
ar
X

iv
:2

20
4.

08
31

2v
1 

 [
cs

.C
C

] 
 1

8 
A

pr
 2

02
2

Optimal Coding Theorems in Time-Bounded Kolmogorov Complexity

Zhenjian Lu∗ Igor C. Oliveira† Marius Zimand‡

Abstract

The classical coding theorem in Kolmogorov complexity states that if an n-bit string x is
sampled with probability δ by an algorithm with prefix-free domain then K(x) ≤ log(1/δ) +O(1).
In a recent work, Lu and Oliveira [LO21] established an unconditional time-bounded version of
this result, by showing that if x can be efficiently sampled with probability δ then rKt(x) =
O(log(1/δ)) + O(log n), where rKt denotes the randomized analogue of Levin’s Kt complexity.
Unfortunately, this result is often insufficient when transferring applications of the classical coding
theorem to the time-bounded setting, as it achieves a O(log(1/δ)) bound instead of the information-
theoretic optimal log(1/δ).

Motivated by this discrepancy, we investigate optimal coding theorems in the time-bounded
setting. Our main contributions can be summarised as follows.

• Efficient coding theorem for rKt with a factor of 2. Addressing a question from [LO21],
we show that if x can be efficiently sampled with probability at least δ then rKt(x) ≤ (2 + o(1)) ·
log(1/δ) + O(logn). As in previous work, our coding theorem is efficient in the sense that it
provides a polynomial-time probabilistic algorithm that, when given x, the code of the sampler,
and δ, it outputs, with probability ≥ 0.99, a probabilistic representation of x that certifies this rKt
complexity bound.

• Optimality under a cryptographic assumption. Under a hypothesis about the security of
cryptographic pseudorandom generators, we show that no efficient coding theorem can achieve a
bound of the form rKt(x) ≤ (2 − o(1)) · log(1/δ) + poly(logn). Under a weaker assumption, we
exhibit a gap between efficient coding theorems and existential coding theorems with near-optimal
parameters.

• Optimal coding theorem for pKt and unconditional Antunes-Fortnow. We consider pKt

complexity [GKLO22], a variant of rKt where the randomness is public and the time bound is fixed.
We observe the existence of an optimal coding theorem for pKt, and employ this result to establish
an unconditional version of a theorem of Antunes and Fortnow [AF09] which characterizes the
worst-case running times of languages that are in average polynomial-time over all P-samplable
distributions.
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1 Introduction

1.1 Context and Background

A sampler is a probabilistic function that outputs Boolean strings. For any string x ∈
{0, 1}∗ in its range, let µ(x) denote the probability with which x is generated. The Coding
Theorem in Kolmogorov complexity states that if the sampler is computable and its domain
is a prefix-free set, then for every x in its range

K(x) ≤ log(1/µ(x)) +O(1),

where K(·) is the prefix-free Kolmogorov complexity. In other words, strings that are sampled
with non-trivial probability have short representations. Note that the coding theorem achieves
optimal expected length, since no uniquely decodable code can have expected length smaller
than

∑
µ(x) log2(1/µ(x)), the entropy of the sampler (the sum is over all x in the range of the

sampler, assumed here to be finite).
The coding theorem is a central result in Kolmogorov complexity.1 While it has found

a number of applications in theoretical computer science (see, e.g., [LV92, Lee06, Aar14]), it
comes with an important caveat: many aspects of the theory of Kolmogorov complexity are
non-constructive. For instance, there is provably no algorithm that estimates K(x). Similarly,
for arbitrary samplers, there is no effective compressor achieving the short representation
provided by the coding theorem2 and also no upper bound on the running time required to
decompress x from it.

In order to translate results and techniques from Kolmogorov complexity to the setting
of efficient algorithms and computations, several time-bounded variants of Kolmogorov com-
plexity have been proposed. We refer to the book [LV19], thesis [Lee06], and the surveys
[All92, All01, For04, All17] for a comprehensive treatment of this area and its numerous ap-
plications to algorithms, complexity, cryptography, learning, and pseudorandomness, among
other fields. We highlight that many exciting new results, which include worst-case to average-
case reductions for NP problems [Hir18, Hir21] and complexity-theoretic characterizations of
one-way functions [LP20, RS21], rely in a crucial way on time-bounded Kolmogorov complexity.
These recent developments further motivate the investigation of key results from Kolmogorov
complexity in the time-bounded setting.

In time-bounded Kolmogorov complexity we consider the minimum description length of a
string x with respect to machines that operate under a time constraint. We informally review
next two central notions in this area (see Section 2 for precise definitions). For a Turing
machine M, we let |M| denote its description length according to a fixed universal machine
U . M(ε) denotes the computation of M over the empty string.

Kt Complexity [Lev84]. This notion simultaneously considers description length and running
time when measuring the complexity of a string x.

Kt(x) = min
TMM, t≥1

{|M|+ log t | M(ε) outputs x in t steps} .

1For instance, [Lee06] describes it as one of the four pillars of Kolmogorov complexity.
2However, there exists a probabilistic polynomial-time compressor that given x and an integer m ≥

log(1/µ(x)) outputs a description of x of length m + small polylogarithmic overhead [BZ19].
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K
t Complexity [Sip83]. In contrast with Kt, here we fix the time bound t : N → N, and

consider the minimum description with respect to machines that run in time at most t(|x|).

Kt(x) = min
TMM

{|M| | M(ε) outputs x in t(|x|) steps} .

While Kt complexity is tightly related to optimal search algorithms (see [Kra21] for a recent
application), Kt is particularly useful in settings where maintaining a polynomial bound on the
running time t is desired (see, e.g., [Hir18]).

Antunes and Fortnow [AF09] introduced techniques that can be used to establish (condi-
tional) coding theorems for Kt and Kt. In particular, if a sampler runs in polynomial time
and outputs a string x with probability at least δ, then Kt(x) ≤ log(1/δ) + O(log n). Note
that this coding theorem also achieves an optimal dependence on the probability parameter δ.
However, the results of [AF09] rely on a strong derandomization assumption. For this reason,
their application often lead to conditional results.

More recently, [LO21] established an unconditional coding theorem for a randomized ana-
logue of Kt complexity. Before explaining their result, we review the definitions of rKt and rKt.

rKt Complexity [Oli19]. In this definition, we consider randomized machines that output x
with high probability.

rKt(x) = min
RTMM, t≥1

{|M|+ log t | M(ε) outputs x in t steps with probability ≥ 2/3} .

rK
t Complexity [BLvM05, LOS21].3 This is the randomized analogue of Kt, where the time

bound t is fixed in advance.

rKt(x) = min
RTMM

{|M| | M(ε) outputs x in t(|x|) steps with probability ≥ 2/3} .

In both cases, we can think of the randomized Turing machine M as a probabilistic rep-
resentation of the input string x, in the sense that x can be recovered with high probability
from its description. These measures allow us to employ methods from time-bounded Kol-
mogorov complexity in the setting of randomized computation, which is ubiquitous in modern
computer science. For instance, [Oli19, LOS21] employed rKt and rKt to obtain bounds on
the compressibility of prime numbers and other objects and to show that certain problems
about time-bounded Kolmogorov complexity can be intractable. We note that, under de-
randomization assumptions (see [Oli19]), for every string x, rKt(x) = Θ(Kt(x)). Similarly,
one can conditionally show that Kt(x) is essentially rKt(x), up to a O(log |x|) additive term
(see [GKLO22]). Consequently, insights obtained in the context of probabilistic notions of
Kolmogorov complexity can often inform the study of more classical notions such as Kt and
Kt.

Among other results, [LO21] established the following unconditional coding theorem in
time-bounded Kolmogorov complexity: if a sampler runs in polynomial time and outputs a
string x with probability at least δ, then rKt(x) = O(log(1/δ) + O(log n). While this result
can be used to port some applications of the coding theorem from Kolmogorov complexity to
the time-bounded setting, in many cases it is still insufficient. This is because its dependence
on the probability parameter δ is not optimal, which is often crucial in applications (see, e.g.,
[AF09, Aar14]).

3[BLvM05] refers to this notion as CBPt complexity.
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1.2 Results

In this work, we investigate optimal coding theorems in time-bounded Kolmogorov com-
plexity. We describe our results next.

1.2.1 A Tighter Efficient Coding Theorem

Our first result addresses the question posed in [LO21, Problem 37].

Theorem 1. Suppose there is an efficient algorithm A for sampling strings such that A(1n)
outputs a string x ∈ {0, 1}n with probability at least δ. Then

rKt(x) ≤ 2 log(1/δ) +O
(
log n+ log2 log(1/δ)

)
,

where the constant behind the O(·) depends on A and is independent of the remaining param-
eters. Moreover, given x, the code of A, and δ, it is possible to compute in time poly(n, |A|),
with probability ≥ 0.99, a probabilistic representation of x certifying this rKt-complexity bound.

In [BFL01, Lemma 4], it was observed that by hashing modulo prime numbers one can
obtain short descriptions of strings. As discussed in [LO21, Section A.2.1], for each efficient
sampling algorithm, this technique implies that if some string x is produced with probability
≥ δ, then rKt(x) ≤ 3 log(1/δ) + O(log n).4 In contrast, Theorem 1 achieves a bound of the
form (2 + o(1)) · log(1/δ) +O(log n).

Theorem 1 readily improves some parameters in the applications of the coding theorem for
rKt discussed in [LO21], such as the efficient instance-based search-to-decision reduction for
rKt. We omit the details.

In Section 3.1, we discuss extensions of this result. In particular, we describe precise
bounds on the running time used in producing the corresponding probabilistic representation,
and discuss computational aspects of the compression and decompression of x in detail. In
Appendix A, we discuss the computation of a probabilistic representation of the string x when
one does not know a probability bound δ.

1.2.2 Matching Lower Bound Under a Cryptographic Assumption

It is possible to extend techniques from [AF09] to show the following conditional result (see
Section 3.2).

Proposition 2. Assume there is a language L ∈ BPTIME
[
2O(n)

]
that requires nondetermin-

istic circuits of size 2Ω(n) for all but finitely many n. Suppose there is an efficient algorithm
A for sampling strings such that A(1n) outputs a string x ∈ {0, 1}n with probability at least
δ > 0. Then

rKt(x) ≤ log(1/δ) +O(log n).

While Proposition 2 provides a better bound than Theorem 1, the result is only existential,
i.e., it does not provide an efficient algorithm that produces a probabilistic representation of x.
In other words, Proposition 2 does not establish an efficient coding theorem. Our next result
shows that the bound achieved by Theorem 1 is optimal for efficient coding theorems, under a

4The bound from [LO21, Section A.2.1] is different because it does not take into account the running time,
which incurs an additional overhead of log(1/δ).
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cryptographic assumption.

The Cryptographic Assumption. For a constant γ ∈ (0, 1), we introduce the γ-Crypto-
ETH assumption, which can be seen as a cryptographic analogue of the well-known exponential
time hypothesis about the complexity of k-CNF SAT [IP01]. Informally, we say that γ-Crypto-
ETH holds if there is a pseudorandom generator G : {0, 1}ℓ(n) → {0, 1}n computable in time
poly(n) that fools uniform algorithms running in time 2γ·ℓ(n). Any seed length (log n)ω(1) ≤
ℓ(n) ≤ n/2 is sufficient in our negative results.

In analogy with the well-known ETH and SETH hypotheses about the complexity of k-
CNF SAT, we say that Crypto-ETH holds if γ-Crypto-ETH is true for some γ > 0, and that
Crypto-SETH holds if γ-Crypto-ETH is true for every γ ∈ (0, 1). Since a candidate PRG of seed
length ℓ(n) can be broken in time 2ℓ(n)poly(n) by trying all possible seeds, these hypotheses
postulate that for some PRGs one cannot have an attack that does sufficiently better than this
naive brute-force approach.

We stress that these assumptions refer to uniform algorithms. In the case of non-uniform
distinguishers, it is known that Crypto-SETH does not hold (see [FN99, DTT10, CGLQ20]
and references therein). We provide a formal treatment of the cryptographic assumption
in Section 4.

Theorem 3 (Informal). Let γ ∈ (0, 1) be any constant. If γ-Crypto-ETH holds, there is no
efficient coding theorem for rKt that achieves bounds of the form (1 + γ − o(1)) · log(1/δ) +
poly(log n).

Theorem 3 shows that if Crypto-ETH holds then the best parameter achieved by an effi-
cient coding theorem for rKt is (1+Ω(1)) · log(1/δ)+poly(log n). This exhibits an inherent gap
in parameters between the efficient coding theorem (Theorem 1) and its existential analogue
(Proposition 2). On the other hand, if the stronger Crypto-SETH hypothesis holds, then no
efficient coding theorem for rKt achieves parameter (2 − o(1)) · log(1/δ) + poly(log n). In this
case, Theorem 1 is essentially optimal with respect to its dependence on δ.

Fine-grained complexity of coding algorithms for polynomial-time samplers. An rKt

bound refers to the time necessary to decompress a string x from its probabilistic representation.
On the other hand, an efficient coding theorem provides a routine that can compress x in
polynomial time. More generally, a coding procedure for a sampler A consists of a pair of
probabilistic algorithms (Compress,Decompress) that aim to produce a “good” codeword p for
every string y sampled by A. The quality of p depends on three values: the length of p,
the number of steps tC used to produce p from y (the compression time), and the number of
steps tD used to produce y from p (the decompression time). It is interesting to understand
the trade-off between these three values. Toward this goal, we aggregate them in a manner
similar to rKt, by defining the 2-sided-rKt complexity of y to be, roughly, |p| + log(tC + tD)
(the formal Definition 25 is more complicated because it takes into account that Compress and
Decompress are probabilistic). Thus according to 2-sided-rKt, each bit gained by a shorter
codeword is worth doubling the compression/decompression time. For instance, for simple
samplers (say, having a finite range, or generating strings with the uniform distribution),
there exist trivial polynomial time Compress and Decompress, which in case y is sampled with
probability at least δ, produce a codeword p with |p| = log(1/δ) (provided Compress and
Decompress know δ). Such a coding procedure certifies for each sampled string a 2-sided-rKt
complexity of log(1/δ) + O(log n). We say that the sampler admits coding with 2-sided-rKt
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complexity bounded by log(1/δ) + O(log n). In general, we have to include also the error
probability of Compress and Decompress, which we omit in this informal discussion.

Similarly to Theorem 1 and Theorem 3 (and also with similar proofs), we establish the
following theorem.

Theorem 4 (Informal). The following results hold.

(a) (Upper Bound) Every polynomial-time sampler admits coding with 2-sided-rKt complexity
2 log(1/δ) +O(log2 log(1/δ)) +O(log n).

(b) (Conditional Lower Bound) Let γ ∈ (0, 1) be any constant. If γ-Crypto-ETH holds, there
exists a polynomial-time sampler that does not admit coding with 2-sided-rKt complexity
bounded by (1 + γ − o(1)) · log(1/δ) + poly(log n), unless the error probability is greater
than 1/7.

1.2.3 An Optimal Coding Theorem and Unconditional Antunes-Fortnow

While Theorem 1 improves the result from [LO21] to achieve a bound that is tight up to a
factor of 2 and that is possibly optimal among efficient coding theorems, it is still insufficient
in many applications. We consider next a variant of rKt that allows us to establish an optimal
and unconditional coding theorem in time-bounded Kolmogorov complexity.

Fix a function t : N → N. For a string x ∈ {0, 1}∗, the probabilistic t-bounded Kolmogorov
complexity of x (see [GKLO22]) is defined as

pKt(x) = min

{
k

∣∣∣∣∣ Pr
w∼{0,1}t(|x|)

[
∃M ∈ {0, 1}k, M(w) outputs x within t(|x|) steps

]
≥ 2

3

}
.

In other words, if k = pKt(x), then with probability at least 2/3 over the choice of the random
string w, x admits a time-bounded encoding of length k. In particular, if two parties share
a typical random string w, then x can be transmitted with k bits and decompressed in time
t = t(|x|). (Recall that here the time bound t is fixed, as opposed to rKt, where a log t term is
added to the description length.)

It is possible to show that Kt(x), rKt(x), and pKt(x) correspond essentially to the same
time-bounded measure, under standard derandomization assumptions [GKLO22].5 One of the
main benefits of pKt is that it allows us to establish unconditional results that are currently
unknown in the case of the other measures.6

Theorem 5. Suppose there is a randomized algorithm A for sampling strings such that A(1n)
runs in time T (n) ≥ n and outputs a string x ∈ {0, 1}n with probability at least δ > 0. Then

pKt(x) = log(1/δ) +O(log T (n)) ,

where t(n) = poly(T (n)) and the constant behind the O(·) depends on |A| and is independent
of the remaining parameters.

5More precisely, under standard derandomization assumptions, pKt(x) and rKt′(x) coincide up to an additive
term of O(log |x|), provided that t′ = poly(t). A similar relation holds between Kt and rKt.

6While in this work we focus on coding theorems, we stress that pKt is a key notion introduced in [GKLO22]
that enables the investigation of meta-complexity in the setting of probabilistic computations. It has applications
in worst-case to average-case reductions and in learning theory.
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Theorem 5 provides a time-bounded coding theorem that can be used in settings where
the optimal dependence on δ is crucial. As an immediate application, it is possible to show
an equivalence between efficiently sampling a fixed sequence wn ∈ {0, 1}n of objects (e.g., n-
bit prime numbers) with probability at least δn/poly(n) and the existence of bounds for the
corresponding objects of the form pKpoly(wn) = log(1/δn) + O(log n).7 This is the first tight
equivalence of this form in time-bounded Kolmogorov complexity that does not rely on an
unproven assumption.

As a more sophisticated application of Theorem 5, we establish an unconditional form of
the main theorem from Antunes and Fortnow [AF09], which provides a characterization of the
worst-case running times of languages that are in average polynomial-time over all P-samplable
distributions.

We recall the following standard notion from average-case complexity (see, e.g., [BT06]).
For an algorithm A that runs in time TA : {0, 1}∗ → N and for a distribution D supported over
{0, 1}∗, we say that A runs in polynomial-time on average with respect to D if there is some
constant ε > 0 such that

E
x∼D

[
TA(x)

ε

|x|

]
< 1.

As usual, we say that a distribution D is P-samplable if it can be sampled in polynomial time.

Theorem 6. The following conditions are equivalent for any language L ⊆ {0, 1}∗.

(i) For every P-samplable distribution D, L can be solved in polynomial-time on average with
respect to D.

(ii) For every polynomial p, there exists a constant b > 0 such that the running time of some
algorithm that computes L is bounded by 2O(pKp(x)−K(x)+b log(|x|)) for every input x.

In contrast, [AF09] shows a conditional characterisation result that employs Kt complexity
in the expression that appears in Item (ii).

1.3 Techniques

In this section, we provide an informal overview of our proofs and techniques.

Efficient Coding Theorem for rKt (Theorem 1). Breaking down the result into its com-
ponents, Theorem 1 shows that for any polynomial-time sampler A, there exist a probabilistic
polynomial-time algorithm Compress and an algorithm Decompress with the following proper-
ties: Compress on input an n-bit string x and δ (which estimates from below the probability
with which A samples x), returns a codeword cx of length log(1/δ) + poly(log n) such that
Decompress with probability ≥ 0.99 reconstructs x in time 1/δ · exp(poly(log n)). Note that
the probabilistic representation of x certifying the rKt bound in Theorem 1 can be obtained
from the codeword cx and Decompress, and that obtaining a running time with a factor of
(1/δ)1+o(1) is crucial in order to get a final rKt bound of the form (2 + o(1)) · log(1/δ). (Ac-
tually, Compress does not have to depend on A, the 0.99 can be 1 − ε for arbitrary ε > 0,

7An efficient sampler immediately implies the corresponding pKt bounds via Theorem 5. On the other hand,
objects of bounded pKt complexity can be sampled by considering a random sequence of bits and a random
program of appropriate length. We refer to [LO21, Theorem 6] for a weaker relation and its proof. Since the
argument is essentially the same, we omit the precise details.
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and the poly(log n) term is O(log n + log2 log(1/δ)), but we omit these details in our discus-
sion). We explain what are the challenges in obtaining Compress and Decompress and how they
are overcome. We remark that the construction is different from the approaches described in
[LO21].

Decompress can run the sampler K := O(1/δ) times and obtain a list of elements S∗ (the
list of suspects) that with high probability contains x. Compress has to provide information
that allows Decompress to prune S∗ and find x. Since the algorithms do not share randomness,
Compress does not know S∗, and so compression has to work for any S ⊆ {0, 1}n of size K,
only assuming that x ∈ S. Compress can use a bipartite lossless expander graph G, which is a
graph with the property that any set S of left nodes with size |S| ≤ K has at least (1− ε)D|S|
neighbors, where D is the left degree. Such graphs are called ((1− ε)D,K) lossless expanders
and they have numerous applications (see e.g., [CRVW02, HLW06]). An extension of Hall’s
matching theorem shows that for any set S of K left nodes, there is a matching that assigns
to each x ∈ S, (1 − ε)D of its neighbors, so that no right node is assigned twice (i.e., the
matching defines a subgraph with no collisions). Compress can just pick the codeword cx to
be one random neighbor of x. Then, Decompress can do the pruning of S∗ as follows. Having
S∗ and cx, it does the matching, and, since with probability 1 − ε, cx is only assigned to x,
Decompress can find x. There is one problem though. The algorithms for maximum matching
in general bipartite graphs do not run in linear time (see [CKL+22, Mad13], and the references
therein). Therefore, the decompression time would have a dependency on δ, which is too large
for us. Fortunately, lossless expanders can be used to do “almost” matching faster. [BZ19]
introduces invertible functions (see Definition 12) for the more demanding task in which the
elements of S appear one-by-one and the matching has to be done in the online manner. We do
not need online matching, but we take advantage of the construction in [BZ19] to obtain a fast
matching algorithm. It follows from [BZ19], that in a lossless expander it is possible to do a
greedy-type of “almost” matching, which means that every left node in S is matched to (1−ε)D
of its neighbors (exactly what we need), but with poly(log n) collisions. The collisions can be
eliminated with some additional standard hashing (see the discussion on page 14 for details).
As we explain on page 14, this leads to decompression time K ·D · poly(n) and the length of
the codeword cx is log |R| + |hash-code|, where R is the right set of the lossless expander. To
obtain our result, the degree D has to be 2poly(logn) and |R| has to be K · 2poly(logn).

Building on results and techniques from [GUV09], [BZ19] constructs a ((1 − ε)D,K) ex-
plicit lossless expander with left side {0, 1}n, degree D = 2d for d = O(log(n/ε) · log k), and
right side R, with size verifying log |R| = k + log(n/ε) · log k (where k := logK). To obtain
in Theorem 1 the dependency on n to be O(log n) (which is optimal up to the constant in O(·)),
we show the existence of a ((1− ε)D,K) explicit expander with d = O(log n+ log(k/ε) · log k)
and log |R| = k+O(log n+ log(k/ε) · log k). This lossless expander is constructed by a simple
composition of the above lossless expander from [BZ19] with a lossless expander from [GUV09],
with an appropriate choice of parameters (see Section 3.1.1).

Conditional Lower Bound for Efficient Coding Theorems (Theorem 3). Our goal
is to show that there is no efficient coding theorem for rKt that achieves bounds of the form
(1 + γ − o(1)) · log(1/δ) + poly(log n), under the assumption that γ-Crypto-ETH holds for
γ ∈ (0, 1). We build on an idea attributed to L. Levin (see e.g. [Lee06, Section 5.3]). To provide
an overview of the argument, let Gn : {0, 1}ℓ(n) → {0, 1}n be a cryptographic generator of seed
length ℓ(n) = n/2 witnessing that γ-Crypto-ETH holds. In other words, Gn has security 2γ·ℓ(n)
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against uniform adversaries. We define a sampler Sn as follows. On input x ∈ {0, 1}n, which
we interpret as a random string, it outputs Gn(x

′), where x′ is the prefix of x of length ℓ(n).
We argue that if an efficient algorithm F is able to compress every string y in the support
of Dist(Sn), the distribution induced by the sampler Sn, to an rKt encoding of complexity
(1 + γ − ε) · log(1/δ′(y)) + C · (log n)C , where δ′(y) is a lower bound on δ(y) (the probability
of y under Dist(Sn)), we can use F to break Gn. (Note that F expects as input n, y, δ′, and
code(S).)

The (uniform) distinguisher D computes roughly as follows. Given a string z ∈ {0, 1}n,
which might come from the uniform distribution Un or from Gn(Uℓ(n)) ≡ Dist(Sn), D attempts
to use F to compress z to a “succinct” representation, then checks if the computed representa-
tion decompresses to the original string z. If this is the case, it outputs 1, otherwise it outputs
0. (Note that we haven’t specified what “succinct” means, and it is also not immediately
clear how to run F , since it assumes knowledge of a probability bound δ′. For simplicity of
the exposition, we omit this point here.) We need to argue that a test of this form can be
implemented in time 2γ·ℓ(n), and that it distinguishes the output of G from a random string.

To achieve these goals, first note that a typical random string cannot be compressed to rep-
resentations of length, say, n−poly(log n), even in the much stronger sense of (time-unbounded)
Kolmogorov complexity. Therefore, with some flexibility with respect to our threshold for suc-
cinctness, the proposed distinguisher is likely to output 0 on a random string. On the other
hand, if F implements an efficient coding theorem that achieves rKt encodings of complexity
(1 + γ − ε) · log(1/δ′(y)) + poly(log n), the following must be true. Using that the expected
encoding length of any (prefix-free) encoding scheme is at least H(Dist(Sn)), where Dist(Sn)
is the distribution of strings sampled by Sn and H is the entropy function, we get (via a
slightly stronger version of this result) that a non-trivial measure of strings y in the support
of Dist(Sn) have rKt encoding length at least (1 − ε/4) · log(1/δ(y)). Consequently, for such
strings, an upper bound on rKt complexity of (1+ γ− ε) · log(1/δ′(y)) + poly(log n) when δ′(y)
is sufficiently close to δ(y) implies that the running time t of the underlying machine satisfies
log t ≤ (γ − ε/2) log(1/δ(y)) + poly(log n). Using that ℓ(n) = n/2 and δ(y) ≥ 2−ℓ(n) for any
string y in the support of Dist(Sn), it is easy to check that (asymptotically) t ≤ 2(γ−ε/4)·ℓ(n).
For this reason, we can implement a (slightly modified) distinguisher D in time less than 2γ·ℓ(n),
by trying different approximations δ′(z) for an input string z and by running the decompressor
on the produced representation for at most t steps on each guess for δ(z). By our previous
discussion, a non-trivial measure of strings from Dist(Sn) will be accepted by D, while only a
negligible fraction of the set of all strings (corresponding to the random case) will be accepted
by D.

Implementing this strategy turns out to be more subtle than this. This happens because
F is a probabilistic algorithm which does not need to commit to a fixed succinct encoding. We
refer to the formal presentation in Section 4 for details, where we also discuss the bound on
the seed length ℓ(n).

Coding Theorem for pKt (Theorem 5) and Unconditional [AF09] (Theorem 6). The
proof of our optimal coding theorem for pKt builds on that of the conditional coding theorem
for Kt from [AF09], which can be viewed as a two-step argument. Roughly speaking, the first
step is to show that if there is a polynomial-time sampler that outputs a string x ∈ {0, 1}n
with probability δ, then the polynomial-time-bounded Kolmogorov complexity of x is about
log(1/δ) + O(log n) if we are given a random string. After this, they “derandomize” the use
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of random strings using a certain pseudorandom generator, which exists under a strong deran-
domization assumption. Our key observation is that the use of random strings arises naturally
in probabilistic Kolmogorov complexity, and particularly in this case the random strings can
be “embedded” into the definition of pKt. As a result, we don’t need to perform the after-
ward derandomization as in original proof of [AF09], and hence get rid of the derandomization
assumption.

Next, we describe how to use Theorem 5, together with other useful properties of pKt, to
obtain an unconditional version of Antunes and Fortnow’s main result. Let µ be a Kolmogorov
complexity measure, such as Kpoly, rKpoly or pKpoly. The key notion in the proof is the distri-
bution (in fact, a class of semi-distributions) called mµ, which is defined as mµ(x) := 1/2µ(x).
More specifically, following [AF09], it is not hard to show that, for every language L, L can be
decided in polynomial-time on average with respect to mµ if and only if its worst-case running
time is 2O(µ(x)−K(x)) on input x (see Lemma 35). Then, essentially, to show our result we argue
that L can be decided in polynomial time on average with respect to mµ if and only if the
same holds with respect to all P-samplable distributions.

Recall that if a distribution D dominates another distribution D′ (i.e., D(x) & D′(x) for
all x) and L is polynomial-time on average with respect to D, then the same holds with
respect to D′ (see Definition 9 and Fact 10). Therefore, to replace mµ above with P-samplable
distributions, it suffices to show that mµ is “universal” with respect to the class of P-samplable
distributions, in the following sense.

1. mµ dominates every P-samplable distribution. (This is essentially an optimal source
coding theorem for the Kolmogorov measure µ.)

2. mµ is dominated by some P-samplable distribution.

The above two conditions require two properties of the Kolmogorov measure µ that are some-
what conflicting: the first condition requires the notion of µ to be general enough so that
mµ can “simulate” every P-samplable distribution, while the second condition needs µ to be
restricted enough so that mµ can be “simulated” by some P-samplable (i.e., simple) distri-
bution. For example, if µ is simply the time-unbounded Kolmogorov complexity K (or even
the polynomial-space-bounded variant), then it is easy to establish an optimal source cod-
ing theorem for such a general Kolmogorov measure; however it is unclear how to sample in
polynomial-time a string x with probability about 1/2K(x), so in this case µ does not satisfy the
second condition. On the other hand, if µ is some restricted notion of time-bounded Kolmogrov
complexity measure such as Kpoly or rKpoly, then one can obtain polynomial-time samplers that
sample x with probability about 1/2K

poly(x) or 1/2K
poly(x) (up to a polynomial factor); however,

as in [AF09], we only know how to show an optimal source coding theorem for Kpoly (or rKpoly)
under a derandomization assumption. Therefore, in this case µ does not satisfies the first
condition. Our key observation is that the notion pKpoly, which sits in between K and Kpoly

(or rKpoly),8 satisfies both conditions described above (see Lemmas 36 and 37).

8We can show that for every x ∈ {0, 1}∗ and every computable time bound t : N → N, K(x) . pKt(x) ≤
rKt(x) ≤ Kt(x).
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2 Preliminaries

Time-bounded Kolmogorov complexity. For a function t : N → N, a string x, and a
universal Turing machine U , let the time-bounded Kolmogorov complexity be defined as

Kt
U (x) = min

p∈{0,1}∗
{|p| | U(p) outputs x in at most t(|x|) steps} .

A machine U is said to be time-optimal if for every machine M there exists a constant c such
that for all x ∈ {0, 1}n and t : N → N satisfying t(n) ≥ n,

K
ct log t
U (x) ≤ Kt

M (x) + c,

where for simplicity we write t = t(n). It is well known that there exist time-optimal ma-
chines [LV19, Th. 7.1.1]. In this paper, we fix such a machine U , and drop the index U
when referring to time-bounded Kolmogorov complexity measures. It is also possible to con-
sider prefix-free notions of Kolmogorov complexity. However, since all our results hold up to
additive O(log |x|) terms, we will not make an explicit distinction.

Henceforth we will not distinguish between a Turing machine M and its encoding p accord-
ing to U . If p is a probabilistic Turing machine, we define tp ∈ N ∪ {∞} to be the maximum
number steps it takes p to halt on input λ (the empty string), where the maximum is over all
branches of the probabilistic computation.

rKt complexity and probabilistic representations. A probabilistic representation of a
string x is a probabilistic Turing machine p that on input λ halts with x on the output tape
with probability at least 2/3. The rKt-complexity of a string x is the minimum, over all prob-
abilistic representations p of x, of p + log tp. A probabilistic representation p of x certifies
rKt-complexity bounded by Γ if |p|+ log tp ≤ Γ.

Distributions and semi-distributions. We consider distributions over the set {0, 1}∗.
We will identify a distribution with its underlying probability density function of the form
D : {0, 1}∗ → [0, 1]. A distribution D is a semi-distribution if

∑
x∈{0,1}∗ D(x) ≤ 1, and is

simply called a distribution if the sum is exactly 1. In this subsection and Section 5.2, we will
use the word “distribution” to refer to both distribution and semi-distribution.

Samplers. A sampler is a probabilistic algorithm A with inputs in {1}n such that A(1n)
outputs a string x ∈ {0, 1}n.9 It defines a family of distributions {µA,n}n∈N, where µA,n is the
distribution on {0, 1}n defined by µA,n(x) = PrA[A(1

n) = x].

Average-case complexity. We now review some standard definitions and facts from average-
case complexity. We refer to the survey [BT06] for more details.

Definition 7 (Polynomial-time Samplable [BCGL92]). A distribution D is called P-samplable
if there exists a polynomial p and a probabilistic algorithm M such that for every x ∈ {0, 1}∗,
M outputs x with probability D(x) within p(|x|) steps.

9For simplicity, we assume that A(1n) samples a string of length n. Our coding theorems also hold for
algorithms used to define P-samplable distributions, see Definition 7, with obvious changes in the proofs. Also,
as in [LO21], our results can be easily generalised to samplers that on 1n output strings of arbitrary length. In
this case, while the length of x might be significantly smaller than n, an additive overhead of log n + O(1) is
necessary in our coding theorems, as we need to encode 1n.
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Definition 8 (Polynomial Time on Average [Lev86]). Let A be an algorithm and D be a
distribution. We say that A runs in polynomial-time on average with respect to D if there exist
constants ε and c such that,

∑

x∈{0,1}∗

tA(x)
ε

|x| D(x) ≤ c,

where tA(x) denotes the running time of A on input x. For a language L we say that L can be
solved in polynomial time on average with respect to D if there is an algorithm that computes
L and runs in polynomial-time on average with respect to D.

Definition 9 (Domination). Let D and D′ be two distributions. We say that D dominates D′

if there is a constant c > 0 such that for every x ∈ {0, 1}∗,

D(x) ≥ D′(x)

|x|c .

Fact 10 (See e.g., [AF09, Lemma 3.3]). Let D,D′ be two distributions, and let A be an algo-
rithm. If

• A runs in polynomial time on average with respect to D, and

• D dominates D′

Then A also runs in polynomial time on average with respect to D′.

3 Coding Theorems for rKt Complexity

3.1 Efficient Coding Theorem with Tighter Parameters

We prove the result stated in Theorem 1. It involves a function

α(n, 1/δ, ε) = O(log n+ (log log 1/δ + log(1/ε)) · log log 1/δ ), (1)

which bounds the additive precision term in the length of codewords. The constant hidden in
O(·) is derived from the proof of Theorem 13 (stated below). The key fact is stated in the
following result.

Theorem 11. There exist a probabilistic polynomial-time algorithm Compress and a probabilis-
tic algorithm Decompress such that for every n-bit string x, and every rationals δ > 0 and ε > 0,

• Compress on input x, 1/δ, ε outputs a string p that has with probability 1 length log(1/δ)+
α(n, 1/δ, ε), and

• If x can be sampled by a polynomial-time sampler A with probability at least δ, then,
with probability at least 1− ε, Decompress on input A and p outputs x. Moreover, Decompress

on input A and p halts in tD := 1/δ · 2O(α(n,1/δ,ε)) steps with probability 1. The constant in
O(·) depends on A, and the two probabilities are over the randomness of Compress and the
randomness of Decompress.
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Proof. The proof uses the invertible functions from [BZ19]. A (k, ε)-invertible function is a
probabilistic function that on input x produces a random fingerprint of x. The invertibility
property requires that there exists a deterministic algorithm that on input a random fingerprint
of x and a set S (the “list of suspects”) of size at most 2k that contains x, with probability
1− ε identifies x among the suspects.

Definition 12. A function F : {0, 1}n×{0, 1}d → {0, 1}k+∆ is (k, ε)-invertible if there exists a
partial function g mapping a set S of n-bit strings and a (k+∆)-bit string y into gS(y) ∈ {0, 1}n
such that for every set S of size at most 2k strings and every x in S

Pr
ρ
[gS(F (x, ρ)) = x] ≥ 1− ε. (2)

The actual (k, ε)-invertible function that we use is given in the following theorem, which
is essentially Theorem 2.1 in [BZ19], with an improvement of the precision term. (The result
in [BZ19] is stronger, because the “list of suspects” S can be presented to the inverter g
from Equation (2) in an online manner, but in our application we do not need the online
feature.)

Theorem 13. There exists a probabilistic algorithm F that on input ε > 0, k and string x, uses
d = α(|x|, 2k , ε) random bits and outputs in time polynomial in |x| a string Fε,k(x) of length
k + α(|x|, 2k , ε), such that for all ε > 0 and k, the function x 7→ Fε,k(x) is (k, ε)-invertible.
Moreover, the inverter g that satisfies Equation (2) runs in time |S| · 2d · poly(|x|).

This theorem is proven in [BZ19] (for a somewhat larger d, but this does not affect the
arguments), however the time bound is not explicitly stated. Therefore, we describe below
the invertible function and verify the bound. We also need to explain how to obtain the value
d = α(|x|, 2k , ε) = O(log n + log(k/ε) · log k) claimed in Theorem 13 (Theorem 2.1 in [BZ19]
has d = O(log(n/ε) · log k)). This is done in Section 3.1.1.

The function F (x, ρ) (the random fingerprint of x) is formed by concatenating 2 strings,
F1(x, ρ1) and F2(x, ρ2) (here, ρ = (ρ1, ρ2) is the randomness of F ). The first one is obtained
by evaluating an explicit conductor (see further), and the second one is a standard hash code.
The reconstruction of x from the fingerprint is done in two pruning stages. In the first stage,
the conductor part will be used to reduce the list of suspects S (which includes x) of size 2k

to a list S̃ of size 2α(n,2
k ,ε) (which also includes x w.h.p), and in the second stage, the second

component of the fingerprint is used to select one string in S̃, which with probability ≥ 1− ε
is x. The second reduction is simple: a greedy algorithm is used that selects the first string in
S̃ for which the hash code matches. To distinguish a string x from s other strings in this way,
one can use a hash code with prime numbers, which has size 2 log s+O(log n).

The non-trivial part is the first stage, which reduces the list S of size 2k to a list of quasi
polynomial size. (A greedy algorithm would require hash codes of bitlength 2k instead of k.)
Let X = {0, 1}n and Y = {0, 1}k . A hash code H : X × {0, 1}r → Y defines a bipartite graph
with left set X , right set Y, and left degree 2r. (We will use as the bipartite graph an explicit
conductor graph with r ≤ α(n, 1/δ, ε), this is the above F1(x, ρ1).)

We explain now the first reduction of the list of suspects. Given a set S and a right node
y ∈ Y (which in our application is F1(x, ρ1)), the algorithm will output at most (1+log |S|)2r+1

strings from S as follows. It iterates through all elements in S and selects for the output list
the first 2r+1 left neighbors of y. If there are no more such neighbors, the algorithm is finished.
Otherwise, it will compute the set S′ of all left nodes for which more than a fraction 2ε of right
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nodes have more than 2r+1 collisions. Then it will run the reduction algorithm recursively on
S′ and append the output list of the recursive call.

This is applied to a function H with r ≤ α(n, 1/δ, ε) that satisfies a conductor property.
More precisely, we need the properties of a lossless conductor, an object which is essentially
equivalent to a bipartite lossless expander, that we used in the high-level description in Sec-
tion 1.3. This property implies that |S′| ≤ |S|/2, and hence, by induction, we obtain the bound
(1 + log |S|)2r+1 for the size of the output list, which is passed to the second reduction.

Let us now evaluate the runtime. In each recursive call we iterate over all elements in S
and compute the list of right neighbors, which takes time |S| · 2r · poly(|x|). To calculate S′,
one maintains a counter for each right node. Then we iterate through all elements of S and for
each element, increment the counters of its right neighbors by one. Then we collect all right
nodes with counters that exceed 2r into the set S′ and start the recursion. Thus, since a left
node has 2r neighbors, one recursive call takes |S| · 2r · poly(|x|) steps. There may be log |S|
recursive calls, but log |S| ≤ |x|. Thus, the total time for the first reduction is bounded by
|S| · 2r · poly(|x|) ≤ |S| · 2d · poly(|x|). The second reduction, using standard hashing, takes
time bounded by 2d · poly(|x|). Thus, we got the claimed runtime.

We now define Compress and Decompress with the properties required in Theorem 11. We
assume that δ ≥ 2−|x|, because otherwise the trivial compressor, that compresses x to x itself,
satisfies the conditions.

The function Compress on input x, 1/δ, ε, takes K := ⌈ln(1/ε) ·(1/δ)⌉ and runs F from The-
orem 13 on input x, logK, ε, which produces a string p of length logK + α(|x|,K, ε). We can
assume that K is a power of 2 (otherwise we replace it in the following arguments with the
smallest power of 2 larger than it), and thus it can be described with log logK bits. Compress

also appends |x| and the short description of K to p encoded in a self-delimited way. This
takes only an additional O(log |x|+log logK) bits. By scaling up the constant in the definition
of α(·, ·, ·), we get that the length of p is bounded by

log(1/δ) + α(|x|,K, ε).

Decompress first produces a list of suspects S by running the sampler A on input 1|x| (with
|x| extracted from p), K times (K is also extracted from p) and taking S to be the set of
samples that are obtained. We have |S| ≤ K and, since x is sampled with probability at
least δ, the probability that x is not in S is bounded by (1 − δ)K < ε. This step takes time
K · poly(|x|), with the degree of the polynomial depending on A.

Next, Decompress runs the inverter g on input S and p. From Equation (2) we infer that
if x ∈ S, then, with probability 1 − ε, this computation reconstructs x. Overall, Decompress

reconstructs x with probability 1 − 2ε, and by the “Moreover ...” part of Theorem 13, its
runtime is

tD := |S| · 2d · poly(|x|) +K · poly(|x|) = K · 2α(|x|,K,ε) · poly(|x|) = (1/δ) · 2O(α(|x|,1/δ,ε)).

The conclusion follows after a rescaling of ε.

We now readily obtain the announced result.

Corollary 14 (Efficient coding for rKt). Let x ∈ {0, 1}n. Suppose there is a polynomial-time
sampler A such that A(1n) outputs x with probability at least δ > 0. Then, for every ε > 0

rKtε(x) ≤ 2 log(1/δ) +O(log(α(|x|, 1/δ, ε)),
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where the constant hidden in O(·) depends on A.
Moreover, there is a probabilistic polynomial time algorithm that on input x, 1/δ, ε and the

code of A, outputs with probability 1− ε, a probabilistic representation of x certifying the above
rKt-complexity.

Proof. Indeed, in the proof of Theorem 11, we have seen that Compress, with probability 1−ε,
produces a string p, which, given the sampler, allows the reconstruction of x with probability
at least 1− ε. More precisely, for every list of suspects S produced by Decompress with x ∈ S,
a fraction of (1 − ε) of p’s allow Decompress to reconstruct x. With a standard averaging
argument, we can change the order of quantifiers, and show that for a fraction of 1 − √

ε of
p’s, it holds that for 1−√

ε of S’s as above, Decompress can reconstruct x.10 Since Compress

is a polynomial-time probabilistic algorithm and both the length of p and the logarithm of the
reconstruction time tD are bounded by log(1/δ) + O(α(|x|, 1/δ, ε)), the conclusion follows by
scaling ε and taking the probabilistic representation of x to be 〈p, code(A)〉, where 〈·, ·〉 is some
canonical self-delimiting pairing of strings.

We can assume that log(1/δ) ≤ n, since otherwise, as we have already noted, Compress can
trivially simply return x. Therefore, the overhead in Corollary 14 is bounded by the simpler
term O(log(n/ε) · log n).

3.1.1 Improving the Precision Term in the Invertible Function in [BZ19]

In Theorem 2.1 in [BZ19], an invertible function is constructed, in which the precision
term is O(log(n/ε) · log k). We need to improve it to O(log n+ (log k/ε) · log k), to obtain the
precision claimed in Theorem 13. The same idea is used in [GUV09, Th. 4.21].

We start with some standard concepts from the theory of pseudo-randomness (see [Vad12]).
A source is a random variable whose realizations are binary strings. A source has min-entropy
t if each value has probability at most 2−t. The statistical distance between two measures
P and Q with the same domain is sup |P (S) − Q(S)| (supremum is over all subsets S of the
common domain of P and Q). Given a set B, we denote UB to be a random variable that is
uniformly distributed on B.

Definition 15 (Condensers and lossless conductors).

(a) A function C : {0, 1}n×{0, 1}d → {0, 1}m is a t →ε t
′ condenser, if for every S ⊆ {0, 1}n

of size at least 2t, the random variable X = C
(
US , U{0,1}d

)
is ε-close to a random

variable X̃ that has min-entropy at least t′.

(b) A function C : {0, 1}n × {0, 1}d → {0, 1}m is a (tmax, ε) lossless conductor if it is a
t →ε t+ d condenser for all t ≤ tmax.

In the proof in [BZ19], the following lossless conductor is obtained, which is next composed
with a certain hash function to obtain the invertible function.

Theorem 16 ([BZ19], implicit in Theorem 2.1). For every n, tmax ≤ n, ε > 0, there exists
an explicit (tmax, ε) lossless conductor CBZ : {0, 1}n × {0, 1}dBZ → {0, 1}mBZ with dBZ =
O(log(n/ε) · log(tmax) and mBZ ≤ tmax +O(log(n/ε) · log(tmax).

10The averaging argument is done with respect to the distribution over sets S induced by Decompress.
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To obtain the desired improvement, we need to replace CBZ in the construction in The-
orem 2.1 in [BZ19] with a (tmax, ε) lossless conductor C with seed length dC = O((log n +
log(tmax/ε)) · log tmax) and output length mC ≤ tmax +O((log n+ log(tmax/ε)) · log tmax).

This is obtained by composing CBZ with the following lossless conductor of Guruswami,
Umans, and Vadhan.

Theorem 17 ([GUV09], Theorem 4.4). For every n, tmax ≤ n, ε > 0, there exists an explicit
(tmax, ε) lossless conductor CGUV : {0, 1}n × {0, 1}dGUV → {0, 1}mGUV with dGUV ≤ log n +
log(tmax) + log(1/ε) + 1 and mGUV ≤ dGUV · (tmax + 2).

Now, as announced, we obtain the lossless conductor C, by composing CGUV and CBZ.
Namely, C : {0, 1}n × {0, 1}dGUV+dBZ → {0, 1}mBZ is defined by

C(x, (y1, y2)) = CBZ(CGUV(x, y1), y2).

Let us specify the parameters. We first condense with CGUV for sources X with min-entropy
t ≤ tmax using a seed of length dGUV ≤ log n+ log(tmax) + log(1/ε) + 1 and obtain an output
X1 of length mGUV ≤ dGUV · (tmax + 2) and min-entropy at least t+ dGUV. Then we further
condense X1 with CBZ with parameters dBZ and mBZ set-up for sources with input length
mGUV and min-entropy bounded by t′max = tmax + dGUV. In this way, we obtain a (tmax, 2ε)
lossless conductor for all t ≤ tmax, with the parameters dC and mC announced above, except
for the case tmax = o(log n). But for such small tmax, we can take the conductor that simply
outputs the seed.

Thus, we have obtained the following lossless conductor.

Theorem 18 (The new conductor). For every n, tmax ≤ n, ε > 0, there exists an explicit
(tmax, ε) lossless conductor C : {0, 1}n×{0, 1}dC → {0, 1}mC with dC = O(log n+log(tmax/ε) ·
log(tmax)) and mC ≤ tmax +O(log n+ log(tmax/ε) · log(tmax)).

Remark 19. It has been observed in [TUZ07] that lossless conductors are essentially equivalent
to lossless bipartite expanders, which have numerous applications. Therefore the conductor
in Theorem 18 is of independent interest (it is already being used in a work in progress of some
of the authors). The main lossless conductor (or, equivalently, lossless bipartite expander) of
Guruswami, Umans, and Vadhan [GUV09] (different from the one in Theorem 17) has a better
seed length of d = (1 + 1/α)(log n + log tmax + log(1/ε)) + O(1), for any α ∈ (0, 1), but the
output length m = (1 + α)tmax + 2d is larger, and would not have produced the optimal coding
theorem.

3.2 Existential Coding Theorem Under a Derandomization Assumption

The argument is a straightforward adaptation of a proof from [AF09], and we include a
sketch here for completeness.

Theorem 20. Assume there is a language L ∈ BPTIME
[
2O(n)

]
that requires nondeterministic

circuits of size 2Ω(n) for all but finitely many n. Suppose there is an algorithm A for sampling
strings that runs in time T (n) such that A(1n) outputs a string x ∈ {0, 1}n with probability at
least δ > 0. Then

rKt(x) ≤ log(1/δ) +O(log T (n)) ,

where the constant behind the O(·) depends on |A| and is independent of the remaining param-
eters.
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Proof Sketch. As briefly described in Section 1.3, the proof of the coding theorem in [AF09] first
shows (unconditionally) that if we are given a typical random string r of length poly(T (n)),
then there exists some string α ∈ {0, 1}ℓ, where ℓ ≤ log(1/δ) + O(1), from which one can
recover the string x in time poly(T (n)). Roughly speaking, the string r encodes a good hitting

set generator H : {0, 1}ℓ → {0, 1}T (n), and α is an input to H so that using H(α) as its
internal randomness, A(1n) outputs x. Then it was observed in [AF09] (attributed to van

Melkebeek) that one can further encode such an r using some string r0 ∈ {0, 1}O(log T (n)) if

we have an optimal PRG G : {0, 1}O(log T (n)) → {0, 1}|r| that fools nondeterministic circuits.
That is, G(r0) = r. Then given r0, we can eventually obtain the string r and use it along with
α to recover x deterministically in time poly(T (n), which implies

Kt(x) ≤ log(1/δ) +O(log T (n)) .

The existence of such a PRG follows from the assumption that there exists a language L ∈
DTIME

[
2O(n)

]
that requires nondeterministic circuits of size 2Ω(n) for all but finitely many n

[SU05]. It turns out that if the language above is in BPTIME
[
2O(n)

]
instead of DTIME

[
2O(n)

]
,

we can still obtain an optimal pseudodeterministic PRG; this again follows from the construc-
tion in [SU05]. A PRG G is pseudodeterministic if there is a randomized algorithm that, given
a seed, computes the output of G on this seed with high probability. That is, if we have such a
PRG, then in the above argument, we can obtain r = G(r0) with high probability, which then
allows us to recover x in the same way but probabilistically. Therefore, we get

rKt(x) ≤ log(1/δ) +O(log T (n)) ,

as desired.

4 Lower Bounds for Efficient Coding Theorems

4.1 Conditional Optimality of the Efficient Coding Theorem for rKt

We introduce the following hypothesis, which postulates the existence of a cryptographic
PRG G of exponential security.

Hypothesis 21 (Cryptographic Exponential Time Hypotheses). For a constant γ ∈ (0, 1), we
let γ-Crypto-ETH be the following statement. There is a function family G = {Gn}n≥1, where
Gn : {0, 1}ℓ(n) → {0, 1}n, such that the following holds:

• The seed length ℓ(n) can be computed in time polynomial in n and (log n)ω(1) ≤ ℓ(n) ≤
n/2.

• G is efficiently computable in the output length, i.e., there is a deterministic polynomial
time algorithm A that, given 1n and an input x ∈ {0, 1}ℓ(n), outputs Gn(x) in time
poly(n),

• Gn has security 2γ·ℓ(n), i.e., for every probabilistic algorithm D that runs in time O(2γ·ℓ(n))
on inputs of length n, there exists n0 ∈ N such that, for every n ≥ n0,

∣∣∣∣ Pr
D,x∼{0,1}ℓ(n)

[D(Gn(x)) = 1]− Pr
D,y∼{0,1}n

[D(y) = 1]

∣∣∣∣ ≤ 1/n.
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Note that in γ-Crypto-ETH it is necessary to fool algorithms that run in time 2γ·ℓ(n) in the
seed length ℓ(n). We say that Crypto-ETH holds if γ-Crypto-ETH is true for some γ > 0, and
that Crypto-SETH holds if γ-Crypto-ETH is true for every γ ∈ (0, 1).

The next result formalizes Theorem 3 from Section 1.2.2. It shows that if Crypto-ETH
holds then the best parameter achieved by an efficient coding theorem for rKt is (1 + Ω(1)) ·
log(1/δ) + poly(log n). On the other hand, if the stronger Crypto-SETH hypothesis holds, then
no efficient coding theorem for rKt achieves parameter (2− o(1)) · log(1/δ) + poly(log n).

Theorem 22 (Conditional rKt lower bound of efficient compression for poly-time samplers).
Suppose that γ-Crypto-ETH holds for some constant γ ∈ (0, 1), and let ℓ(n) be the corresponding
seed length function. There is a polynomial-time sampler S = {Sn}n≥1 such that, for every
ε > 0 and C ≥ 1, the following holds. For every probabilistic polynomial time algorithm F ,
there is a sequence {yn}n≥1 of strings yn ∈ {0, 1}n such that:

(i) Each string yn is sampled by Sn with probability δn ≥ 2−ℓ(n).

(ii) On some input parameter δ′n ≤ δn, F fails to output a probabilistic representation of yn
of certifying an rKt complexity

kn(δ
′
n) = (1 + γ − ε) · log(1/δ′n) + C(log n)C .

More precisely, there is a sequence {δ′n}n≥1 with (1/2)δn ≤ δ′n ≤ δn such that

Pr
F

[
F (n, yn, δ

′
n, code(S)) outputs an rKt encoding of yn of complexity ≤ kn(δ

′
n)

]
→n 0.

We remark that the lower bound on the seed length ℓ(n) present in γ-Crypto-ETH is a
consequence of the poly(log n) additive term in the definition of kn in Theorem 22. This makes
the negative result more robust. On the other hand, the upper bound on ℓ(n) is needed in our
argument when considering an arbitrary γ ∈ (0, 1).

Proof. We implement the strategy described in Section 1.3.
Consider the function family {Gn}n≥1 of PRG’s witnessing that γ-Crypto-ETH holds, where

Gn : {0, 1}ℓ(n) → {0, 1}n. We fix a sufficiently large length n (so that the forthcoming argument
works), and for convenience we refer to Gn simply as G.

Let Y = {y1, y2, . . . , ym} be the strings in the support of the PRG G and let p1, p2, . . . , pm
be their corresponding probabilities. Also, let δi be the unique number of the form 2q/2ℓ(n),
where q = 0, 1, 2, . . . , ℓ(n), such that (1/2)pi < δi ≤ pi.

We define our sampler Sn as follows. Sn on input 1n flips a coin ℓ(n) times obtaining a
random string z ∈ {0, 1}ℓ(n) and next outputs G(z). Thus, Sn runs in polynomial time, and
for each i ∈ [m], Sn generates yi with probability pi.

We must prove that for every choice of ε > 0 and C ≥ 1, and for every probabilistic
polynomial time algorithm F , there is a sequence {yn}n≥1 of strings yn ∈ {0, 1}n and a sequence
{δ′n}n≥1 of probability bounds δ′n with the properties described above. Note that Item (i) is
true by the definition of the sampler.

Suppose there is a probabilistic polynomial-time algorithm F that violates the assumption
of the theorem. Then for every i ∈ [m], there is a set Eyi of valid probabilistic representations
of yi certifying rKt complexity at most k(δi) such that

Pr
F
[F (yi, δi) ∈ Eyi ] ≥ ζ,
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for some constant ζ > 0. We view the elements of Eyi as the good fingerprints of yi. The sets
Eyi are pairwise disjoint, because no element can be a good fingerprint of two strings. For each
i ∈ [m], let xi,j, where j ∈ [|Eyi |], be the j-th element in Eyi . Let

C
def
= {xi,j | i ∈ [m] and j ∈ [|Eyi |]} ,

i.e., C is the event that a fingerprint is good for some yi. We define

pi,j
def
= Pr

F ,z∼{0,1}ℓ(n)
[G(z) = yi and F (yi, δi) = xi,j] .

Note that we have pi ≥ pi,j, for every i and j. Also, C has probability at least ζ because

∑

xi,j∈C

pi,j =
∑

i∈[m]

Pr
z
[G(z) = yi]·

∑

j∈[|Ei|]

Pr
F,z

[F (yi, δi) = xi,j | G(z = yi)] ≥
∑

i∈[m]

Pr
z
[G(z) = yi]·ζ = ζ.

We say that a fingerprint xi,j ∈ C is not short if

|xi,j| ≥ log(1/pi)− 2⌈log(|xi,j |+ 1)⌉ − 2− log(2/ζ).

Let E def
= {xi,j | i ∈ [ℓ], j ∈ [|Ei|], xi,j is not short} (i.e., E is the event that a fingerprint is good

and not short).

Claim 23. Prz,ρC (E) ≥ ζ/2.

Proof of Claim 23. Let

Cpf
def
=

{
x′i,j

∣∣ i ∈ [m] and j ∈ [|Eyi |]
}

be a prefix-free encoding for the strings in C, where x′i,j is obtained from xi,j using the standard
trick that inserts in front of xi,j its length written in binary with every bit doubled followed
by 01 to delimit this addition from xi,j . Note that |x′i,j| = |xi,j|+ 2⌈log(|xi,j|+ 1)⌉+ 2.

Consider the set

C ′
pf

def
=

{
x′i,j ∈ Cpf

∣∣ ∣∣x′i,j
∣∣ ≤ log(1/pi)− log(2/ζ)

}
,

which is the prefix-free encoding of the complement (with respect to C) of the event E .
Since C ′

pf is a prefix-free set, we can use Kraft’s inequality and we obtain

1 ≥
∑

x′
i,j∈C

′
pf

2−|x′
i,j|

≥
∑

x′
i,j∈C

′
pf

2− log(1/pi)+log(2/ζ)

=
∑

x′
i,j∈C

′
pf

pi · (2/ζ)

≥
∑

x′
i,j∈C

′
pf

pi,j · (2/ζ),
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which implies

µ(Cpf) =
∑

x′
i,j

∈C′
pf

pi,j ≤ ζ/2.

The event E has µ-probability µ(C) − µ(C ′
pf) ≥ ζ − ζ/2 = ζ/2. This ends the proof of

Claim 23.

Claim 23 means that with probability at least ζ/2, over a random seed z and the internal
randomness of F , G(z) outputs some yi and F (yi, δi) gives a valid probabilistic representation
x of yi certifying rKt complexity |x|+ log tx at most k(δi) and its length |x| is at least

s
def
= log(1/pi)− log(2/ζ) − (2⌈log(|x|+ 1)⌉ + 2).

We can implement a distinguisher D that, given y ∈ {0, 1}n, does the following.

1. For every
δ′q := 2q/2ℓ(n),

where q = 0, 1, 2, . . . , ℓ(n), D runs F
(
y, δ′q

)
(using the same randomness of F for all the

δ′q), and obtain a collection of encodings S := {xq}q.

2. D outputs 1 if both of the following conditions hold for at least one xq ∈ S:

• |xq| ≤ k(δ′q).

• xq can be decoded (probabilistically) in 2(γ−ε/2)·ℓ(n) steps and the decoded string is
equal to y.

Again, for decoding, we can use the same randomness for all the xq.

It is easy to see that the running time of D is 2(γ−Ω(1))·ℓ(n). Next, we argue that D is a
distinguisher for G.

Claim 24. We have
Pr

D, z∼{0,1}ℓ(n)
[D(G(z)) = 1] ≥ ζ/3 = Ω(1),

and
Pr

D,y∼{0,1}n
[D(y) = 1] = o(1).

Proof of Claim 24. For the first item, note that from the discussion above, we have that with
probability at least ζ/2 (over a random z and the internal randomness of F ), G(z) outputs some
yi and for δ′q = δi, F (yi, δ

′
q) will output some probabilistic representation xq of yi certifying

rKt complexity |xq|+ log txq at most k(δ′q) and length |xq| at least

s := log(1/pi)− log(2/ζ)− (2⌈log(|xq|+ 1)⌉+ 2)

≥ log(1/2δi)− log(2/ζ)− (2⌈log(|xq|+ 1)⌉+ 2)

≥ log(1/δ′q)− 3 log(n).

Whenever we have such an encoding, we can decode probabilistically in time

txq ≤ 2k(δ
′
q)−s = 2(1+γ−ε) log(1/δ′q)+C(log n)C−s ≤ 2(γ−ε/2)·ℓ(n),
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(we have used ℓ(n) = (log n)ω(1)) and with error probability at most 1/3. By the definition of
D, we conclude that D outputs 1 with probability at least (ζ/2) · (2/3) = ζ/3.

We now show the second item. Fix any δ′q ≥ 1/2ℓ(n), where q = 0, 1, . . . , ℓ(n). We will show
that

Pr
F ,Dec,y∼{0,1}n

[∣∣F (y, δ′q)
∣∣ ≤ k(δ′q) and Dec

(
F (y, δ′q)

)
= y

]
= o

(
1

ℓ(n)

)
. (3)

Then the second item follows from a union bound. For the sake of contradiction, suppose
Equation (3) is false. Then by averaging, there exist circuits F ′ and Dec′, which are obtained
by fixing the randomness of F and Dec and by hard-wiring δ′q, such that

Pr
y∼{0,1}n

[∣∣F ′(y)
∣∣ ≤ k(δ′q) and Dec′

(
F ′(y)

)
= y

]
= Ω

(
1

ℓ(n)

)
.

However, this is not possible, because by a counting argument, the probability on the left side
is at most

2k(δ
′
q)

2n
=

2(1+γ−ε) log(1/δ′q)+C(log n)C

2n
≤ 2(1+γ−ε)ℓ(n)+C(log n)C

2n
≤ 2(2−ε)ℓ(n)+C(log n)C

2n
≤ 2−Ω(n),

where we used that γ < 1, ℓ(n) ≤ n/2, and δ′q ≥ 2−ℓ(n). This completes the proof of Claim 24.

The theorem now follows from Claim 24.

4.2 Fine-Grained Complexity of Coding Algorithms for Poly-Time Sam-

plers

We prove the results stated informally in Theorem 4. The rKt-complexity of a string
adds together the length of a compressed codeword and the logarithm of the time it takes to
decompress the codeword. In 2-sided-rKt complexity we also consider the time to compress
the string.

Definition 25 (2-sided-rKt). A sampler A admits coding with 2-sided-rKtε complexity bounded
by Γ if there exists a pair of probabilistic Turing machines (Compress,Decompress) such that
for all n, all y ∈ {0, 1}n, and all δ > 0 satisfying Pr[A(1n) = y] ≥ δ, it holds with probability
1− ε (over the randomness of Compress and the randomness of Decompress) that

• Compress(y, δ) outputs a string x in tC steps,

• Decompress(x) outputs y in tD steps, and

• |x|+ log(tC + tD) ≤ Γ.

Here, Γ is a function of n and δ. In case ε < 1/3, we drop the subscript in the notation rKtε.

The following result follows from Theorem 11 in the same way as Corollary 14.

Corollary 26 (Formal statement of Theorem 4, (a)). Let S be a polynomial-time sampler.
Then, for every ε > 0, S admits coding with 2-sided-rKtε complexity bounded by 2 log(1/δ) +
O(α(|x|, 1/δ, ε)), where the constant hidden in O(·) depends on A and α(|x|, 1/δ, ε) is the
function from Equation (1).
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Theorem 27 (Formal statement of Theorem 4, (b)). Assume γ-Crypto-ETH holds for some γ ∈
(0, 1). Then there is a polynomial-time sampler S that, for any ε > 0 and any C > 0, does not
admit coding with 2-sided-rKt1/7 complexity bounded by kn(δ) := (1+γ−ε) log(1/δ)+C(log n)C .

Proof. The proof is similar to the proof of Theorem 22, but there are differences caused by the
fact that in 2-sided-rKt, tC and tD (i.e., the runtimes of compression and decompression) are
random variables, whereas in rKt, tp is a fixed value (being the maximum decompression time
over all the probabilistic branches).

The PRG G, the set Y = {y1, . . . , ym}, and the sampler S are exactly like in the proof
of Theorem 22.

Suppose there is a pair (Compress,Decompress) of probabilistic Turing machines that vio-
lates the conclusion of the theorem for the sampler S, i.e., the pair certifies that the sampler
S has coding with 2-sided-rKt1/7 complexity bounded by (1 + γ − ε) log(1/δ) + C(log n)C for
some ε > 0 and C > 0. We show that this assumption implies the existence of a distinguisher
D that breaks the security of G stipulated by γ-Crypto-ETH, and this contradiction proves the
theorem.

Since for every i ∈ [m], PrρC ,ρD [Decompress(Compress(yi, δi)) = yi] ≥ (1− 1/7), where the
probability is over the random coins ρC of Compress and ρD of Decompress, a simple argument
that considers separately the random coins of the two algorithms implies that that for every
i ∈ [m] there is a set Eyi of strings (which we view as the good fingerprints of yi) such that

(a) PrρC [Compress (yi, δi) ∈ Eyi ] ≥ 5/7, and

(b) for every x ∈ Eyi , PrρD [Decompress(x) = yi] > 1/2.

By (b), the sets Eyi , i ∈ [m] are pairwise disjoint. For each i ∈ [m] and j ∈ [|Eyi |], let xi,j

be the j-th element in Eyi . Let C
def
= {xi,j | i ∈ [ℓ] and j ∈ [|Eyi |]} (i.e., C is the event that a

fingerprint is good for some yi).
Let ζ = 5/7. Taking into account (a), it follows, exactly like in Theorem 22, that Prz,ρC (C)

is at least ζ. As before, we say that a fingerprint xi,j ∈ C is not short if |xi,j | ≥ log(1/pi) −
2⌈log(|xi,j |+ 1)⌉ − 2 − log(2/ζ). Let E def

= {xi,j | i ∈ [m], j ∈ [|Ei|], xi,j is not short} (i.e., E is
the event that a fingerprint is good and not short).

Claim 28. Prz,ρC [E ] ≥ ζ/2.

Proof of Claim 28. Identical to the proof of Claim 23.

Claim 28 means that, conditioned on the event E (so with probability of (z, ρC) at least
ζ/2), G(z) outputs some yi and Compress(yi, δi) outputs a good fingerprint x that is not short.

We implement a distinguisher D that, on input y ∈ {0, 1}n, does the following.

For every q = 0, 1, . . . , ℓ(n):

1. Let δ′q := 2q/2ℓ(n).

2. D runs Compress
(
y, δ′q

)
(using the same randomness ρC of Compress for all the δ′q), which

outputs a fingerprint xq.

3. D runs Decompress on input xq, which outputs y′. As above, D uses the same randomness
ρD of Decompress for all the xq.

23



4. D outputs 1 (and exits the for loop) if

• y′ = y (i.e., Decompress(Compress(y, δ′q)) = y), and

• tC+tD is at most 2(γ−ε/2)·ℓ(n), where tC is the number of steps executed by Compress

on input (y, δ′q) and tD is the number of steps executed by Decompress on input xq.

If the for loop ends without the conditions in Item 4 being satisfied at any iteration, D
outputs 0.

Since randomness is re-used at every iteration, overall, D is using randomness (ρC , ρD).
We now argue that D is a distinguisher for G with runtime bounded by 2(γ−Ω(1))·ℓ(n), which

yields the desired contradiction and finishes the proof.
First, since the execution of D consists of ℓ(n) + 1 iterations and it can be arranged that

each iteration takes at most 2(γ−ε/2)ℓ(n) steps (by halting the iteration when tC + tD gets larger
than this value), the runtime of D is, as claimed, bounded by 2(γ−Ω(1))·ℓ(n). Next we show that
D distinguishes the distributions G(Uℓ(n)) and Un.

Claim 29. We have
Pr

ρC ,ρD,z∼{0,1}ℓ(n)
[D(G(z)) = 1] ≥ Ω(1),

and
Pr

ρC ,ρD ,y∼{0,1}n
[D(y) = 1] < o(1).

Proof of Claim 29. We start with the first inequality. By the discussion above, conditioned
on the event E (which by Claim 28 has probability of (z, ρC) at least ζ/2), G(z) outputs
some yi and for δ′q = δi, Compress(yi, δ

′
q) outputs a good fingerprint xq that is not short.

Since xq is a good fingerprint, conditioned on an event E ′ ⊆ E , Decompress on input xq
reconstructs yi. By (b), E ′ has probability of (z, ρC , ρD) at least 1/2 · Pr[E ] ≥ ζ/4. Recall
that (Compress,Decompress) are assumed to certify that the sampler A is compressible with
2-sided-rKt1/7 complexity bounded by (1+ γ− ε) log(1/δ). This means that conditioned by an
event V that has probability of (z, ρC , ρD) at least 1− 1/7, it holds that

|xq|+ log(tC + tD) ≤ kn(δ
′
q).

Now, conditioned by E ′, xq is not short, and so (like in Theorem 22)

|xq| ≥ s := log(1/pi)− log(2/ζ)− (2⌈log(|xq|+ 1)⌉+ 2) ≥ log(1/δ′q)− 3 log(n).

By combining the above two inequalities, it follows that conditioned by E ′ ∩ V, which has
probability of (z, ρC , ρD) at least ζ/4− 1/7, it holds that

tC + tD ≤ 2kn(δ
′
q)−s ≤ 2(γ−ε/2)·ℓ(n).

By the definition of D, we conclude that D outputs 1 with probability greater than ζ/4−1/7 =
Ω(1) (recall that ζ = 5/7).

The second inequality is shown in the same way as the second inequality of Claim 24.

Thus, D is a distinguisher that contradicts that the PRG G has the security stipulated by
γ-Crypto-ETH, and this finishes the proof of Theorem 27.
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5 A Coding Theorem for pKt Complexity and Its Consequences

5.1 Optimal Coding Theorem for pKt

In this section, we prove our optimal coding theorem for pKt.

Theorem 30 (Reminder of Theorem 5). Suppose there is a randomized algorithm A for sam-
pling strings such that A(1n) runs in time T (n) and outputs a string x ∈ {0, 1}n with probability
at least δ > 0. Then

pKt(x) = log(1/δ) +O(log T (n)) ,

where t(n) = poly(T (n)) and the constant behind the O(·) depends on |A| and is independent
of the remaining parameters.

For a function H : {0, 1}ℓ → {0, 1}T , we will sometimes identify it with a string H ∈
{0, 1}2ℓ·T .
Lemma 31. For any T ∈ N and δ ∈ [0, 1], there exists a family of functions

H =
{
Hw : {0, 1}ℓ → {0, 1}T

}

w∈{0,1}k

where k = poly(T ) and ℓ = log(1/δ) + O(1) such that the following holds. Let M : {0, 1}T →
{0, 1}∗ be a function computable in time T and let x ∈ Range(M) be such that

Pr
z∼{0,1}T

[M(z) = x] ≥ δ.

It holds that
Pr

w∼{0,1}k

[
∃ v ∈ {0, 1}ℓ such that M(Hw(v)) = x

]
≥ 2/3.

Moreover, given w ∈ {0, 1}k and v ∈ {0, 1}ℓ, Hw(v) can be computed in time poly(T ).

Proof. Consider arbitrary M and x. Let us call a function H : {0, 1}ℓ → {0, 1}T good (with
respect to M and x) if there exists some v ∈ {0, 1}ℓ such that M(H(v)) = x. First note that

a random H ∈ {0, 1}2ℓ·T is good with high probability. In particular, the probability that a

random H is not good is at most (1− δ)2
ℓ
, which is at most o(1) for our choice of ℓ.

Next, we show that checking whether a given H is good can be implemented as a constant-
depth circuit. More specifically, note that given M and x, and using oracle access to H,
checking whether there exists some v ∈ {0, 1}ℓ such that M(H(v)) = x can be done in NP.
By the standard connection between the computation of an oracle-taking machine in PH and
constant-depth circuits (see e.g., [RST15]), we get that there is an AC0 circuit of size at most
2poly(T ) that takes H as input and checks whether it is good.

Now we will try to generate a good H using a pseudorandom generator for AC0 circuits. It
is known that there is a pseudorandom generator G : {0, 1}r → {0, 1}N that (1/10)-fools AC0

circuits on N bits of size at most s, where the seed length r is at most polylog(Ns). Moreover,
given z ∈ {0, 1}r and i ∈ [N ], the i-th bit of G(z) can be computed in time poly(r) (see e.g.,
[Nis91, TX13, Tal17, ST19]). Let N := 2ℓ · T and let s := 2poly(T ). We get a generator that

takes w ∈ {0, 1}poly(T ) and outputs a function Hw ∈ {0, 1}2ℓ·T , such that with probability at
least 1 − o(1) − 1/10 > 2/3 over w, Hw is good. Finally, note that given w and v, we can
compute Hw(v) in time poly(T ) because we can compute any single output bit of the generator
in time poly(T ).
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We are now ready to show Theorem 30.

Proof of Theorem 30. Let us view M := A(1n) as a function that takes T := T (n) random
bits and outputs x ∈ {0, 1}n with probability at least δ.

By Lemma 31, for at least 2/3 of w ∈ {0, 1}poly(T ), we get a functionHw : {0, 1}ℓ → {0, 1}T ,
where ℓ = log(1/δ) + O(log T ), with the property that there is some “good” v ∈ {0, 1}ℓ such
thatM(Hw(v)) = x. Also, given w and v, Hw(v) can be computed in time poly(T ). This means

that for at least 2/3 of w ∈ {0, 1}poly(T ), there is some advice string α ∈ {0, 1}log(1/δ)+O(log T ),
which encodes the number T , the code for A(1n), the code for computing Hw using w, and
some good v (which could depend on w), such that using α together with w we can recover x
in time poly(T ). This implies that

pKt(x) ≤ log(1/δ) +O(log T ),

where t : N → N is such that t(n) = poly(T (n)).

5.2 Application: An Unconditional Version of Antunes-Fortnow

In this subsection, we prove an unconditional version of a result in [AF09], which is stated
in Theorem 6. We start with some useful lemmas.

5.2.1 Useful Lemmas

The following lemma lower bounds the pKt complexity of a string by its (time-unbounded)
Kolmogorov complexity.

Lemma 32. For every computable time bound t : N → N, there is a constant b > 0 (which
depends only on t) such that for every x ∈ {0, 1}∗,

K(x) ≤ pKt(x) + b log(|x|).

Proof. Recall the following source coding theorem for (time-unbounded) prefix-free Kolmogorov
complexity. There is a universal constant c > 0 such that, if there exists a randomized algorithm
D that uses randomness chosen from a prefix-free set and that generates x with probability δ,
then

K(x | D) ≤ log(1/δ) + c.

Fix a computable function t and a string x. Given the integers n := |x| and k := pKt(x),

consider the algorithm D that randomly picks w ∈ {0, 1}t(n) and M ∈ {0, 1}k, and then
outputs whatever M(w) outputs within t(n) steps. Note that the random strings used by D
all have the same length and thus they form a prefix-free set as required by the above coding
theorem. By the definition of pKt, D will output x with probability at least 2

3·2k
. Consequently,

using the above source coding theorem and the fact that D can be encoded using Ot(log(|x|))
bits (because k ≤ |x|+O(1)), we obtain

K(x) ≤ k + b log(|x|),

where b > c is some constant that depends only on t.

For technical reasons, we introduce the following measure.
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Definition 33. For a time bound t : N → N and x ∈ {0, 1}∗, define

pKt
∗(x)

def
= pKt(x) + b log(|x|),

where b > 0 is the constant from Lemma 32.

We define the following (semi-)distribution which will be a key notion used in the proofs
later.

Definition 34. For a time bound t : N → N, let mt be the distribution over {0, 1}∗ defined as

mt(x)
def
= 2−pKt

∗(x).

Equivalence between polynomial time on mpoly-average and worst-case time using
pKt.

Lemma 35. For any algorithm A and any computable time bound t : N → N, the following
are equivalent.

1. A runs in polynomial time on average with respect to mt.

2. The running time of A is bounded by 2O(pK
t
∗(x)−K(x)+log(|x|)) for every input x.

Proof. The proof follows closely that of [AFV03, Theorem 4]. Let tA(x) denote the running
time of A on input x.

(2 =⇒ 1). Let c > 0 be a constant such that tA(x) ≤ 2c·(pK
t
∗(x)−K(x)+log(|x|)). We have

∑

x∈{0,1}∗

tA(x)
1/c

|x| ·mt(x) ≤
∑

x

2pK
t
∗(x)−K(x)+log(|x|)

|x| · 2−pKt
∗(x)

≤
∑

x

2−K(x) < 1,

where the last line follows from Kraft’s inequality.

(1 =⇒ 2). For n, i, j ∈ N with i, j ≤ n2, define

Si,j,n
def
=

{
x ∈ {0, 1}n | 2i ≤ tA(x) ≤ 2i+1 and pKt

∗(x) = j
}
.

Let r be such that 2r ≤ |Si,j,n| ≤ 2r+1. We claim that for every x ∈ Si,j,n,

K(x) ≤ r +O(log n). (4)

To see this, note that given i, j, n, we can first enumerate all the elements in Si,j,n, which can
be done since t is computable, and then using additional r + 1 bits, we can specify x in Si,j,n.

Now, fix i, j ≤ n2, and let r be such that 2r ≤ |Si,j,n| ≤ 2r+1. Then by assumption and
by the definition of Si,j,n, we have for some constants ε, c > 0 (which may depend on mt and
hence the time bound function t),

c >
∑

x∈Si,j,n

tA(x)
ε

|x| ·mt(x) ≥ 2r · 2
ε·i

n
· 2−j = 2ε·i+r−j−log(n),
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which yields
ε · i+ r − j − log(n) < c.

By Equation (4), this implies that for every x ∈ Si,j,n,

ε · i ≤ pKt
∗(x)− K(x) +O(log n).

Therefore, we have that for every x ∈ Si,j,n,

tA(x) ≤ 2i+1 ≤ 2ε
−1·(pKt

∗(x)−K(x)+O(log n)) = 2O(pK
t
∗(x)−K(x)+log(|x|)),

as desired.

A P-samplable distribution that dominates mpoly.

Lemma 36. For any polynomial p, there is a P-samplable distribution D that dominates mp.

Proof. First note that there is a universal constant d > 0 such that for every x ∈ {0, 1}n,
pKp(x) ≤ n+ d. For a polynomial p, we define a distribution D over {0, 1}∗ as follow:

1. Pick n with probability 1
n·(n+1) .

2. Pick uniformly at random j ∈ [n+ d].

3. Pick uniformly at random w ∈ {0, 1}p(n).

4. pick uniformly at random M ∈ {0, 1}j.

5. Run M(w) for p(n) steps and output whatever is on its output tape.

By the definition of pKt, for every x ∈ {0, 1}n, D outputs x with probability at least

1

n · (n+ 1)
· 1

n+ d
· 2
3
· 2−pKp(x) ≥ mp(x)

|x|O(1)
,

as desired.

mpoly dominates P-samplable distributions.

Lemma 37. For every P-samplable distribution D, there is a polynomial p such that mp

dominates D.

Proof. Let MD be a probabilistic algorithm and let q be the polynomial such that MD outputs
x with probability D(x) within q(|x|) steps. Consider any n ∈ N. Let M be a sampler that, on
input 1n, runs MD for q(n) steps and outputs whatever is on its output tape. It is easy to see
that M runs in time poly(q(n)). Also, for every x ∈ {0, 1}n, M(1n) outputs x with probability
at least D(x). By the coding theorem for pKt (Theorem 5), we have, for some polynomial p
(which depends on the running time of M),

pKp
∗(x) ≤ log(1/D(x)) +O(log n),

which implies

mp(x) = 2−pK
p
∗(x) ≥ D(x)

|x|O(1)
.

This completes the proof.
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5.2.2 Putting It All Together

Theorem 38 (Reminder of Theorem 6). The following are equivalent for every language L.

1. For every P-samplable distributions D, L can be solved in polynomial time on average
with respect to D.

2. For every polynomial p, there exist a constant b > 0 and an algorithm computing L whose
running time is bounded by 2O(pKp(x)−K(x)+b·log(|x|)) for every input x.

Proof.
(1 =⇒ 2). Let p be any polynomial. By Lemma 36, there exists a P-samplable distribution
D that dominates mp. By assumption, there is an algorithm A that computes L and runs
in polynomial time on average with respect to D. Then by Fact 10, A also runs in average
polynomial time with respect to mp. Finally, by Lemma 35, we have that the running time of

A is bounded by 2O(pK
p
∗(x)−K(x)+log(|x|)) for every input x, as desired.

(2 =⇒ 1). Let D be any P-samplable distribution. By Lemma 37, there is a polynomial p such
that mp dominates D. By assumption, there is an algorithm A that computes L such that on
input x, A runs in time at most

2O(pKp(x)−K(x)+b·log(|x|)) ≤ 2O(pK
p
∗(x)−K(x)+log(|x|)).

Then by Lemma 35, A runs in polynomial time on average with respect to mp, which by
Fact 10 implies that A also runs in average polynomial time with respect to D, as desired.

6 Concluding Remarks and Open Problems

Our results indicate that Theorem 1 might be optimal among efficient coding theorems for
rKt, i.e., those that efficiently produce representations matching the existential bounds. In the
case of pKt, the corresponding coding theorem (Theorem 5) is optimal. We have described a
concrete application of Theorem 5 (Theorem 6). A second application appears in [GKLO22].
In both cases, achieving an optimal dependence on the probability parameter δ is critical, and
for this reason, the result from [LO21] is not sufficient.

Naturally, we would like to understand the possibility of establishing an unconditional cod-
ing theorem for rKt with an optimal dependence on the probability parameter δ. While the
validity of Crypto-ETH implies that no efficient coding theorem with this property exist, we
have an existential coding theorem of this form under a derandomization assumption (Propo-
sition 2). In the case of Kt complexity, it is known that an unconditional coding theorem with
optimal dependence on δ implies that EXP 6= BPP (see [Lee06, Theorem 5.3.4]). However, the
techniques behind this connection do not seem to lead to an interesting consequence in the
case of rKt and rKt. Consequently, an optimal coding theorem for rKt might be within the
reach of existing techniques.

It would also be interesting to establish Theorem 3 under a weaker assumption, or to refute
Crypto-SETH. A related question is the possibility of basing Crypto-ETH on the existence of
one-way functions of exponential hardness. Existing reductions are not strong enough to
provide an equivalence between one-way functions and cryptographic pseudorandomness in
the exponential regime (see [VZ13, HRV13]).
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Finally, are there more applications of pKt complexity and of Theorem 5? Since this coding
theorem is both optimal and unconditional, we expect more applications to follow.
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A Estimating the probability of sampling a given string

In Theorem 1, we are assuming that the compressor has both the code of the sampler A
and δ which estimates from below the probability px with which the string x is sampled.

This seems redundant, because with the sampler A and x in her hands, the compressor
can run A and find a good estimation δ of px. While this is true, there is a cost: assuming
black-box access to the sampler, we need to run it Ω(1/px) times to get an estimation of px
within a constant multiplicative factor. This follows from the following fact, proved by Bruno
Bauwens (private communication). (Note: We have chosen the multiplicative factor of 2 for
simplicity, it can be replaced with any positive constant).

Proposition 39. Consider the following task: the input is a binary string u of length N . By
doing random probes in u, we want to find with probability 1− ǫ a number p̃ ∈ (12p, 2p), where
p is the fraction of 1’s in p.

Then the number of probes has to be larger than mε(p) := (1/p) · ((1/2) ln(1/ε))) (provided
p > 0).

Proof. Suppose there is an algorithm that does at most mǫ(pu) probes for all N -bit strings u
and finds the estimation of pu (the fraction of 1’s in u) with the required precision, and with
probability 1− ǫ. Let u1 be a string ∈ {0, 1}N that has sN 1’s, and u2 be a string in {0, 1}N
that has 4sN 1’s, where s is some value in (0, 1/8). If we read m := mε(s) probes from u1, the
probability that all the probes turn out to be 0’s is at least (1 − s)m, which is greater than ǫ.
The same happens if we read mε(4s) probes from u2. If we only probe 0’s, the algorithm will
perform in the same way for both u1 and u2. Since the intervals (12s, 2s) and (124s, 2(4s)) are
disjoint, the algorithm will make a mistake in one of the two situations, contradicting that the
error probability for all strings is at most ǫ.

We next show that the lower bound in Proposition 39 is tight: there exists an algorithm
that runs the sampler (1/p) · 8 log(1/ε) times and estimates p within the multiplicative factor
of 2. We start with the following lemma.
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Lemma 40. Let x be an n-bit string and let px be the probability that a sampler A produces
x. We assume px > 0. Let s = 4 log(1/ε) for some parameter ε > 0. A success is a run of the
sampler A that produces x. Let T be the number of times we run the sampler till there are s
successes. Let E be the event

(1/2) · s · (1/px) ≤ T ≤ 2 · s · (1/px).

Then E has probability 1− 2ε.

Proof. Let T be the number of samplings till there are s successes. The expected value of T
is µT = s(1/px), because the expected number of samplings till each success is 1/px and T is
the sum of s random variables with this expectation.

We use a known technique to obtain concentration bounds for the geometric distribution.
We first estimate the probability that the second inequality in event E fails. This is the
probability that T > 2µT , which is equal to the probability of the event A = “In 2µT samplings
the number of successes is < s.” Let Z be the number of successes in 2µT samplings. The
expected value of Z is

µZ = 2µT · px = 2s(1/px) · px = 2s.

Then the second inequality in E fails with probability

Pr[A] = Pr[Z < s] = Pr[Z < (1/2)µZ ] < e−(1/4)·(2s/2) = ε.

(We have used the Chernoff bound Pr[Z < (1− δ)µZ ] ≤ e−(δ2µZ )/2, for δ = 1/2.)
We now estimate in the same way the probability that the first inequality in event E fails,

which is the probability that T < (1/2)µT , which is equal to the probability of the event B =
“In (1/2)µT samplings the number of successes is > s.” Let W be the number of successes in
(1/2)µT samplings. The expected value of W is

µW = (1/2)µT · px = (1/2)s(1/px) · px = s/2.

Then the first inequality in E fails with probability

Pr[B] = Pr[W > s] = Pr[W > 2µW ] < (e/4)s/2 < ε.

(We have used the Chernoff bound Pr[W > (1 + δ)µW ] ≤
(

eδ

(1+δ)(1+δ)

)µW

, for δ = 1.)

Proposition 41 (Algorithm for estimating the probability with which a string is sampled).
Let A be a sampler that produces strings of length n. There is an algorithm that on input an
n-bit string x that is sampled by A, and ε > 0, has the following behaviour with probability at
least 1− 2ε:

• If px ≥ 2−n, then it calls the sampler at most (1/px) ·8 log(1/ǫ) times and returns a value

p̃ ∈
[
1
2px, 2px

]
,

• If px < 2−n, then it calls the sampler at most 2n · 8 log(1/ε) times and returns a value
p̃ ≤ 2−(n−1).
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Proof. The algorithm runs as follows:

We run the sampler multiple rounds and we halt when either

(a) the sampler has obtained x (the “success” event) s := 4 log(1/ε) times, or

(b) in 2s2n sampling rounds, the number of successes is less than s.

In other words, we stop sampling immediately when we obtain the s-th success, or if 2s2n

samplings did not manage to do this.
Let T denote the number of samplings. In case (a), the algorithm returns p̃ = s/T , and, in
case (b) it returns p̃ = 2−n.

The conclusion follows with an analysis of the following cases, in which we condition on
the event E from Lemma 40 (which holds with probability 1− 2ε).

• Suppose px ≥ 2−n. Then T ≤ 2s · (1/px) ≤ 2s · 2n, and therefore case (a) holds. Then
the algorithm returns s/T ∈

(
1
2px, 2px

)
(recall that we are conditioning on E).

• Now, suppose px < 2−n. Then the algorithm returns either p̃ = s/T ≤ 2px < 2 · 2−n (if
case (a) holds), or p̃ = 2−n (if case (b) holds). The bound on the number of calls follows
because the algorithm never does more than 2s2n calls.
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