithm behaves pseudodeterministically on every input.

While the pseudodeterministic algorithms above are for natural algorithmic problems about
samplers, the design and analysis of the algorithms rely heavily on connections to complexity
theory.

The first item of Theorem 1.4 provides a pseudodeterministic polynomial-time infinitely-often
algorithm for Heavy Avoid for implicit samplers. Moreover, this algorithm computes pseudodeter-
ministically on all input lengths. We observe that the existence of a pseudodeterministic algorithm
with these properties for the larger class of explicit samplers (as in the third item of Theorem 1.4)
would solve the longstanding open problem of showing a tight hierarchy theorem for probabilistic
time [KV87, Bar02, FS04, FST05, vMP06]. This is captured by the following result (see Section 4.4
for a more detailed discussion).

Proposition 1.5. Suppose that for every polynomial-time samplable distribution ensemble D =
{DN}N≥1, the corresponding (D, δ)-Heavy-Avoid problem for δ(N) = 1/ logN admits a pseudo-
deterministic polynomial-time algorithm that succeeds on infinitely many input lengths and be-
haves pseudodeterministically on all input lengths. Then, for every constant k ≥ 1, we have
BPE ⊈ BPTIME[2k·n] (in particular, for every constant c ≥ 1, BPP ⊈ BPTIME[nc]).

1.1.3 Connections to Derandomization

Our final set of results explore relations between the complexity of Heavy Avoid and fundamental
questions in derandomization. We consider the non-uniform variant of Heavy Avoid, where a
Boolean circuit sampler is given as input to the algorithm solving Heavy Avoid. For δ : N→ [0, 1],
Implicit-δ-Heavy-Avoid is the problem where we are given as input a circuit C implicitly sampling
a distribution on N bits (as explained at the beginning of Section 1.1), and would like to output a
δ-light element in the distribution.

Our first result shows that the existence of efficient deterministic algorithms for Heavy Avoid
that in addition can be implemented by sub-polynomial depth uniform circuits leads to a complete
derandomization of prBPP. Note that in this result, to obtain the desired conclusion it is sufficient
for this algorithm to solve the problem for implicit samplers.

Theorem 1.6. Let δ(N) = o(1) be any function. Suppose there is a constant ϵ > 0 and a deter-
ministic algorithm A that solves the Implicit-δ-Heavy-Avoid problem on implicit samplers of size
N ϵ. Moreover, assume that A can be implemented as a logspace-uniform circuit of size poly(N)
and depth No(1). Then prBPP = prP.

If we could eliminate the circuit depth constraint from the statement of Theorem 1.6, it would
be possible to establish an equivalence between the derandomization of prBPP and algorithms for

8Note that the result in this item subsumes the “in particular” result from the previous item.
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Heavy Avoid (in both the implicit and explicit settings). While obtaining this strong characteriza-
tion remains elusive, in the next result we get a non-trivial derandomization consequence from the
existence of an efficient algorithm for Heavy Avoid without assuming a circuit depth bound.

Let GAP-SAT denote the promise problem where YES instances are Boolean circuits with at
least half of assignments being satisfying, and NO instances are unsatisfiable Boolean circuits. It
is well known that GAP-SAT is complete for the promise version of RP.

Theorem 1.7 (Informal). Let δ(N) = o(1) be any function. Suppose there is an algorithm for
Implicit-δ-Heavy-Avoid on maps G : {0, 1}poly(n) → {0, 1}N (where N = 2n

ϵ
) implicitly com-

putable by an input circuit of size poly(n), where the Heavy Avoid algorithm runs in poly(N) time
and is infinitely-often correct. Then there is an algorithm for GAP-SAT that runs in subexponential
time and is infinitely-often∗ correct.9

Theorem 1.6 and Theorem 1.7 are both established using non-black-box reductions that make
use of recent hardness-randomness tradeoffs. In more detail, as explained in Section 1.2 below,
Theorem 1.6 crucially relies on the instance-wise hardness-randomness tradeoff for low-depth cir-
cuits of Chen and Tell [CT21], while Theorem 1.7 combines the framework of [CT21] and the
“leakage-resilient” hardness-randomness framework of Liu and Pass [LP23]. In contrast to the non-
black-box nature of the proofs given for these two results, we show that it will be quite difficult
to obtain them using black-box reductions. In particular, we show that improving Theorem 1.7 to
a polynomial-time Levin reduction [Lev73] would derandomize prBPP.10 Stated more precisely, if
there is an efficient black-box Levin reduction from the search version of GAP-SAT to Heavy Avoid
(even with respect to non-uniform explicit samplers), then prBPP = prP holds unconditionally. We
refer to Section 5.3 for more details.

Finally, we establish a deeper connection between the implicit non-uniform variant of Heavy
Avoid considered in this section and the recent paradigm of instance-wise hardness-randomness
tradeoffs alluded to above [CT21, LP22, LP23, CTW23]. Roughly speaking, in this paradigm, we
convert a hard function f : {0, 1}n → {0, 1}poly(n) with multiple output bits into pseudorandomness,
where the obtained derandomization is instance-wise: for every x ∈ {0, 1}n, if f is hard to compute
on x, then the derandomization of the corresponding computation over input x succeeds. Naturally,
the derandomization assumptions used in these results need almost-all-inputs hardness, meaning
that f is hard on all but finitely many inputs (instead of input lengths).11 In Section 5.4, we prove
that the existence of efficient deterministic algorithms for Heavy Avoid in the implicit non-uniform
setting is equivalent to the existence of functions f with multiple output bits that are easy to
compute deterministically but are hard against fixed polynomial-size randomized algorithms. This
result sheds light into the relevance of the techniques that we employ to prove Theorem 1.6 and
Theorem 1.7, and suggest that developing further connections between Heavy Avoid and these
modern hardness-randomness tradeoffs paradigms could be a fruitful research direction.

9In Theorem 1.7, we only obtain GAP-SAT algorithms satisfying a technical condition called infinitely-often∗

correctness, which is a nonstandard variant of infinitely-often correctness. The crucial difference is that, for a
sequence of inputs {xn}n∈N, given 1n, the algorithm is allowed to inspect every input x1, x2, . . . , xpoly(n), and needs to
provide a solution for xn. In other words, the algorithm is correct infinitely-often∗ if it outputs the correct answer on
infinitely many input lengths n while having access to all input strings from the sequence that have length polynomial
in n. We refer the reader to Definition 5.7 and to the proof of Theorem 5.8 for more details.

10Recall that in a Levin reduction between search problems we have a pair (f, g) of functions, where f maps to an
instance of the other problem while g converts a given solution into a solution to the original problem.

11Compared with classical hardness-randomness frameworks such as [NW94, IW97, STV01], the advantage of the
new paradigm is that lower bounds against uniform algorithms (instead of non-uniform circuits) suffice for worst-case
derandomization.

6



1.2 Techniques

We now discuss the proofs of Theorem 1.1, Theorem 1.4, Theorem 1.6, and Theorem 1.7. We
make use of a variety of techniques to establish these results:

• The proof of Theorem 1.1 Item (iii) relies on extremely efficient instance checkers for a special
PSPACE-complete problem investigated in [Che23]. This allows us to establish equivalences for
very weak circuits classes C at the frontier of existing separations. Extending the equivalence
result to NP, EXP, and EXPNP in the context of weak circuit classes poses some additional
challenges that we address through different ideas and techniques.

• In the proof of Theorem 1.4 Item (i), we use an instance checker to design a polynomial-
time pseudodeterministic algorithm for the (D, δ)-Heavy-Avoid problem. To our knowledge,
this is the first application of instance checkers in the design of an algorithm for a natural
problem. On the other hand, the algorithms in Items (ii) and (iii) of Theorem 1.4 explore a
connection to randomized time-bounded Kolmogorov complexity [Oli19, LO22] and its source
coding theorem [LO21, LOZ22].

• The proof of Theorem 1.6 relies on a novel application of the Chen–Tell non-black-box hitting
set generator construction from [CT21, CLO+23]. In contrast to previous applications, here
the reconstruction procedure of the generator itself, as well as the assumed algorithm for
Heavy Avoid, plays a key role in the specification of a “hard” function.

• Finally, the proof of Theorem 1.7 builds on the proof of Theorem 1.6. It combines for
the first time the Chen–Tell derandomization framework [CT21] with the leakage resilience
derandomization framework of [LP23], using a win-win analysis. We show that either the
Heavy Avoid algorithm is leakage resilient, which allows us to use the framework of [LP23],
or it can be implemented by a low-depth circuit, which allows us to use the framework of
[CT21]. This enables us to derive a non-trivial derandomization consequence without the
circuit depth constraint present in the hypothesis of Theorem 1.6.

Next, we describe some of our proofs and techniques in more detail.

Sketch of the Proof of Theorem 1.1. We first explain the proof of Item (iii), i.e., the equiv-
alence between the complexity separation PSPACE ⊈ BP- C and the existence of (infinitely often)
logarithmic-space algorithms for Heavy-Avoid over implicit DLOGTIME-uniform C-samplers.

First, we show how to obtain the separation using algorithms for the implicit heavy avoid
problem. Using standard arguments, it suffices to show that for every choice of k ≥ 1, there is
L ∈ DSPACE[n2] such that L cannot be computed by DTIME[k·log n]-uniform randomized C-circuits
of size nk.

Let N = 2n. We consider a map GN : {0, 1}nO(k) → {0, 1}N that views its input string x as
a pair (M, r), where M is a short encoding (say, log n bits) of a clocked machine running in time
10k · log n, and r is a random string. Let DM be the C-circuit of size at most n2k whose direct
connection language is encoded by the machine M . For i ∈ [N ], we define the i-th output bit of
GN (x) as DM (r, i). Due to its running time, the computation of M can be uniformly converted
into an AC0 circuit of size at most n10k. Using that C is a nice circuit class, GN can be implicitly
computed by a DLOGTIME-uniform probabilistic C-circuit CN of size at most nO(k).

Let B(1N ) be an algorithm of space complexity O(logN) that solves C-Implicit-δ-Heavy-Avoid
on infinitely many values of N for the sequence GN , and let LB be the language defined by B.
Note that LB is in DSPACE[O(n)] ⊆ DSPACE[n2]. To argue that LB cannot be computed by
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DTIME[k · log n]-uniform randomized C-circuits of size nk, it is enough to show that for every
language L computed by such circuits, each string in the sequence {yLN}N of truth-tables obtained
from L is δ-heavy in GN (Um(N)). Since B solves C-Implicit-δ-Heavy-Avoid for the sequence {GN},
it follows that LB ̸= L.

The proof that the sequence {yLN}N of truth-tables obtained from L is δ-heavy in GN (Um(N))
relies on the definition of GN . In more detail, under the assumption that L admits DTIME[k · log n]-
uniform randomized C-circuits of size nk, it is not hard to show that its truth-table is produced
with probability comparable to 2−|M |. However, this probability is sufficiently large under the
assumption that the encoding length |M | is small in the definition of GN .

The proof of the other direction in Theorem 1.1 is more interesting. We establish the contra-
positive. Suppose that for some GN : {0, 1}poly(n) → {0, 1}N implicitly computed by DLOGTIME-
uniform C-circuits of size poly(n), every algorithm A(1N ) running in space O(logN) fails to solve
C-Implicit-δ-Heavy-Avoid on every large enough input length N . We employ this assumption to
show that PSPACE ⊆ BP- C. For this, we recall the notion of instance checkers. Let L ⊆ {0, 1}∗ be
a language, and let {C(−)

n (x, z)}n∈N be a family of probabilistic oracle circuits. We say that C is
an instance checker for L if for every input x ∈ {0, 1}∗:

1. Prz[C
L
|x|(x, z) = L(x)] = 1, and

2. for every oracle O, Prz[C
O
|x|(x, z) /∈ {L(x),⊥}] ≤ 1/2n.

We will rely on an appropriate PSPACE-complete language L⋆ that admits highly efficient instance
checkers computable in any nice circuit class. This is a consequence of a result from [Che23], as
explained in Appendix B.

We then consider a candidate algorithm A(1N ) that computes as follows. On input 1N , define
ttN to be the truth table of L⋆ on n-bit inputs; we simply output ttN . It is possible to show that
A computes in space O(logN) after an appropriate scaling of parameters, which we we omit here
for simplicity. Therefore, A fails to solve C-Implicit-δ-Heavy-Avoid on every large enough input
length N . This means that for every large enough N , the probability of ttN under the distribution
GN (Upoly(n)) from above is at least δ = 1/(logN)O(1) = 1/poly(n).

To explain how we compute L⋆ on an input x ∈ {0, 1}n, assume for simplicity that the oracle
instance checker circuit (call it IC) only queries its oracle on input length n. We sample v := nO(1)

strings z1, . . . , zv ∈ {0, 1}poly(n) uniformly and independently at random, and for each string zi, we
define an oracle Oi whose truth table is the string GN (zi) ∈ {0, 1}N . We run IC in parallel and
obtain bi := ICOi

n (x) for each i ∈ [v]. We output 1 if at least one bit among b1, . . . , bv is 1, and 0
otherwise.

Next, we argue that A computes L⋆ with high probability. Let ttN denote the truth table of
L⋆ on input length n. By our choice of v, with high probability the string ttN appears among the
strings GN (z1), . . . , GN (zv), meaning that one of the oracles Oi computes L⋆ on inputs of length n.
Consequently, in this case, if L⋆(x) = 1 then at least one bit bi = 1, and the procedure outputs 1.
On the other hand, if L⋆(x) = 0, then by a union bound over the internal randomness of IC, with
high probability every bit bi ∈ {0,⊥}. In this case, the procedure outputs 0. This establishes the
correctness of A. Using the efficiency of the instance checker and that C is a nice circuit class, it is
also possible to upper the circuit complexity of A and to analyze the uniformity of the corresponding
circuits. This implies that L⋆ ∈ BP- C. Since L⋆ is PSPACE-complete under DLOGTIME-uniform
projection reductions, we get that PSPACE ⊆ BP- C, as desired.

We now briefly comment on the additional ideas needed for the proofs of the other items in
Theorem 1.1. The proof of Item (ii) requires a different approach, since instance checkers for
EXPNP-complete languages are not known. We provide two different proofs in this case. In more

8



detail, the result for EXPNP can be obtained using a win-win argument and a reduction to Item
(iii), or through the use of selectors for EXPNP-complete languages [Hir15]. These two approaches
provide different extensions of the result, which we discuss in detail in Section 3.3. On the other
hand, the proof of Item (iv) relies on a randomized depth-efficient version of the search-to-decision
reduction for SAT based on the Valiant-Vazirani Isolation Lemma [VV86], as well as the equivalence
between the polynomial hierarchy and DLOGTIME-uniform constant-depth circuits of exponential
size [BIS90].

Sketch of the Proof of Theorem 1.4. First, we discuss the proof of Item (i) in the case where
C = “general Boolean circuits”. Consider a map GN : {0, 1}poly(n) → {0, 1}N that is implicitly
computable in time poly(n). We consider two cases, based on whether EXP = BPP.

If EXP ⊈ BPP, then by Theorem 1.1 Item (i) (with circuit class C = “general Boolean circuits”)
the heavy avoid problem over GN can be solved in deterministic polynomial time (i.e., in time
poly(N)) on infinitely many input lengths. Note that the correctness of the procedure obtained
from Theorem 1.1 Item (i) relies on the existence of instance checkers for EXP-complete languages.

In the remaining case, assume that EXP ⊆ BPP. LetB(j) be the following deterministic machine
with input j ∈ {0, 1}n: It first goes over all choices of x ∈ {0, 1}poly(n) and computes GN (x), then
calculates the probability of each string in {0, 1}N produced in this way, and finally outputs the j-th
bit of the lexicographic first string y such that Pr[GN (Upoly(n)) = y] ≤ δ. Note that B runs in time
exponential in n, its input length. Therefore, it defines a language LB ∈ EXP. By the assumption,
LB ∈ BPP. Consequently, we can compute y ∈ {0, 1}N from 1N in pseudodeterministic time
poly(N). Note that in this case the algorithm succeeds on every input length.12

More generally, to obtain the result claimed in Item (i) for a nice circuit class C, we use a similar
approach but consider whether PSPACE ⊈ BP- C instead (see Section 4.1).

In contrast, the proof of Theorem 1.4 Item (iii) relies on ideas from randomized time-bounded
Kolmogorov complexity. More specifically, we consider the randomized Levin complexity of a string
y ∈ {0, 1}n [Oli19], denoted rKt(y). Roughly speaking, rKt(y) measures the minimum description
length of a time-bounded machine that outputs y with high probability. Our key idea is that, by
the coding theorem of [LO21], if a string y can be sampled in polynomial time with probability
at least δ, then rKt(y) = O(log 1/δ). Consequently, to avoid the set of heavy strings produced
by a polynomial-time samplable distribution D, it is sufficient to construct a string z such that
rKt(z) ≥ C ·log n, where C is large enough. In order to implement this idea, we employ a related sub-
exponential time pseudodeterministic construction of strings of large rKt complexity from [LOS21].

Finally, the proof of Theorem 1.4 Item (ii) is obtained via a translation to Item (iii), using a
simple “prefix” reduction described in Section 4.3.

Sketch of the Proof of Theorem 1.6. Using existing results [BF99], in order to derandomize
prBPP it is sufficient to describe an algorithm that, given an input circuit D : {0, 1}M → {0, 1} of
size O(M) with the promise that Pry[D(y) = 1] ≥ 1/2, runs in deterministic time poly(M) and
outputs a positive input of D. To achieve this, we will rely on a novel application of the Chen–Tell
generator [CT21] (with the improved parameters from [CLO+23]). In more detail, given a function
f : {0, 1}n → {0, 1}T (n) computed by logspace uniform circuits of size T (n) and depth d(n), and
a parameter M(n) such that c · log T ≤ M ≤ T 1/c (for a constant c), [CT21, CLO+23] provides
algorithms HSGf and Reconf depending on f such that:

12We remark that using a more involved construction that employs the instance checker as a subroutine, one can
simultaneously consider both cases to describe a single explicit algorithm that succeeds infinitely often. We omit the
details. For a similar situation where a non-constructive win-win argument can be turned into an explicit algorithm,
see [OS17, Section 3.4].
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• The algorithm HSGf (x) runs in deterministic T c time and outputs a set of M -bit strings.

• Given x ∈ {0, 1}n and i ∈ [T ] as inputs, and oracle access to a candidate distinguisher
D : {0, 1}M → {0, 1}, ReconDf (x, i) runs in randomized (dnM)c time. If D is dense and avoids

HSGf (x), then with probability ≥ 1− 2−M , ReconDf (x, i) outputs the i-th bit of f(x).

We consider an appropriate function f ′ : {0, 1}Õ(M) → {0, 1}N , where N = MC1 for a large
enough constant C1. We view the input of f ′ as the description of an arbitrary circuitD : {0, 1}M →
{0, 1} of size O(M). In this construction, the parameter T = MC2 for a large enough constant
C2 > C1, while d = Mo(1) = No(1). Moreover, f ′ will be computed by a logspace-uniform family of
circuits. We then show that HSGf ′(D) hits D if D is a dense circuit. Note that the generator runs
in time poly(T ) = poly(M) by our choice of parameters.

The function f ′ makes use of the algorithm A that solves the Implicit-δ-Heavy-Avoid problem
on instances G : {0, 1}Nϵ → {0, 1}N that are implicitly computable in N ϵ size. In more detail,
we let f ′(D) = A(CD), where CD is an implicit (non-uniform) sampler of size N ϵ for a map
GD : {0, 1}Nϵ → {0, 1}N described next.

First, we make a simplifying assumption: The sampler GD has access to the code of a machine
Mf ′ that serves as a logspace-uniform description of a circuit family that computes f ′. (Observe
that this is self-referential, since we have defined f ′(D) = A(CD) above, while we will also use f ′

to define CD. We will handle this issue later.)
The sampler GD stores D as advice. This is possible because D is of size M , and if C1 is large

enough then M ≪ N ϵ. The implicit sampler CD(r, i) for GD then uses its random input string r
of length N ϵ and i ∈ [logN ] to compute ReconDf ′(D, i, r), where we have made explicit the random

string r used by ReconDf ′ . Since d = Mo(1) and C1 is large enough, we get that ReconDf ′(D, i, r) can

be computed in time (d ·M1+o(1) ·M)c ≤M c+o(1) ≤ N ϵ. This completes the definition of f ′(D) and
of HSGf ′(D). We note that to establish the size, depth, and logspace-uniformity of the sequence of
circuits computing f ′ we can rely on the fact that f ′ only needs to produce the code of CD.

13

Next, we argue that HSGf ′(D) hits any dense circuitD. Assume this is not the case. Then, since
D avoids the generator, ReconDf (D, i) outputs the i-th bit of f ′(D) with probability at least 1−2−M .

Consequently, by a union bound over i ∈ [N ], it follows that the string A(CD) = f ′(D) ∈ {0, 1}N is
output by ReconDf (D, ·) with probability 1− o(1). In other words, the string f ′(D) is sampled with
high probability by the sampler GD encoded by CD. On the other hand, since f ′(D) = A(CD) and
A solves the heavy avoid problem for GD, we get that the string f ′(D) has probability o(1) under
GD. This contradiction implies that HSGf ′(D) indeed hits D.

It remains to explain how to fix the self-referential nature of the definition of GD via the
implicit sampler CD, which depends on f ′ (and which in turn depends on CD). In more detail, the
construction is self-referential due to the use of the routine ReconDf ′ , which depends on f ′. To patch
the argument, we combine the following key points:

• There is a deterministic algorithm that, given the Turing machine Mf ′ that prints the circuit
for f ′ in logspace, outputs the description of Reconf ′ in poly(|⟨Mf ′⟩|) time.

• We can combine constantly many samplers into a single sampler that produces the convex
combination of the corresponding distributions. A string with weight o(1) under the new
distribution must have weight o(1) under each original sampler.

13We make a brief comment about the novelty of this argument. In order to define the “hard” function f ′, here we
make use of the reconstruction procedure of the generator. This is different from an application of this generator in
[CLO+23], where the code of the hitting set procedure plays a key role in the definition of the hard function.
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Therefore, we can change the description of GD so that it interprets a small prefix of its random
input string as the description of a Turing machine Mf that prints a circuit of the expected size
using logarithmic uniformity, then use the first bullet above to produce the procedure Reconf cor-
responding to f . Notice that with this change the sampler GD no longer depends on f ′. Moreover,
since f ′ is encoded by some finite machine Mf ′ , using the second bullet the argument described
above to reach a contradiction and establish the correctness of the hitting set generator still holds:
When D avoids HSGf ′(D) the modified sampler GD outputs the string f ′(D) = A(CD) with con-
stant probability, while as a solution to the heavy avoid problem for GD this string has probability
o(1). This completes the sketch of the argument.14

Sketch of the Proof of Theorem 1.7. Since this is a more sophisticated construction, we only
provide a brief sketch of the idea. As alluded to above, the argument combines the two instance-wise
hardness-randomness tradeoffs introduced by Chen and Tell [CT21] and by Liu and Pass [LP23],
respectively.

We employ a win-win analysis based on whether the assumed algorithm for Implicit-δ-Heavy-Avoid
(call it Avoid) is “leakage resilient” hard. In more detail, let f : {0, 1}n → {0, 1}T be a function,
A be a randomized algorithm, and x ∈ {0, 1}n be an input of f . We say that f(x) is ℓ-leakage
resilient hard against A if for every “leakage string” leak ∈ {0, 1}ℓ, there is some i ∈ [T ] such that
Pr[A(x, leak, i) = f(x)i] ≤ 2/3, where the probability is taken over the internal randomness of A.
Liu and Pass [LP23] showed that leakage resilient hardness can be used for derandomization.

We can now explain the main idea behind the win-win analysis. If Avoid is leakage resilient hard,
we use the hardness-randomness tradeoffs in [LP23]. If this is not the case, we show that Avoid
can actually be implemented by a low-depth circuit. We can then use the hardness-randomness
tradeoffs in [CT21], which requires the hard function to be computed by a low-depth circuit family.

Implementing this plan turns out to require a delicate construction and the notion of infinitely-
often∗ correctness appearing in the statement of Theorem 1.7. We refer to Section 5.2 for more
details.

1.3 Related Work

Our work relates to several recent lines of research in algorithms and complexity theory.

Algorithmic Characterizations of Uniform Lower Bounds. The algorithmic method of
Williams [Wil13a], which derives C-circuit lower bounds for NEXP or EXPNP from non-trivial al-
gorithms for Satisfiability or GAP-SAT for C circuits, has been successful in showing several new
circuit lower bounds [Wil14, Wil18b, Wil18a, MW20, CW19, CLW20]. However, in settings where
non-uniform lower bounds are unknown, it is unclear how to use such methods to at least give
uniform randomized lower bounds. A step towards such methods is to give algorithmic character-
izations of uniform lower bounds, which show that certain algorithmic results are both necessary
and sufficient for lower bounds. An algorithmic approach to the NEXP vs BPP problem is given
in [Wil13b], but this does not seem to give a characterization. An algorithmic characterization of
EXP ̸= BPP follows from [IW01], but this characterization does not extend to frontier lower bound
questions such as EXPNP ⊈ BP-TC0 and EXP ⊈ BP-ACC0. Theorem 1.1 gives generic characteriza-
tions that apply to these and other frontier questions – this showcases the benefits of considering

14We note that this argument is non-black-box. The code of a machine Mf ′ that describes a uniform circuit family
for f ′ is needed to instantiate the Chen-Tell generator. In the aforementioned construction, this means that black-box
access to the algorithm A is not enough.
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the Heavy Avoid problem rather than the previously studied Gap-SAT or Circuit Acceptance Prob-
ability Problem (CAPP). Theorem 1.1 also gives characterizations of uniform lower bounds for NP,
where no algorithmic characterizations at all where known before. An algorithmic approach to
uniform lower bounds for NP is given in [San23], but the method there does not seem to extend to
randomized lower bounds, and moreover does not give unconditional algorithmic characterizations.

Range Avoidance. There have been several recent works on the Range Avoidance problem
[KKMP21, Kor21, RSW22, GLW22, CHLR23, ILW23, GGNS23, CL24, Kra24], which is a total
search problem where we are given a circuit C from n bits to m bits, m > n, and need to output
an m-bit string that is not in the range of C.15 The Range Avoidance problem is tightly connected
to proving non-uniform lower bounds (see, e.g., [Jeř04, Kor21, RSW22, CHR24, Li24, Kra24]).
Heavy Avoid can be thought of as an easier version of Range Avoidance, where we are asked to
output some m-bit string that does not have many pre-images, rather than a string that has no
pre-images at all. Indeed, for δ that is inverse polynomial, Heavy Avoid with parameter δ is a BPP
search problem, which is unknown for Range Avoidance and would have new circuit lower bound
consequences if it were the case. We refer to Appendix A for reductions from both Heavy Avoid
and Heavy Find to Range Avoidance. One of our motivations for defining and studying Heavy
Avoid is that algorithms for this easier problem might give a way to exploit uniformity in the lower
bound.

Quantified Derandomization. In the quantified derandomization setting [GW14, Tel22], we
are interested in the possibility of derandomizing algorithms with overwhelming success probabil-
ity, e.g., derandomization of randomized algorithms for a decision problem that err on at most
S(n) random bit sequences, for some S(n) that is sub-exponential or even just slightly super-
polynomial. Note that this derandomization setting is quite specialized, since bounded-error ran-
domized algorithms are in general allowed to err on an inverse polynomial fraction of all random
bit sequences. A naive way to derandomize such algorithms for decision problems is to run the
randomized algorithm on the lexicographically first 2S(n) + 1 random bit sequences, and take the
majority answer. The question of when it is possible to do better has been studied extensively
[GW14, Tel17, Tel18, CT19, Tel22]. Our Corollary 1.3 identifies an interesting phenomenon for
quantified derandomization of BPP search problems, which has not been studied before. In this
setting, the previously mentioned “naive” method to derandomize doesn’t work, as verifying a can-
didate solution itself involves the use of randomness. We show that for any δ = o(1) there is a
natural search problem, i.e., Heavy Avoid with parameter δ, such that the problem can be solved by
a randomized algorithm which errs on at most 1/δ = ω(1) random bit sequences, but any efficient
randomized algorithm which errs on at most O(1) random bit sequences would imply EXP ̸= BPP!
Thus even slightly beating the performance of a known algorithm in a quantified derandomization
sense would imply a breakthrough lower bound.

Pseudodeterministic Algorithms. The notion of pseudodeterminism was introduced in the
influential work of [GG11]. A pseudodeterministic algorithm for a search problem is a randomized
algorithm that outputs some fixed solution to the search problem with high probability. There
has been a lot of recent work on pseudodeterminism in various settings, as well as connections
to complexity theory (see, e.g., [GGR13, OS17, DPV18, OS18, GL19, DPV21, GIPS21, LOS21,
DPWV22, CDM23]). In general, one might hope to show that every BPP search problem can

15The problem is closely related to the dual weak pigeonhole principle, which has been widely investigated in logic
and bounded arithmetic (see [Kra95, Jeř04, Jeř05, Kra24] and references therein).
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also be solved pseudodeterministically, but this is not known, though there are important special
cases such as finding an N -bit prime for which efficient pseudodeterministic algorithms are known
infinitely often [CLO+23]. Theorem 1.4 gives unconditional pseudodeterministic algorithms for
Heavy Avoid that can be implemented in low depth when the circuit sampler for Heavy Avoid is
itself low depth. Moreover, improving our strongest pseudodeterministic algorithms would have
immediate consequences for the long-standing open problem of showing a hierarchy for randomized
time (Proposition 1.5). Note that unlike the problem of finding an N -bit prime, Heavy Avoid is a
fairly powerful BPP search problem, as evidenced by Theorems 1.6 and 1.7.

Minimal Assumptions for Derandomization. The standard “hardness vs. randomness” ap-
proach towards prBPP = prP requires lower bounds against non-uniform circuits [NW94, IW97,
Uma03]; another line of work employs uniform lower bounds such as EXP ̸= BPP to obtain heuris-
tic (i.e., average-case) derandomization of BPP [IW01, TV07, CRTY23, CRT22]. A long-standing
open problem is whether circuit lower bounds such as EXP ⊈ SIZE[poly] are indeed necessary for
derandomization (see, e.g., [Gol11] and [CRTY23]). Recently, Chen and Tell [CT21] proposed
an instance-wise hardness-randomness tradeoff and showed that almost-all-inputs hardness suf-
fices for worst-case derandomization. The Chen-Tell result has already sparked a new line of
research on instance-wise hardness-randomness tradeoffs and minimal assumptions for derandom-
ization [LP22, LP23, CRT22, CTW23, vMS23] (see also the survey [CT23]). As demonstrated
in Theorems 1.6 and 1.7, these instance-wise hardness-randomness tradeoffs can be used as proof
techniques to connect Heavy Avoid to the problem of derandomizing prRP or prBPP. Moreover,
as we show in Section 5.4, the almost-all-inputs hardness assumptions used in [CT21] are closely
connected to Heavy Avoid. Given the rich interplay between Heavy Avoid and derandomization,
we believe that investigating the complexity of Heavy Avoid is likely to shed further light on the
minimal assumptions required for derandomization.
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2 Preliminaries

2.1 Notation

We use Un to denote the uniform distribution over {0, 1}n. For a distribution D and an element
x, we use D(x) to denote the probability of x under D.

We say that a probability distribution D contains a δ-heavy element if there is x in the support
of D such that D(x) ≥ δ. Any such element x is said to be δ-heavy. In this case, we also say that
the distribution D is δ-heavy. If an element x is not δ-heavy, then we say it is δ-light.

We will often consider a distribution ensemble D = {Dn}n≥1, where each Dn is a distribution
supported over {0, 1}n. For convenience, we might simply refer to D as a distribution. We let
PSAMP denote the set of polynomial-time samplable distributions.

We say a probabilistic algorithm A for a search problem P is pseudodeterministic [GG11], if
for every input x, there is a canonical P-solution y of x such that A(x) outputs y with probability
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≥ 2/3. It is easy to see that the success probability can be amplified to 1 − exp(−n) by parallel
repetition.

2.2 The Heavy Avoid Problem

In general, given a distribution D over {0, 1}n and a parameter δ ∈ (0, 1), the Heavy Avoid
problem asks to find a string x ∈ {0, 1}n such that D(x) < δ. It is easy to see that such a
string always exists as long as 2n > 1/δ. Consequently, the Heavy Avoid problem is a total search
problem. This paper mainly focuses on the regime where 1/δ is significantly smaller than 2n, such
as δ = 1/poly(n) or even just δ ≈ 1/ log n.

In this paper, we will consider the Heavy Avoid problem in different settings, depending on
whether the sampler for D implicitly samples the distribution and whether it is computed uni-
formly.16

• We say a distribution D over {0, 1}n is implicit (or, locally-samplable) if there is an efficient
procedure that given an integer i and the randomness r used by the sampler, outputs the
i-th bit of the sample according to r. In the typical parameter regime, D runs in time t ≈
poly(log n, |r|) which is much smaller than n. Depending on the context, “efficient procedure”
could either mean Turing machines or circuits, as will be addressed in the next bullet. Note
that the random string r is also short and the sampler has sequential access (instead of random
access) to r.

We use the word explicit to describe samplers that take poly(n) time, as opposed to implicit
samplers.

• We say a family of distribution D = {Dn}n∈N is uniformly samplable if there is a Turing
machine M that given 1n (and access to uniformly random bits), samples from Dn. (Similarly,
we often consider a Turing machine M(1n) that prints a circuit that samples Dn.) On the
other hand, if we only have a (non-uniform) family of circuits {Cn}, where each Cn samples
from Dn, then we say the distribution is non-uniformly samplable.

We will also say that uniformly samplable distributions are sampled in time t, while non-
uniformly samplable distributions are sampled in size t.

Explicit Maps

Definition 2.1 (Uniform Heavy Avoid). Let D = {Dn} ∈ PSAMP, where each Dn is supported
over {0, 1}n, and let δ(n) ∈ [0, 1]. In the (D, δ)-Heavy-Avoid problem, given 1n the goal is to output
an element x ∈ {0, 1}n such that Dn(x) < δ(n).

We say that the (D, δ)-Heavy-Avoid problem can be solved in polynomial time if there is a de-
terministic algorithm A(1n) that runs in polynomial time and solves (D, δ)-Heavy-Avoid. Similarly,
the (D, δ)-Heavy-Avoid problem can be solved in pseudodeterministic polynomial time if there is a
pseudodeterministic algorithm A(1n) that runs in polynomial time and solves (D, δ)-Heavy-Avoid.

Definition 2.2 (Non-Uniform Heavy Avoid). Let C : {0, 1}m → {0, 1}n be a Boolean circuit, and
let DC be the distribution induced by C(Um). Let δ ∈ [0, 1]. In the Non-Uniform-Heavy-Avoid
problem, given C and δ, the goal is to output an element x ∈ {0, 1}n such that DC(x) < δ.

16Do not confuse the uniformity of the sampler with the distribution Dn, which most often in this work will not
be the uniform distribution.
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We may also represent 1/δ in unary when we want to emphasize that we consider the regime
where δ ≥ 1/poly(n). In this case, the input consists of (C, 1t), let δ := 1/t, and the goal is to
output a δ-light element of DC .

We say that Non-Uniform-Heavy-Avoid can be solved in polynomial time if for every constant
c ≥ 1, Non-Uniform-Heavy-Avoid over inputs where the circuit C is of size at most nc and δ ≥ 1/nc

can be solved in deterministic polynomial time.
Note that it is not hard to solve Non-Uniform-Heavy-Avoid with randomness.

Proposition 2.3. Let c ≥ 1. There is a probabilistic polynomial-time algorithm A such that, given
a circuit C : {0, 1}m → {0, 1}n of size at most nc and a parameter δ ≥ 1/nc, A runs in time
polynomial in nc and outputs with high probability a set TC,δ of size at most 2 · (1/δ) that contains
all δ-heavy elements of DC . Hence, if we output the lexicographically smallest string not in TC,δ,
then we obtain a probabilistic polynomial-time algorithm solving Non-Uniform-Heavy-Avoid.

Let SC,δ = {x ∈ {0, 1}c | DC(x) ≥ δ}, where DC = C(Um). Note that the algorithm A outputs
with high probability a set TC,δ of bounded size such that SC,δ ⊆ TC,δ. However, different executions
of Amight produce different sets TC,δ. Consequently, this does not give rise to a pseudodeterministic
algorithm for Non-Uniform-Heavy-Avoid.

Implicit Maps (Locally Samplable Distributions)

For locally samplable distributions (which will also be called “implicit maps” in this paper), it
will be important to fix the following notation. A map, or generator, is a function G : {0, 1}m →
{0, 1}N (typically N ≫ m) such that our input distribution is G(Um). We say the map is implicitly
computed by a circuit C if C : {0, 1}m × [N ] → {0, 1} satisfies that for every r ∈ {0, 1}m, C(r, i)
outputs the i-th bit of G(r). The input of Implicit-Heavy-Avoid will be a circuit C even though
we are actually solving Heavy Avoid on the corresponding instance G. (In the uniform case, the
circuit C is generated by a uniform procedure, in which case the input to the problem is simply
1N .)

Although the input length, poly(|C|), is usually much smaller than N , the output length is still
N , hence we still measure the time complexity of algorithms solving Implicit-Heavy-Avoid by N .
For example, we say Implicit-Heavy-Avoid can be solved in deterministic polynomial time if it
can be solved by a deterministic machine that runs in time polynomial in N .

Definition 2.4 (C-Implicit-δ-Heavy-Avoid for non-uniform samplers). Let C be a circuit class,
δ : N → [0, 1], m,N, s : N → N be parameters. We define the C-implicit δ-heavy avoid problem for
maps that stretch m(N) bits to N bits and are implicitly computed by C-circuits of size at most
s(N). (A typical parameter regime is that N = 2n for some integer n, δ(N) = 1/poly(n), and
m(N), s(N) ≤ poly(n). The parameters will be clear in each statement.)

The input of this problem is a size-s C-circuit C : {0, 1}m× [N ]→ {0, 1}. Recall that this circuit
C implicitly defines a map G : {0, 1}m → {0, 1}N such that, for every r ∈ {0, 1}m, and i ∈ [N ],
C(r, i) outputs G(r)i (the i-th bit of the N -bit string G(r)). Given C, the goal is to output an
element y ∈ {0, 1}N such that Pr[G(Um) = y] < δ.

Similarly, we can also define C-Implicit-δ-Heavy-Avoid for uniformly-samplable maps. Here,
we consider families of maps {GN} that are implicitly computed by DLOGTIME-uniform C-circuits
{CN} of size at most s(N). In other words, there is a DLOGTIME-uniform sequence {CN}N≥1
of size-s(N) C-circuits such that, for every N ≥ 1, r ∈ {0, 1}m(N), and i ∈ [N ], CN (r, i) outputs
GN (r)i, i.e., the i-th bit of the N -bit string GN (r). (Here, we say {CN} is DLOGTIME-uniform if
the direct connection language of CN can be decided in O(log s(N)) time.)
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Definition 2.5 (C-Implicit-δ-Heavy-Avoid for uniform samplers). Let m(N), s(N), δ(N) be pa-
rameters as above, and {CN} be a DLOGTIME-uniform sequence of C-circuits that defines a family
of maps {GN}. That is, given r ∈ {0, 1}m and i ∈ [N ], CN (r, i) outputs the i-th bit of GN (r).
The C-Implicit-δ-Heavy-Avoid problem corresponding to {GN} is the following problem: Given
1N the goal is to output a string x ∈ {0, 1}N such that Prr[GN (r) = x] < δ(N).

Note that the input to the Heavy Avoid problem is given by a circuit when we consider the non-
uniform formulations (in both the implicit and explicit settings), while the input to the problem is
simply the input length when we consider uniform formulations (since the sampler can be efficiently
obtained from the input length).

2.3 Time-Bounded Kolmogorov Complexity

This section reviews some notions from time-bounded Kolmogorov complexity (see, e.g., [LO22]
for more details). Let U be a Turing machine. Given a positive integer t and a string x ∈ {0, 1}∗,
we let

Kt
U (x) = min

p∈{0,1}∗

{
|p|

∣∣ U(p) outputs x in at most t steps
}
.

We say that Kt
U (x) is the t-time-bounded Kolmogorov complexity of x (with respect to U). As

usual, we fix U to be a time-optimal machine [LV19], i.e., a universal machine that is almost as
fast and length efficient as any other universal machine, and drop the index U when referring to
time-bounded Kolmogorov complexity measures.

For x ∈ {0, 1}∗, the probabilistic t-time-bounded Kolmogorov complexity of x is defined as

pKt(x) = min

{
k ∈ N

∣∣∣ Pr
w∼{0,1}t

[
∃ p ∈ {0, 1}k, U(p, w) outputs x within t steps

]
≥ 2

3

}
.

In other words, if k = pKt(x), then with probability at least 2/3 over the choice of the random
string w, given w the string x admits a t-time-bounded encoding of length k.

We can also consider the randomized Kt complexity of a string x ∈ {0, 1}∗, defined as

rKt(x) = min
t∈N, p∈{0,1}∗

{
|p|+ ⌈log t⌉

∣∣∣ Pr
r∼{0,1}∗

[U(p, r) outputs x in t steps] ≥ 2/3

}
.

All these notions of time-bounded Kolmogorov complexity can be generalized to capture the
conditional complexity of x given y in the natural way, i.e., by providing y as an extra input string
to the universal machine U .

2.4 Pseudorandomness and Derandomization

Fix an input length n. A generator is simply a multiset G ⊆ {0, 1}n. We will consider families
of generators {Gn}n∈N where each Gn ⊆ {0, 1}n is a generator outputting n-bit strings. In the
literature, it is also common to consider these generators as functions: let ℓ(n) < n denote the seed
length of the generator, then the function Gn : {0, 1}ℓ(n) → {0, 1}n is equivalent to the multiset

{Gn(s) : s ∈ {0, 1}ℓ(n)}.

In this paper, we will use the subset- and functional-definitions of generators interchangeably.
Let A : {0, 1}n → {0, 1} be a function, H ⊆ {0, 1}n be a generator, and ϵ > 0 be a parameter.

We say that A is ϵ-dense if Prx∼{0,1}n [A(x) = 1] ≥ ϵ. We say that A ϵ-avoids H if A is ϵ-dense,
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and for every string x ∈ H, we have A(x) = 0. If A does not ϵ-avoid H, then we say that H ϵ-hits
A.

Let A : {0, 1}n → {0, 1} be a function, G : {0, 1}ℓ → {0, 1}n be a generator, and ϵ > 0 be a
parameter. We say that A ϵ-distinguishes G, if∣∣∣∣ Pr

x∼{0,1}n
[A(x) = 1]− Pr

s∼{0,1}ℓ
[A(G(s)) = 1]

∣∣∣∣ > ϵ;

otherwise (if the above inequality does not hold), we say that G ϵ-fools A.
Like many papers in derandomization [Gol11, CT21, LP22, LP23], we will consider promise

versions of randomized complexity classes, such as prRP and prBPP. A promise problem [ESY84]
(ΠYES,ΠNO) is a pair of disjoint sets (ΠYES ∩ ΠNO = ∅). A machine solves the corresponding
promise problem if given an input x ∈ {0, 1}∗, it outputs 1 when x ∈ ΠYES and outputs 0 when
x ∈ ΠNO; note that there is no requirement on the behaviour of the machine when x /∈ (ΠYES∪ΠNO).

We also recall the definitions of the canonical prRP-complete problem GAP-SAT and the canon-
ical prBPP-complete problem CAPP.17

Definition 2.6 (GAP-SAT). The problem GAP-SAT is the following promise problem (ΠYES,ΠNO):
ΠYES consists of all circuits C : {0, 1}n → {0, 1} that are 1/10-dense, and ΠNO consists of all circuits
C : {0, 1}n → {0, 1} such that C(x) = 0 for every x ∈ {0, 1}n.

Definition 2.7 (CAPP). The problem CAPP is the following promise problem (ΠYES,ΠNO): On
input (C, δ), where C : {0, 1}n → {0, 1} is a circuit and δ ∈ (0, 1) is a number, ΠYES consists of (C, δ)
where δ ≥ Prx∼{0,1}n [C(x)] + 1/10, and ΠNO consists of (C, δ) where δ ≤ Prx∼{0,1}n [C(x)]− 1/10.

The constant 1/10 in the above two definitions is arbitrary and can be amplified to 1/poly(n)
by parallel repetition.

3 Heavy Avoid and Lower Bounds Against Uniform Probabilistic
Circuits

In this section, we study the connection between the Heavy-Avoid problem and the problem
of proving lower bounds against uniform probabilistic circuits. Our main result is that in many
settings, lower bounds against uniform probabilistic circuits are characterized by the existence of
algorithms for Implicit-Heavy-Avoid.

Let C be a circuit class. A probabilistic C-circuit E(x; z) is a circuit from C that computes
over an input x and an input z, where the latter corresponds to the random choice of E. We
denote BP- C the set of languages L that can be computed by a DLOGTIME-uniform sequence of
probabilistic C-circuits of polynomial size. We stress that the uniform machine generating the C
circuit is deterministic, while the circuit itself is allowed to make random choices (z).

Our results hold for any (uniform probabilistic) circuit class C that is nice, i.e., satisfies a few
technical conditions. More precisely, we say a circuit class C is nice if the following holds:

• (C contains AC0[⊕].) AC0[⊕] ⊆ C.

• (C is closed under composition.) For every language L ∈ C and every DLOGTIME-uniform

family of oracle circuits {C(−)
n }n∈N making non-adaptive projection queries where the top (i.e.,

post-processing) circuit is in C, the language computed by the circuit family {CLn
n }n∈N is still

in DLOGTIME-uniform C.
17CAPP stands for “Circuit Acceptance Probability Problem.”
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• (C admits universal circuits.) There is a DLOGTIME-uniform family of C-circuits Eval
such that given the description of a C-circuit C (i.e., the truth table of the direct connection
language of C) and an input x, Eval(⟨C⟩, x) outputs C(x).

In the case that C is the union of depth-d circuits for every constant d, such as AC0 or TC0,
we allow Eval to have higher depth than C: for every fixed depth d, the circuit evaluation
problem can be solved by a family of DLOGTIME-uniform C-circuit of constant depth.

It is not hard to check that many standard circuit classes considered in the literature are nice,
e.g., AC0[⊕], ACC0, TC0, NC1, P/poly. For instance, universal circuits for NC1 are constructed in
[Bus87], while universal circuits for TC0 can be built using the universal threshold function (see,
e.g., [BW05]) and standard techniques.

A note on notation: throughout this section, when we use parameters n and N together, we
implicitly assume N = 2n. We switch back and forth between the two parameters based on which
one is more natural in a given context.

3.1 Equivalences for PSPACE via Instance Checkers

Our equivalences for PSPACE follow from the existence of instance checkers [BK95, TV07] for
PSPACE-complete languages. To establish our equivalences with respect to restricted circuit classes,
we use a recent construction of AC0[⊕]-computable instance checkers by Chen [Che23].

Below, we say that an oracle circuit E(−)(x, z) from BP- C makes projection queries if every query
it makes to the oracle can be computed by a projection over the inputs (x, z). After gathering the
answers of the oracles, the final output is computed by a C circuit over (x, z) and these oracle
answers. We stress that any oracle circuit that makes projection queries is non-adaptive. When we
say such a circuit is DLOGTIME-uniform, we mean that both the projection (computing the queries
to the oracles) and the top C circuit are DLOGTIME-uniform.

Theorem 3.1 (A PSPACE-Complete Language with Useful Properties). There is a language L⋆ ⊆
{0, 1}∗ with the following properties:

1. (Complexity Upper Bound) L⋆ ∈ PSPACE.

2. (Completeness) L⋆ is PSPACE-hard under DLOGTIME-uniform projection reductions.

3. (Instance Checkability) There is a DLOGTIME-uniform family of BP-AC0[⊕] oracle cir-
cuits {ICn}n≥1 making projection queries such that, on every input string x ∈ {0, 1}n and for
every oracle O ⊆ {0, 1}∗, the following holds:

• ICOn (x) only makes queries of length n to O.
• If O agrees with L⋆ on inputs of length n, then Prr[IC

O
n (x; r) = L⋆(x)] = 1.

• For every oracle O, Prr[IC
O
n (x; r) ∈ {⊥, L⋆(x)}] ≥ 1− exp(−n).

Theorem 3.1 follows from [Che23, Section 7]; we refer the reader to Appendix B for more details.

We say that the C-Implicit-δ-Heavy-Avoid problem corresponding to a given family {GN} of
implicitly computed maps can be solved in space s(N) if there is an algorithm A of space complexity
s(N) such that, for every input length N , there is some x ∈ {0, 1}N for which A(1N , i) outputs the
i-th bit of x for all i ∈ [N ], and x is a solution to the C-Implicit-δ-Heavy-Avoid problem for GN .

Theorem 3.2 (Equivalence for PSPACE). Let C be a nice class of Boolean circuits. The following
statements are equivalent:
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(i) PSPACE ⊈ BP- C.

(ii) For every choice of c, d, ℓ ∈ N, with m(N) = nd and δ(N) = 1/nℓ, and for every sequence
{GN} of maps GN : {0, 1}m(N) → {0, 1}N implicitly computed by DLOGTIME-uniform C-
circuits of size at most nc, the corresponding C-Implicit-δ-Heavy-Avoid problem can be solved
in space O(logN) on infinitely many input lengths N .

Proof. We consider each implication below.

(ii) ⇒ (i). Using the assumption, we show below that for every choice of k ≥ 1, there is L ∈
DSPACE[n2] such that L cannot be computed by DTIME[k · log n]-uniform randomized C-circuits
of size nk.18 Since there exist PSPACE-complete problems, a standard argument shows that this
implies PSPACE ⊈ BP- C.

Fix a large enough k ≥ 1, and consider the map GN : {0, 1}m(N) → {0, 1}N defined as follows,
where m(N) := n3k. The map GN views its input string x as a pair (M, r), where M is the
description of a clocked deterministic machine running in time 10k · log n, and r is the rest part
of x, treated as a random string. We assume that this encoding satisfies that for a random x,
every machine M of description length ℓ occurs with probability Θ(2−ℓ/ℓ2) (this is possible since∑

ℓ≥1
1
ℓ2

is bounded). The important part is that if the description length of M is a constant, then

it occurs with constant probability. Let DM : {0, 1}n2k ×{0, 1}n → {0, 1} be the C-circuit of size at
most n2k encoded by the machine M(1n, ·) (i.e., we assume that M computes the direct connection
language of DM ). For i ∈ {0, 1}n, we define the i-th output bit of GN (x) as DM (r, i). Note that a
uniform computation over inputs of length at most 10k · log n and running in time 10k · log n can be
uniformly converted into an AC0 circuit of size at most n10k. Since C contains AC0, admits universal
circuits, and is closed under composition, GN can be implicitly computed by a DLOGTIME-uniform
probabilistic C-circuit CN defined over m(N) + n input bits and of size at most nC·k, where C is a
large enough universal constant that depends only on the circuit class C.

Let B(1N ) be an algorithm of space complexity O(logN) that solves C-Implicit-δ-Heavy-Avoid
on infinitely many values of N for the sequence GN , with parameters c, d ≤ C · k and function
δ(N) ≤ o(1). Let LB be the language defined by B, i.e., a string z ∈ {0, 1}n is in LB if and only if
the z-th bit of B(1N ) (with N = 2n) is 1. Note that LB is in DSPACE[O(n)].

We now argue that LB cannot be computed by DTIME[k · log n]-uniform randomized C-circuits
of size nk. To prove this, it is enough to show that for every language L computed by such circuits,
each string in the sequence {yLN}N of truth-tables obtained from L is δ-heavy in GN (Um(N)) for
every large enough N . Under this claim, since B solves C-Implicit-δ-Heavy-Avoid for the sequence
{GN}, it follows that LB ̸= L.

To see that the claim holds, recall that L is computed by DTIME[k ·log n]-uniform randomized C-
circuits of size nk. Consequently, there is a deterministic machine ML that runs in time k · log n and
decides the direct connection language of a corresponding randomized C-circuit DL of size at most
n2k and using at most nk random bits that computes L on n-bit inputs. We now boost the success
probability of the circuit DL via repetition and (approximate) majority vote. More precisely,
since the approximate majority function can be computed by DLOGTIME-uniform AC0 circuits
[Ajt90, Vio09], C contains AC0, and C is closed under composition, there is a deterministic machine

M̃L that runs in time 10k · log n and decides the direct connection language of a corresponding
randomized C-circuit D̃L of size at most nC·k and using at most n2k random bits that computes

18If C is a constant-depth circuit class defined as a union of classes for each fixed depth k, the argument can be
adapted accordingly.
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L on each n-bit input string with probability at least 1 − 2−2n. Moreover, we can assume that
the description length of M̃L is a constant ℓdesc, hence it occurs with constant probability. Let
yLN be the truth-table of L on input length n, i.e., |yLN | = N = 2n. By construction, using
an union bound over all n-bit input strings, the probability that GN (Um(N)) = yLN is at least

Ω(2−ℓdesc/ℓ2desc) · (1 − 2−n) ≥ Ω(1) > δ, for large enough N . This shows that yLN is δ-heavy,
concluding the proof of this item.

(i) ⇒ (ii). We argue in the contrapositive. In other words, suppose that there is a choice of
constants c, d, and ℓ, with m(N) = nd and δ(N) = 1/nℓ, and a sequence GN : {0, 1}m(N) → {0, 1}N
implicitly computed by DLOGTIME-uniform C-circuits of size nc such that every algorithm A(1N )
running in space O(logN) time fails to solve C-Implicit-δ-Heavy-Avoid on every large enough
input length N . Next, we use this assumption to establish that PSPACE ⊆ BP- C, which concludes
the proof.

We consider a candidate algorithm A(1N ) that computes as follows. Consider the language L⋆

from Theorem 3.1, and assume that L⋆ ∈ DSPACE[na], where a ∈ N. For a given N ′ = 2n
′
, we let

tt⋆N ′ ∈ {0, 1}N
′
denote the truth table of L⋆ over inputs of length n′. On input 1N , algorithm A

outputs the string yN = tt⋆N ′0uN ∈ {0, 1}N , where N ′ = 2n
′
for n′ = n1/a, and uN = N −N ′.

Note that A computes in space O(logN), due to our choice of parameters. Therefore, A fails to
solve C-Implicit-δ-Heavy-Avoid on every large enough input length N . This means that for every
large enough N the probability of yN under GN (Um(N)) is at least δ = 1/nℓ.

We first describe a randomized algorithm that computes L⋆, deferring for now a discussion of
its correctness, circuit complexity, and uniformity. Let n = (n′)a, as above. To compute L⋆ on
a given input x of length n′ ∈ N, we sample v = n3ℓ strings z1, . . . , zv ∈ {0, 1}m(N) uniformly
and independently at random, and use the 2n

′
-bit prefixes O′1, . . . ,O′v of the corresponding oracles

O1, . . . ,Ov as candidate oracles for L⋆ on input length n′, where each Oi is the oracle associated

with the string GN (zi) ∈ {0, 1}N . In more detail, let bi = IC
O′

i
n′ (x), where ICn′ is the algorithm from

Theorem 3.1. We output 1 if at least one bit among b1, . . . , bv is 1, and 0 otherwise.
Next, we argue that A computes L⋆ with high probability. Consider an arbitrary input length

n′ and a given input string x ∈ {0, 1}n′
. By our choice of v, with high probability the string yN

appears among the strings GN (z1), . . . , GN (zv). In particular, with high probability the truth table
tt⋆N ′ appears as an N ′-bit prefix of one of these strings, meaning that one of the oracles O′i computes
L⋆ on inputs of length n′. Consequently, in this case, if L⋆(x) = 1 then at least one bit bi = 1, and
the procedure outputs 1. On the other hand, if L⋆(x) = 0, then by a union bound over the internal
randomness of ICn′ , with high probability every bit bi ∈ {0,⊥}. In this case, the procedure outputs
0. This establishes the correctness of A.

It remains to establish an upper bound on the circuit complexity of A and to analyze the
uniformity of the corresponding circuits. Note that each bit bi ∈ {0, 1,⊥} can be computed by a
randomized C-circuit of polynomial size, since GN is implicitly computed by C-circuits of polynomial
size, ICn′ is computable by randomized C-circuits of polynomial size, and C is closed under compo-
sition. Moreover, the disjunction of the bits bi can also be computed in C, since this class contains
AC0[⊕]. Therefore, A can be implemented by randomized C-circuits of polynomial size. Finally,
it is not hard to check that the corresponding sequence of randomized C-circuits is DLOGTIME
uniform, since IC is computed by DLOGTIME-uniform randomized circuits, and GN is implicitly
computed by DLOGTIME-uniform circuits.

The above discussion implies that L⋆ ∈ BP- C. Since L⋆ is complete under DLOGTIME-uniform
projection reductions, we get that PSPACE ⊆ BP- C, as desired.

Our characterizations also extend to almost-everywhere lower bounds and sub-exponential lower

20



bounds, as demonstrated in the following theorems.

Theorem 3.3. Let C be a nice class of Boolean circuits. The following statements are equivalent:

(i) PSPACE ⊈ i. o.BP- C.

(ii) For every choice of c, d, ℓ ∈ N, with m(N) = nd and δ(N) = 1/nℓ, and for every sequence
{GN} of maps GN : {0, 1}m(N) → {0, 1}N implicitly computed by DLOGTIME-uniform C-
circuits of size at most nc, the corresponding C-Implicit-δ-Heavy-Avoid problem can be solved
in O(log(N)) space for all large enough N .

Proof Sketch. The result follows from the same argument given for Theorem 3.2:

• (ii) ⇒ (i): If our algorithm B is correct on input 1N , then our language L is hard on input
length n.

• (i) ⇒ (ii): If the language L⋆ is hard on input length n′, then our algorithm A is correct on
input 1N where N = 2(n

′)a .

We use BP- C-SIZE[f(n)] to denote the class of languages computable by DLOGTIME-uniform
BP- C circuits of size f(n).

Theorem 3.4. Let C be a nice class of Boolean circuits. The following statements are equivalent:

(i) There is a constant ϵ > 0 such that PSPACE ⊈ BP- C-SIZE[2nϵ
].

(ii) There is a constant ϵ > 0 such that for δ(N) := 2−n
ϵ
and for every sequence {GN} of

maps GN : {0, 1}2n
ϵ

→ {0, 1}N implicitly computed by DLOGTIME-uniform C-circuits of size
2n

ϵ
, the corresponding C-Implicit-δ-Heavy-Avoid problem can be solved in poly(N) time on

infinitely many input lengths N .

Proof Sketch. The argument is an adaptation of the proof of Theorem 3.2 by adjusting a few
parameters, so we refer the reader to that proof for more details.

To see that (ii) ⇒ (i) holds, let ϵ′ := ϵ/4, and consider the map GN : {0, 1}m(N) → {0, 1}N

where m(N) := 2n
2ϵ′

and the input bits are parsed into the description of a Turing machine M that

encodes a size-2n
ϵ′ C-circuit DM and the rest random inputs (fed to DM ). Like in Theorem 3.2,

we assume that every constant-size Turing machine occurs with constant probability. This map
GN can be implicitly computed by a DLOGTIME-uniform probabilistic C-circuit CN of size 2n

ϵ
, in

the sense that for every x ∈ {0, 1}m(N) and i ∈ [N ], the i-th bit of GN (x) is equal to CN (x, i).

We can see that for every language L ∈ BP- C-SIZE[2nϵ′
], let yLN denote the truth table of Ln,

then the probability that GN (Um(N)) = yLN is at least a constant. Hence, given an algorithm

B(1N ) that solves the C-Implicit-δ-Heavy-Avoid problem for δ = o(1) (on infinitely many N),

the language whose truth table is the output of B(1N ) is not in BP- C-SIZE[2nϵ′
] (on infinitely

many n). Since we further assumed that B runs in space O(logN), we obtain a hard language in

SPACE[O(logN)] = SPACE[O(n)] that is not in BP- C-SIZE[2nϵ′
].

To see that (i)⇒ (ii) holds, let L⋆ denote the PSPACE-complete language in Theorem 3.1 and let
ϵ′ := ϵ/(5a), where a ≥ 1 is a constant such that L⋆ ∈ SPACE[na]. Consider the following algorithm
A(1N ) for solving the C-Implicit-δ-Heavy-Avoid problem with parameter ϵ′. On input 1N , let
n′ := n1/a, N ′ := 2n

′
, yn′ ∈ {0, 1}N ′

be the truth table of L⋆ on input length n′, then A outputs
yn′0N−N

′ ∈ {0, 1}N . If A fails to solve C-Implicit-δ-Heavy-Avoid, then we can compute L⋆ in
BP- C-SIZE[2nϵ

] as follows. Let x ∈ {0, 1}n′
be an instance of L⋆, we set n := (n′)a andN ′ := 2n

′
. We
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sample v := (1/δ(N))3 ≤ 23n
ϵ
strings z1, . . . , zv ∈ {0, 1}2

nϵ

uniformly and independently at random,
and for each string zi we define an oracle Oi : {0, 1}n

′ → {0, 1} whose truth table is the first N ′ bits
of GN (zi). We then run IC against each Oi and obtain bi := ICOi

n′ (x) for each i ∈ [v], and finally we
output 1 if some bi is equal to 1. This algorithm computes L⋆ because with high probability, the
truth table yn′ appears in these oracles, and also the instance checker will never output 1 − L(x)

by mistake. Our algorithm can be implemented in BP- C-SIZE[2n5ϵ′
] ⊆ BP- C-SIZE[2(n′)ϵ ].

Remark 3.5. In the proof of Theorem 3.2, we only need to solve the C-Implicit-δ-Heavy-Avoid
problem for δ = o(1) to obtain the lower bound (i.e., Item (i)), while the latter implies algorithms for
the C-Implicit-δ-Heavy-Avoid problem even when δ = 1/poly(n) = 1/polylog(N). This illustrates
the robustness of the parameter δ in C-Implicit-δ-Heavy-Avoid with respect to O(logN)-space
algorithms: if the problem is solvable for δ = o(1), then it is also solvable for δ = 1/polylog(N).
Similarly, Theorem 3.4 shows that if we consider implicit maps computable in the 2n

ϵ
time regime,

then this problem is solvable for δ = o(1) if and only if it is solvable for δ = 2−n
ϵ
. In fact, it

is evident from the proofs that the robustness of the parameter δ holds in every characterization
result in Section 3.

3.2 Equivalences for NP via Search-to-Decision Reductions

In this section, we show equivalences between uniform randomized lower bounds for NP and
Heavy Avoid algorithms implementable by constant-depth circuits. NP is not known to be instance-
checkable and so we cannot use the technique from the previous section. However, it turns out that
search-to-decision reductions can also be used to argue the desired equivalences. The standard
search-to-decision reduction is highly sequential, so in order to show equivalences that work for any
nice circuit class, we use a depth-efficient version based on the Valiant-Vazirani Isolation Lemma
[VV86] which exploits our access to randomness.

We first need a generalization of the standard result that NP ⊈ BPP iff PH ⊈ BPP.

Lemma 3.6. Let C be a nice circuit class. NP ⊈ BP- C if and only if PH ⊈ BP- C.

Proof Sketch. The proof is essentially the same inductive argument as for the standard equivalence
between NP ⊈ BPP and PH ⊈ BPP. We must show that if NP ⊆ BPP then PH ⊆ BPP. In order
to implement that argument, we need to be able to do error reduction to exponentially small error
by DLOGTIME-uniform randomized C circuits, which holds since C contains AC0, and Approximate
Majority can be computed in DLOGTIME-uniform AC0 [Ajt90, Vio09]. We also need the closure of
C under composition to be able to do induction, but that also holds by niceness of C.

Now we proceed to our equivalences for NP.

Theorem 3.7 (Equivalences for NP). Let C be a nice circuit class. The following statements are
equivalent:

(i) NP ⊈ BP- C.

(ii) There are positive integers k and r such that for every c, d, ℓ ∈ N, with m(N) = nd and δ(N) =
1/nℓ, and for every sequence {GN} of maps GN : {0, 1}m(N) → {0, 1}N implicitly computed by
DLOGTIME-uniform C-circuits of size at most nc, the corresponding C-Implicit-δ-Heavy-Avoid
problem can be solved by DLOGTIME-uniform unbounded fan-in circuits of size 2log(N)r and
depth k on infinitely many input lengths N .
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Proof. We consider each implication below.

(ii) ⇒ (i). We will use the assumption to show that PH ⊈ BP- C, and the desired implication then
follows from Lemma 3.6 and the assumption that C is nice.

As in the proof of the analogous equivalence for PSPACE, fix a large enough a ≥ 1, and consider
the map GN : {0, 1}m(N) → {0, 1}N defined as follows, where m(N) := n3a. The map GN parses
its input string x into (M, r), where M is the description of a clocked deterministic machine
running in time 10a · log n, and r consists of the remaining bits of x, treated as randomness. Let
DM : {0, 1}n2a × {0, 1}n → {0, 1} be the randomized C circuit of size at most n2a encoded by the
machine M(1n, ·) (i.e., we assume that M computes the direct connection language of DM ). For
i ∈ {0, 1}n, we define the i-th output bit of GN (x) as DM (r, i). Note that GN can be implicitly
computed by a DLOGTIME-uniform randomized C circuit CN defined over m(N)+n input bits and
of size at most nC·a, where C is a large enough universal constant.

As per assumption, let {CN} be a DLOGTIME-uniform family of unbounded fan-in circuits of
size 2log(N)r and depth k such that for infinitely many N , CN solves C-Implicit-δ-Heavy-Avoid
on GN , with parameters c = C · a, d = 2a + 1, and δ(N) = o(1). (Recall that each output bit of
GN is computed in time nc, m(N) ≤ nd, and we want to find a δ(N)-light element.) Let L be the
language defined by {CN}, i.e., a string z ∈ {0, 1}n is in L if and only if the z-th bit of CN (1N )
(with N = 2n) is 1. Note that there are integers s and k′ (depending only on r and k) such that L
is in Σk′-TIME[ns] by the known equivalence [BIS90] between PH and DLOGTIME-uniform circuits
of exponential size in n (which is quasi-polynomial size in N).

We now argue that L cannot be computed by DTIME[a · log n]-uniform randomized C circuits of
size na. To prove this, it is enough to show that for every language L′ computed by such circuits,
each string in the sequence {yL′

N }N of truth-tables obtained from L′ is δ-heavy in GN (Um(N)) for
every large enough N . Under this claim, since B solves C-Implicit-δ-Heavy-Avoid for the sequence
{GN}, it follows that L ̸= L′.

To see that the claim holds, suppose that L′ is computed by DTIME[a·log n]-uniform randomized
C circuits DL′ of size na. Consequently, there is a deterministic machine ML′ that runs in time
a · log n and decides the direct connection language of a corresponding randomized C circuit DL′ ,
and the circuit DL′ computes L′ on n-bit inputs, has size at most n2a and uses at most na random
bits. We can then reduce the error of the circuit DL to be exponentially small by using the facts
that Approximate Majority is in DLOGTIME-uniform AC0 [Ajt90, Vio09] and that C is nice. Thus
we obtain a family of randomized Boolean circuits D̃L that has size at most nC·a, uses at most
n2a random bits, and computes L on each n-bit input string with probability at least 1 − 2−2n.
Moreover, there is a deterministic machine ÑL′ that runs in time 10a · log n and decides the direct
connection language of D̃L. Since the description length of ÑL′ is constant, it occurs with constant
probability in the distribution sampled by GN . Let yL

′
N be the truth-table of L′ on input length

n, i.e., |yL′
N | = N = 2n. By construction, using an union bound over all n-bit input strings, the

probability that GN (Um(N)) = yL
′

N is at least Ω(1) · (1 − 2−n) ≥ δ(N). This shows that yL
′

N is
δ-heavy, concluding the proof of the claim.

Note that the language L defined above depends on a, however by the standard fact that there
is a language Lcomp complete for Σk′-TIME[ns] under DLOGTIME-uniform projections of linear
size, we get that that for each a, Lcomp is not computed by DTIME[a · log n]-uniform randomized
C circuits of size na. This implies that Lcomp ̸∈ BP-C, and hence that PH ⊈ BP-C. Therefore
NP ⊈ BP-C by Lemma 3.6, concluding the proof of this item.

(i) ⇒ (ii). We argue in the contrapositive. Suppose that there is a choice of constants c,d,
and ℓ, with m(N) = nd and δ(N) = 1/nℓ, and a sequence GN : {0, 1}m(N) → {0, 1}N implicitly
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computed by DLOGTIME-uniform C circuits of size nc such that every DLOGTIME-uniform sequence
of unbounded fan-in circuits of size 2log(N)2 and depth 3 fails to solve C-Implicit-δ-Heavy-Avoid
on every large enough input length N . We use this assumption to establish that NP ⊆ BP-C, which
concludes the proof.

We consider a candidate algorithm A(1N ) that simply outputs ttN , where ttN is the truth
table of SAT on n-bit inputs. We consider a standard encoding of SAT in which SAT is depth-
efficiently paddable, i.e., there is an algorithm Pad implemented by DLOGTIME-uniform AC0 circuits
which, given as inputs 1t for positive integer t and a formula ϕ of length at most t, outputs an
equisatisfiable formula ϕ′ of length t. Note that A can be implemented by DLOGTIME-uniform un-
bounded fan-in circuits of size 2log(N)2 and depth 3, using the known simulation of non-deterministic
quasi-linear time by uniform unbounded fan-in circuits [BIS90]. By assumption, A fails to solve
C-Implicit-δ-Heavy-Avoid on every large enough input length N . We show how to use this fail-
ure together with a depth-efficient randomized search-to-decision reduction based on the Valiant-
Vazirani Isolation Lemma [VV86] and depth-efficient paddability of SAT to solve SAT in BP-C,
which implies NP ⊆ BP-C by the NP-completeness of SAT with respect to DLOGTIME-uniform
projections.

By the failure of A, we have that for every large enough N , the probability of ttN under
GN (Um(N)) is at least δ = 1/nℓ. First, we describe a polynomial-time randomized algorithm B to
solve SAT. Let ϕ be a length-n input to SAT. For some T = quasipoly(N) and t = log T to be
determined later, we sample v := t5ℓ strings z1, . . . , zv ∈ {0, 1}m(T ) uniformly and independently
at random, and for each string zi, we define an oracle Oi whose truth table is the string GT (zi) ∈
{0, 1}T . For each i ≤ v, we try to use Oi and a depth-efficient search-to-decision reduction to find
a satisfying assignment to ϕ, as follows. Assume without loss of generality that ϕ has n variables.
We do the following for each i in parallel. We check if Oi(pad(1

t, ϕ)) = 1. If this is not the case for
any i, we reject. If Oi does evaluate to 1 on the padded version of ϕ, we use this oracle to find a
candidate satisfying assignment w to ϕ as follows. The idea is to use the Valiant-Vazirani technique
of intersecting the solution space of ϕ with k randomly chosen hyperplanes for k = 1 . . . n to obtain
formulas ϕ1, . . . , ϕn. The Valiant-Vazirani Isolation Lemma [VV86] states that if ϕ is satisfiable,
then with probability at least 1/4n over random choices of these formulas, some ϕj has a unique
solution. Note that each ϕj can be constructed from ϕ by randomized constant-depth circuits. We
would like to use Oi to find and check the unique satisfying assignment so that we can verify that
ϕ is satisfiable. An issue is that the ϕj are in general of size larger than n, but they are still of size
poly(n) and we choose t a large enough polynomial in n so that they can all be padded to length t.
For each ϕj and each of the n original variables xk in ϕ, we use an oracle call to Oi (using padding
if necessary) to determine if there is a satisfying assignment to ϕ with the variable xk set to 0. If
yes, we set the wire bj,k to 1, else to 0. We check if there is a j such that the assignment xk = bj,k
for each k satisfies ϕ. If this is the case for some i, we accept, otherwise we reject. Note that all
of the above can be implemented in constant-depth, apart form the oracle calls to Oi, which we
simulate by evaluations of the implicit sampler for Oi.

By the niceness of C, specifically the assumptions that AC0[⊕] is contained in C and C is closed
under composition, as well as the fact that our sampler is implicitly computed by uniform C circuits,
there are DLOGTIME-uniform randomized C circuits of polynomial size implementing the procedure
above. We need to argue that these circuits correctly solve SAT with high probability. Note that a
circuit only accepts a formula ϕ if it verifies that some assignment satisfies ϕ. Hence it is enough to
check that satisfiable ϕ is accepted with high probability. By our choice of v, with high probability
the string ttT appears with multiplicity ω(n) among the strings GT (z1), . . . , GT (zv), meaning that
ω(n) of the oracles Oi compute SAT on inputs of length t. By the correctness of the paddability
procedure, for all of these correct oracles, satisfiability questions about the randomized formulas
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ϕj are all answered correctly. This together with the lower bound on probability that one of the
ϕj is uniquely satisfiable implies that with probability at least 1− o(1), oracle calls to some oracle
Oi yield a satisfying assignment for ϕ, which is then correctly verified and results in acceptance of
the circuit.

3.3 Equivalences for EXP and EXPNP via a Win-Win Argument and Selectors

In this section, we generalize our equivalence results to the classes EXP and EXPNP.
We provide two proofs. The first proof uses a win-win argument and relies on the existing

equivalence result for PSPACE (Theorem 3.2). The second proof uses selectors for EXPNP-complete
languages [Hir15] or instance checkers for EXP-complete languages [BFL91]. Each proof has its
advantages and disadvantages, as will be discussed in Remark 3.16.

We start with the first proof. We first state the equivalence result for EXPNP.

Theorem 3.8 (Equivalence for EXPNP). Let C be a nice class of Boolean circuits. The following
statements are equivalent:

(i) EXPNP ⊈ BP- C.

(ii) For every choice of c, d, ℓ ∈ N, with m(N) = nd and δ(N) = 1/nℓ, and for every sequence
{GN} of maps GN : {0, 1}m(N) → {0, 1}N implicitly computed by DLOGTIME-uniform C-
circuits of size at most nc, the corresponding C-Implicit-δ-Heavy-Avoid problem can be solved
in deterministic time poly(N) with access to an NP oracle on infinitely many input lengths
N .

Proof. We consider each implication below.

(ii)⇒ (i). The proof is completely analogous to the implication from (ii) to (i) in Theorem 3.2. The
only difference is that due to the access to an NP oracle provided to each deterministic polynomial-
time algorithm for Implicit-δ-Heavy-Avoid, the resulting hard language is in EXPNP as opposed
to PSPACE.

(i) ⇒ (ii). If EXPNP ⊈ BP- C then either EXPNP ⊈ PSPACE or PSPACE ⊈ BP- C. We show that
the desired conclusion holds in each one of these cases.

First, assume that EXPNP ⊈ PSPACE. Recall that if EXPNP ⊆ SIZE[poly] then EXPNP =
PSPACE [BH92]. Therefore, it follows that EXPNP ⊈ SIZE[poly]. In particular, there is a language
L ∈ DTIME[2O(n)]NP such that L /∈ SIZE[nk] for every choice of k. Now fix a choice of c, d, ℓ ∈ N,
with m(N) = nd and δ(N) = 1/nℓ, and consider a sequence {GN} of maps GN : {0, 1}m(N) →
{0, 1}N implicitly computed by DLOGTIME-uniform C-circuits of size at most nc. Consider the
following algorithm A: On input 1N , where N = 2n, A outputs the N -bit string wN corresponding
to the truth-table of L on n-bit strings. Since L ∈ DTIME[2O(n)]NP, A computes in time poly(N)
with access to an NP oracle. Moreover, since L is not computed by (general) Boolean circuits of
size nk on infinitely many input lengths, where k is an arbitrary constant, it follows that wN is not
in the range of GN for infinitely many values of N . Otherwise, there would be a choice a for the
seed of GN such that wN = GN (a), which yields a bounded size circuit for the function encoded by
wN , given that GN is implicitly computed by C-circuits of bounded size. In particular, it follows
that on infinitely many values of N , wN is not δ-heavy for GN , as desired.

Now consider the remaining case, i.e., assume that PSPACE ⊈ BP- C. Then, by Theorem 3.2,
we can solve the required C-Implicit-δ-Heavy-Avoid problem in space O(logN) on infinitely many
input lengths N . Since O(logN) space algorithms can be simulated by poly(N) time algorithm
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(not to mention that we have access to an NP oracle), the desired conclusion also holds in this
case.

It is easy to see that a similar equivalence result for EXP also holds. Actually, the proof is
essentially the same as Theorem 3.8, with the only difference being that we use the Karp–Lipton
theorem for EXP [KL80] instead of the one for EXPNP [BH92]. Hence we only state the result and
omit the proof here.

Theorem 3.9 (Equivalence for EXP). Let C be a nice class of Boolean circuits. The following
statements are equivalent:

(i) EXP ⊈ BP- C.

(ii) For every choice of c, d, ℓ ∈ N, with m(N) = nd and δ(N) = 1/nℓ, and for every sequence
{GN} of maps GN : {0, 1}m(N) → {0, 1}N implicitly computed by DLOGTIME-uniform C-
circuits of size at most nc, the corresponding C-Implicit-δ-Heavy-Avoid problem can be solved
in deterministic time poly(N) on infinitely many input lengths N .

Using Theorem 3.9, it is not hard to prove Corollary 1.3 stated in Section 1.1.1. We restate the
result below for convenience.

Corollary 3.10. For every function e(N) = ω(1), there is a unary BPP search problem S such
that:19

• S(1N ) can be solved in randomized poly(N) time by an algorithm that uses N random bits
and errs on at most e(N) random bit sequences;

• If there exists a randomized polynomial-time algorithm for S with non-zero success probability
that errs on at most O(1) random bit sequences for any input, then EXP ̸= BPP.

Proof Sketch. To argue this, we can assume that EXP ⊆ BPP, since the claim is trivial otherwise.
Then, by Theorem 3.9 with C = “general Boolean circuits” and BP- C = BPP, and using Remark 3.5
on the robustness of δ, there is a uniform polynomial-time sampler and a corresponding distribu-
tion D for which (D, 1/e(N))-Heavy-Avoid does not admit infinitely-often correct deterministic
polynomial-time algorithms. Now note that the corresponding Heavy Avoid problem for D is a
unary BPP search problem S(1N ) that can be solved in randomized poly(N) time by an algorithm
that uses N random bits and errs on at most e(N) random bit sequences (indeed, a random string
of length N satisfies this guarantee). On the other hand, if there is a randomized polynomial-time
algorithm for S with non-zero success probability that only errs on constantly many random bit
sequences for any input, then we argue that there is a deterministic polynomial-time algorithm for
S that succeeds on infinitely many input lengths, which contradicts our assumption. Suppose k is
a constant such that there is some randomized polynomial-time algorithm A for S which errs on
at most k random bit sequences for any input 1N . We define k + 1 deterministic polynomial-time
algorithms A1 . . . Ak+1 such that for some i ∈ [k+1], Ai solves S on infinitely many input lengths.
On input 1N , Ai runs A with random bit sequence ri, where ri is the i-th random bit sequence
used by A on input length N in lexicographical order. Note that since A only makes errors on at
most k random bit sequences for any N and has non-zero success probability, for each N there is
an i such that Ai outputs a correct solution to S on 1N . Since this is the case for each N , there

19For the definition of BPP search problems and related discussions, see, e.g., [Gol11].

26



is some i such that Ai outputs a correct solution to S on 1N for infinitely many N , and our result
follows.20

Next, we present another proof of Theorem 3.8 for the special case where C is the class of
general Boolean circuits. The proof is direct and does not go through win-win arguments. In one
sentence, we use selectors for EXPNP-complete problems [Hir15] and note that the proof strategy
from Theorem 3.2 extends to selectors.

Definition 3.11. We say that a probabilistic polynomial-time oracle machine S is a selector for
a language L ⊆ {0, 1}∗ if the following holds. Let O1,O2 ⊆ {0, 1}∗ be arbitrary oracles. Then, for
any input x ∈ {0, 1}∗, if L ∈ {O1,O2} then

Pr
S
[SO1,O2(x) = L(x)] ≥ 2/3.

It is possible to boost the success probability of the selector using standard techniques. In
addition, [Hir15] proved that if a language L admits a selector then it also admits a selector
that succeeds when given access to polynomially many oracles provided that at least one of them
correctly computes L. These are summarized in the following result.

Theorem 3.12 ([Hir15]). Every EXPNP-complete language admits a selector. Moreover, there is
a paddable EXPNP-complete language L′ ∈ DTIME[2O(n)]NP, a polynomial q, and a probabilistic
polynomial-time oracle algorithm S such that the following conditions hold:

• For every n ≥ 1, x ∈ {0, 1}n, and t ≥ 1, if O1, . . . ,Ot ⊆ {0, 1}∗ and L′ ∈ {O1, . . . ,Ot}, then

Pr
S
[SO1,...,Ot(x, 1t) = L′(x)] ≥ 1− 2−n.

• Every oracle query of S(x) has length exactly q(n). Consequently, it is enough to assume
that the oracles O1, . . . ,Ot : {0, 1}q(n) → {0, 1} and that L′q(n) ∈ {O1, . . . ,Ot}, where L′q(n) =

L ∩ {0, 1}q(n).

The “moreover” part of the result follows from existence of a selector for every EXPNP-complete
problem [Hir15] combined with the paddability of L′ and the discussion above.

Proof of Theorem 3.8, for the case that C is the class of general Boolean circuits.

(ii) ⇒ (i). Again, the proof is completely analogous to the same implication in Theorem 3.2, and
we omit the details.

(i) ⇒ (ii). We argue in the contrapositive. Suppose there is a choice of constants c, d, and ℓ,
with m(N) = nd and δ(N) = 1/nℓ, and a sequence GN : {0, 1}m(N) → {0, 1}N implicitly computed
by general Boolean circuits of size at most nc such that every deterministic algorithm A(1N ) with
access to an NP oracle that runs in poly(N) time fails to solve Implicit-δ-Heavy-Avoid on every
large enough input length N . Next, we use this assumption to establish that EXPNP ⊆ BPP.

We consider a candidate algorithm A′(1N ) with access to an NP oracle that computes as follows.
Consider the EXPNP-complete language L′ from Theorem 3.12. On input 1N , A′ outputs the
truth-table ttN ∈ {0, 1}N of L′ over strings of length n, where N = 2n. Note that A′ uses an

20While the argument presented here is somewhat non-constructive, we remark that it is possible to modify the
proof so that for each k ≥ 1, there is an explicit unary BPP search problem satisfying the same conditions except
that one obtains the weaker conclusion that DTIME[2n] ⊈ BPTIME[nk] in the second bullet. We omit the details.
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NP oracle and computes in time poly(N), since L′ ∈ DTIME[2O(n)]NP. Since A′ fails to solve
Implicit-δ-Heavy-Avoid, for every large enough N , the probability of ttN under GN (Um(N)) is at

least δ = 1/nℓ.
The rest of the argument is similar to that of the proof of Theorem 3.2. To compute L′ on

some input x ∈ {0, 1}n′
, we let n := q(n′), where q is the polynomial from Theorem 3.12. We

sample t := n3ℓ strings z1, . . . , zt ∈ {0, 1}m(N) uniformly and independently at random, and use the
corresponding oracles O1, . . . ,Ot as candidate oracles for L′n, where each Oi computes according
to the string GN (zi) ∈ {0, 1}N . By our choice of t, with high probability the string ttN is among
the oracles obtained from z1, . . . , zt. In this case, there is at least one correct oracle Oi among the
oracles O1, . . . ,Ot. Consequently, if we run S(x, 1t) with access to O1, . . . ,Ot, we compute L′(x)
with high probability. Since n = poly(n′), t = poly(n), the selector runs in time poly(n′, t), and
the simulation of each oracle query to Oi can be done using a computation of the corresponding
bit of GN (zi) in time poly(n), it follows that given x of length n′ we can compute L′(x) with high
probability in time poly(n′). Finally, since L′ is complete for EXPNP, it follows that EXPNP ⊆ BPP,
as desired.

Inspecting the proof, it is not hard to see that it also extends to almost-everywhere and sub-
exponential lower bounds. Since the proofs are straightforward modifications of the argument given
above, we only state the results and omit the proof details.

Theorem 3.13. The following statements are equivalent:

(i) EXPNP ⊈ i. o.BPP.

(ii) For every choice of the parameters c, d, ℓ ∈ N, with m(N) = nd and δ(N) = 1/nℓ, and for
every sequence {GN} of maps GN : {0, 1}m(N) → {0, 1}N implicitly computed in time nc, the
Implicit-δ-Heavy-Avoid problem can be solved with access to an NP oracle in deterministic
time poly(N) for every large enough N .

Theorem 3.14. The following statements are equivalent:

(i) There is a constant ϵ > 0 such that ENP ⊈ BPTIME[2n
ϵ
].

(ii) There is a constant ϵ > 0 such that for δ(N) := 2−n
ϵ
and for every sequence {GN} of

maps GN : {0, 1}2n
ϵ

→ {0, 1}N implicitly computed in time 2n
ϵ
, the Implicit-δ-Heavy-Avoid

problem on {GN} can be solved with access to an NP oracle in deterministic time poly(N) on
infinitely many values of N .

One can also use the instance checkers for EXP-complete languages [BFL91] (which imply se-
lectors for such languages [Hir15]) to prove similar characterizations for EXP. For example, the
following theorem holds (we omit the details as it is the same as our second proof for EXPNP):

Theorem 3.15. The following statements are equivalent:

(i) EXP ⊈ i. o.BPP.

(ii) For every choice of the parameters c, d, ℓ ∈ N, with m(N) = nd and δ(N) = 1/nℓ, and for
every sequence {GN} of maps GN : {0, 1}m(N) → {0, 1}N implicitly computed in time nc, the
Implicit-δ-Heavy-Avoid problem can be solved in deterministic poly(N) time for every large
enough N .

Remark 3.16 (Comparison between the two proof methods). We presented two proofs for Theo-
rem 3.8. Both proofs have their advantages and disadvantages, as we summarize below:
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• The first proof only uses (non-adaptive) instance checkers [Che23] that have small circuit
complexity overheads, hence it works for restricted circuit classes such as AC0[⊕] and ACC0.
On the other hand, the second proof needs to use the selectors for EXPNP [Hir15] which
is highly adaptive, hence does not extend to smaller circuit classes such as C = NC1 or
C = TC0.21

• The second proof proceeds by a direct argument and hence generalizes to almost-everywhere
and sub-exponential time lower bounds (Theorems 3.13 and 3.14), while the first proof uses
a win-win analysis and does not seem to generalize to these cases.

4 Unconditional Pseudodeterministic Algorithms for Heavy Avoid

4.1 A Pseudodeterministic Algorithm for Implicit Maps

We present an unconditional pseudodeterministic algorithm for Implicit-δ-Heavy-Avoid for
general Boolean circuits on infinitely many input lengths. Our algorithm runs in poly(N) time
and works for maps G : {0, 1}poly(n) → {0, 1}N (where N = 2n following our convention) implicitly
computable in poly(n) time.

Theorem 4.1. For every choice of positive constants c, d, and ℓ, with m(N) = nd and δ(N) = 1/nℓ,
and for every sequence {GN} of maps GN : {0, 1}m(N) → {0, 1}N implicitly computed in time nc,
the Implicit-δ-Heavy-Avoid problem can be solved pseudodeterministically in polynomial time on
infinitely many input lengths. Moreover, the algorithm computes pseudodeterministically on every
input length.

Proof. Consider a map GN : {0, 1}nd → {0, 1}N that is implicitly computable in time nc. We
consider two cases, based on whether EXP = BPP.

If EXP ⊈ BPP, then by Theorem 3.9, the Implicit-δ-Heavy-Avoid problem can be solved in
deterministic polynomial time (i.e., in time poly(N)) on infinitely many input lengths. Since the
algorithm is deterministic, it behaves pseudodeterministically on every input length.

In the remaining case, assume that EXP ⊆ BPP. Let B(j) be the following Turing machine with

input j ∈ {0, 1}n: It first goes over all choices of x ∈ {0, 1}nd
and computes GN (x), then calculates

the probability of each string in {0, 1}N produced in this way, and finally outputs the j-th bit of the
lexicographic first string y such that Pr[GN (UM(N)) = y] < δ. Note that B runs in time exponential
in n, its input length. Therefore, it defines a language LB ∈ EXP. By the assumption, LB ∈ BPP.
Consequently, we can compute y ∈ {0, 1}N from 1N in pseudodeterministic time poly(N). Note
that this algorithm succeeds on every input length.

The win-win argument presented in Theorem 4.1 is non-constructive, but it is possible to com-
bine the two cases and the argument from Theorem 3.9 via instance checkers to give an explicit
description of a procedure that solves C-Implicit-δ-Heavy-Avoid on infinitely many input lengths.

21One can also construct non-adaptive instance checkers for EXP-complete languages from highly-efficient PCPs
such as [BGH+06, BS08, BCGT13, BV14]. In fact, the results in [BV14] imply an instance checker whose circuit
complexity is only a 3-CNF over its randomness r. However, it is unclear if that instance checker also has low circuit
complexity over the input x. (Looking into the proof, it seems that one needs to at least compute a Reed–Solomon
encoding of x). Therefore we chose to use the off-the-shelf AC0[⊕] instance checker in [Che23] for PSPACE and resort
to a win-win argument for EXP. On the other hand, it is unclear to the authors whether the selectors in [Hir15] can
be made non-adaptive.
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While instance checkers are well know in the context of program verification and in complexity-
theoretic results, to our knowledge this provides the first algorithm for a natural problem in a
completely different context whose design makes use of instance checkers.

We can extend the proof of Theorem 4.1 to any nice circuit class C. In this case, it is also
possible to obtain a stronger conclusion using a more careful argument.

Theorem 4.2. Let C be a nice circuit class. Let D = {DN}N≥1 be a distribution ensemble,
where each DN is supported over {0, 1}N . Suppose that D admits implicit DLOGTIME-uniform
C-samplers of size poly(n) (recall that N = 2n). Then, for every function δ(N) = 1/nk, where
k ∈ N, either (D, δ)-Heavy-Avoid can be solved in space O(logN) on infinitely many input lengths,
or (D, δ)-Heavy-Avoid can be solved pseudodeterministically by DLOGTIME-uniform BP- C-circuits
of size polylog(N) on every input length.22

Proof. Given an ensemble D = {DN}N≥1 as in the statement, consider the corresponding map

GN : {0, 1}nd → {0, 1}N implicitly computable by DLOGTIME-uniform C-samplers of size nc. Let
k ≥ 1 be arbitrary, and set δ(n) = 1/nk. We consider two cases, based on whether PSPACE ⊆ BP- C.

If PSPACE ⊈ BP- C, then by Theorem 3.2, the (D, δ)-Heavy-Avoid problem can be solved in
space O(logN) on infinitely many input lengths.

In the remaining case, assume that PSPACE ⊆ BP- C. We show how to solve the Heavy Avoid
problem for GN even for the exponentially smaller threshold δ(N) = 1/Nk. Let B(j) be the
following Turing machine with input j ∈ {0, 1}n, which we also view as a natural number in [N ]: if
j > 2k ·n, it outputs 0; otherwise, it goes in lexicographic order over all strings of length 2k ·n and
outputs the i-th bit of GN (y⋆), where y⋆ is the first string such that the (2k · n)-prefix of GN (y⋆)
is produced by GN (Und) with probability less than δ. Note that B runs in space poly(n), since GN

is implicitly computable. Moreover, since δ = 1/Nk, there exists some prefix of length 2k · n that
is produced by GN (Und) with probability less than δ. In particular, this prefix concatenated with
a sequence of 0’s is a valid solution to the Heavy Avoid problem of DN , the distribution sampled
by GN .

Since B runs in space polynomial in n, it defines a language LB ∈ PSPACE. By the assumption,
LB ∈ BP- C. Consequently, we can compute each bit of GN (y⋆) ∈ {0, 1}N given i ∈ [N ] = {0, 1}n
using DLOGTIME-uniform BP- C-circuits of size poly(n) = polylog(N).

4.2 Universality and Connection to Time-Bounded Kolmogorov Complexity

In this section, we observe the existence of a “hardest” instance of uniform Heavy Avoid (Def-
inition 2.1). We also point out a connection to time-bounded Kolmogorov complexity. These
connections will be used, in Section 4.3, to obtain an improved pseudodeterministic algorithm as
compared to Theorem 4.1.

First, we introduce a collection of sequences of probability distributions, where each sequence in
the collection is associated with a time bound t(n) = nc, c ∈ N. We let Dt = {Dt

n}n≥1, where each
sampler Dt

n : {0, 1}logn+n+t+n → {0, 1}n is defined as follows. The input to Dt
n is a random string

x that we view as a tuple (i,M, r, z), where i ∈ [n], M ∈ {0, 1}n, r ∈ {0, 1}t, and z ∈ {0, 1}n. We
let M≤i denote the first i bits of M , which we view as an input to a universal Turing machine U .
Let y = U(1t,M≤i, r) be the output of U on machine M≤i with random string r after it computes
for at most t steps. If y is an n-bit string, then Dt

n outputs y. Otherwise, Dt
n outputs z.

Observe that Dt ∈ PSAMP for any polynomial t. Below we abuse notation and use Dt
n(w) to

denote the probability of a string w under the distribution induced by the sampler Dt
n.

22In other words, the corresponding DLOGTIME-uniform BP- C-circuit is given i ∈ [N ] = {0, 1}logN and outputs
the i-th bit of the solution with high probability.
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Proposition 4.3 (Universality of Dt for Uniform Heavy Avoid). Let D = {Dn}n≥1 be a dis-
tribution samplable in time nc, where c ∈ N. Let δ(n) ∈ [0, 1], and consider the correspond-
ing (D, δ)-Heavy-Avoid problem. Let t(n) = nc+1 and γ(n) = δ(n)/(Kn2), where K ≥ 1 is
a constant that depends only on D. Then for large enough n, every solution w ∈ {0, 1}n to
(Dt

n, γ(n))-Heavy-Avoid is a solution to (Dn, δ(n))-Heavy-Avoid.

Proof. We need to prove that if Dn(w) > δ then Dt
n(w) > δ/(Kn2). Let k ∈ N denote the length

of the time-nc program M ′ that samples the ensemble D. We let M be the program that samples
from Dn. Note that M can be encoded with k + log n bits. Set K = 2k.

Now with probability 1/n we obtain i = k + log n as input to sampler Dt
n, assuming that n is

large enough. Moreover, with probability at least 1/(2k+logn) = 1/(Kn) the sampler Dt
n selects

the description of M as input to the universal machine. Conditioned on these events, the output
of Dt

n is distributed according to Dn. Consequently, if Dn(w) > δ we have Dt
n(w) > δ/(Kn2).

Let pKt(z) denote the probabilistic t-time bounded Kolmogorov complexity of z [GKLO22]. Let
rKt denote the randomized time-bounded Kolmogorov complexity of z [Oli19]. (These definitions
are reviewed in Section 2.3.)

Lemma 4.4. Let t(n) = nc for some constant c ∈ N, and consider the distribution ensemble
Dt = {Dt

n}n≥1 introduced above. There is a constant d ≥ 1 such that, for every n ∈ N and for
every w ∈ {0, 1}n, the following statements hold:

(i) If Dt
n(w) ≥ δ then both pKnd

(w) ≤ log
(
1
δ

)
+ d · log n and rKt(w) ≤ d · log

(
1
δ

)
+ d · log n.

(ii) If pKt(w) = k then Dt
n(w) ≥ 1

2 ·
1
n · 2

−k.

Proof. The first item is an immediate consequence of the coding theorem for pKt complexity from
[LOZ22] and of the coding theorem for rKt complexity from [LO21]. The second item follows from
the definitions of Dt

n and pKt complexity.

The next result shows that any solution y ∈ {0, 1}n to the (Dt
n, δ)-Heavy-Avoid problem must

have non-trivial pKt complexity. In particular, if δ = n−c then pKt(y) ≥ (c− 1) · log n− 1.

Proposition 4.5 (Uniform Heavy Avoid and Time-Bounded Kolmogorov Complexity). Consider
the distribution Dt = {Dt

n}n≥1 and a probability threshold δ. If Dt
n(y) ≤ δ then pKt(y) ≥ log(1/δ)−

log(n)− 1.

Proof. This follows immediately from Lemma 4.4 Item (ii).

Conversely, by Lemma 4.4 Item (i), in order to solve the (Dt
n, δ)-Heavy-Avoid problem for

t(n) = nc it is enough to output a string y ∈ {0, 1}n such that pKnd
(y) > log(1/δ) + d · log n.

Similarly, it is enough that rKt(y) > d · log(1/δ) + d · log n.
We obtain the following consequence from the discussion in this section.

Proposition 4.6. Let D = {Dn}n≥1 be a polynomial-time samplable ensemble of distributions,
with Dn supported over {0, 1}n, and let δ(n) = 1/poly(n). Then there is a constant k ≥ 1 such
that, for every large enough n, if y ∈ {0, 1}n is a string such that rKt(y) ≥ k · log n, then y is a
solution to the (Dn, δ(n))-Heavy-Avoid problem.

Proof. This follows from Proposition 4.3 and Lemma 4.4 Item (i).
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4.3 Subexponential-Time Pseudodeterministic Algorithms for Explicit Maps

In this section, we prove the following result.

Theorem 4.7. Let D = {Dn}n≥1 be a polynomial-time samplable ensemble of distributions, with
Dn supported over {0, 1}n, and let δ(n) = 1/poly(n). Then, for every ε > 0, there is a pseudodeter-
ministic algorithm running in time O(2n

ε
) that solves (Dn, δ(n))-Heavy-Avoid problem on infinitely

many values of n. Moreover, this algorithm behaves pseudodeterministically on every input.

Proof. Let D = {Dn}n≥1 be a polynomial-time samplable ensemble of distributions, with Dn

supported over {0, 1}n, and let δ(n) = 1/poly(n). In order to solve the Heavy Avoid problem for
this distribution ensemble, it is enough to pseudodeterministically construct an n-bit string y of
large enough rKt complexity (Proposition 4.6).

For this, we rely on an unconditional result from [LOS21]. For every integer d ≥ 1 and ε > 0,
[LOS21, Theorem 39] pseudodeterministically constructs a string w of length d · log n with rKt(w) ≥
(d/2) · log n in time 2n

ε
, for infinitely many values of n. Additionally, the corresponding procedure

behaves pseudodeterministically on all input strings.23

Since we can efficiently recover w from a padded version of w, it is not hard to see that if we set
y = w0n−|w|, then rKt(y) ≥ (d/8) · log n, assuming that d ≥ 8. Consequently, we can infinitely-often
pseudodeterministically construct in time 2n

γ
an n-bit string of rKt complexity at least k · log n,

where γ > 0 and k ≥ 1 are arbitrary constants.

Comparison between Theorem 4.7 and Theorem 4.1. Next, we explain that Theorem 4.7 is
stronger than Theorem 4.1. This is not immediately obvious, since the algorithms from Theorem 4.7
work in a more general setting but have a sub-exponential running time as a function of the output
length, while the algorithms for the more restrictive implicit maps provided by Theorem 4.1 run in
polynomial time as a function of the output length.

Consider a mapGN : {0, 1}nd → {0, 1}N implicitly computed by a uniform circuit CN : {0, 1}nd+n →
{0, 1} of size at most nc, where N = 2n. Suppose that CN is the output of A(1n), a uniform gen-
erating procedure that runs in time O(nk). Consider the associated C-Implicit-δ-Heavy-Avoid
problem with threshold δ(N) = 1/nℓ, and let DN be the probability distribution supported over
{0, 1}N that is induced by the map GN implicitly computed by CN .

For a given n, let n′ = na, for a large enough constant a ≥ 1, m′ = m = nd, and δ′(n′) =
δ(N) = 1/nℓ. Consider the distribution D′n′ supported over {0, 1}n′

and defined as follows: sample
a random string w ∼ {0, 1}m′

, let xw = GN (w) ∈ {0, 1}N , and output the length-n′ prefix of xw.
We make the following observations:

• The ensemble D′ = {D′n}n≥1 is polynomial-time samplable, since the circuit CN that implic-
itly samples DN is generated by A(1n) in time polynomial in n.

• If the constant a is large enough, by our choice of n′, there is at least one element in the
support of D′n′ that is not δ′-heavy.

• If an element y′ ∈ {0, 1}n′
is not δ′-heavy in D′n′ , then y = y′0N−n

′
is not δ-heavy in DN .

Now suppose that a pseudodeterministic algorithm E solves (D′n′ , δ′(n′))-Heavy-Avoid and runs

in time O(2n
′ε′
), for a fixed but arbitrary ε′ > 0, as in the case of Theorem 4.7. Let y′ =

23This is implicit in the proof of [LOS21, Theorem 39]. In more detail, the proof of this result relies on the
pseudodeterministic algorithm for CAPP given by [LOS21, Theorem 27], which has pseudodeterministic behavior on
all input lengths [LOS21, Appendix A].
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E(1n
′
). Then, given 1N , if we use E to compute y′ then output y = y′0N−n

′
, we can solve

C-Implicit-δ-Heavy-Avoid in pseudodeterministic time

O(N + 2n
′ε′

) = O(N),

assuming that ε′ < 1/a.

More generally, using the “prefix” reduction described above, one can easily show that distribu-
tions Dn supported over {0, 1}n that are sampled with polylog(n) random bits admit polynomial-
time infinitely-often pseudodeterministic algorithms for the (Dn, δ(n))-Heavy-Avoid problem, as
long as δ(n) ≥ 1/poly(log(n)).24 We summarize this discussion as follows.

Theorem 4.8. Let D = {Dn}n≥1 be a distribution ensemble, where each Dn is supported over
{0, 1}n, and suppose that D admits a polynomial-time sampler of randomness complexity (log n)c.
Then, for every function δ(n) = 1/(log n)k, there is a polynomial time pseudodeterministic algo-
rithm for the (D, δ)-Heavy-Avoid problem that succeeds on infinitely many values of n. Moreover,
this algorithm behaves pseudodeterministically on every input.

4.4 On Pseudodeterministic Algorithms and Hierarchies for Probabilistic Time

Theorem 4.1 provides a pseudodeterministic polynomial-time infinitely-often algorithm for heavy
avoid for implicit maps. Moreover, this algorithm computes pseudodeterministically on all input
lengths. In this section, we observe that the existence of a pseudodeterministic algorithm with
these properties for the larger class of explicit maps (or even just for implicit maps with polyno-
mial stretch instead of subexponential stretch) would solve a longstanding open problem related to
hierarchies for probabilistic time.

To give more context, we know that BPP is strictly contained within BPSUBEXP [KV87], but the
question of whether BPTIME[n] is strictly contained within BPTIME[T (n)], for any function T that
remains sub-exponential even when composed with itself a constant number of times, remains open.
Progress has been made in establishing hierarchies for variants of BPP. The papers [Bar02, FS04,
vMP06] demonstrated hierarchies for BPP/1 (problems solvable in probabilistic polynomial time
with 1 bit of advice) and for Heur-BPP (problems solvable on average in probabilistic polynomial
time). However, despite extensive efforts, establishing a hierarchy for BPP itself remains an open
problem.

Proposition 4.9. Suppose that for every polynomial-time samplable distribution ensemble D =
{DN}N≥1, there is a function δ(N) = o(1) such that the corresponding (D, δ)-Heavy-Avoid prob-
lem admits a pseudodeterministic polynomial-time algorithm that succeeds on infinitely many input
lengths and behaves pseudodeterministically on all input lengths. Then, for every constant k ≥ 1,
we have BPE ⊈ BPTIME[2k·n] (in particular, for every constant c ≥ 1, BPP ⊈ BPTIME[nc]).

Proof. Let k ≥ 1. Using the assumption, we show below that there is L ∈ BPTIME[2O(n)] such that
L /∈ BPTIME[2k·n]. Note that the additional conclusion in the theorem follows from a standard
padding argument.

Let N(n) = 2n, and consider the uniform sampler SN : {0, 1}m(N) → {0, 1}N defined as follows,
where m(N) = Nk+2 = 2(k+2)·n. The sampler parses its input string x as a pair (M, r), where M
describes a clocked probabilistic machine running in time 2(k+1)·n, and the rest bits r are treated

24In order to maintain the infinitely-often guarantee in the prefix reduction, one needs to make sure that the map
from the large output parameter n to the smaller output parameter n′ is onto, which is easy to achieve.
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as randomness. For i ∈ [N ], which we also view as an n-bit string, the i-th output bit of SN (x) is
the output of the computation of M over the string i when running with the random string r. (For
concreteness, if M on (i, r) does not produce an output bit, we assume its output is 0.) Note that
the resulting distribution ensemble D = {DN} obtained from the sampler SN is indeed in PSAMP.

Under the assumption of the theorem, (D, δ)-Heavy-Avoid with δ(N) = o(1) admits a pseudo-
deterministic algorithm running in time poly(N) = 2O(n) that succeeds on infinitely many input
lengths N and behaves pseudodeterministically on all input lengths. Let B(1N ) be such a pseudo-
deterministic algorithm. In addition, let LB be the language defined by B, i.e., a string z ∈ {0, 1}n
is in LB if and only if the z-th bit of B(1N ) (with N = 2n) is 1. Note that LB is in BPTIME[2O(n)],
since by assumption B computes pseudodeterministically on every input 1N .

It remains to argue that LB /∈ BPTIME[2k·n]. To prove this, it is enough to show that for
every language L ∈ BPTIME[2k·n], each string in the sequence {yLN}N of truth-tables obtained
from L is δ(N)-heavy in DN = SN (Um(N)), for every large enough N . Since B correctly solves
(D, δ)-Heavy-Avoid on infinitely many values of N , we claim that LB and L differ on each such
value of N , provided that N is large enough. To see that the claim holds, note that if L ∈
BPTIME[2k·n] then by amplification there is a probabilistic machine ML that runs in time at most
2kn ·poly(n) ≤ 2(k+1)·n and computes ML on every input string of length n with probability at least
1− 2−2n. Moreover, the description length of ML is a constant. Let yLN be the truth-table of L on
input length n, then |yLN | = N = 2n. By construction, using an union bound, the probability that
SN (UM(N)) = yLN is at least Ω(1) · (1− 2−n) > δ(N), as long as N is large enough. This shows that

yLN is δ(N)-heavy in DN . Since B(1n) avoids δ(N)-heavy elements of DN on infinitely many values
of N , this concludes the proof.

We note that, using a similar argument, the existence of polynomial-time algorithms for the
heavy avoid problem for implicit maps with certain parameters would also lead to new hierarchy

theorems. For instance, efficient algorithms for maps G : {0, 1}2n
δ

→ {0, 1}2n that are implicitly

computed by uniform circuits of size 2n
δ
would imply that BPE ⊈ BPTIME[2n

o(1)
].

5 Heavy Avoid and Derandomization

In this section, we study the relation between algorithms for Heavy Avoid and derandomization,
with connections to recent developments in instance-wise hardness-randomness tradeoffs [CT21,
LP22, Kor22, LP23, CTW23]. This section mainly considers Heavy Avoid for non-uniformly and
implicitly sampled distributions.

5.1 A Non-Black-Box Reduction

We show that in some scenarios, solving the Implicit-Heavy-Avoid problem on non-uniform
samplers implies general derandomization of prBPP. Intriguingly, our reduction from prBPP to
Heavy Avoid is non-black-box and relies on the code of an algorithm for Implicit-Heavy-Avoid.

We first introduce appropriate notation. We say that a Boolean circuit family {Cn} has di-
mension d(n)× T (n) if for each n ∈ N, the gates of Cn are partitioned into d(n) layers, each layer
contains at most T (n) gates, and each gate on layer i only receives inputs from layer i − 1. The
depth of the circuit is d(n) and the width of the circuit is T (n). We will always assume d(n) ≤ T (n).
A circuit family of dimension d(n)× T (n) is logspace-uniform if there is a Turing machine that on
input 1n, uses at most O(log T (n)) space, and prints the description of Cn.

Recall that for ϵ(n) > 0, a Boolean function f : {0, 1}M → {0, 1} is ϵ-dense if Prx∼{0,1}M [f(x) =

1] ≥ ϵ(M). We say f ϵ-avoids a hitting setH ⊆ {0, 1}M if f is ϵ-dense and for every y ∈ H, f(y) = 0.
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Now we are ready to state our main technical tool, the instance-wise hardness-randomness
tradeoff in [CT21].

Theorem 5.1 ([CT21] with the improved parameters from [CLO+23]). There is an absolute con-
stant c ≥ 1 such that the following holds. Let f : {0, 1}n → {0, 1}T (n) be a multi-output function
computable by a logspace-uniform circuit of dimension d(n)×T (n). Let M(n) be a parameter such
that c log T ≤M ≤ T 1/c. Then there are algorithms CT21.HSGf and CT21.Reconf depending on f ,
such that:

• The algorithm CT21.HSGf (x) runs in deterministic T c time and outputs a set of M -bit strings.

• Given x ∈ {0, 1}n and i ∈ [T ] as inputs, and oracle access to a candidate distinguisher
D : {0, 1}M → {0, 1}, CT21.ReconDf (x, i) runs in randomized (dnM)c time. If D (1/M)-

avoids CT21.HSGf (x), then with probability ≥ 1 − 2−M , CT21.ReconDf (x, i) outputs the i-th
bit of f(x).

Moreover, there is a deterministic algorithm that, given the Turing machine Mf that prints the
circuit for f in logspace, outputs the descriptions of CT21.HSGf and CT21.Reconf in poly(|⟨Mf ⟩|)
time.

Remark 5.2. The hardness-randomness tradeoffs in [CT21, CLO+23] were stated for hard functions
of the form f : {0, 1}n → {0, 1}n, where the reconstruction algorithm prints the entire string f(x)
in≪ T time. Inspecting their proofs, it is easy to see that the same holds when we have a function
f : {0, 1}n → {0, 1}T and the reconstruction algorithm prints the i-th bit of f(x) in ≪ T time,
given i ∈ [T ] as an input.

Theorem 5.3 (Non-black-box reduction under logspace-uniform sub-polynomial depth algorithms).
Let δ(n) = o(1) be any function. Suppose there is a constant ϵ > 0 and an algorithm A(⟨C⟩) that
solves the Implicit-δ-Heavy-Avoid problem on instances G : {0, 1}Nϵ → {0, 1}N that are implicitly
computable by a circuit C of size N ϵ, where a description of C is given as input. Moreover, assume
that A can be implemented as a logspace-uniform circuit of size poly(N) and depth No(1). Then
prBPP = prP.

Proof. Since prBPP ⊆ prRPprRP [BF99], it suffices to prove that prRP = prP. That is, we want a
deterministic algorithm that given as input a size-2M circuit D : {0, 1}M → {0, 1}, distinguishes
between the case that D rejects every input and the case that D is 1/2-dense.

Let c be the constant in Theorem 5.1, and set N := M3c/ϵ. We recall our assumption:
given an implicit map with parameters as above, for some T ≤ poly(N), d ≤ No(1) and δ ≤
o(1), there is a logspace-uniform circuit A of dimension d × T that solves the corresponding
Implicit-δ-Heavy-Avoid problem deterministically.

Consider the implicit map GD : {0, 1}Nϵ → {0, 1}N , where the underlying circuit CD for com-
puting each output bit of GD is as follows. Given x ∈ {0, 1}Nϵ

and i ∈ [N ], we parse x as (Mf , r),
where Mf is a program, and r consists of the remaining bits of x (treated as randomness). We can
encode x in such a way that every program of length ℓ appears with probability mass Θ(2−ℓ/ℓ2),
hence every program with constant description length appears with probability mass Ω(1) > δ. Sup-
pose that Mf is a logspace-uniform Turing machine that defines a circuit of size T · poly(M) and

depth d+ polylog(M) that computes a function f : {0, 1}Õ(M) → {0, 1}N (this can be syntactically
ensured by imposing a space constraint on Mf ). We let

CD(x, i) := CT21.ReconDf (⟨D⟩, i; r). (1)
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Here, CT21.Recon(⟨D⟩, i; r) denotes the output of CT21.Recon(⟨D⟩, i) on randomness r. Note
that when we compute CD(x, i), we treat D both as the distinguisher (for the reconstruction
algorithm CT21.Recon) and as the input of f . We then run CT21.Recon on randomness r and
(attempt to) reconstruct the i-th bit of f(⟨D⟩). If the length of ⟨Mf ⟩ is a constant, then we have
|r| ≥ N ϵ−O(1) ≥M2.9c ≥ (d2 · Õ(M) ·M)c, hence there is always enough randomness to feed into
Recon. Also, by Theorem 5.1, the description ⟨CD⟩ can be computed from the description ⟨D⟩ in
poly(M) time and polylog(M) depth.25 Note that GD can be implicitly computed in time N ϵ due
to our choice of parameters.

Define a function f ′ : {0, 1}Õ(M) → {0, 1}N as follows: Given a size-2M circuit D : {0, 1}M →
{0, 1} as input, f ′ computes the circuit CD as in (1) and outputs A(⟨CD⟩). Recall that A is
computed by a logspace-uniform circuit of dimension d × T , hence f ′ is computed by a logspace-
uniform circuit of size T · poly(M) and depth d+ polylog(M).

Assuming D is 1/2-dense, we argue that CT21.HSGf ′(⟨D⟩) hits D. Otherwise, D (1/2)-
avoids CT21.HSGf ′(⟨D⟩). By Theorem 5.1, for every i ∈ [N ], with probability at least 1 − 2−M

over the randomness r, CT21.ReconDf ′(⟨D⟩, i; r) is equal to the i-th output bit of f ′(⟨D⟩). By a

union bound, w.p. at least 1 − N · 2−M over the randomness r, we have that for every i ∈ [N ],
CT21.ReconDf ′(⟨D⟩, i; r) = f ′(⟨D⟩)i. Since f ′(⟨D⟩) = A(⟨CD⟩) by definition, we have:

Pr
x
[GD(x) = A(⟨CD⟩) | ⟨Mf ⟩ = ⟨Mf ′⟩ where (Mf , r) = x] ≥ 1−N · 2−M ≥ 1/2.

Since the description length of Mf ′ is a constant, it follows that ⟨Mf ⟩ = ⟨Mf ′⟩ with constant
probability. Hence,

Pr
x
[GD(x) = A(⟨CD⟩)] ≥ Ω(1),

contradicting our assumption that A solves the Implicit-δ-Heavy-Avoid problem.
We have shown that if D is 1/2-dense, then CT21.HSGf ′(⟨D⟩) hits D. We can compute

CT21.HSGf ′(⟨D⟩) in poly(T,N) ≤ poly(M) time, hence we can solve the GAP-UNSAT problem
in deterministic polynomial time. This implies that prRP = prP, as desired.

Remark 5.4. The above reduction is non-black-box for two reasons. First, the statement prBPP ⊆
prRPprRP can be seen as a non-black-box reduction from prBPP to prRP [BF99]. Second, and
perhaps more interestingly, the reduction from prRP to Implicit-Heavy-Avoid is also non-black-
box, as it requires the algorithm A for Implicit-Heavy-Avoid to be a logspace-uniform circuit of
low depth and relies on an application of Theorem 5.1 over this low-depth circuit. Indeed, the proof
of Theorem 5.1 performs arithmetization on this low-depth circuit.

Remark 5.5. It is also interesting to compare Theorem 5.3 with [Kor22, Theorem 8]. The latter
result is a black-box reduction from prBPP to a problem called R-Lossy Code. In contrast, our
Theorem 5.3 needs additional constraints on the algorithm solving Implicit-Heavy-Avoid and
makes non-black-box use of that algorithm.

Our Implicit-Heavy-Avoid is a special case of R-Lossy Code in the following sense. Recall
that R-Lossy Code is the problem where, given circuits Comp : {0, 1}n × {0, 1}m → {0, 1}n−1
and Decomp : {0, 1}n−1 → {0, 1}n and a parameter δ > 0, one needs to find some x ∈ {0, 1}n such
that Prr←{0,1}m [Decomp(Comp(x, r)) = x] < δ. Given an implicit map C : {0, 1}r × [N ] → {0, 1}
as the input of Implicit-δ-Heavy-Avoid (recall that r < N in the typical parameter setting), we
can reduce it to the R-Lossy Code instance (Comp,Decomp) where Comp(x, r) simply outputs its

25The depth upper bound is dominated by computing the description of CT21.Reconf from Mf , which takes time
polylog(M). Although CT21.Reconf is an adaptive oracle algorithm, to compute the code of CT21.ReconDf from ⟨D⟩
we only need to concatenate the codes of CT21.Reconf and D together, hence this step is depth-efficient.
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randomness r, and Decomp(r) = C(r, 1)C(r, 2) . . . C(r,N). In this sense, Implicit-Heavy-Avoid is
no more than a special case of R-Lossy Code where the compressor circuit is trivial.

5.2 Getting Rid of the Depth Assumption

In this section, we show how to get rid of the low-depth assumption in Theorem 5.3 in a weaker
but non-trivial setting. An ideal statement would be: a deterministic polynomial-time algorithm for
Implicit-Heavy-Avoid implies a deterministic polynomial-time algorithm for GAP-SAT or CAPP.
Compared to the ideal statement, the actual result that we prove only holds for subexponential-time
infinitely-often algorithms, as we shall explain later.

We note that it should not be too surprising that a subexponential-time infinitely-often al-
gorithm for Implicit-Heavy-Avoid implies a subexponential-time infinitely-often algorithm for
GAP-SAT. In fact, combining Theorem 3.9 and [IW01], it is easy to show that this holds for
heuristic algorithms.26

Theorem 5.6. The following items are equivalent.

• (Infinitely-often subexponential-time heuristic derandomization.)

For every language L ∈ BPP, every ensemble of polynomial-time samplable distributions D =
{Dn} ∈ PSAMP, every polynomial p(·), and every constant δ > 0, there exists a deterministic

Turing machine M running in 2n
δ
time, such that for infinitely many input lengths n,

Pr
x∼Dn

[L(x) ̸= M(x)] ≤ 1/p(n).

• (Infinitely-often polynomial-time algorithms for uniform Implicit-Heavy-Avoid.)

For every δ(N) = 1/polylog(N), and for every sequence {GN} of maps GN : {0, 1}polylog(N) →
{0, 1}N where each bit of GN is implicitly computed in polylog(N) time, there is a determin-
istic poly(N)-time algorithm that solves the Implicit-δ-Heavy-Avoid problem for {GN} on
infinitely many input lengths N .

Proof Sketch. In fact, both items are equivalent to EXP ̸= BPP. The equivalence between the
first item and EXP ̸= BPP is shown in [IW01], and the equivalence between the second item and
EXP ̸= BPP follows from Theorem 3.9.

We now attempt to prove a version of Theorem 5.6 with respect to worst-case algorithms,
instead of heuristics. Our worst-case version of Theorem 5.6 also has many caveats such as being
infinitely-often and requiring subexponential time, but the biggest caveat might be that we could
only obtain infinitely-often algorithms in the following, somewhat artificial, setting: For a sequence
of inputs {xn}n∈N, the algorithms read many inputs x1, x2, . . . , xpoly(n) but are only required to
solve xn. We call this “infinitely-often∗” algorithms. Formally, we have:

Definition 5.7. Let P be a computational problem and {xn}n∈N be a sequence of inputs. We
say an algorithm A infinitely-often∗ solves P on {xn} if there is a polynomial p(·) such that for
infinitely many integers n, A(1n, x1, x2, . . . , xp(n)) outputs a valid P-solution for xn.

26Note that Theorem 5.6 refers to Implicit-Heavy-Avoid for uniformly samplable distributions, which is different
from most results in this section. We believe that more connections between Implicit-Heavy-Avoid for uniformly
samplable distributions and average-case derandomization can be obtained (e.g., using the recent “unstructured
hardness to average-case randomness” [CRT22]), but we do not pursue this direction here.
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In other words, an infinitely-often∗ algorithm has access to the (non-uniform) sequence of inputs
around xn, as opposed to the usual setting where the algorithm only has access to the given input
string. We remark that our algorithm in Theorem 5.8 works in a weaker model where the machine
only reads xn and xp(n) and outputs an answer for xn. However, we believe that Definition 5.7 is
a more accurate model to capture win-win analyses in complexity theory, hence choose to define it
in this way.

For ease of notation, in what follows, we will denote the sequence x1, x2, . . . , xℓ simply by x1∼ℓ.
We are now able to state our main result in this section.

Theorem 5.8 (A non-black-box reduction for Implicit-Heavy-Avoid).
Assume there is an infinitely-often polynomial-time algorithm for Implicit-Heavy-Avoid with

subexponential stretch. That is, for every constants a ≥ 1, ϵ > 0, and function δ ≤ o(1), there exists
a deterministic algorithm Avoid running in poly(N) time such that for infinitely many n ∈ N and
N := 2n

ϵ
, and for every generator G : {0, 1}na → {0, 1}N implicitly described by a size-na circuit

C : {0, 1}na × [N ]→ {0, 1}, Avoid(⟨C⟩) solves Implicit-δ-Heavy-Avoid on G.
Then there is an infinitely-often∗ subexponential-time algorithm for GAP-SAT. That is, for

every ϵ > 0 and c ≥ 1, there exists a deterministic algorithm Derand running in 2n
ϵ
time such that

the following holds: For every sequence of circuits {Dn}n∈N, where each Dn : {0, 1}nc → {0, 1} is
a circuit of size 2nc, Derand(1n, ⟨D1∼poly(n)⟩) infinitely-often∗ solves GAP-SAT on {Dn}.

Our proof combines the two instance-wise hardness-randomness tradeoffs introduced by Chen
and Tell [CT21] and Liu and Pass [LP23] recently. Since the hardness-randomness tradeoff in [CT21]
is already summarized in Theorem 5.1, in what follows we summarize the hardness-randomness
tradeoff in [LP23].

Definition 5.9. Let f : {0, 1}n → {0, 1}T (n) be a function, A be a randomized algorithm, and
x ∈ {0, 1}n be an input of f . We say that f(x) is ℓ-leakage resilient hard against A if for every
“leakage string” leak ∈ {0, 1}ℓ, there is some i ∈ [T ] such that Pr[A(x, leak, i) = f(x)i] ≤ 2/3,
where the probability is over the internal randomness of A.

We need the following result by Liu and Pass [LP23] showing that leakage resilient hardness
can be used for derandomization.

Theorem 5.10 ([LP23]). There are algorithms LP23.PRG and LP23.Recon and an absolute constant
c ≥ 1 such that the following holds. Let f : {0, 1}n → {0, 1}T (n) be a function, D : {0, 1}M → {0, 1}
be a distinguisher, and x ∈ {0, 1}n be an input of f . Let ℓ := (M log T )c and r := O(log2 T/ logM).
Then:

• LP23.PRG : {0, 1}T × {0, 1}r → {0, 1}M runs in deterministic poly(T,M) time.

• LP23.Recon(−) : {0, 1}ℓ × [T ]→ {0, 1} runs in randomized poly(ℓ, log T ).

• If f(x) is ℓ-leakage resilient hard against LP23.ReconD, then LP23.PRG(f(x),−) is a (tar-
geted) PRG that (1/10)-fools D.

Proof Sketch. This follows by observing that the leakage resilient hardness-randomness tradeoff in
[LP23] holds instance-wise. In particular, if we let g be the “k-reconstructive PRG” described in
[LP23, Theorem 3.11] (which follows from [STV01]), then LP23.PRG(f(x), z) = gf(x)(1m(n), 1M(n), z);
the algorithm LP23.Recon is simply the corresponding “reconstruction algorithm” R as defined in
[LP23, Definition 3.10].
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Suppose that f : {0, 1}n → {0, 1}m(n) is computable by a deterministic Turing machine M
running in time T (n). We can define fhist : {0, 1}n → {0, 1}T ′(n) for some function T ′(n) ≤
poly(T (n),m(n)) such that fhist(x) outputs the computational history of f(x), i.e., the sequence
of configurations of M when computing over the input string x. It will be useful to consider the
leakage-resilience hardness of fhist, since if fhist is not leakage resilient hard, then f can be computed
by a low-depth circuit:

Claim 5.11. Let f : {0, 1}n → {0, 1}T (n) be a function computable in time T (n), ℓ = ℓ(n) be a
parameter, and A be a randomized algorithm running in time TA(n). Then, for d(n) := O(TA(n)+
ℓ(n)+log T (n)), there is a logspace-uniform circuit C : {0, 1}n → {0, 1}T (n) of dimension d(n)×2d(n)
such that the following holds. For every input x ∈ {0, 1}n, if fhist(x) is not ℓ(n)-leakage resilient
hard against A, then f(x) = C(x).

Proof. The circuit C(x) enumerates all strings leak ∈ {0, 1}ℓ and computes A(x, leak, i) for each
i. Although A is a randomized algorithm, we can compute A(x, leak, i) by brute force using a
logspace-uniform circuit of width 2O(TA(n)) and depth O(TA(n)). Then, (for each leak) C verifies
whether the computational history H(x, leak) defined by H(x, leak)i = A(x, leak, i) is indeed the
correct history for f(x); this can be done by a logspace-uniform circuit of width poly(T (n)) and
depth O(log T (n)), by checking that every local step in H(x, leak) is correct. Whenever there is
some leak that corresponds to the correct history for f(x), the circuit C outputs the value of f(x)
according to this history. The depth of C is d(n) ≤ O(TA(n) + ℓ(n) + log T (n)) and the size of C
is exponential in d(n).

Now we are ready to prove Theorem 5.8.

Proof of Theorem 5.8. Let c ≥ 1 and ϵ > 0 be constants. Let {Dn}n∈N be a sequence of circuits
where each Dn : {0, 1}n

c → {0, 1} is of size 2nc. Recall that we want a deterministic 2n
ϵ
-time

algorithm that infinitely-often∗ solves GAP-SAT on {Dn}. Let c1 be the constant in Theorem 5.1
(the tradeoff in [CT21]) or Theorem 5.10 (the tradeoff in [LP23]), whichever is larger. Let κ :=
⌈max{4c/ϵ, 8c1/ϵ}⌉; the meaning of this constant is that we will perform a win-win analysis over

input lengths m and mκ. Finally, let a := 4κcc1 and L(t) := 2t
ϵ/4

. The input instances of our
Heavy Avoid algorithm will be generators Gt : {0, 1}t

a → {0, 1}L(t) whose output bits are implicitly
computable in ta size.

c, ϵ We want a GAP-SAT algorithm on nc-size circuits in 2n
ϵ
time

c1 Overheads of the tradeoffs in Theorems 5.1 and 5.10

κ = O(c/ϵ) Our win-win analysis is over input lengths m and mκ

a = O(c2/ϵ) We need a Heavy Avoid algorithm for generators

G : {0, 1}ta → {0, 1}L(t), implicitly computable in ta sizeL(t) = 2t
ϵ/4

Table 1: Constants used in this proof.

For any integer M , its index idx(M) is defined as the largest integer such that M = mκidx(M)

for some integer m. (Note that most integers have index 0.) We say an input length M is big if
idx(M) is odd, and is small if idx(M) is even. For convenience, we will always use upper case M
to denote big input lengths and lower case m to denote small input lengths. Looking ahead, each
small input length m will be paired with a big input length mκ and vice versa; if our Heavy Avoid
algorithm succeeds on input length m, then our Gap-SAT algorithm succeeds on either length m or
length mκ.
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We now define the sequence of implicit descriptions Ct : {0, 1}t
a× [L(t)]→ {0, 1} for each t ∈ N,

which we feed into our Heavy Avoid algorithm. Each Ct also defines the generator Gt : {0, 1}t
a →

{0, 1}L(t). Let M be the t-th smallest big input length. Note that M ≤ O(tκ). Let x denote the
input of Gt. We parse x into (⟨Mf ⟩, r), where ⟨Mf ⟩ is the description of a Turing machine Mf

and the remaining M (2c+1)c1 bits r are treated as randomness. As in the proof of Theorem 5.3, we
encode x in such a way that every constant-length program Mf occurs with constant probability.
Now, let d := M2ϵ/3 and f be the d× 2d circuit outputted by Mf within space constraint d. Then

Ct(x, i) := CT21.ReconDM
f (⟨DM ⟩, i; r).

Recall that CT21.Recon uses at most (d · |⟨DM ⟩|2)c1 ≤ (dM2c)c1 random bits, hence we have
enough random bits to feed into CT21.Recon. We can see that each bit of Gt can be computed in
M3cc1 ≤ t4κcc1 ≤ ta size.

Let Avoid be our algorithm for Implicit-δ-Heavy-Avoid that runs in deterministic poly(L(t))
time. Let I be the set of input lengths t for which Avoid(⟨Ct⟩) correctly outputs a δ-light element
of Gt. Using the same reasoning as Theorem 5.3, one can see that:

Claim 5.12. Let t ∈ I, M be the t-th big input length, and let d := M ϵ/2. Suppose there is a
constant-length Turing machine that outputs a circuit f ′ of dimension d × 2d in O(d) space such
that f ′(⟨Ct⟩) = Avoid(⟨Ct⟩). Then CT21.HSGf ′(⟨Ct⟩) hits DM . ⋄

Let Avoidhist denote the algorithm that outputs the computational history of Avoid. Note that
Avoidhist(⟨Ct⟩) runs in Thist(t) ≤ poly(L(t)) time. Now let m ∈ N be the t-th small input length,
M := mκ be the t-th big input length, and ℓ(t) := (m · log Thist(t))

c1 . Consider the following
criterion for our win-win analysis:

▶ Crit(t): Avoidhist(⟨Ct⟩) is ℓ(t)-leakage resilient hard against LP23.ReconDm .

Our algorithm Derand works as follows. On input (1n, ⟨D1∼nκ⟩):

• Suppose n is small, m := n, and M := nκ. Assume that m is the t-th small input length and
assume that Crit(t) holds. Then by Theorem 5.10, LP23.PRG(Avoidhist(⟨Ct⟩),−) : {0, 1}r →
{0, 1}m is a PRG that (1/10)-fools Dm, where r := O(log2 Thist(t)/ logm) ≤ O(tϵ/2/ logm) <
mϵ/2. By enumerating this PRG, we can solve the GAP-SAT (in fact, CAPP) problem on
input Dm in deterministic 2m

ϵ
time.

Note: The definition of Ct involves DM = Dnκ ; this is why we need our infinitely-often∗

algorithm to have access to inputs on a larger length.

• Suppose n is big, M := n, and m := n1/κ. Suppose that M is the t-th big input length
and assume that Crit(t) does not hold. Then it follows from Claim 5.11 that there is a

logspace-uniform circuit Ãvoid of dimension d′ × T ′ such that Ãvoid(⟨Ct⟩) = Avoid(⟨Ct⟩),
where d′ = O(mc + ℓ(m) + log Thist(t)) ≤ O(mc + (mtϵ/4)c1) < M ϵ/2 and T ′ = 2d

′
. By

Claim 5.12, CT21.HSG
Ãvoid

(⟨Ct⟩) hits DM . Since the size of this HSG is 2O(d′) < 2M
0.9ϵ

, we

can solve the GAP-SAT problem on DM in 2M
ϵ
time.

For every t ∈ I, let m be the t-th small input length and M = mκ. If Crit(t) holds, then our
algorithm solves GAP-SAT on input Dm; otherwise our algorithm solves GAP-SAT on input DM .
Since |I| is infinite, it follows that our algorithm infinitely-often∗ solves GAP-SAT on {Dn}.
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5.3 On Black-Box Reductions to Heavy-Avoid

We complement the previous non-black-box reductions by showing that if there is a black-box
reduction from GAP-SAT to Heavy-Avoid of a certain type, then we would have prBPP = prP
unconditionally. In more detail, we consider the natural notion of Levin reductions [Lev73], i.e.,
“witness-mapping” reductions between search problems, and show that a Levin reduction from
search-GAP-SAT to Heavy-Avoid implies prBPP = prP.

Intriguingly, these results together separate the notion of (weak) non-black-box reductions and
black-box (i.e., Levin) reductions between two natural problems w.r.t. current techniques! That is,
improving the weak non-black-box reductions in Theorems 5.3 and 5.8 to Levin reductions (which
is a stronger notion of black-box reduction) would imply breakthroughs in complexity theory.

As the notion of Levin reductions is standard in complexity theory (for a recent example, see
[MP24]), we only recall its definition in the special case of reducing search-GAP-SAT to Heavy-Avoid:

Definition 5.13. We say there is a Levin reduction from search-GAP-SAT to Heavy-Avoid if there
are functions f, g computable in deterministic polynomial time such that the following holds:

• For every circuit C : {0, 1}n → {0, 1} that is 1/2-dense (i.e., that is a valid search-GAP-SAT
instance), f(C) = (D, 1t) is a Heavy-Avoid instance where we want to find a (1/t)-light string
in D.

• For every string y that is (1/t)-light for D, g(C, y) is a valid solution for search-GAP-SAT for
C. That is, if C is 1/2-dense, then C(g(C, y)) = 1.

Theorem 5.14. If there is a polynomial-time Levin reduction (f, g) from search-GAP-SAT to
Heavy-Avoid, then prP = prBPP.

Proof. First, we describe the main idea. The crucial observation is that there is a trivial algorithm
that “list-solves” any Heavy-Avoid instance, that is, outputs a list of solutions such that some
element in the list is not heavy. In particular, let (D, 1t) be an input instance of Heavy-Avoid, and
consider the trivial algorithm that outputs an arbitrary list of t+1 distinct strings. By an averaging
argument, at least one string in this list will be a (1/t)-light element of D. This means that using
the list and a witness-mapping reduction we can produce at least one satisfying assignment if the
input circuit is dense.

We proceed to the formal proof. Again, by [BF99], it suffices to prove that prP = prRP. Let
C : {0, 1}n → {0, 1} be an input to GAP-SAT. We first reduce C to a Heavy-Avoid instance
(D, 1t) := f(C). Then we compute an arbitrary list of t+1 distinct strings x1, x2, . . . , xt+1. We are
guaranteed that some xi is a δ-light element of D, hence if C is 1/2-dense, then g(C, xi) would be
a satisfying assignment of C. Consequently, if there is an index i ∈ [ℓ] such that C(g(C, xi)) = 1,
then we output 1, otherwise we output 0. It is easy to see that if C is unsatisfiable then we always
output 0, while if C is 1/2-dense then we always output 1. Hence we have prP = prRP and this
concludes the proof.

5.4 Heavy Avoid versus Almost-All-Inputs Hardness

Finally, we show connections between Implicit-Heavy-Avoid and the almost-all-inputs hard-
ness assumptions, introduced recently in [CT21].

The results in this section are motivated by two conjectures. Given the non-black-box reductions
in Theorems 5.3 and 5.8, it seems natural to conjecture that Implicit-Heavy-Avoid is complete
for prBPP under “the most natural notion of non-black-box reductions”:

41



Conjecture 5.15 (Informal). If Implicit-Heavy-Avoid for non-uniform samplers admits a de-
terministic polynomial-time algorithm, then prBPP = prP.

On the other hand, there is another intriguing conjecture implicit in the work of Chen–Tell
[CT21]. Recall that Chen and Tell [CT21] showed how to derive prBPP = prP given a multi-
output function f : {0, 1}n → {0, 1}n that is almost-all-inputs hard against randomized algorithms,
provided that f can be computed in low depth. They also showed that prBPP = prP necessitates
the existence of multi-output function with almost-all-inputs hardness, but the hard function they
construct might require high depth. Still, this demonstrates that almost-all-inputs hardness might
be the right hardness assumption for derandomization. It is tempting to conjecture that low-depth
constraints are, in fact, not necessary:

Conjecture 5.16 (Informal). If there is a multi-output function f : {0, 1}n → {0, 1}n computable
in deterministic polynomial time that is almost-all-inputs hard against fixed-polynomial time ran-
domized algorithms, then prBPP = prP.

In this section, we show that in an “implicit” setting, Conjecture 5.15 and Conjecture 5.16
are equivalent! In fact, we show that Implicit-Heavy-Avoid is the computational problem char-
acterizing the task of “creating” almost-all-inputs hardness (against randomized algorithms). We
also show that creating such hardness is equivalent to generating strings with high conditional
sublinear-time probabilistic Kolmogorov complexity.

Our “implicit” setting. We consider functions with a possibly long output, i.e., f : {0, 1}n →
{0, 1}ℓ(n) where ℓ(n) is larger than the running time of our adversaries. Consequently, it makes
sense to only require our adversaries to output each bit of f(x) given x and the index of that bit. It
is worth noting that the hardness-randomness tradeoffs in both [CT21] and [LP23] holds for such
implicit adversaries.

Formally, let A be a randomized algorithm, we say that A locally computes f(x) if for every
i ∈ [ℓ(n)], it holds that Pr[A(x, i) = f(x)i] ≥ 2/3, where the probability is over the internal
randomness of A. An equivalent way of saying this is that f(x) is not 0-leakage resilient hard
against A in the sense of Definition 5.9.

We also consider the task of generating strings with high (conditional) sublinear-time proba-
bilistic Kolmogorov complexity. (Our equivalence results hold for both pKpoly and rKpoly.) Roughly
speaking, fix a universal Turing machine U , a time bound t, and strings x, y, where |x| ≪ t≪ |y|.
The conditional complexity of y given x is the length of the shortest program p such that U(p, w, x, i)
outputs the i-th bit of y in t steps, with w being the randomness. However, there is a technical
detail that is worth stressing: In our definition, we require the resources (x and r) to have length at
most t, hence the universal Turing machine U has time to read them in their entirety. A possible
alternative definition would be that U has oracle access to strings x and r (whose lengths might be
≫ t), but it is unclear if we can extend our equivalence result (Theorem 5.18) to these alternative
definitions.

Definition 5.17 (Sublinear-time probabilistic Kolmogorov complexity). Let U be a universal Tur-
ing machine, x, y ∈ {0, 1}∗, and t ∈ N. (Think of |x| ≪ t and |y| ≫ t.) We artificially define
y|y|+1 = ⋆.

• Sublinear-time pKt complexity:

pKt
U (y | x) := min

{
k ∈ N

∣∣∣ Pr
w∼{0,1}t

[
∃p ∈ {0, 1}k, ∀i ∈ [|y|+ 1], U(1t, p, w, x, i) = yi

]
≥ 2

3

}
.
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In other words, if k = pKt
U (y | x), then with probability at least 2/3 over the choice of the

length-t random string w, given w and x, the string y admits a t-time-bounded local encoding
of length k.

• Sublinear-time rKt complexity:

rKt
U (y | x) = min

p∈{0,1}∗

{
|p|

∣∣∣ ∀i ∈ [|y|+ 1], Pr
w∼{0,1}t

[U(1t, p, w, x, i) = yi] ≥
2

3

}
.

Now we are ready to present our equivalence result.

Theorem 5.18. The following are equivalent.

(1) (Almost-all-inputs hardness.) For every polynomial p(·), there exists a polynomial q(·)
and a function f : {0, 1}n → {0, 1}q(n) computable by a deterministic polynomial-time algo-
rithm, such that every algorithm running in randomized p(n) time only locally computes f(x)
on finitely many inputs x ∈ {0, 1}∗.

(2) (Deterministic algorithms for Heavy-Avoid.) For every polynomial p(·), there exists a
polynomial q(·) such that the following holds. Let C denote the class of circuits with n input
bits and q(n) output bits where each output bit is implicitly computed by a size-p(n) circuit,
then C-Implicit-(1/p(n))-Heavy-Avoid can be solved in deterministic polynomial time.

(3) (Finding strings with large conditional pKpoly-complexity.) For every polynomial p(·),
there exists a polynomial q(·) and a deterministic polynomial-time algorithm that given an
input x ∈ {0, 1}n, finds a string y ∈ {0, 1}q(n) such that pKp(n)(y | x) ≥ log p(n).

(4) (Finding strings with large conditional rKpoly-complexity.) For every polynomial p(·),
there exists a polynomial q(·) and a deterministic polynomial-time algorithm that given an
input x ∈ {0, 1}n, finds a string y ∈ {0, 1}q(n) such that rKp(n)(y | x) ≥ log p(n).

Arguably, the most interesting implication above is (1) ⇒ (2), which can be interpreted
as instance-wise hardness vs. randomness for solving Implicit-Heavy-Avoid without depth con-
straints.

Lemma 5.19. In Theorem 5.18, (1)⇒ (2) holds. That is, almost-all-inputs hardness (of any kind,
without depth restrictions) can be used to solve Implicit-Heavy-Avoid.

Proof. Let T (n) and q′(n) be two polynomials such that there is a multi-output function f : {0, 1}n →
{0, 1}q′(n) computable in deterministic T (n) time that is almost-all-inputs hard against randomized
algorithms running in time p(n)6. Let q(n) := poly(T (n), q′(n)), and fPCP : {0, 1}n → {0, 1}q(n)
denote the PCP of f : On input x ∈ {0, 1}n, fPCP(x) outputs the concatenation of strings z, pcp1,
pcp2, . . . , pcpq′(n), where z = f(x) and each pcpi is a length-poly(T (n)) PCP proof for the assertion
that the i-th output bit of f(x) is equal to zi. (Any efficiently-computable PCP with polynomial
length and constant query complexity works here, e.g., [ALM+98, BGH+06, Din07].) We claim
that fPCP is an algorithm that solves C-Implicit-(1/p(n))-Heavy-Avoid.

Suppose, towards a contradiction, that fPCP does not solve C-Implicit-(1/p(n))-Heavy-Avoid
on an input ⟨C⟩ ∈ {0, 1}ℓ. The input ⟨C⟩ encodes a circuit C of size p(n) (hence ℓ = Õ(p(n))) that
implicitly represents a generator G : {0, 1}n → {0, 1}q(n). Given ⟨C⟩, r ∈ {0, 1}n, and i ∈ [q(n)],
the i-th output bit of G(r) can be computed in Õ(p(n)) time. Since fPCP fails on ⟨C⟩, we have

Pr
r∼{0,1}n

[fPCP(⟨C⟩) = G(r)] ≥ 1/p(n). (2)
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Now we present a randomized algorithm A running in p(n)5 time that locally computes f on
input ⟨C⟩. Given an integer i, we want to compute the i-th bit of f(⟨C⟩). We repeat the following
O(p(n)2) times:

1. Sample a random string r ∼ {0, 1}n.

2. Parse G(r) as the concatenation of z, pcp1, pcp2, . . . , pcpq′(n).

3. Invoke the PCP verifier O(p(n)) times to verify that pcpi is indeed a correct PCP proof that
f(⟨C⟩)i = zi.

4. If all invocations of the PCP verifier are successful, then we output zi and halt.

If we have not outputted anything after these O(p(n)2) iterations, then we output a random bit.
Let A denote the above randomized algorithm. We now analyze A.

• (Running time.) Since each bit of pcpi can be retrieved in Õ(p(n)) time, Step 3 above takes
Õ(p(n)2) time, hence the whole algorithm runs in at most Õ(p(n)4) ≤ p(n)5 time.

• (“Soundness.”) At each iteration where we parse G(r) as z, pcp1, . . . , pcpq(n), if f(⟨C⟩)i ̸=
zi, then no matter what pcpi is, the PCP verifier will catch an error with probability at least
1 − exp(−p(n)). Hence, the probability that A(⟨C⟩, i) halts in Step 4 above and outputs
1− f(⟨C⟩)i is at most exp(−p(n)).

• (“Completeness.”) On the other hand, by Eq. (2), with probability at least 1 − (1 −
1/p(n))p(n)

2 ≥ 1−exp(−p(n)), there is some iteration of the above algorithm in which G(r) =
fPCP(⟨C⟩). During this iteration, it will be the case that zi = f(⟨C⟩)i and pcpi is a valid PCP
proof for this, therefore we will output f(⟨C⟩)i and halt. It follows that the probability that
none of the p(n)2 iterations succeed and we output a random bit at the end is also upper
bounded by exp(−p(n)).

The “Soundness” and “Completeness” above imply that A locally computes f(⟨C⟩). To con-
clude, if f is indeed almost-all-inputs hard against randomized algorithms running in time p(n)6,
then fPCP solves the C-Implicit-(1/p(n))-Heavy-Avoid problem on all but finitely many inputs.

Now we present the complete proof for Theorem 5.18.

Proof of Theorem 5.18. We consider each implication below.

(1)⇒ (2): This follows from Lemma 5.19.

(2)⇒ (3): Let p(n) be a polynomial and p′(n) := p(n)2. By (2), for some polynomial q(n), there is
a polynomial-time algorithm Avoid solving the C-Implicit-(1/p′(n))-Heavy-Avoid problem, where
the generators have output length q(n) and each bit can be computed in size p′(n). Let U be
a universal Turing machine and suppose that given input x ∈ {0, 1}n, we want to find a string

y ∈ {0, 1}q(n) such that pK
p(n)
U (y | x) ≥ log p(n).

Consider the generator Gx : {0, 1}p(n)+log p(n) → {0, 1}q(n) that is implicitly computed by the
following circuit Cx: given (z, i) as input, where z ∈ {0, 1}p(n)+log p(n) and i ∈ [q(n)], Cx(z, i) outputs
the i-th bit of G(z). We parse z into (⟨M⟩, r), where M is a Turing machine of description length
log p(n), and r ∈ {0, 1}p(n) is treated as randomness. Then, Cx(z, i) outputs U(1p(n), ⟨M⟩, r, x, i).
Clearly, Cx can be implemented by a circuit of size Õ(p(n)) < p′(n).
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Let y ∈ {0, 1}q(n) be any string that is 1
p′(n) -light for Gx, we claim that pK

p(n)
U (y | x) ≥ log p(n).

This is easily shown by contradiction. Suppose that pK
p(n)
U (y | x) < log p(n), then w.p. at least 2/3

over r ∼ {0, 1}p(n), there is a programM of description length log p(n) such that for every i ∈ [n+1],
U(1p(n), ⟨M⟩, r, x, i) = yi; in other words, Gx(⟨M⟩, r) = y. This contradicts our assumption that y
is 1

p′(n) -light for Gx.

Hence, solving the C-Implicit-(1/p′(n))-Heavy-Avoid problem on Gx will give us a string y ∈
{0, 1}q(n) such that pK

p(n)
U (y | x) ≥ log p(n).

(3)⇒ (4): This follows from the fact ([LO22, Fact 2]) that for every universal Turing machine U ,
every x, y ∈ {0, 1}∗ and every time bound t, we have pKt

U (y | x) ≤ rKt
U (y | x). It is easy to verify

that this is still true with respect to our notions of sublinear-time-bounded Kolmogorov complexity.

(4) ⇒ (1): Let q(n) be any polynomial, f : {0, 1}n → {0, 1}q(n) be any function, and A be
a randomized algorithm running in p(n) time. We claim that for every input x ∈ {0, 1}n, if

rKp(n)2(f(x) | x) > |A|+ ω(1), then A fails to locally compute f(x). Indeed, if A locally computes
f(x), then

∀i ∈ [|x|+ 1], Pr
r∼{0,1}p(n)

[A(x, i; r) = U(1p(n), ⟨A⟩, r, x, i) = f(x)i] ≥ 2/3.

Clearly, this means that rKp(n)2(f(x) | x) ≤ |A|+O(1).
Suppose that f is a deterministic polynomial-time algorithm that given an input x ∈ {0, 1}n,

outputs a string y ∈ {0, 1}q(n) such that rKp(n)2(y | x) ≥ 2 log p(n). It follows directly that every
randomized algorithm running in p(n) time only locally computes f(x) for finitely many inputs
x ∈ {0, 1}∗ (as long as the algorithm admits a constant-size description). Hence f is almost-all-
inputs hard against p(n)-time randomized algorithms.

Given the above equivalence, it is easy to see that Conjectures 5.15 and 5.16 are equivalent,
since Conjecture 5.15 asserts the equivalence between (2) and prBPP = prP, while Conjecture 5.16
asserts the equivalence between (1) and prBPP = prP.
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[LV19] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its Applica-
tions, 4th Edition. Texts in Computer Science. Springer, 2019. 16

[MP24] Noam Mazor and Rafael Pass. Gap MCSP is not (Levin) NP-complete in Obfustopia. In
Computational Complexity Conference (CCC), 2024. to appear. 41

[MW20] Cody D. Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-
polytime from a new easy witness lemma. SIAM J. Comput., 49(5), 2020. 11

49



[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994. 3, 6, 13, 51

[Oli19] Igor C. Oliveira. Randomness and intractability in Kolmogorov complexity. In International
Colloquium on Automata, Languages, and Programming (ICALP), pages 32:1–32:14, 2019. 7, 9,
31

[OS17] Igor C. Oliveira and Rahul Santhanam. Pseudodeterministic constructions in subexponential
time. In Symposium on Theory of Computing (STOC), pages 665–677, 2017. 9, 12

[OS18] Igor C. Oliveira and Rahul Santhanam. Pseudo-derandomizing learning and approximation. In
International Conference on Randomization and Computation (RANDOM), pages 55:1–55:19,
2018. 12

[RSW22] Hanlin Ren, Rahul Santhanam, and Zhikun Wang. On the range avoidance problem for circuits.
In Symposium on Foundations of Computer Science (FOCS), pages 640–650, 2022. 4, 12, 51

[San23] Rahul Santhanam. An algorithmic approach to uniform lower bounds. In Computational Com-
plexity Conference (CCC), pages 35:1–35:26, 2023. 12

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the XOR
lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001. 6, 38

[Tel17] Roei Tell. Improved bounds for quantified derandomization of constant-depth circuits and poly-
nomials. In Computational Complexity Conference (CCC), pages 13:1–13:48, 2017. 12

[Tel18] Roei Tell. Quantified derandomization of linear threshold circuits. In Symposium on Theory of
Computing (STOC), pages 855–865, 2018. 12

[Tel22] Roei Tell. Quantified derandomization: How to find water in the ocean. Found. Trends Theor.
Comput. Sci., 15(1):1–125, 2022. 12

[TV07] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity via uniform
reductions. Comput. Complex., 16(4):331–364, 2007. 13, 18

[Uma03] Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci.,
67(2):419–440, 2003. 13

[Vio09] Emanuele Viola. On approximate majority and probabilistic time. Comput. Complex., 18(3):337–
375, 2009. 19, 22, 23

[vMP06] Dieter van Melkebeek and Konstantin Pervyshev. A generic time hierarchy for semantic models
with one bit of advice. In Conference on Computational Complexity (CCC), pages 129–144,
2006. 5, 33

[vMS23] Dieter van Melkebeek and Nicollas M. Sdroievski. Instance-wise hardness versus randomness
tradeoffs for Arthur-Merlin protocols. In Computational Complexity Conference (CCC), pages
17:1–17:36, 2023. 13

[VV86] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions. Theor.
Comput. Sci., 47(3):85–93, 1986. 9, 22, 24

[Wil13a] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM J.
Comput., 42(3):1218–1244, 2013. 11

[Wil13b] Ryan Williams. Towards NEXP versus BPP? In International Computer Science Symposium in
Russia (CSR), pages 174–182, 2013. 3, 11

[Wil14] Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014. 3, 11

50



[Wil16] Ryan Williams. Natural proofs versus derandomization. SIAM J. Comput., 45(2):497–529, 2016.
4

[Wil18a] Ryan Williams. Limits on representing Boolean functions by linear combinations of simple
functions: Thresholds, ReLUs, and low-degree polynomials. In Computational Complexity Con-
ference (CCC), pages 6:1–6:24, 2018. 11

[Wil18b] Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates. Theory
Comput., 14(1):1–25, 2018. 11

[Wil19] Ryan Williams. Some estimated likelihoods for computational complexity. In Computing and
Software Science - State of the Art and Perspectives, pages 9–26. Springer, 2019. 3

A A Reduction to Range Avoidance

Recall that in the range avoidance problem (referred to as Avoid), we are given an input Boolean
circuit F : {0, 1}m → {0, 1}n, with m < n, and the goal is to output a string y ∈ {0, 1}n such that
y /∈ Range(F ) = {F (x) | x ∈ {0, 1}m} (see, e.g., [Kor21, RSW22]27).

Let C : {0, 1}m → {0, 1}n be a sampler, where m and n are arbitrary. Note that non-uniform
heavy avoid for 0 < δ < 2−m is precisely the range avoidance problem, since a string is not in the
range of the map C if and only if its probability under DC is strictly less than 2−m. In this work,
we are mostly concerned with the regime where δ = 1/poly(n), i.e., when the goal is to avoid heavy
elements. If n > m, then it is trivial to reduce Heavy-Avoid to Avoid; however, the goal of this
section is to show that even in the regime that n ≤ m, Heavy-Avoid and Heavy-Find are not harder
than range avoidance.

Theorem A.1. For any constant u ≥ 1, there is a deterministic polynomial-time algorithm that,
given oracle access to Avoid, an input circuit C : {0, 1}m → {0, 1}n of size at most nu, and param-
eters δ > ε > 1/nu, outputs a pair (α, β) of n-bit strings such that the following hold:

• If there is a string z ∈ {0, 1}n that is δ-heavy under DC , then α is (δ − ε)-heavy under DC .

• If there is a string z ∈ {0, 1}n that is not (δ−ε)-heavy under DC , then β is not δ-heavy under
DC .

Proof. In order to prove Theorem A.1, we rely on the fact that a query to Avoid allows us to obtain
the description of a Boolean function h : {0, 1}logn → {0, 1} of circuit complexity Ω(n/ log n) (see,
e.g., [Kor21]). In turn, this implies that, for every constant k ≥ 1 and ε ≥ 1/poly(n), we can
compute in time poly(n, 1/ε) a pseudorandom generator G : {0, 1}O(logn) → {0, 1}n that ε-fools
circuits of size nk [NW94, IW97]. Next, we observe that this is sufficient to solve in polynomial
time the non-uniform variants of both Heavy-Avoid and Heavy-Find.

We will need the following lemma.

Lemma A.2. There is a constant b ≥ 1 such that the following holds. Let C : {0, 1}m → {0, 1}n be
a map computed by a circuit of size s ≥ n. Let G : {0, 1}ℓ → {0, 1}m be a pseudorandom generator
that ε-fools any circuit E : {0, 1}m → {0, 1} of size b · s. Consider any string z ∈ {0, 1}n, and let
pz be its probability under DC . Then

pz − ε ≤ Pr
w∼{0,1}ℓ

[C(G(w)) = z] ≤ pz + ε.

27This problem was called “Empty” in [Kor21].

51



Proof. For any fixed string z ∈ {0, 1}n, we consider the non-uniform circuit Ez : {0, 1}m → {0, 1}
that on an input x outputs 1 if and only if C(x) = z. Note that Prx[Ez(x) = 1] = pz. Since Ez has
size at most O(s + n) = O(s), this circuit is ε-fooled by G, assuming that b is large enough. The
pseudorandomness property of G against the test computed by Ez yields the desired bound. ⋄

Consider a generator G as above. The previous lemma and discussion imply that given a circuit
C : {0, 1}m → {0, 1}n of size polynomial in n and a parameter ε ≥ 1/poly(n), and assuming access
to an oracle that solves Avoid, we can compute in polynomial time (by iterating over all seeds of
G) a set S = {z1, . . . , za}, where a = poly(n) and each zi ∈ {0, 1}n, and probability estimates
p̃1, . . . , p̃a, such that the following hold:

• For every i ∈ [a], p̃i − ε ≤ DC(z
i) ≤ p̃i + ε.

• If a string z ∈ {0, 1}n satisfies DC(z) > ε, then z ∈ S.

In particular, given parameters δ > ε ≥ 1/poly(n), by picking appropriate parameters in the
discussion above we can output in polynomial time a set Bδ,ε ⊆ {0, 1}n that contains every string
z that is δ-heavy in DC and no string z that is not (δ − ε)-heavy in DC . Given Bδ,ε, we can easily
solve Heavy-Avoid (by selecting any string not in Bδ,ε) and Heavy-Find (by selecting a string in
Bδ,ε), as in the statement of Theorem A.1.

B Properties of the PSPACE-Complete Language

In this section, we discuss the proof of the following result.

Theorem 3.1 (A PSPACE-Complete Language with Useful Properties). There is a language L⋆ ⊆
{0, 1}∗ with the following properties:

1. (Complexity Upper Bound) L⋆ ∈ PSPACE.

2. (Completeness) L⋆ is PSPACE-hard under DLOGTIME-uniform projection reductions.

3. (Instance Checkability) There is a DLOGTIME-uniform family of BP-AC0[⊕] oracle cir-
cuits {ICn}n≥1 making projection queries such that, on every input string x ∈ {0, 1}n and for
every oracle O ⊆ {0, 1}∗, the following holds:

• ICOn (x) only makes queries of length n to O.
• If O agrees with L⋆ on inputs of length n, then Prr[IC

O
n (x; r) = L⋆(x)] = 1.

• For every oracle O, Prr[IC
O
n (x; r) ∈ {⊥, L⋆(x)}] ≥ 1− exp(−n).

To establish this theorem, we verify that the language called LWH-TV described in [Che23,
Section 7] satisfies the properties we need.28 In particular, [Che23] showed that this language
is PSPACE-complete and has instance checkers in AC0[⊕]. However, [Che23] only considered P-
uniformity. For both the instance checker and the PSPACE-hardness reduction, a few minor modi-
fications of the construction are needed to achieve DLOGTIME-uniformity.

The rest of this section will verify the required uniformity conditions by inspecting the proof in
[Che23, Section 7]. Note that we will assume familiarity with [Che23, Section 7].29

28We work with LWH-TV instead of the final language LPSPACE because the only difference between LWH-TV and
LPSPACE is paddability, which is not required for our arguments.

29The full version of [Che23] can be found at ECCC Report TR22-183.
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B.1 Preliminaries

We assume familiarity with notations in [Che23, Section 7] such as pwℓ, ℓn, szn, and Fn. We
will use length-szn strings and elements in Fn interchangably (instead of explicitly going through
the bijection κn). The following tasks can be computed in DLOGTIME-uniform AC0[⊕] [HV06]:

• (Iterated addition.) Given α1, . . . , αt ∈ {0, 1}szn , compute
∑

i∈[t] ai ∈ {0, 1}szn .

• (Iterated multiplication.) Given α1, . . . , αt ∈ {0, 1}szn where t ≤ log n, compute
∏

i∈[t] ai ∈
{0, 1}szn .

We will need a DLOGTIME-uniform AC0[⊕] circuit for polynomial interpolation over Fn, which
is the following task. Let α1, α2, . . . , αt be the lexicographically smallest t elements in Fn. Given
β1, β2, . . . , βt ∈ Fn and z ∈ Fn as inputs, the goal is to output p(z), where p : Fn → Fn is the unique
degree-(t− 1) polynomial over Fn such that p(αi) = βi for every i ∈ [t].

It is shown in [Che23, Corollary 7.2] that the polynomial interpolation problem admits a uniform
AC0[⊕] circuit when t ≤ log n. Jumping ahead, the circuit is not DLOGTIME-uniform since (3)
requires one to compute the inverse of αi−αj , and it is unclear how to compute inverses over Fn in
DLOGTIME-uniform AC0[⊕]. One way to work around this technical issue is to let the interpolation
algorithm output two numbers u, v ∈ Fn such that p(z) = u · v−1.

Claim B.1. For any constant t ≥ 130, there is a DLOGTIME-uniform AC0[⊕] circuit that given
z, β1, . . . , βt ∈ Fn as inputs, outputs two elements u, v ∈ Fn such that p(z) = u · v−1, where
p : Fn → Fn is the unique degree-(t− 1) polynomial over Fn such that p(αi) = βi for every i ∈ [t].

Proof Sketch. The expression for p(z) is

p(z) =
∑
i∈[t]

βi ·
∏

j∈[t]\{i}

z − αj

αi − αj
. (3)

Hence, we have p(z) = u · v−1 where

v =
∏

1≤i<j≤t
(αi − αj), and

u = p(z)v =
∑
i∈[t]

βi ·
∏

j∈[t]\{i}

(z − αj) ·
∏

1≤i′<j′≤t
i′ ̸=i and j′ ̸=i

(αi − αj).

(Note that we omitted some (−1)i terms since our field has characteristic 2.)
The desired DLOGTIME-uniform AC0[⊕] circuit follows from [HV06].

B.2 The Instance Checker

We assume familiarity with the notations in [Che23, Section 7], such as SQ, fn,i, Jn,j , Qn,j . We
start by showing that [Che23, Algorithm 7.1] (i.e., the instance checker for the polynomials {fn,i}
defined in [Che23, Lemma 7.3]) admits a DLOGTIME-uniform family of BP-AC0[⊕] oracle circuits.
The instance checker receives input parameters n, i ∈ N such that 1 ≤ i ≤ n, input x⃗ ∈ Fn

n, and
oracle access to n − i + 1 functions f̃i, f̃i+1, . . . , f̃n : Fn

n → Fn. It draws zi, zi+1, . . . , zn−1 ← Fn

uniformly at random and performs the following steps:

30Actually, solving the polynomial interpolation problem for t = 3 suffices for our instance checker.
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1. First, it computes α⃗i, α⃗i+1, . . . , α⃗n ∈ Fn
n as in [Che23, Eq. (8)]. For each i ≤ j ≤ n and ℓ ∈ [n],

let jmax be the maximum j′ < j such that j′ ≥ i, Jn,j′ = ℓ and Qn,j′ ̸= MUL (or ⊥ if such
j′ does not exist). If jmax does not exist, then (α⃗j)ℓ = xℓ; otherwise (α⃗j)ℓ = zjmax . We will
show in Claim B.2 that given j and ℓ, we can compute jmax in O(log n) time; hence, we can
compute each α⃗j via a DLOGTIME-uniform projection.

2. Then, it queries the oracles to obtain rj = f̃j(α⃗j) for every i ≤ j ≤ n.

3. Let t := cdeg+1 = 3 (by [Che23, Lemma 7.7], the polynomials have individual degree at most
2), w1, . . . , wt be the first t non-zero elements of Fn. For each i ≤ j < n and ℓ ∈ [t], it queries
the oracles to obtain βj

ℓ := f̃j+1((α⃗j)
Jn,j←wℓ).

4. For every i ≤ j < n in parallel :

• If Qn,j = MUL, then it verifies that rj = rj+1 · Termn,j(α⃗j), where Termn,j is defined in
[Che23, Eq. (4)] and hence computable by DLOGTIME-uniform AC0[⊕] circuits.

• Otherwise, let p be the unique degree-(t − 1) polynomial such that p(wℓ) = βj
ℓ for

every ℓ ∈ [t], we can use Claim B.1 to obtain the values p(0), p(1), and p(zj). If
rj ̸= SQn,j ((α⃗j)Jn,j , p(0), p(1)) or rj+1 ̸= p(zj), then output ⊥ and halt.

5. Finally, if rn = 1 then accept and output ri (= f̃(x⃗)); otherwise output ⊥.

We remark that the values p(0), p(1), p(zj) in Item 4 are represented as u·v−1 for some u, v ∈ Fn,
but it is still possible to check the equalities. For example:

• If Q = ∃, then SQ(x, y0, y1) = y0 ·y1, hence SQ(x, y0z
−1
0 , y1z

−1
1 ) = r if and only if y0y1 = rz0z1.

• If Q = ∀, then SQ(x, y0, y1) = 1− (1− y0)(1− y1), hence SQ(x, y0z
−1
0 , y1z

−1
1 ) = r if and only

if (z0 − y0)(z1 − y1) = z0z1(1− r).

• If Q = LIN, then SQ(x, y0, y1) = xy1 + (1− x)y0, hence SQ(x, y0z
−1
0 , y1z

−1
1 ) = r if and only if

xy1z0 + (1− x)y0z1 = rz0z1.

The first three steps above issue queries to the oracles f̃i, f̃i+1, . . . , f̃n, and it is easy to see that
these queries can be generated by a DLOGTIME-uniform projection over x⃗ and z⃗ = (zi, . . . , zn−1).
The last two steps above perform DLOGTIME-uniform AC0[⊕] computation over z⃗ and the answers
returned from the oracles. This establishes the complexity of the instance checker.

Finally, we need to compute jmax efficiently:

Claim B.2. There is an algorithm running in O(log n) time that given i < j ≤ n and ℓ ∈ [n], finds
the maximum j′ < j such that j′ ≥ i, Jn,j′ = ℓ, and Qn,j′ ̸= MUL.

Proof. We recall the definitions of Jn,j and Qn,j from [Che23, Proof of Lemma 7.6]. For some
integers m < λ <

√
n computable in O(log n) time, we have:

(Jn,j , Qn,j) =


(1, LIN) if j > λ2,

(j mod λ, LIN) otherwise, if λ ∤ j,
(1,MUL) otherwise, if j ≥ (m+ 1)λ,

(j/λ,Qj/λ ∈ {∃,∀}) otherwise.

If ℓ ≥ λ, then we can safely return ⊥. If ℓ = 1 and j > λ2 + 1, then we can simply return
jmax = j − 1. Otherwise, there are only two possible candidates for jmax:
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• The case that (Jn,j , Qn,j) = (j mod λ, LIN): the largest j′ < min{j, λ2} s.t. j mod λ = ℓ;

• The case that (Jn,j , Qn,j) = (j/λ,Qj/λ): j
′ = ℓ · λ.

We discard any candidate not in the range [i, j) and return the (larger) remaining candidate j′. If
both candidates are not in [i, j) then we return ⊥. This finishes the algorithm for finding jmax in
O(log n) time.

The instance checker for LWH-TV reduces to the instance checker for the polynomials {fn,i} in
a straightforward way. In fact, let input ∈ {0, 1}m be the input of LWH-TV and k be the integer
defined in [Che23, Algorithm 7.2] (computable in O(logm) time), then:

• given access to (a purported oracle for) the m-th slice of LWH-TV, one can access the polyno-
mials fnk,ik , fnk,ik+1, . . . , fnk,nk

via DLOGTIME-uniform projections;

• given input and the answers of each fnk,j(x⃗) (j ≥ ik), where x⃗ ∈ Fn
n corresponds to the

length-(n · szn) prefix of input , one can compute LWH-TV(input) using [Che23, Eq. (10) and
(11)] via a DLOGTIME-uniform AC0[⊕] circuit.

Since the instance checker for {fn,i} is a DLOGTIME-uniform BP-AC0[⊕] circuit making pro-
jection queries, so is the instance checker for LWH-TV. Finally, the error probability of the instance
checker for {fn,i} is at most poly(n)/2n by [Che23, Claim 7.12], hence the error probability of the
instance checker for LWH-TV is also at most poly(n)/2n by a union bound.

B.3 PSPACE-Completeness

We also need to show that LWH-TV is PSPACE-complete under DLOGTIME-uniform projections.
Note that LWH-TV is an arithmetization of the problem TQBFu defined in [Che23, Section 7.3],
thus we first show that TQBFu is PSPACE-complete under DLOGTIME-uniform projections, and
then reduce TQBFu to LWH-TV using DLOGTIME-uniform projections. However, the PSPACE-
completeness reduction presented in [Che23, Section 7.3] (from the classical TQBF to TQBFu) is
not a projection, so we need to implement the reduction more efficiently here.

Definition of TQBFu. There are 8 ·
(
n
3

)
possible width-3 clauses on n variables and we let ϕcl-idx

n

be a bijection between [8·
(
n
3

)
] and the set of valid width-3 clauses. A 3-CNF ϕ can thus be described

by a string y ∈ {0, 1}8·(
n
3). The TQBFu problem takes such a bit-string as an input, constructs the

corresponding 3-CNF Φ(x1, x2, . . . , xn), and outputs

Q1x1Q2x2 . . . Qnxn Φ(x1, x2, . . . , xn), (4)

where Qi equals ∃ for odd i and ∀ for even i.

PSPACE-completeness of TQBFu. First, the proof of the PSPACE-completeness of TQBF (that
is, computing (4) when Φ is a general circuit) actually shows the following stronger result: For
every language L ∈ PSPACE, there is a polynomial-time Turing machine M and a polynomial ℓ(n)
such that, for every z ∈ {0, 1}n, z ∈ L if and only if

Q1x1Q2x2 . . . Qℓ(n)xℓ(n) M(z1∼n, x1∼ℓ(n)),

where, again, Qi equals ∃ for odd i and ∀ for even i. (See [ALR99] for an exposition. In particular,
[ALR99, Section 6.2] pointed out that the above PSPACE-completeness reduction can be computed
by a DLOGTIME-uniform projection.)
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Since P is equal to DLOGTIME-uniform SIZE[poly] [BI94], there is a family of poly(n)-size circuits
{Cn : {0, 1}n+ℓ(n)→{0,1}} that simulates M and satisfies the following uniformity conditions. Let
s(n) ≤ poly(n) denote the number of gates in Cn (including input gates), then 1, 2, . . . , s is a valid
topological order of Cn (the first n + ℓ gates are inputs and the s-th gate is the output gate). By
adding dummy gates, we may assume that no gate has both children being zi variables (this will
imply that our final is 1-local). Finally, the direct connection language of Cn can be computed in
O(log n) time: there is an algorithm running in deterministic O(log n) time that given n, indices of
gates g1, g2, g3 ∈ [|Cn|] (where g1 > max{g2, g3}), and assignments b1, b2, b3 ∈ {0, 1}, returns true if
and only if the outputs of g2 and g3 are fed as inputs of g1 and {gi = bi}i∈[3] is consistent with the
gate type of g1 (e.g., if g1 is an AND gate, then it cannot be the case that b1 = 1 but b2 = 0).

Now we show that this implies a DLOGTIME-uniform projection reduction from L to TQBFu.
We will reduce an instance z ∈ {0, 1}n of L to a TQBFu instance Φz with s(n) variables. Let D be
a clause expressing

(gi ̸= bi) ∨ (gj ̸= bj) ∨ (gk ̸= bk),

where gi, gj , gk are variables corresponding to gates in Cn and bi, bj , bk ∈ {0, 1}. We may assume
that gi > max{gj , gk}. Then, D appears in Φ if and only if gj , gk are fed as inputs of gi but
{gi = bi}i∈[3] is inconsistent with the gate type of gi. This information can be retrieved by O(1)
queries to the direct connection language.

Finally, the TQBFu instance we produced is

Q1x1Q2x2 . . . Qℓ(n)xℓ(n)∃g(ℓ(n)+n+1)∼s(n) Φ(z1∼n, x1∼ℓ(n), g(ℓ(n)+n+1)∼s(n)),

and we may insert ∀ quantifiers among g(ℓ(n)+n+1)∼s(n) to make the quantifiers alternate. It is easy
to see that the reduction is computable in DLOGTIME; it is a projection because every clause (i.e.,
gate in Cn) only touches one zi variable.

PSPACE-completeness of LWH-TV. The reduction from TQBFu to LWH-TV is straightforward.
First, by [Che23, Lemma 7.10], the truth-table of TQBFu on input length m coincides with the

truth-table of fn,1 = g
(n)
1,1 over the Boolean cube, for some n = poly(m). Hence, when L = TQBFu,

the algorithm Ared
L (as defined in Item 4 of [Che23, Lemma 7.3]) is a DLOGTIME-uniform projection.

Second, the reduction in [Che23, Lemma 7.19] produces the instance (z⃗, y⃗, u⃗) where y⃗ and u⃗ are
constant vectors whose each bit can be computed trivially, and z⃗ = Ared

L (x) and x is the input of
L. Hence, when L = TQBFu, this reduction is also a DLOGTIME-uniform projection over x.

Combining all of the above, we can see that the overall reduction from any language L ∈ PSPACE
to LWH-TV is a DLOGTIME-uniform projection.
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