
Conspiracies between Learning Algorithms,

Circuit Lower Bounds and Pseudorandomness

Igor C. Oliveira
Charles University in Prague

Rahul Santhanam
University of Oxford

November 7, 2016

Abstract

We prove several results giving new and stronger connections between learning theory, circuit
complexity and pseudorandomness. Let C be any typical class of Boolean circuits, and C[s(n)]
denote n-variable C-circuits of size ≤ s(n). We show:

Learning Speedups. If C[poly(n)] admits a randomized weak learning algorithm under the
uniform distribution with membership queries that runs in time 2n/nω(1), then for every k ≥ 1
and ε > 0 the class C[nk] can be learned to high accuracy in timeO(2n

ε

). There is ε > 0 such that

C[2n
ε

] can be learned in time 2n/nω(1) if and only if C[poly(n)] can be learned in time 2(logn)O(1)

.

Equivalences between Learning Models. We use learning speedups to obtain equiva-
lences between various randomized learning and compression models, including sub-exponential
time learning with membership queries, sub-exponential time learning with membership and
equivalence queries, probabilistic function compression and probabilistic average-case function
compression.

A Dichotomy between Learnability and Pseudorandomness. In the non-uniform set-
ting, there is non-trivial learning for C[poly(n)] if and only if there are no exponentially secure
pseudorandom functions computable in C[poly(n)].

Lower Bounds from Nontrivial Learning. If for each k ≥ 1, (depth-d)-C[nk] admits a
randomized weak learning algorithm with membership queries under the uniform distribution
that runs in time 2n/nω(1), then for each k ≥ 1, BPE * (depth-d)-C[nk]. If for some ε > 0 there
are P-natural proofs useful against C[2n

ε

], then ZPEXP * C[poly(n)].

Karp-Lipton Theorems for Probabilistic Classes. If there is a k > 0 such that BPE ⊆
i.o.Circuit[nk], then BPEXP ⊆ i.o.EXP/O(log n). If ZPEXP ⊆ i.o.Circuit[2n/3], then ZPEXP ⊆
i.o.ESUBEXP.

Hardness Results for MCSP. All functions in non-uniform NC1 reduce to the Minimum
Circuit Size Problem via truth-table reductions computable by TC0 circuits. In particular, if
MCSP ∈ TC0 then NC1 = TC0.

1

ar
X

iv
:1

61
1.

01
19

0v
1

 [
cs

.C
C

]
 3

 N
ov

 2
01

6

Contents

1 Introduction 3
1.1 Summary of Results . 4
1.2 Related Work . 7

1.2.1 Speedups in Complexity Theory . 7
1.2.2 Connections between Pseudorandomness, Learning and Cryptography 8
1.2.3 Lower Bounds from Learning Algorithms . 8
1.2.4 Useful Properties, Natural Properties, and Circuit Lower Bounds 9
1.2.5 Karp-Lipton Theorems in Complexity Theory 9
1.2.6 The Minimum Circuit Size Problem . 10

1.3 Main Techniques . 10
1.3.1 Overview . 10
1.3.2 Sketch of Proofs . 12

2 Preliminaries and Notation 15
2.1 Boolean Function Complexity . 15
2.2 Learning and Compression Algorithms . 16
2.3 Natural Proofs and the Minimum Circuit Size Problem 17
2.4 Randomness and Pseudorandomness . 18

3 Learning Speedups and Equivalences 19
3.1 The Speedup Lemma . 19
3.2 Equivalences for Learning, Compression, and Distinguishers 22

4 Learning versus Pseudorandom Functions 25
4.1 The PRF-Distinguisher Game . 25
4.2 A (Non-Uniform) Converse to “Learning Implies no PRFs” 27

5 Lower Bounds from Nontrivial Algorithms 29

6 Karp-Lipton Collapses for Probabilistic Classes 34
6.1 A Lemma About Learning with Advice . 34
6.2 Karp-Lipton Results for Bounded-Error Exponential Time 38
6.3 Karp-Lipton Results for Zero-Error Exponential Time 40

7 Hardness of the Minimum Circuit Size Problem 42

8 Open Problems and Further Research Directions 45

2

1 Introduction

Which classes of functions can be efficiently learned? Answering this question has been a
major research direction in computational learning theory since the seminal work of Valiant [Val84]
formalizing efficient learnability.

For concreteness, consider the model of learning with membership queries under the uniform
distribution. In this model, the learner is given oracle access to a target Boolean function and aims
to produce, with high probability, a hypothesis that approximates the target function well on the
uniform distribution. Say that a circuit class C is learnable in time T if there is a learner running
in time T such that for each function f ∈ C, when given oracle access to f the learner outputs
the description of a Boolean function h approximating f well under the uniform distribution. The
hypothesis h is not required to be from the same class C of functions. (This and other learning
models that appear in our work are defined in Section 2.)

Various positive and conditional negative results are known for natural circuit classes in this
model, and here we highlight only a few. Polynomial-time algorithms are known for polynomial-size
DNF formulas [Jac97]. Quasi-polynomial time algorithms are known for polynomial-size constant-
depth circuits with AND, OR and NOT gates [LMN93] (i.e., AC0 circuits), and in a recent break-
through [CIKK16], for polynomial-size constant-depth circuits which in addition contain MOD[p]
gates, where p is a fixed prime (AC0[p] circuits). In terms of hardness, it is known that under cer-
tain cryptographic assumptions, the class of polynomial-size constant-depth circuits with threshold
gates (TC0 circuits) is not learnable in sub-exponential time [NR04]. (We refer to Section 2 for a
review of the inclusions between standard circuit classes.)

However, even under strong hardness assumptions, it is still unclear how powerful a circuit class
needs to be before learning becomes utterly infeasible. For instance, whether non-trivial learning
algorithms exist for classes beyond AC0[p] remains a major open problem.

Inspired by [CIKK16], we show that a general and surprising speedup phenomenon holds un-
conditionally for learnability of strong enough circuit classes around the border of currently known
learning algorithms. Say that a class is non-trivially learnable if it is learnable in time ≤ 2n/nw(1),
where n is the number of inputs to a circuit in the class, and furthermore the learner is only required
to output a hypothesis that is an approximation for the unknown function with inverse polynomial
advantage. We show that for “typical” circuit classes such as constant-depth circuits with Mod[m]
gates where m is an arbitrary but fixed composite (ACC0 circuits), constant-depth threshold cir-
cuits, formulas and general Boolean circuits, non-trivial learnability in fact implies high-accuracy
learnability in time 2n

o(1)
, i.e., in sub-exponential time.

Lemma 1 (Speedup Lemma, Informal Version). Let C be a typical circuit class. Polynomial-
size circuits from C are non-trivially learnable if and only if polynomial-size circuits from C are
(strongly) learnable in sub-exponential time. Subexponential-size circuits from C are non-trivially
learnable if and only if polynomial-size circuits from C are (strongly) learnable in quasi-polynomial
time.

Note that the class of all Boolean functions is learnable in time≤ 2n/nΩ(1) with≥ 1/n advantage
simply by querying the function oracle on 2n/nO(1) inputs, and outputting the best constant in
{0, 1} for the remaining (unqueried) positions of the truth-table. Our notion of non-trivial learning
corresponds to merely beating this trivial brute-force algorithm – this is sufficient to obtain much
more dramatic speedups for learnability of typical circuit classes.

In order to provide more intuition for this result, we compare the learning scenario to another
widely investigated algorithmic framework. Consider the problem of checking if a circuit from
a fixed circuit class is satisfiable, a natural generalization of the CNF-SAT problem. Recall that

3

ACC0 circuits are circuits of constant depth with AND, OR, NOT, and modulo gates. There are
non-trivial satisfiability algorithms for ACC0 circuits of size up to 2n

ε
, where ε > 0 depends on

the depth and modulo gates [Wil14c]. On the other hand, if such circuits admitted a non-trivial
learning algorithm, it follows from the Speedup Lemma that polynomial size ACC0 circuits can be
learned in quasi-polynomial time (see Figure 1).

The Speedup Lemma suggests new approaches both to designing learning algorithms and to
proving hardness of learning results. To design a quasi-polynomial time learning algorithm for
polynomial-size circuits from a typical circuit class, it suffices to obtain a minimal improvement over
the trivial brute-force algorithm for sub-exponential size circuits from the same class. Conversely,
to conclude that the brute-force learning algorithm is essentially optimal for a typical class of
polynomial-size circuits, it suffices to use an assumption under which subexponential-time learning
is impossible.

We use the Speedup Lemma to show various structural results about learning. These in-
clude equivalences between several previously defined learning models, a dichotomy between sub-
exponential time learnability and the existence of pseudo-random function generators in the non-
uniform setting, and implications from non-trivial learning to circuit lower bounds.

The techniques we explore have other consequences for complexity theory, such as Karp-Lipton
style results for bounded-error exponential time, and results showing hardness of the Minimum
Circuit Size Problem for a standard complexity class. In general, our results both exploit and
strengthen the rich web of connections between learning, pseudo-randomness and circuit lower
bounds, which promises to have further implications for our understanding of these fundamental
notions. We now describe these contributions in more detail.

“Nontrivial”

SETH is false

P = NP

ETH is false

NP ⊆ SUBEXP

2n/nω(1)

2cn, c < 1

2o(n)

2n
ε

poly(n)

(Running Time)

Satisfiability Algorithms vs. Learning Algorithms

Complexity of CNF-SAT Complexity of Learning C[poly]

Equivalent

[Speedup Phenomenon]

E
x
p
o
n
en

ti
a
l
T
im

e
R
eg
im

e

Figure 1: A speedup phenomenon in computational learning theory for typical circuit classes for
learning under the uniform distribution with membership queries. The speedup procedure simul-
taneously boosts accuracy and running time.

1.1 Summary of Results

We state below informal versions of our main results. We put these results in perspective and
compare them to previous work in Section 1.2.

4

Equivalences for Learning Models.

The Speedup Lemma shows that learnability of polynomial size circuits for typical circuit classes
is not sensitive to the distinction between randomized sub-exponential time algorithms and ran-
domized non-trivial algorithms. We use the Speedup Lemma to further show that for such classes,
learnability for a range of previously defined learning models is equivalent. These include the
worst-case and average-case versions of function compression as defined by Chen et al. [CKK+15]
(see also [Sri15]), and randomized learning with membership and equivalence queries [Ang87].1

The equivalence between function compression and learning in particular implies that accessing the
entire truth table of a function represented by the circuit from the class confers no advantage in
principle over having limited access to the truth table.

Theorem 1 (Equivalences for Learning Models, Informal Version). The following are equivalent
for polynomial-size circuits from a typical circuit class C:

1. Sub-exponential time learning with membership queries.

2. Sub-exponential time learning with membership and equivalence queries.

3. Probabilistic function compression.

4. Average-case probabilistic function compression.

5. Exponential time distinguishability from random functions.

In particular, in the randomized sub-exponential time regime and when restricted to learning
under the uniform distribution, Valiant’s model [Val84] and Angluin’s model [Ang87] are equivalent
in power with respect to the learnability of typical classes of polynomial size circuits.

A Dichotomy between Learning and Pseudorandomness.

It is well-known that if the class of polynomial-size circuits from a class C is learnable, then
there are no pseudo-random function generators computable in C, as the learner can be used to
distinguish random functions from pseudo-random ones [KV94b]. A natural question is whether the
converse is true: can we in general build pseudo-random functions in the class from non-learnability
of the class? We are able to use the Speedup Lemma in combination with other techniques to show
such a result in the non-uniform setting, where the pseudo-random function generator as well as
the learning algorithm are non-uniform. As a consequence, for each typical circuit class C, there is a
dichotomy between pseudorandomness and learnability – either there are pseudo-random function
generators computable in the class, or the class is learnable, but not both.

Theorem 2 (Dichotomy between Learning and Pseudorandomness, Informal Version). Let C be
a typical circuit class. There are pseudo-random function generators computable by polynomial-
size circuits from C that are secure against sub-exponential size Boolean circuits if and only if
polynomial-size circuits from C are learnable non-uniformly in sub-exponential time.

Nontrivial Learning implies Circuit Lower Bounds.

In the algorithmic approach of Williams [Wil13], non-uniform circuit lower bounds against
a class C of circuits are shown by designing algorithms for satisfiability of C-circuits that beat

1Our notion of randomized learning with membership and equivalence queries allows the learner’s hypothesis to
be incorrect on a polynomially small fraction of the inputs.

5

the trivial brute-force search algorithm. Williams’ approach has already yielded the result that
NEXP 6⊆ ACC0 [Wil14c].

It is natural to wonder if an analogue of the algorithmic approach holds for learning, and if so,
what kinds of lower bounds would follow using such an analogue. We establish such a result – non-
trivial learning algorithms yield lower bounds for bounded-error probabilistic exponential time, just
as non-trivial satisfiability algorithms yield lower bounds for non-deterministic exponential time.
Our connection between learning and lower bounds has a couple of nice features. Our notion of
“non-trivial algorithm” can be made even more fine-grained than that of Williams – it is not hard
to adapt our techniques to show that it is enough to beat the brute-force algorithm by a super-
constant factor for learning algorithms with constant accuracy, as opposed to a polynomial factor
in the case of Satisfiability. Moreover, non-trivial learning for bounded-depth circuits yields lower
bounds against circuits with the same depth, as opposed to the connection for Satisfiability where
there is an additive loss in depth [Oli15, JMV15].

Theorem 3 (Circuit Lower Bounds from Learning and from Natural Proofs, Informal Version).
Let C be any circuit class closed under projections.

(i) If polynomial-size circuits from C are non-trivially learnable, then (two-sided) bounded-error
probabilistic exponential time does not have polynomial-size circuits from C.

(ii) If sub-exponential size circuits from C = ACC0 are non-trivially learnable, then one-sided
error probabilistic exponential time does not have polynomial-size circuits from ACC0.

(iii) If there are natural proofs useful against sub-exponential size circuits from C, then zero-error
probabilistic exponential time does not have polynomial-size circuits from C.

Observe that the existence of natural proofs against sub-exponential size circuits yields stronger
lower bounds than learning and satisfiability algorithms. (We refer to Section 2 for a review of the
inclusions between exponential time classes.)

Karp-Lipton Theorems for Probabilistic Exponential Time.

Our main results are about learning, but the techniques have consequences for complexity
theory. Specifically, our use of pseudo-random generators has implications for the question of
Karp-Lipton theorems for probabilistic exponential time. A Karp-Lipton theorem for a complexity
class gives a connection between uniformity and non-uniformity, by showing that a non-uniform
inclusion of the complexity class also yields a uniform inclusion. Such theorems were known for
a range of classes such as NP, PSPACE, EXP, and NEXP [KL80, BFNW93, IKW02], but not for
bounded-error probabilistic exponential time. We show the first such theorem for bounded-error
probabilistic exponential time. A technical caveat is that the inclusion in our consequent is not
completely uniform, but requires a logarithmic amount of advice.

Theorem 4 (Karp-Lipton Theorem for Probabilistic Exponential Time, Informal Version).
If bounded-error probabilistic exponential time has polynomial-size circuits infinitely often, then
bounded-error probabilistic exponential time is infinitely often in deterministic exponential time
with logarithmic advice.

Hardness of the Minimum Circuit Size Problem.

Our techniques also have consequences for the complexity of the Minimum Circuit Size Problem
(MCSP). In MCSP, the input is the truth table of a Boolean function together with a parameter s

6

in unary, and the question is whether the function has Boolean circuits of size at most s. MCSP
is a rare example of a problem in NP which is neither known to be in P or NP-complete. In fact,
we don’t know much unconditionally about the complexity of this problem. We know that certain
natural kinds of reductions cannot establish NP-completeness [MW15], but until our work, it was
unknown whether MCSP is hard for any standard complexity class beyond AC0 [ABK+06]. We
show the first result of this kind.

Theorem 5 (Hardness of the Minimum Circuit Size Problem, Informal Version). The Minimum
Circuit Size Problem is hard for polynomial-size formulas under truth-table reductions computable
by polynomial-size constant-depth threshold circuits.

Remark. This work contains several related technical contributions to the research topics men-
tioned above. We refer to the appropriate sections for more details. Finally, in Section 8 we
highlight some open problems and directions that we find particularly attractive.

1.2 Related Work

1.2.1 Speedups in Complexity Theory

We are not aware of any unconditional speedup result of this form involving the time complexity
of a natural class of computational problems, under a general computational model. In any case, it
is instructive to compare Lemma 1 to a few other speedup theorems in computational complexity.

A classic example is Blum’s Speedup Theorem [Blu67]. It implies that there is a recursive
function f : N→ N such that if an algorithm computes this function in time T (n), then there is an
algorithm computing f in time O(log T (n)). Lemma 1 differs in an important way. It refers to a
natural computational task, while the function provided by Blum’s Theorem relies on an artificial
construction. Another well-known speedup result is the Linear Speedup Theorem (cf. [Pap94,
Section 2.4]). Roughly, it states that if a Turing Machine computes in time T (n), then there is an
equivalent Turing Machine that computes in time T (n)/c. The proof of this theorem is based on
the simple trick of increasing the alphabet size of the machine. It is therefore dependent on the
computational model, while Lemma 1 is not.

Perhaps closer to our result are certain conditional derandomization theorems in complexity
theory. We mention for concreteness two of them. In [IKW02], it is proved that if MA 6= NEXP, then
MA ⊆ i.o.NTIME[2n

ε
]/nε, while in [IW01], it is shown that if BPP 6= EXP, then BPP ⊆ i.o.pseudo-

DTIME[2n
ε
]. It is possible to interpret these results as computational speedups, but observe that

the faster algorithms have either weaker correctness guarantees, or require advice. Lemma 1 on
the other hand transforms a non-trivial learning algorithm into a sub-exponential time learning
algorithm of the same type.

Further results have been discovered in more restricted computational models. For instance, in
the OPP model, [PP10] proved that if Circuit-SAT has algorithms running in time 2(1−δ)n, then
it also has OPP algorithms running in time 2εn. In bounded-depth circuit complexity, [AK10]
established among other results that if the Formula Evaluation Problem has uniform TC0-circuits
of size O(nk), then it also has uniform TC0-circuits of size O(n1+ε).

If one considers other notions of complexity, we can add to this list several results that provide
different, and often rather unexpected, forms of speedup. We mention, for instance, depth reduction
in arithmetic circuit complexity (see .e.g. [AV08]), reducing the number of rounds in interactive
proofs [BM88], decreasing the randomness complexity of bounded-space algorithms [NZ96], cryp-
tography in constant locality [AIK06], among many others.

7

1.2.2 Connections between Pseudorandomness, Learning and Cryptography

There are well-known connections between learning theory, theoretical cryptography and pseu-
dorandomness (see e.g. [Gol01]). Indeed, pseudorandom distributions lie at the heart of the def-
inition of semantic security [GM82, GM84], which permeates modern cryptography, and to every
secure encryption scheme there is a naturally associated hard-to-learn (decryption) problem.

The other direction, i.e., that from a generic hard learning problem it is always possible to
construct secure cryptographic schemes and other basic primitives, is much less clear.2 Following
a research line initiated in [IL90], results more directly related to our work were established in
[BFKL93]. They proved in particular that private-key encryption and pseudorandom generators
exist under a stronger average-case hardness-of-learning assumption, where one also considers the
existence of a hard distribution over the functions in the circuit class C.

However, these results and subsequent work leave open the question of whether hardness of
learning in the usual case, i.e., the mere assumption that any efficient learner fails on some f ∈ C,
implies the existence of pseudorandom functions computable by C-circuits. While there is an exten-
sive literature basing standard cryptographic primitives on a variety of conjecturally hard learning
tasks (see e.g., [Reg09] and references therein for such a line of work), to our knowledge Theorem
2 is the first result to establish a general equivalence between the existence of pseudorandom func-
tions and the hardness of learning, which holds for any typical circuit class. A caveat is that our
construction requires non-uniformity, and is established only in the exponential security regime.

1.2.3 Lower Bounds from Learning Algorithms

While several techniques from circuit complexity have found applications in learning theory in
the past (see e.g., [LMN93]), Fortnow and Klivans [FK09] were the first to systematically investigate
the connection between learning algorithms and lower bounds in a generic setting.3

For deterministic learning algorithms using membership and equivalence queries, initial results
from [FK09] and [HH13] were strengthened and simplified in [KKO13], where it was shown that
non-trivial deterministic learning algorithms for C imply that EXP * C.

The situation for randomized algorithms using membership queries is quite different, and only
the following comparably weaker results were known. First, [FK09] proved that randomized poly-
nomial time algorithms imply BPEXP lower bounds. This result was refined in [KKO13], where a
certain connection involving sub-exponential time randomized learning algorithms and PSPACE was
observed. More recently, [Vol14] combined ideas from [KKO13] and [San09] to prove that efficient
randomized learning algorithms imply lower bounds for BPP/1, i.e., probabilistic polynomial time
with advice. However, in contrast to the deterministic case, obtaining lower bounds from weaker
running time assumptions had been elusive.4

Indeed, we are not aware of any connection between two-sided non-trivial randomized algorithms
and circuit lower bounds, even when considering different algorithmic frameworks in addition to
learning. In particular, Theorem 3 (i) seems to be the first result in this direction. It can be seen

2Recall that secure private-key encryption is equivalent to the existence of one-way functions, pseudorandom
generators and pseudorandom functions, with respect to polynomial time computations (cf. [KL07]). Nevertheless,
not all these equivalences are known to hold when more refined complexity measures are considered, such as circuit
depth. In particular, generic constructions of pseudorandom functions from the other primitives are not known in
small-depth classes. This can be done under certain specific hardness assumptions [NR04], but here we restrict our
focus to generic relations between basic cryptographic primitives.

3For a broader survey on connections between algorithms and circuit lower bounds, we refer to [Wil14a].
4Some connections to lower bounds are also known in the context of learnability of arithmetic circuits. We refer

to [FK09, Vol16] for more details.

8

as an analogue of the connection between satisfiability algorithms and lower bounds established by
Williams [Wil13, Wil14c]. But apart from this analogy, the proof of Theorem 3 employs significantly
different techniques.

1.2.4 Useful Properties, Natural Properties, and Circuit Lower Bounds

The concept of natural proofs, introduced by Razborov and Rudich [RR97], has had a significant
impact on research on unconditional lower bounds. Recall that a property P of Boolean functions
is a natural property against a circuit class C if it is: (1) efficiently computable (constructivity); (2)
rejects all C-functions, and accepts at least one “hard” function (usefulness), and (3) is satisfied by
most Boolean functions (denseness). In case P satisfies only conditions (1) and (2), is it said to be
useful against C.

There are natural properties against AC0[p] circuits, when p is prime [RR97]. But under stan-
dard cryptographic assumptions, there is no natural property against TC0 [NR04]. Consequently,
the situation for classes contained in AC0[p] and for those that contain TC0 is reasonably well-
understood. More recently, [Wil16] (see also [IKW02]) proved that if NEXP * C then there are
useful properties against C. This theorem combined with the lower bound from [Wil14c] show that
ACC0 admits useful properties.

Given these results, the existence of natural properties against ACC0 has become one of the most
intriguing problems in connection with the theory of natural proofs. Theorem 3 (iii) shows that
if there are P-natural properties against sub-exponential size ACC0 circuits, then ZPEXP * ACC0.
This would lead to an improvement of Williams’ celebrated lower bound which does not seem to
be accessible using his techniques alone.5

1.2.5 Karp-Lipton Theorems in Complexity Theory

Karp-Lipton theorems are well-known results in complexity theory relating non-uniform circuit
complexity and uniform collapses. A theorem of this form was first established in [KL80], where they
proved that if NP ⊆ Circuit[poly], then the polynomial time hierarchy collapses. This result shows
that non-uniform circuit lower bounds cannot be avoided if our goal is a complete understanding
of uniform complexity theory.

Since their fundamental work, many results of this form have been discovered for complexity
classes beyond NP. In some cases, the proof required substantially new ideas, and the new Karp-
Lipton collapse led to other important advances in complexity theory. Below we discuss the situation
for two exponential complexity classes around BPEXP, which is connected to Theorem 4.

A stronger Karp-Lipton theorem for EXP was established in [BFNW93], using techniques from
interactive proofs and arithmetization. An important application of this result appears in [BFT98]
in the proof that MAEXP * Circuit[poly]. This is still one of the strongest known non-uniform
lower bounds. For NEXP, a Karp-Lipton collapse was proved in [IKW02]. This time the proof
employed the easy witness method and techniques from pseudorandomness, and the result plays a
fundamental role in Williams’ framework [Wil13], which culminated in the proof that NEXP * ACC0

[Wil14c]. (We mention that a Karp-Lipton theorem for EXPNP has also been established in [BH92].)
Karp-Lipton collapse theorems are known for a few other complexity classes contained in EXP, and
they have found applications in a variety of contexts in algorithms and complexity theory (see e.g.,
[Yap83, FS11]).

5The result that P-natural properties against sub-exponential size circuits yield ZPEXP lower bounds was also ob-
tained in independent work by Russell Impagliazzo, Valentine Kabanets and Ilya Volkovich (private communication).

9

Despite this progress on proving Karp-Lipton collapses for exponential time classes, there is no
published work on such for probabilistic classes. Theorem 4 is the first such result for the class
BPEXP.

1.2.6 The Minimum Circuit Size Problem

The Minimum Circuit Size Problem (MCSP) and its variants has received a lot of attention
in both applied and theoretical research. Its relevance in practice is clear. From a theoretical
point of view, it is one of the few natural problems in NP that has not been shown to be in P or
NP-complete. The hardness of MCSP is also connected to certain fundamental problems in proof
complexity (cf. [Kra11, Raz15]).

Interestingly, a well-understood variant of MCSP is the Minimum DNF Size Problem, for
which both NP-hardness [Mas79] and near-optimal hardness of approximation have been estab-
lished [AHM+08, KS08]. However, despite the extensive literature on the complexity of the MCSP
problem [KC00, ABK+06, AD14, HP15, AHK15, MW15, HP15, AGM15, HW16], and the intuition
that it must also be computationally hard, there are few results providing evidence of its difficulty.
Among these, we highlight the unconditional proof that MCSP /∈ AC0 [ABK+06], and the reduc-
tions showing that Factoring ∈ ZPPMCSP [ABK+06] and SZK ⊆ BPPMCSP [AD14]. The lack of
further progress has led to the formulation and investigation of a few related problems, for which
some additional results have been obtained (cf. [ABK+06, AHK15, AGM15, HW16]).

More recently, [MW15] provided some additional explanation for the difficulty of proving hard-
ness of MCSP. They unconditionally established that a class of local reductions that have been
used for many other NP-completeness proofs cannot work, and that the existence of a few other
types of reductions would have significant consequences in complexity theory. Further results along
this line appear in [HP15].

Theorem 5 contributes to our understanding of the difficulty of MCSP by providing the first
hardness results for a standard complexity class beyond AC0. We hope this result will lead to
further progress on the quest to determine the complexity of this elusive problem.6

1.3 Main Techniques

1.3.1 Overview

Our results are obtaining via a mixture of techniques from learning theory, computational com-
plexity, pseudo-randomness and circuit complexity. We refer to Figure 2 for a web of connections
involving the theorems stated in Section 1.1 and the methods employed in the proofs. We start
with an informal description of most of the techniques depicted in Figure 2, with pointers to some
relevant references.7

Nisan-Wigderson Generator [NW94]. The NW-Generator allows us to convert a function
f : {0, 1}n → {0, 1} into a family of functions NW(f). Crucially, if an algorithm A is able to
distinguish NW(f) from a random function, there is a reduction that only needs oracle access to

6We have learned from Eric Allender (private communication) that in independent work with Shuichi Hirahara,
they have shown some hardness results for the closely related problem of whether a string has high KT complexity.
These results do not yet seem to transfer to MCSP and its variants. In addition, we have learned from Valentine
Kabanets (private communication) that in recent independent work with Russell Impagliazzo and Ilya Volkovich,
they have also obtained some results on the computational hardness of MCSP.

7This is not a comprehensive survey of the original use or appearance of each method. It is included here only as
a quick guide to help the reader to assimilate the main ideas employed in the proofs.

10

f and A, and that can be used to weakly approximate f . The use of the NW-Generator in the
context of learning, for a function f that is not necessarily hard, appeared recently in [CIKK16].8

(Uniform) Hardness

Random-self-reducibility

Amplification
NW-Generator

Easy Witness Method

Approx. Min-Max Theorem

Worst- to Average-
Case Reduction

Advice Elimination

Almost Everywhere

Counting / Chernoff Bound

Hierarchy Theorem

IW-Generator

Lemma 1
[Speedup]

Theorem 1
[Equivalences]

Theorem 3
[Lower Bounds]

Theorem 4
[Karp-Lipton]

Theorem 5
[Hardness of MCSP]

Theorem 2
[PRF-Dichotomy]

Downward-self-reducibility
Williams' ACC Lower Bound

Figure 2: An overview of the main techniques employed in the proof of each result discussed in
Section 1.1. An arrow from P to Q indicates that the proof of Q relies on P .

(Uniform) Hardness Amplification. This is a well-known technique in circuit complexity (cf.
[GNW11]), allowing one to produce a not much more complex function g̃ : {0, 1}m(n) → {0, 1},
given oracle access to some function g : {0, 1}n → {0, 1}, that is much harder to approximate than
g. The uniform formulation of this result shows that a weak approximator for g̃ can be converted
into a strong approximator for g. The connection to learning was explicitly observed in [BL93].

Counting and Concentration Bounds. This is a standard argument which allows one to prove
that most Boolean functions on n-bit inputs cannot be approximated by Boolean circuits of size
≤ 2n/nω(1) (Lemma 4). In particular, learning algorithm running in non-trivial time can only
successfully learn a negligible fraction of all Boolean functions.

Small-Support Min-Max Theorem [Alt94, LY94]. This is an approximate version of the well-
known min-max theorem from game theory. It provides a bound on the support size of the mixed
strategies. To prove Theorem 2, we consider a game between a function family generator and a

8Interestingly, another unexpected and somewhat related use of the NW-generator appears in proof complexity
(see e.g., [Pic15] and references therein).

11

candidate distinguisher, and this result allows us to move from a family of distinguishers against
different classes of functions to a single universal distinguisher of bounded complexity.

Worst-Case to Average-Case Reduction. The NW-Generator and hardness amplification can
be used to boost a very weak approximation into a strong one. In some circuit classes such as
NC1, a further reduction allows one to obtain a circuit that is correct on every input with high
probability (see e.g. [AAW10]). This is particularly useful when proving hardness results for MCSP.

Easy Witness Method [Kab01] and Impagliazzo-Wigderson Generator [IW97]. The easy
witness method is usually employed as a win-win argument: either a verifier accepts a string en-
coded by a small circuit, or every accepted string has high worst-case circuit complexity. No matter
the case, it can be used to our advantage, thanks to the generator from [IW97] that transforms a
worst-case hard string (viewed as a truth table) into a pseudorandom distribution of strings.

(Almost Everywhere) Hierarchy Theorems. A difficulty when proving Theorems 3 and 4 is
that there are no known tight hierarchy theorems for randomized time. Our approach is therefore
indirect, relying on the folklore result that bounded-space algorithms can diagonalize on every input
length against all bounded-size circuits (Lemma 11 and Corollary 2).

Random-self-reducibility and Downward-self-reducibility. These are important notions of
self-reducibility shared by certain functions. Together, they can be used via a recursive procedure
to obtain from a learning algorithm for such a function, which requires oracle access to the function,
a standard randomized algorithm computing the same function [IW01, TV07].

Advice Elimination. This idea is important in the contrapositive argument establishing Theorem
4. Assuming that a certain deterministic simulation of a function in BPEXP is not successful, it
is not clear how to determine on each input length a “bad” string of that length for which the
simulation fails. Such bad strings are passed as advice in our reduction, and in order to eliminate
the dependency on them, we use an advice-elimination strategy from [TV07].

1.3.2 Sketch of Proofs

We describe next in a bit more detail how the techniques described above are employed in the
proof of our main results. We stress that the feasibility of all these arguments crucially depend on
the parameters associated to each result and technique. However, for simplicity our focus here will
be on the qualitative connections.

Lemma 1 (Speedup Lemma). Given query access to a function f ∈ C that we would like to learn
to high accuracy, the first idea is to notice that if there is a distinguisher against NW(f), then
we can non-trivially approximate f using membership queries. But since this is not the final goal
of a strong learning algorithm, we consider NW(f̃), the generator applied to the amplified version
of f . Using properties of the NW-generator and hardness amplification, it follows that if there is
a distinguisher against NW(f̃), it is possible to approximate f̃ , which in turn provides a strong
approximator for f . (A similar strategy is employed in [CIKK16], where a natural property is used
instead of a distinguisher.)

Next we use the assumption that C has non-trivial learning algorithms to obtain a distinguisher
against C. (For this approach to work, it is fundamental that the functions in NW(f̃) ⊆ C. In other
words, the reductions discussed above should not blow-up the complexity of the involved functions

12

by too much. For this reason, C must be a sufficiently strong circuit class.) By a counting argument
and a concentration bound, while a non-trivial learning algorithm will weakly learn every function
in C, it must fail to learn a random Boolean function with high probability. We apply this idea to
prove that a non-trivial learner can be used as a distinguisher against NW(f̃).

These techniques can therefore be combined in order to boost a non-trivial learner for C into
a high-accuracy learner for C. This takes care of the accuracy amplification. The running time
speedup comes from the efficiency of the reductions involved, and from the crucial fact that each
function in NW(f̃) is a function over m � n input bits. In particular, the non-trivial but still
exponential time learning algorithm for C only needs to be invoked on Boolean functions over m
input bits. (This argument only sketches one direction in Lemma 1.)

Theorem 1 (Learning Equivalences). At the core of the equivalence between all learning and com-
pression models in Theorem 1 is the idea that in each case we can obtain a certain distinguisher
from the corresponding algorithm. Again, this makes fundamental use of counting and concen-
tration bounds to show that non-trivial algorithms can be used as distinguishers. On the other
hand, the Speedup Lemma shows that a distinguisher can be turned into a sub-exponential time
randomized learning algorithm that requires membership queries only.

In some models considered in the equivalence, additional work is necessary. For instance, in the
learning model where equivalence queries are allowed, they must be simulated by the distinguisher.
For exact compression, a hypothesis output by the sub-exponential time learner might still contain
errors, and these need to be corrected by the compression algorithm. A careful investigation of the
parameters involved in the proof make sure the equivalences indeed hold.

Theorem 2 (Dichotomy between Learning and PRFs). It is well-known that the existence of
learning algorithms for a class C implies that C-circuits cannot compute pseudorandom functions.
Using the Speedup Lemma, it follows that the existence of non-trivial learning algorithms for C
implies that C cannot compute exponentially secure pseudorandom functions.

For the other direction, assume that every samplable family F of functions from C can be
distinguished from a random function by some procedure DF of sub-exponential complexity. By
introducing a certain two-player game (Section 4.1), we are able to employ the small-support min-
max theorem to conclude that there is a single circuit of bounded size that distinguishes every
family of functions in C from a random function. In turn, the techniques behind the Speedup
Lemma imply that every function in C can be learned in sub-exponential time.

We remark that the non-uniformity in the statement of Theorem 2 comes from the application
of a non-constructive min-max theorem.

Theorem 3 (Lower Bounds from Non-trivial Learning and Natural Proofs). Here we combine the
Speedup Lemma with the self-reducibility approach from [IW01, TV07, FK09, KKO13] and other
standard arguments. Assuming a non-trivial learning algorithm for C, we first boost it to a high-
accuracy sub-exponential time learner. Now if PSPACE * C we are done, since PSPACE ⊆ BPEXP.
Otherwise, using a special self-reducible complete function f ∈ PSPACE [TV07], we are able obtain
from a sub-exponential time learning algorithm for f a sub-exponential time decision algorithm
computing f . Using the completeness of f and a strong hierarchy theorem for bounded-space
algorithms, standard techniques allow us to translate the hardness of PSPACE against bounded-size
circuits and the non-trivial upper bound on the randomized complexity of f into a non-uniform
circuit lower bound for randomized exponential time. A win-win argument is used crucially to
establish that no depth blow-up is necessary when moving from a non-trivial algorithm for (depth-
d)-C to a (depth-d)-C circuit lower bound. For C = ACC0, we combine certain complexity collapses

13

inside the argument with Williams’ lower bound [Wil14c].
In order to obtain even stronger lower bounds from natural properties against sub-exponential

size circuits, we further combine this approach with an application of the easy witness method.
This and other standard techniques lead to the collapse BPEXP = ZPEXP, which strengthens the
final circuit lower bound.

Theorem 4 (Karp-Lipton Collapse for Probabilistic Time). This result does not rely on the
Speedup Lemma, but its argument is somewhat more technically involved than the proof of Theorem
3. The result is established in the contrapositive. Assuming that an attempted derandomization of
BPEXP fails, we show that polynomial space can be simulated in sub-exponential randomized time.
Arguing similarly to the proof of Theorem 3, we conclude that there are functions in randomized
exponential time that are not infinitely often computed by small circuits.

The first difficulty is that the candidate derandomization procedure on n-bit inputs requires the
use of the NW-generator applied to a function on nc-bit inputs, due to our setting of parameters.
However, in order to invoke the self-reducibility machinery, we need to make sure the generator
can be broken on every input length, and not on infinitely many input lengths. To address this, we
introduce logarithmic advice during the simulation, indicating which input length in [nc, (n+ 1)c]
should be used in the generator. This amount of advice is reflected in the statement of the theorem.

A second difficulty is that if the derandomization fails on some input string of length n, it is
important in the reduction to know a “bad” string with this property. For each input length, a
bad string is passed as advice to the learning-to-decision reduction (this is the second use of advice
in the proof). This time we are able to remove the advice using an advice-elimination technique,
which makes use of self-correctability as in [TV07]. Crucially, the advice elimination implies that
randomized exponential time without advice is not infinitely often contained in C, which completes
the proof of the contrapositive of Theorem 4.

Theorem 5 (Hardness of MCSP). Recall that this result states that MCSP is hard for NC1 with re-
spect to non-uniform TC0 reductions. The proof of Theorem 5 explores the fine-grained complexity
of the Nisan-Wigderson reconstruction procedure and of the hardness amplification reconstruction
algorithm. In order words, the argument depends on the combined circuit complexity of the algo-
rithm that turns a distinguisher for NW(f̃) into a high-accuracy approximating circuit for f , under
the notation of the proof sketch for Lemma 1. This time we obtain a distinguisher using an oracle
to MCSP. It is possible to show that this reduction can be implemented in non-uniform TC0.

Observe that the argument just sketched only provides a randomized reduction that approx-
imates the initial Boolean function f under the uniform distribution. But Theorem 5 requires a
worst-case reduction from NC1 to MCSP. In other words, we must be able to compute any NC1

function correctly on every input. This can be achieved using that there are functions in NC1

that are NC1-hard under TC0-reductions, and that in addition admit randomized worst-case to
average-case reductions computable in TC0. Using non-uniformity, randomness can be eliminated
by a standard argument. Altogether, this completes the proof that NC1 reduces to MCSP via a
non-uniform TC0 computation.

These proofs provide a few additional examples of the use of pseudorandomness in contexts
where this notion is not intrinsic to the result under consideration. For instance, the connection
between non-trivial learning algorithms and lower bounds (Theorem 3), the Karp-Lipton collapse for
probabilistic exponential time (Theorem 4), and the hardness of the Minimum Circuit Size Problem
(Theorem 5) are statements that do not explicitly refer to pseudorandomness. Nevertheless, the

14

arguments discussed above rely on this concept in fundamental ways. This motivates a further
investigation of the role of pseudorandomness in complexity theory, both in terms of finding more
applications of the “pseudorandom method”, as well as in discovering alternative proofs relying on
different techniques.

2 Preliminaries and Notation

2.1 Boolean Function Complexity

We use Fm to denote the set of all Boolean functions f : {0, 1}m → {0, 1}. If W is a probability
distribution, we use w ∼ W to denote an element sampled according to W . Similarly, for a finite
set A, we use a ∼ A to denote that a is selected uniformly at random from A. Under this notation,
f ∈ Fm represents a fixed function, while f ∼ Fm is a uniformly random function. For convenience,

we let Un
def
= {0, 1}n. Following standard notation, X ≡ Y denotes that random variables X and

Y have the same distribution. We use standard asymptotic notation such as o(·) and O(·), and it
always refer to a parameter n→∞, unless stated otherwise.

We say that f, g ∈ Fn are ε-close if Prx∼Un [f(x) = g(x)] ≥ 1− ε. We say that h ∈ Fn computes
f with advantage δ if Prx∼Un [f(x) = h(x)] ≥ 1/2 + δ. It will sometimes be convenient to view a
Boolean function f ∈ Fm as a subset of {0, 1}m in the natural way.

We often represent Boolean functions as strings via the truth table mapping. Given a Boolean
function f ∈ Fn, tt(f) is the 2n-bit string which represents the truth table of f in the standard
way, and conversely, given a string y ∈ {0, 1}2n , fn(y) is the Boolean function in Fn whose truth
table is represented by y.

Let C = {Cn}n∈N be a class of Boolean functions, where each Cn ⊆ Fn. Given a language

L ⊆ {0, 1}∗, we write L ∈ C if for every large enough n we have that Ln
def
= {0, 1}n ∩ L is in Cn.

Often we will abuse notation and view C as a class of Boolean circuits. For convenience, we use
number of wires to measure circuit size. We denote by C[s(n)] the set of n-variable C-circuits of
size at most s(n). As usual, we say that a uniform complexity class Γ is contained in C[poly(n)] if
for every L ∈ Γ there exists k ≥ 1 such that L ∈ C[nk].

We say that C is typical if C ∈ {AC0,AC0[p],ACC0,TC0,NC1,Formula,Circuit}. Recall that

CNF,DNF (AC0 (AC0[p] (ACC0 ⊆ TC0 ⊆ NC1 = Formula[poly] ⊆ Circuit[poly].

We assume for convenience that TC0 is defined using (unweighted) majority gates instead of
weighted threshold gates. Also, while NC1 typically refers to circuits of polynomial size and loga-
rithmic depth, we consider the generalized version where NC1[s] is the class of languages computed
by circuits of size ≤ s and depth ≤ log s.

While we restrict our statements to typical classes, it is easy to see that they generalize to most
circuit classes of interest. When appropriate we use Cd to restrict attention to C-circuits of depth
at most d. In this work, we often find it convenient to suppress the dependence on d, which is
implicit for instance in the definition of a circuit family from a typical bounded-depth circuit class,
such as the first four typical classes in the list above. It will be clear from the context whether the
quantification over d is existential or universal.

Given a sequence of Boolean functions {fn}n∈N with fn : {0, 1}n → {0, 1}, we let Cf denote the
extension of C that allows Cn-circuits to have oracle gates computing fn.

For a complexity class Γ and a language L ⊆ {0, 1}∗, we say that L ∈ i.o.Γ if there is a language
L′ ∈ Γ such that Ln = L′n for infinitely many values of n. Consequently, if Γ1 * i.o.Γ2 then there
is a language in Γ1 that disagrees with each language in Γ2 on every large enough input length.

15

Recall the following diagram of class inclusions involving standard complexity classes:9

ZPP ⊆
NP
⊆ ⊆

RP MA⊆ ⊆
BPP

⊆ PSPACE ⊆ EXP ⊆ ZPEXP ⊆
NEXP
⊆ ⊆

REXP MAEXP⊆ ⊆
BPEXP

⊆ EXPSPACE.

In order to avoid confusion, we fix the following notation for exponential complexity classes. E
refers to languages computed in time 2O(n). EXP refers to languages computed with bounds of
the form 2n

c
for some c ∈ N. SUBEXP denotes complexity 2n

ε
for a fixed but arbitrarily small

ε > 0. Finally, ESUBEXP refers to a bound of the form 22n
ε

, again for a fixed but arbitrarily small
ε > 0. These conventions are also used for the DSPACE(·) and BPTIME(·) variants, such as BPE,
BPSUBEXP and EXPSPACE. For instance, a language L ⊆ {0, 1}∗ is in BPSUBEXP if for every
ε > 0 there is a bounded-error randomized algorithm that correctly computes L in time ≤ 2n

ε
on

every input of length n, provided that n is sufficiently large. For quasi-polynomial time classes such
as RQP and BPQP, the convention is that for each language in the class there is a constant c ≥ 1
such that the corresponding algorithm runs in time at most O(n(logn)c).

We will use a few other standard notions, and we refer to standard textbooks in computational
complexity and circuit complexity for more details.

2.2 Learning and Compression Algorithms

The main learning model with which we concern ourselves is PAC learning under the uniform
distribution with membership queries.

Definition 1 (Learning Algorithms). Let C be a circuit class. Given a size function s : N→ N and
a time function T : N→ N, we say that C[s] has (ε(n), δ(n))-learners running in time T (n) if there
is a randomized oracle algorithm Af (the learner) such that for every large enough n ∈ N:

• For every function f ∈ C[s(n)], given oracle access to f , with probability at least 1−δ(n) over
its internal randomness, Af (1n) outputs a Boolean circuit h such that Prx∼Un [f(x) 6= h(x)] ≤
ε(n).

• For every function f , Af (1n) runs in time at most T (n).

It is well-known that the confidence of a learning algorithm can be amplified without significantly
affecting the running time (cf. [KV94a]), and unless stated otherwise we assume that δ(n) = 1/n.

A weak learner for C[s(n)] is a (1/2−1/nc, 1/n)-learner, for some fixed c > 0 and sufficiently large
n. We say C[s] has strong learners running in time T if for each k ≥ 1 there is a (1/nk, 1/n)-learner
for C[s] running in time T . Different values for the accuracy parameter k can lead to different
running times, but we will often need only a fixed large enough k when invoking the learning
algorithm. On the other hand, when proving that a class has a strong learner, we show that the
claimed asymptotic running time holds for all fixed k ∈ N. For simplicity, we may therefore omit the
dependence of T on k. We say that C[s] has non-trivial learners if it has (1/2− 1/nk, 1/n)-learners
running in time T (n) = 2n/nω(1), for some fixed k ∈ N.

We also discuss randomized learning under the uniform distribution with membership queries
and equivalence queries [Ang87]. In this stronger model, the learning algorithm is also allowed to
make queries of the following form: Is the unknown function f computed by the Boolean circuit

9Non-uniform lower bounds against unrestricted polynomial size circuits are currently known only for MAEXP,
the exponential time analogue of MA [BFT98].

16

C? Here C is an efficient representation of a Boolean circuit produced be the learner. The oracle
answers “yes” if the Boolean function computed by C is f ; otherwise it returns an input x such
that C(x) 6= f(x).

Definition 2 (Compression Algorithms). Given a circuit class C and a size function s : N→ N, a
compression algorithm for C[s] is an algorithm A for which the following hold :

• Given an input y ∈ {0, 1}2n, A outputs a circuit D (not necessarily in C) of size o(2n/n) such
that if fn(y) ∈ C[s(n)] then D computes fn(y).

• A runs in time polynomial in |y| = 2n.

We say C[s] admits compression if there is a (polynomial time) compression algorithm for C[s].

We will also consider the following variations of compression. If the algorithm is probabilistic,
producing a correct circuit with probability ≥ 2/3, we say C[s] has probabilistic compression. If the
algorithm produces a circuit D which errs on at most ε(n) fraction of inputs for fn(y) in C[s], we
say that A is an average-case compression algorithm with error ε(n). We define correspondingly
what it means for a circuit class to have average-case compression or probabilistic average-case
compression.

2.3 Natural Proofs and the Minimum Circuit Size Problem

We say that R = {Rn}n∈N is a combinatorial property (of Boolean functions) if Rn ⊆ Fn for
all n. We use LR to denote the language of truth-tables of functions in R. Formally, LR = {y |
y = tt(f) for some f ∈ Rn and n ∈ N}.

Definition 3 (Natural Properties [RR97]). Let R = {Rn} be a combinatorial property, C a circuit
class, and D a (uniform or non-uniform) complexity class. We say that R is a D-natural property
useful against C[s(n)] if there is n0 ∈ N such that the following holds:

(i) Constructivity. LR ∈ D.

(ii) Density. For every n ≥ n0, Prf∼Fn [f ∈ Rn] ≥ 1/2.

(iii) Usefulness. For every n ≥ n0, we have Rn ∩ Cn[s(n)] = ∅.

Definition 4 (Minimum Circuit Size Problem). Let C be a circuit class. The Minimum Circuit
Size Problem for C, abbreviated as MCSP-C, is defined as follows:

• Input. A pair (y, s), where y ∈ {0, 1}2n for some n ∈ N, and 1 ≤ s ≤ 2n is an integer (inputs
not of this form are rejected).

• Question. Does fn(y) have C-circuits of size at most s?

We also define a variant of this problem, where the circuit size is not part of the input.

Definition 5 (Unparameterized Minimum Circuit Size Problem). Let C be a circuit class, and
s : N→ N be a function. The Minimimum Circuit Size Problem for C with parameter s, abbreviated
as MCSP-C[s], is defined as follows:

• Input. A string y ∈ {0, 1}2n, where n ∈ N (inputs not of this form are rejected).

• Question. Does fn(y) have C-circuits of size at most s(n)?

Note that a dense property useful against C[s(n)] is a dense subset of the complement of MCSP-
C[s].

17

2.4 Randomness and Pseudorandomness

Definition 6 (Pseudorandom Generators). Let ` : N→ N, h : N→ N and ε : N→ [0, 1] be functions,
and let C be a circuit class. A sequence {Gn} of functions Gn : {0, 1}`(n) → {0, 1}n is an (`, ε)
pseudorandom generator (PRG) against C[h(n)] if for any sequence of circuits {Dn} with Dn ∈
C[h(n)] and for all large enough n,∣∣∣∣ Pr

w∼Un
[Dn(w) = 1]− Pr

x∼U`(n)
[Dn(Gn(x)) = 1]

∣∣∣∣ ≤ ε(n).

The pseudorandom generator is called quick if its range is computable in time 2O(`(n)).

Theorem 6 (PRGs from computational hardness [NW94, IW97]). Let s : N → N be a time-
constructible function such that n ≤ s(n) ≤ 2n for every n ∈ N. There is a constant c > 0 and an
algorithm which, given as input n in unary and the truth table of a Boolean function on s−1(n) bits
which does not have circuits of size nc, computes the range of a (`(n), 1/n) pseudorandom generator
against Circuit[n] in time 2O(`(n)), where `(n) = O((s−1(n))2/ log n).

Definition 7 (Distinguishers and Distinguishing Circuits). Given a probability distribution Wn

with Support(Wn) ⊆ {0, 1}n and a Boolean function hn : {0, 1}n → {0, 1}, we say that hn is a
distinguisher for Wn if ∣∣∣∣ Pr

w∼Wn

[hn(w) = 1]− Pr
x∼Un

[hn(x) = 1]

∣∣∣∣ ≥ 1/4.

We say that a circuit Dn is a circuit distinguisher for Wn if Dn computes a function hn that is a
distinguisher for Wn. A function f : {0, 1}∗ → {0, 1} is a distinguisher for a sequence of distribu-
tions {Wn} if for each large enough n, fn is a distinguisher for Wn, where fn is the restriction of
f to n-bit inputs.

The following is a slight variant of a definition in [CIKK16].

Definition 8 (Black-Box Generator). Let ` : N → N, γ(n) ∈ [0, 1], and C be a circuit class. A
black-box (γ, `)-function generator within C is a mapping that associates to any f : {0, 1}n → {0, 1}
a family GEN(f) = {gz}z∈{0,1}m of functions gz : {0, 1}` → {0, 1}, for which the following conditions
hold :

(i) Family size. The parameter m ≤ poly(n, 1/γ).

(ii) Complexity. For every z ∈ {0, 1}m, we have gz ∈ Cf [poly(m)].

(iii) Reconstruction. Let L = 2` and WL be the distribution supported over {0, 1}L that is generated
by tt(gz), where z ∼ Um. There is a randomized algorithm Af , taking as input a circuit D and
having oracle access to f , which when D is a distinguishing circuit for WL, with probability at
least 1−1/n outputs a circuit of size poly(n, 1/γ, size(D)) that is γ-close to f . Furthermore,
Af runs in time at most poly(n, 1/γ, L(n)).

This definition is realized by the following result.

Theorem 7 (Black-Box Generators for Restricted Classes [CIKK16]). Let p be a fixed prime, and
C be a typical circuit class containing AC0[p]. For every γ : N→ [0, 1] and ` : N→ N there exists a
black-box (γ, `)-function generator within C.

18

Definition 9 (Complexity Distinguisher). Let C be a circuit class and consider functions s, T : N→
N. We say that a probabilistic oracle algorithm Ag is a complexity distinguisher for C[s(n)] running
in time T if Ag(1n) always halts in time T (n) with an ouput in {0, 1}, and the following hold :

• For every g ∈ C[s(n)], PrA[Ag(1n) = 1] ≤ 1/3.

• Eg∼Fn,A[Ag(1n)] ≥ 2/3.

Definition 10 (Zero-Error Complexity Distinguisher). Let C be a circuit class and s, T : N→ N be
functions. We say that a probabilistic oracle algorithm Ag is a zero-error complexity distinguisher
for C[s(n)] running in time T if Ag(1n) always halts in time T (n) with an output in {0, 1, ?}, and
the following hold :

• If g ∈ C[s(n)], Ag(1n) always outputs 0 or ?, and PrA[Ag(1n) = ?] ≤ 1/3.

• For every n ≥ 1 there exists a family of functions Sn ⊆ Fn with |Sn|/|Fn| ≥ 1 − o(1) such
that for every f ∈ Sn, Af (1n) always outputs 1 or ?, and PrA[Af (1n) = ?] ≤ 1/3.

We will make use of the following standard concentration of measure result.

Lemma 2 (Chernoff Bound, cf. [J LR00, Theorem 2.1]). Let X ∼ Bin(m, p) and λ = mp. For any
t ≥ 0,

Pr[|X − E[X]| ≥ t] ≤ exp

(
− t2

2(λ+ t/3)

)
.

3 Learning Speedups and Equivalences

3.1 The Speedup Lemma

We start with the observation that the usual upper bound on the number of small Boolean
circuits also holds for unbounded fan-in circuit classes with additional types of gates.

Lemma 3 (Bound on the number of functions computed by small circuits). Let C be a typical
circuit class. For any s : N→ N satisfying s(n) ≥ n there are at most 250s(n) log s(n) functions in Fn
computed by C-circuits of size at most s(n).

Proof. A circuit over n input variables and of size at most s(n) can be represented by its underlying
directed graph together with information about the type of each gate. A node of the graph together
with its gate type can be described using O(log s(n)) bits, since for a typical circuit class there are
finitely many types of gates. In addition, each input variable can be described as a node of the
graph using O(log n) = O(log s(n)) bits, since by assumption s(n) ≥ n. Finally, using this indexing
scheme, each wire of the circuit corresponding to a directed edge in the circuit graph can be
represented with O(log s(n)) bits. Consequently, as we measure circuit size by number of wires,
any circuit of size at most s(n) can be represented using at most O(s(n) log s(n)) bits. The lemma
follows from the trivial fact that a Boolean circuit computes at most one function in Fn and via a
conservative estimate for the asymptotic notation.

Lemmas 2 and 3 easily imply the following (folklore) result.

Lemma 4 (Random functions are hard to approximate). Let C be a typical circuit class, s ≥ n,
and δ ∈ [0, 1/2]. Then,

Pr
f∼Fn

[∃C-circuit of size ≤ s(n) computing f with advantage δ(n)] ≤ exp
(
−δ22n−1 + 50s log s

)
.

19

Proof. Let g ∈ Fn be a fixed function. It follows from Lemma 2 with p = 1/2, m = 2n, t = δ2n,
and using δ ≤ 1/2 that

Pr
f∼Fn

[g computes f with advantage δ(n)] ≤ exp

(
−δ

22n

2

)
.

The claim follows immediately from this estimate, Lemma 3, and a union bound.

Lemma 5 (Non-trivial learners imply distinguishers). Let C be a typical circuit class, s : N→ N be
a size bound, and T : N→ N be a time bound such that T (n) = 2n/nω(1). If C[s] has weak learners
running in time T , then C[s(n)] has complexity distinguishers running in time T (n) · poly(n).

Proof. By the assumption that C is weakly learnable, there is a probabilistic oracle algorithm
Aflearn, running in time T (n) on input 1n, which when given oracle access to f ∈ C[s], outputs
with probability at least 1− 1/n a Boolean circuit h which agrees with f on at least a 1/2 + 1/nk

fraction of inputs of length n, for some universal constant k. We show how to construct from Aflearn
an oracle algorithm Afdist which is a complexity distinguisher for C[s].

Afdist operates as follows on input 1n. It runs Aflearn on input 1n. If Aflearn does not output a

hypothesis, Afdist outputs ‘1’. Otherwise Afdist estimates the agreement between the hypothesis h
output by the learning algorithm and the function f by querying f on n5k inputs of length n chosen
uniformly at random, and checking for each such input whether f agrees with h. The estimated
agreement is computed to be the fraction of inputs on which f agrees with h. If it is greater than
1/2 + 1/n2k, Afdist outputs ‘0’, otherwise it outputs ‘1’.

By the assumption on efficiency of the learner Aflearn, it follows that Afdist runs in time T (n) ·
poly(n). Thus we just need to argue that Afdist is indeed a complexity distinguisher.

For a uniformly random f , the probability that Aflearn outputs a hypothesis h that has agreement

greater than 1/2 + 1/n4k with f is exponentially small. This is because Aflearn runs in time T (n) =
2n/nω(1), and hence if it outputs a hypothesis, it must be of size at most 2n/nω(1). By Lemma
4, only an exponentially small fraction of functions can be approximated by circuits of such size.
Also, given that a circuit h has agreement at most 1/2 + 1/n4k with f , the probability that the
estimated agreement according to the procedure above is greater than 1/2 + 1/n2k is exponentially

small by Lemma 2. Thus, for a uniformly random f , the oracle algorithm Afdist outputs ‘0’ with
exponentially small probability, and hence for large enough n, it outputs ‘1’ with probability at
least 2/3.

For f ∈ C[s(n)], by the correctness and efficiency of the learning algorithm, Aflearn outputs a
hypothesis h with agreement at least 1/2 + 1/nk with f , with probability at least 1−1/n. For such
a hypothesis h, using Lemma 2 again, the probability that the estimated agreement is smaller than
1/2 + 1/n2k is exponentially small. Thus, for n large enough, with probability at least 2/3, Afdist
outputs ‘0’.

Lemma 6 (Faster learners from distinguishers). Let C be a typical circuit class. If C[poly(n)] has
complexity distinguishers running in time 2O(n), then for every ε > 0, C[poly(n)] has strong learners
running in time O(2n

ε
). If for some ε > 0, C[2n

ε
] has complexity distinguishers running in time

2O(n), then C[poly(n)] has strong learners running in time 2log(n)O(1)
.

Proof. We prove the first part of the Lemma, and the second part follows analogously using a
different parameter setting.

Let C be a typical circuit class. If C = AC0, the lemma holds unconditionally since this class
can be learned in quasi-polynomial time [LMN93]. Assume otherwise that C contains AC0[p], for

20

some fixed prime p. By assumption, C[poly(n)] has a complexity distinguisher Ag0 running in time
2O(n). We show that for every ε > 0 and every k > 0, C[poly(n)] has (1/nk, 1/n)-learners running
in time O(2n

ε
). Let ε′ > 0 be any constant such that ε′ < ε. By Theorem 7 there exists a black-box

(γ, `)-function generator GEN within C, where γ = 1/nk and ` = nε
′
. For this setting of γ and ` we

have that the parameter m for GEN(f) in Definition 8 is poly(n), and that for each z ∈ {0, 1}m, we

have gz ∈ Cf [poly(n)]. Let Af1 be the randomized reconstruction algorithm for GEN(f).
We define a (1/nk, 0.99)-learner Af for C[poly(n)] running in time O(2n

ε
); the confidence can

then be amplified to satisfy the definition of a strong learner while not increasing the running time
of the learner by more than a polynomial factor. The learning algorithm operates as follows. It
interprets the oracle algorithm Ag0 on input 1` as a probabilistic polynomial-time algorithm D(·, ~r)
which is explicitly given the truth table of g, of size L = 2`, as input, with ~r the randomness for this
algorithm. It guesses ~r at random and then computes a circuit DL of size 2O(`) which is equivalent
to D(·, ~r) on inputs of size 2`, using the standard transformation of polynomial-time algorithms

into circuits. It then runs Af1 on input DL, and halts with the same output as Af1 . Observe that
the queries made by the reconstruction algorithm can be answered by the learner, since it also has
query access to f .

Using the bounds on running time of A0 and A1, it is easy to see that Af can be implemented
to run in time 2O(`), which is at most 2n

ε
for large enough n. We need to argue that Af is a

correct strong learner for C[poly(n)]. The critical point is that when f ∈ C[poly(n)], with noticeable
probability, DL is a distinguishing circuit for WL (using the terminology of Definition 8), and we
can then take advantage of the properties of the reconstruction algorithm. We now spell this out
in more detail.

When f ∈ C[poly(n)], using the fact that C is typical and thus closed under composition with
itself, and that it contains AC0[p], we have that for each z ∈ {0, 1}m, gz ∈ C[poly(n)]. Note that
the input size for gz is ` = nε

′
, and hence also gz ∈ C[poly(`)]. Using now that A0 is a complexity

distinguisher, we have that for any z ∈ {0, 1}m, PrA[Agz(1`) = 1] ≤ 1/3, while Eg∼F`,A[Ag(1`)] ≥
2/3. By a standard averaging argument and the fact that probabilities are bounded by 1, this
implies that with probability at least 0.05 over the choice of ~r, DL is a distinguishing circuit for
WL. Under the properties of the reconstruction algorithm Af1 , when given as input such a circuit

DL, with probability at least 1− 1/n, the output of Af1 is 1/nk-close to f . Hence with probability
at least 0.05 · (1 − 1/n) > 0.01 over the randomness of A, the output of Af is 1/nk-close to f , as
desired. As observed before, the success probability of the learning algorithm can be amplified by
standard techniques (cf. [KV94a]).

The second part of the lemma follows by the same argument with a different choice of parame-
ters, using a black-box (γ, `)-function generator with γ = 1/nk and ` = (log n)c, where c is chosen
large enough as a function of ε. Again, the crucial point is that the relative circuit size of each gz
compared to its number of input bits is within the size bound of the distinguisher.

Remark 1. While Lemma 6 is sufficient for our purposes, we observe that the same argument shows
in fact that the conclusion holds under the weaker assumption that the complexity distinguisher runs
in time 2n

c
, for a fixed c ∈ N. In other words, it is possible to obtain faster learners from complexity

distinguishers running in time that is quasi-polynomial in the length of the truth-table of its oracle
function.

Lemma 7 (Speedup Lemma). Let C be a typical circuit class. The following hold :

• (Low-End Speedup) C[poly(n)] has non-trivial learners if and only if for each ε > 0, C[poly(n)]
has strong learners running in time O(2n

ε
).

21

• (High-End Speedup) There exists ε > 0 such that C[2n
ε
] has non-trivial learners if and only

if C[poly(n)] has strong learners running in time 2log(n)O(1)
.

Proof. First we show the Low-End Speedup result. The “if” direction is trivial, so we only need
to consider the “only if” case. This follows from Lemma 6 and Lemma 5. Indeed, by Lemma 5, if
C[poly(n)] has non-trivial learners, it has complexity distinguishers running in time 2n/nω(1). By
Lemma 6, the existence of such complexity distinguishers implies that for each ε > 0, C[poly(n)]
has strong learners running in time O(2n

ε
), and we are done.

Next we show the High-End Speedup result. The proof for the “only if” direction is completely
analogous to the corresponding proof for the Low-End Speedup result. The “if” direction, how-
ever, is not entirely trivial. We employ a standard padding argument to establish this case, thus
completing the proof of Lemma 7.

Suppose that C[poly(n)] has a strong learner running in time 2log(n)c , for some constant c > 0.
Let Alow be a learning algorithm witnessing this fact. We show how to use Alow to construct a
learning algorithm Ahigh which is a (1/n, 1/poly(n))-learner for C[2n

1/3c
], and runs in time ≤ 2

√
n.

As usual, confidence can be boosted without a significant increase of running time, and it follows
that C[2n

1/3c
] has non-trivial learners according to our definition.

On input 1n and with oracle access to some function f : {0, 1}n → {0, 1}, Afhigh(1n) simulates

Af
′

low(1n
′
), where n′

def
= n + 2dn

1/3ce, and f ′ : {0, 1}n′ → {0, 1} is the (unique) Boolean function

satisfying the following properties. For any input x′ = xy ∈ {0, 1}n′
, where |y| = 2dn

1/3ce and

|x| = n, f ′(x′) is defined to be f(x). Note that if f ∈ C[2n
1/3c

] then f ′ ∈ C[O(n′)]: the linear-size
C-circuit for f ′ on an input x′ of length n′ just simulates the smallest C-circuit for f on its n-bit
prefix. During the simulation, whenever Alow makes an oracle call x′ to f ′, Ahigh answers it using
an oracle call x to f , where x is the prefix of x′ of length n. By definition of f ′, this simulation

step is always correct. When Af
′

low completes its computation and outputs a hypothesis h′ on n′

input bits, Ahigh outputs a modified hypothesis h as follows: it chooses a random string r of length

2dn
1/3ce, and outputs the circuit hr defined by hr(x)

def
= h′(xr). Note that by the assumed efficiency

of Alow, Ahigh halts in time ≤ 2
√
n on large enough n.

By the discussion above, it is enough to argue that the hypothesis h output by Ahigh is a good
hypothesis with probability at least 1/poly(n). Since Alow is a strong learner and since the f ′ used
as oracle to Alow in the simulation has linear size, for all large enough n, with probability at least
1 − 1/n′, h′ disagrees with f ′ on at most a 1/(n′)k fraction of inputs of length n′, where k is a
large enough constant fixed in the construction above. Consider a randomly chosen r of length
n′ − n. By a standard Markov-type argument, when h′ is good, for at least a 1/poly(n) fraction of
the strings r, hr(x) disagrees with f(x) on at most a 1/n fraction of inputs. This completes the
argument.

3.2 Equivalences for Learning, Compression, and Distinguishers

Theorem 8 (Algorithmic Equivalences). Let C be a typical circuit class. The following statements
are equivalent :

1. C[poly(n)] has non-trivial learners.

2. For each ε > 0 and k ∈ N, C[poly(n)] can be learned to error ≤ n−k in time O(2n
ε
).

3. C[poly(n)] has probabilistic (exact) compression.

4. C[poly(n)] has probabilistic average-case compression with error o(1).

22

5. C[poly(n)] has complexity distinguishers running in time 2O(n).

6. For each ε > 0, C[poly(n)] has complexity distinguishers running in time O(2n
ε
).

7. C[poly(n)] can be learned using membership and equivalence queries to sub-constant error in
non-trivial time.

Proof. We establish these equivalences via the following complete set of implications:

(5)⇒ (2): This follows from Lemma 6.
(2)⇒ (1) and (6)⇒ (5): These are trivial implications.
(2)⇒ (4): Probabilistic compression for C[poly(n)] follows from simulating a (1/n3, 1/n)-learner

for the class running in time O(2
√
n), and answering any oracle queries by looking up the correspond-

ing bit in the truth table of the function, which is given as input to the compression algorithm. The
compression algorithm returns as output the hypothesis of the strong learner, and by assumption
this agrees on a (1− 1/n3) fraction of inputs of length n with the input function, with probability
at least 1 − 1/n. Moreover, since the simulated learner runs in time O(2

√
n), the circuit that is

output has size at most O(2
√
n). It is clear that the simulation of the learner can be done in time

2O(n), as required for a compression algorithm.
(2) ⇒ (3): This follows exactly as above, except that there is an additional step after the

simulation of the learner. Once the learner has output a hypothesis h, the compression algorithm
compares this hypothesis with its input truth table entry by entry, simulating h whenever needed.
If h differs from the input truth table on more than a 1/n3 fraction of inputs, the compression
algorithm rejects – this happens with probability at most 1/n by assumption on the learner. If h
and the input truth table differ on at most 1/n3 fraction of inputs of length n, the compression
algorithm computes by brute force a circuit of size at most 2n/n2 which computes the function h′

that is the XOR of h and the input truth table. The upper bound on size follows from the fact
that h′ has at most 2n/n3 1’s. Finally, the compression algorithm outputs h⊕ h′. For any typical
circuit class, the size of the corresponding circuit is O(2n/n2). Note that h⊕h′ computes the input
truth table exactly.

(2)⇒ (6): This follows from Lemma 5.
(1) ⇒ (5), (3) ⇒ (5), and (4) ⇒ (5): The distinguisher runs the circuit output by the learner

or compression algorithm on every input of length n, and computes the exact agreement with its
input f on length n by making 2n oracle queries to f . If the circuit agrees with f on at least a 2/3
fraction of inputs, the distinguisher outputs 0, otherwise it outputs 1. By the assumption on the
learner/compression algorithm, for f ∈ C[poly(n)], the distinguisher outputs 0 with probability at
least 2/3. Using Lemma 4, for a random function, the probability that the distinguisher outputs 1
is at least 2/3.

(7) ⇒ (5): The complexity distingisher has access to the entire truth-table, and can answer
the membership and equivalence queries of the learner in randomized time 2O(n). Randomness is
needed only to simulate the random choices of the learning algorithm, while the answer to each
query can be computed in deterministic time. Since the learner runs in time 2n/nω(1), whenever
it succeeds it outputs a hypothesis circuit of at most this size. The complexity distinguisher can
compare this hypothesis to its input truth-table, and similarly to the arguments employed before,
is able to distinguish random functions from functions in C[poly(n)].

(2) ⇒ (7): This is immediate since the algorithm from (2) is faster, has better accuracy, and
makes no equivalence queries.

Theorem 9 (Equivalences for zero-error algorithms). Let C[poly(n)] be a typical circuit class. The
following statements are equivalent :

23

1. There are P-natural proofs useful against C[poly(n)].

2. There are ZPP-natural proofs useful against C[poly(n)].

3. For each ε > 0, there are DTIME(O(2(logN)ε))-natural proofs useful against C[poly(n)], where
N = 2n is the truth-table size.

4. For each ε > 0, there are zero-error complexity distinguishers for C[poly(n)] running in time
O(2n

ε
).

Proof. We establish these equivalences via the following complete set of implications:

(1)⇒ (2): This is a trivial implication.
(3)⇒ (4): This is almost a direct consequence of the definitions, except that the density of the

natural property has to be amplified to 1 − o(1) before converting the algorithm into a zero-error
complexity distinguisher. This is a standard argument, and can be achieved by defining a new
property from the initial one. More details can be found, for instance, in the proof of [CIKK16,
Lemma 2.7].

(2) ⇒ (1):10 Let A be an algorithm running in zero-error probabilistic time mk on inputs of
length m and with error probability ≤ 1/4, for m large enough and k an integer, and deciding
a combinatorial property R useful against C[poly(n)]. We show how to define a combinatorial
property R′ useful against C[poly(n)] such that R′ ∈ P, and such that at least a 1/8 fraction of
the truth tables of any large enough input length belong to LR′ . This fraction can be amplified by
defining a new natural property R′′ such that any string yz with |y| = |z| belongs to LR′′ if and
only if either y ∈ LR′ or z ∈ LR′ (see e.g. [CIKK16]).

We define R′ via a deterministic polynomial-time algorithm A′ deciding LR′ . Given an input
truth table y of size 2n

′
, A′ acts as follows: it determines the largest integer n such that n(k+1) < n′.

It decomposes the input truth table as y = xzw, where |x| = 2n, |z| = 2kn, and the remaining part
w is irrelevant. It runs A on x, using z as the randomness for the simulation of A. If A accepts, it
accepts; if A rejects or outputs ‘?’, it rejects.

It should be clear that A′ runs in polynomial time. The fact that A′ accepts at least a 1/8
fraction of truth tables of any large enough input length follows since for any x ∈ LR, A outputs ‘?’
with probability at most 1/3, and at least a 1/2 fraction of strings of length 2n are in LR. It only
remains to argue that the property R′ is useful against C[poly(n)]. But any string y of length 2n

′

accepted by A′ has as a substring the truth table of a function on n = Ω(n′) bits which is accepted
by A and hence is in LR. Since R is useful against C[poly(n)], this implies that R′ is useful against
C[poly(n)].

(4)⇒ (3): The proof is analogous to (2)⇒ (1).
(3)⇒ (1): This is a trivial direction since N = 2n.
(1) ⇒ (3): This implication uses an idea of Razborov and Rudich [RR97]. Suppose there are

P-natural proofs useful against C[poly(n)]. This means in particular that for every c ≥ 1, there is
a polynomial-time algorithm Ac, which on inputs of length 2n, where n ∈ N, accepts at least a 1/2
fraction of inputs, and rejects all inputs y such that fn(y) ∈ C[nc]. Consider an input y to Ac of
length 2n, and let ε > 0 be fixed. Let y′ be the substring of y such that fn(y′) is the subfunction
of fn(y) obtained by fixing the first n− nε bits of the input to fn(y) to 0. It is easy to see that if
fn(y) ∈ C[nc], then fn(y′) ∈ C[(n′)c/ε], where n′ denotes the number of input bits of fn(y′).

Let d ≥ 1 be any constant, and ε > 0 be fixed. We show how to define an algorithm Bd which
runs in time O(2log(N)ε) on an input of length N = 2n, deciding a combinatorial property which

10This argument is folklore. It has also appeared in more recent works, such as [Wil16].

24

is useful against C-circuits of size nd. (Using the same approach, it is possible to design a single
algorithm that works for any fixed d whenever n is large enough, provided that we start with a
natural property that is useful in this stronger sense.) On input y of length N , Bd computes y′ of
length 2log(N)ε , as defined in the previous paragraph. For the standard encoding of truth tables, y′

is a prefix of y, and can be computed in time O(|y′|). Bd then simulates Add/εe on y′, accepting if
and only if the simulated algorithm accepts. The simulation halts in time poly(|y′|), as Add/εe is a
poly-time algorithm. For a random input y, Bd accepts with probability at least 1/2, using that y′

is uniformly distributed, and the assumption that Add/εe witnesses natural proofs against a circuit

class. For an input y such that fn(y) ∈ C[nd], Bd always rejects, as in this case, fn(y′) ∈ C[(n′)d/ε],
and so Add/εe rejects y′, using the assumption that Add/εe decides a combinatorial property useful

against n-bit Boolean functions in C[ndd/εe].

4 Learning versus Pseudorandom Functions

4.1 The PRF-Distinguisher Game

In this section we consider (non-uniform) randomized oracle circuits BO from CircuitO[t], where
t is an upper bound on the number of wires in the circuit. Recall that a circuit from this class
has a special gate type that computes according to the oracle O, which will be set to some fixed
Boolean function f : {0, 1}m → {0, 1} whenever we discuss the computation of the circuit.

We will view such circuits either as distinguishers or learning algorithms, where the oracle is the
primary input to the circuit. For this reason and because our results are stated in the non-uniform
setting, we assume from now on that such circuits have no additional input except for variables
y1, . . . , y` representing the random bits, where ` ≤ t. If w ∈ {0, 1}` is a fixed sequence of bits,
we use BOw to denote the deterministic oracle circuit obtaining from the circuit BO by setting its
randomness to w. Observe that (non-uniform) learning algorithms can be naturally described by
randomized oracle circuits from CircuitO with multiple output bits. The output bits describe the
output hypothesis, under some reasonable encoding for Boolean circuits.11

We will consider pairs (Gn,Dn) where Gn ⊆ Fn and Dn is a distribution with Support(Dn) ⊆ Gn.
This notation is convenient when defining samplable function families and pseudorandom function
families.

Definition 11 (Pseudorandom Function Families). We say that a pair (Gn,Dn) is a (t(n), ε(n))-
pseudorandom function family (PRF) in C[s(n)] if Gn ⊆ C[s(n)] and for every randomized oracle
circuit BO ∈ CircuitO[t(n)],∣∣∣∣ Pr

g∼Dn, w
[Bg(w) = 1]− Pr

f∼Fn, w
[Bf (w) = 1]

∣∣∣∣ ≤ ε.

This definition places no constraint on the complexity of generating the pair (Gn,Dn). In order
to capture this, we restrict attention to Gn ⊆ Cn for some typical circuit class C = {Cn}, and assume
a fixed encoding of circuits from C by strings of length polynomial in the size of the circuit. We
say that a circuit A ∈ Circuit[S] is a Cn-sampler if A outputs valid descriptions of circuits from Cn.

Definition 12 (Samplable Function Families). We say that a pair (Gn,Dn) with Gn ⊆ Cn is S-
samplable if there exists a Cn-sampler A ∈ Circuit[S] on ` ≤ S input variables such that A(U`) ≡ Dn,
where we associate each output string of A to its corresponding Boolean function.

11In this non-uniform framework it is possible to derandomize a learning circuit with some blow-up in circuit size,
but we will not be concerned with this matter here.

25

It is well-known that the existence of learning algorithms for a circuit class Cn[s(n)] implies that
there are no secure pseudorandom function families in Cn[s(n)]. Moreover, this remains true even
for function families that are not efficiently samplable. Following the notation from Definition 1,
we can state a particular form of this observation as follows.

Proposition 1 (Learning C implies no PRFs in C). Assume there is a randomized oracle circuit
in CircuitO[t(n)] that (1/3, 1/n)-learns every function in Cn[s(n)], where n ≤ t(n) ≤ 2n/n2. Then
for large enough n there are no (poly(t(n)), 1/10)-pseudorandom function families in Cn[s(n)].

Our goal for the rest of this section is to establish a certain converse of Proposition 1 (Theorem
11 and Corollary 1). An important technical tool will be a “small-support” version of the min-max
theorem, described next.

Small-Support Approximate Min-Max Theorem for Bounded Games [Alt94, LY94].
We follow the notation from [LY94]. Let M be an r × c real-valued matrix, p be a probability
distribution over its rows, and q be a probability distribution over its columns. The classic min-
max theorem [vN28] states that

min
p

max
j∈[c]

Ei∼p[M(i, j)] = max
q

min
i∈[r]

Ej∼q[M(i, j)]. (1)

The distributions p and q are called mixed strategies, while individual indexes i and j are called pure
strategies. We use v(M) to denote the value in Equation 1. (Recall that this can be interpreted
as a game between a row player, or Minimizer, and a column player, or Maximizer. The min-max
theorem states that the order in which the players reveal their strategies does not change the value
of the game. It is easy to see that the second player can be restricted to pure strategies.)

We will consider a game played on a matrix of exponential size, and will be interested in near-
optimal mixed strategies with succinct descriptions. This motivates the following definitions. A
mixed strategy is k-uniform if it is selected uniformly from a multiset of at most k pure strategies.
We use Pk and Qk to denote the set of k-uniform strategies for the row player and the column
player, respectively. For convenience, given a mixed row strategy p, we let v(p) = vM (p) =
maxj∈[c] Ei∼p[M(i, j)]. Similarly, we use v(q) = vM (q) = mini∈[r] Ej∼q[M(i, j)] for a column mixed
strategy q. We say that a mixed strategy u is δ-optimal if |v(u)− v(M)| ≤ δ.

We will need the following “efficient” version of the min-max theorem.

Theorem 10 (Small-Support Min-Max Theorem [Alt94, LY94]). Let M be a r × c real-valued
matrix with entries in the interval [−1, 1]. For every δ > 0, if kr ≥ 10 ln(c)/δ2 and kc ≥ 10 ln(r)/δ2

then
min
p∈Pkr

v(p) ≤ v(M) + δ, and max
q∈Qkc

v(q) ≥ v(M)− δ.

In other words, there are δ-optimal strategies for the row and column players with relatively
small support size.

The PRF-Distinguisher Game. Let Cn[s] be a circuit class and CircuitO[t] be an oracle circuit
class, with size parameters s(n) and t(n), respectively. We consider a [−1, 1]-valued matrix M =

MCn[s],CircuitO[t], defined as follows. The rows of M are indexed by Boolean functions in Cn[s], and
the columns of M are indexed by (single-output) deterministic oracle circuits from CircuitO[t]. In
other words, such circuit have access to constants 0 and 1, compute according to the values of the
oracle gates, and produce an output value in {0, 1}. In order not to introduce further notation,

26

we make the simplifying assumption that the negation of every circuit from CircuitO[t] is also in
CircuitO[t]. For h ∈ Cn[s] and CO ∈ CircuitO[t], we let

M(h,CO)
def
= Ch − Pr

f∼Fn
[Cf = 1],

where Cg ∈ {0, 1} denotes the output of CO when computing with oracle O = g, for a fixed
g : {0, 1}n → {0, 1}. We say that the matrix M is the PRF-Distinguisher game for Cn[s] and
CircuitO[t]. Observe that this is a finite matrix, for every choice of n.

Following our notation, we use v(M) to denote the value of the game corresponding to M ,
which can be interpreted as follows. Let p be a mixed strategy for the row player. In other words,
p is simply a distribution over functions from Cn[s]. Consequently, to each row strategy p we can
associate a pair (Gp,Dp), where p = Dp and Gp = Support(Dp), as in Definition 11. On the other
hand, a mixed strategy q over the columns is simply a distribution over deterministic oracle circuits
from CircuitsO[t], which can be interpreted as a (non-constructive) randomized circuit BO. Under
this interpretation, the value of the game when played with strategies p and q is given by

Eh∼p, CO∼q[M(h,CO)] = Eh,CO [Ch − Pr
f∼Fn

[Cf = 1]]

= Eh,CO [Ch]− Pr
f,CO∼q

[Cf = 1]

= Pr
g∼Dp, BO

[Bg = 1]− Pr
f∼Fn, BO

[Bf = 1],

which corresponds to the distinguishing probability in Definition 11 without taking absolute values.
But since we assumed that the circuits indexing the columns of M are closed under complemen-
tation, it follows that the (global) value v(M) of this game captures the security of PRFs from
Cn[s] against CircuitO[t]-distinguishers. (Notice though that this value does not take into account
the samplability of the function families involved, nor the constructivity of the ensemble of distin-
guishers corresponding to a “randomized” oracle distinguisher in the argument above.)

4.2 A (Non-Uniform) Converse to “Learning Implies no PRFs”

We proceed with our original goal of establishing a converse of Proposition 1. Roughly speaking,
we want to show that if every samplable function family from Cn can be distinguished from a random
function (possibly by different distinguishers), then there is a single algorithm that learns every
function in Cn. Formally, what we get is a sequence of subexponential size (non-uniform) circuits
learning C.

The proofs of Lemmas 8 and 9 below rely on Theorem 10.

Lemma 8 (�∃ samplable PRF → �∃ PRF against ensembles of circuits). There exists a universal
constant c ∈ N for which the following holds. Let t(n) ≥ n, s(n) ≥ n, δ(n) > 0, and ε(n) > 0 be

arbitrary functions. If there is no O(t ·s ·1/δ)c-samplable pair (G̃n, D̃n) that is a (t(n), ε(n)+δ(n))-
PRF in Cn[s(n)], then there is no pair (Gn,Dn) with Gn ⊆ Cn[s(n)] that ε(n)-fools every ensemble
of deterministic CircuitO[t(n)]-circuits.

Proof. We use Theorem 10 to establish the contrapositive. Assume there exists a pair (Gn,Dn)
where Dn is distributed over Gn ⊆ Cn[s(n)] such that for every distribution q over CircuitO[t(n)] we
have ∣∣∣∣ Pr

g∼Dn,CO∼q
[Cg = 1]− Pr

f∼Fn,CO∼q
[Cf = 1]

∣∣∣∣ ≤ ε(n).

27

Let p = Dn, and observe that in the corresponding PRF-Distinguisher game we get vM (p) ≤ ε(n).
Consequently, v(M) ≤ minp vM (p) ≤ ε(n). It follows from Theorem 10 and a bound on the number
of columns of M (similar to Lemma 3) that there exists a k-uniform distribution p̃ over functions
in Cn[s(n)] with k ≤ O(ln 2O(t log t)/δ(n)2) = O((t log t)/δ(n)2) such that vM (p̃) ≤ ε(n) + δ(n).

In other words, each f ∈ Support(p̃) is in Cn[s(n)], the support of this distribution contains at
most O((t log t)/δ(n)2) different functions, and each such function can be encoded by a string of
length poly(s(n)) that describes the corresponding circuit. Using that p̃ is a k-uniform distribution,
it is not hard to see that there exists a circuit A ∈ Circuit[S] with A(U`) ≡ p̃ for some ` ≤
S, where S ≤ poly(t, s, 1/δ). Since every randomized circuit BO can be seen as a distribution

over deterministic oracle circuits, it follows that there is an S-samplable pair (G̃n, D̃n) that is a
(t(n), ε(n) + δ(n))-PRF in Cn[s(n)]. This completes the proof.

Lemma 9 (�∃ PRF against ensembles of circuits → ∃ universal distinguisher). There exists a
universal constant c ∈ N for which the following holds. Let s(n) ≥ n, t(n) ≥ n, ε(n) > 0, and
γ(n) > 0 be arbitrary functions. If there is no pair (Gn,Dn) with Gn ⊆ Cn[s(n)] that ε(n)-fools
every ensemble of deterministic CircuitO[t(n)]-circuits, then there is a randomized oracle circuit
BO ∈ CircuitO[O(t · s · 1/γ)c] that distinguishes every such pair from a random function with
advantage at least ε(n)− γ(n).

Proof. We rely on the classical min-max theorem and on Theorem 10. It follows from the assump-
tion of the lemma that the corresponding PRF-Distinguisher game has value v(M) ≥ ε(n). By
the min-max theorem, there is an ensemble of CircuitO[t(n)]-circuits that distinguishes every pair
(Gn,Dn) satisfying Gn ⊆ Cn[s(n)] with advantage at least ε(n). Applying Theorem 10, we obtain
a k-uniform distribution q over deterministic CircuitO[t(n)]-circuits with distinguishing probability
at least ε(n)−γ(n) and support size at most k = O(ln 2O(s log s)/γ(n)2) = O((s log s)/γ(n)2). Simi-
larly to the proof of Lemma 8, this ensemble of circuits implies the existence of a single randomized
oracle circuit BO ∈ CircuitO[O(s·t·1/γ)c] that distinguishes every pair (Gn,Dn) with Gn ⊆ Cn[s(n)]
from a random function with advantage at least ε(n)− γ(n). This completes the proof.

Lemmas 8 and 9 hold for each value of n. The next lemma is a reduction involving different
values of this parameter.

Lemma 10 (∃ universal distinguishers → ∃ learning circuits). Assume that for every k ≥ 1 and
large enough n there exists a randomized oracle circuit BOn in CircuitO[2O(n)] that distinguishes
every pair (Gn,Dn) with Gn ⊆ Cn[nk] from a random function with advantage ≥ 1/40. Then for
every ` ≥ 1 and ε > 0 there is a non-uniform sequence of randomized oracle circuits in CircuitO[2n

ε
]

that learn every function f ∈ Cn[n`] to error at most n−`.

Proof. This lemma is simply a (weaker) non-uniform version of the proof of Lemma 6 from Section
3. It is enough to use the sequence of randomized oracle circuits BOn as distinguishing circuits,
and to observe that the statement of Theorem 7 holds with an arbitrarily small constant in the
distinguishing probability.

Recall that C = {Cn} is an arbitrary typical circuit class. The main technical result of this
section follows from Lemmas 8, 9, and 10 together with an appropriate choice of parameters.

Theorem 11 (No samplable PRFs in C implies Learning C). If t(n) ≤ 2O(n) and c′ ≥ 1 is a large
enough constant, the following holds. Suppose that for every k ≥ 1 each O((t(n) · nk)c′)-samplable
pair (Gn,Dn) with Gn ⊆ Cn[nk] can be distinguished from a random function by some randomized
oracle circuit from CircuitO[t(n)] with advantage at least 1/10. Then, for every k ≥ 1, ε > 0, and

28

large enough n, there is a randomized oracle circuit from CircuitO[2n
ε
] that learns every function in

Cn[nk] to error at most n−k.

Proof. The existence of the learning circuit will follow if we can prove that the hypothesis of
Lemma 10 is satisfied. Thus it is enough to argue that, for every k ≥ 1 and large enough n, there
is a (single) randomized oracle circuit BO from CircuitO[2O(n)] that distinguishes with advantage
≥ 1/40 every pair (Gn,Dn) with Gn ⊆ Cn[nk]. In turn, this follows from Lemma 9 for s(n) = nk,
ε(n) = 1/20, and γ(n) = 1/40 if there is no pair (Gn,Dn) with Gn ⊆ Cn[nk] that 1/20-fools every
ensemble of deterministic oracle circuits from CircuitO[2O(n)], for a slightly smaller constant in the
latter exponent. But this is implied by the hypothesis of Theorem 11 together with Lemma 8,
instantiated with our value t(n) ≤ 2O(n), s(n) = nk, ε(n) = 1/20, and δ(n) = 1/20, provided that
we take c′ sufficiently large. This completes the proof.

Dropping the samplability condition, we get the following weaker statement, which provides a
converse of Proposition 1 in the regime where t(n) is exponential and s(n) is polynomial.

Corollary 1 (No PRFs in C implies Learning C). Let t(n) ≤ 2O(n). If for every k ≥ 1 and
large enough n there are no (poly(t(n)), 1/10)-pseudorandom function families in Cn[nk], then for
every ε > 0, k ≥ 1, and large enough n, there is a randomized oracle circuit in CircuitO[2n

ε
] that

(n−k, 1/n)-learns every function in Cn[nk].

We observe that smaller time bounds t(n) do not necessarily lead to smaller learning circuits,
due to the running time of the black-box generator in Definition 8 and Theorem 7. However, a
smaller t(n) implies a weaker samplability condition in the statement of Theorem 11, which makes it
stronger. A natural question is whether a more efficient distinguisher implies that larger circuits can
be distinguished by subexponential size oracle circuits, in analogy to Lemma 7. We mention that
no simple reduction via padding seems to work, since a random function on n bits mapped into a
larger domain via projections is no longer a uniformly random function. Finally, the distinguishing
advantage 1/10 is arbitrary. Indeed, it can be assumed to be much lower, by following the estimates
in the proof of Theorem 7.

Remark 2. In order to prove Theorem 11, we have made essential use of the “efficient” min-max
theorem from [Alt94, LY94], which guarantees the existence of near-optimal mixed strategies with
simple descriptions. Unfortunately, this result does not provide an efficient algorithm to produce
such strategies, which would lead to an equivalence between learning algorithms and the nonexistence
of pseudorandom functions with respect to uniform computations. While there are more recent works
that explore uniform versions of the min-max theorem (cf. [VZ13]), they assume the existence of
certain auxiliary algorithms in order to construct the near-optimal strategies, and it is unclear to
us if they can be applied in the context of Theorem 11.

5 Lower Bounds from Nontrivial Algorithms

Theorem 12 (Circuit lower bounds from nontrivial learning algorithms).
Let C be any typical circuit class. If for each k, C[nk] has non-trivial learning algorithms, then for
each k, BPTIME(2O(n)) 6⊆ C[nk].

Our proof of Theorem 12 relies on previous results relating randomized learning algorithms
and lower bounds. The following connection was established in [KKO13], using ideas from [IW01,
FK09]) and most crucially the construction of a downward self-reducible and random self-reducible
PSPACE-complete language in [TV07].

29

Theorem 13 (Connection between learning and lower bounds [KKO13, FK09, IW01]).
There is a PSPACE-complete language L? ∈ DSPACE(n) and a constant b ∈ N for which the
following holds. Let C be any typical circuit class, and s : N→ N be any function with s(n) ≥ n. If
C[s(n)] is learnable to error ≤ n−b in time T (n) ≥ n, then at least one of the following conditions
hold:

(i) L? /∈ C[s(n)].

(ii) L? ∈ BPTIME(poly(T (n))).

A self-contained proof of a generalization of Theorem 13 is presented in Section 6. We will also
need a consequence of the following diagonalization lemma.

Lemma 11 (A nonuniform almost everywhere hierarchy for space complexity).
Let S, S′ : N → N be space-constructible functions such that S(n) = o(S′(n)), S(n) = Ω(log n) and
S′(n) = o(2n). There is a language L ∈ DSPACE(S′) such that L 6∈ i.o.DSPACE(S)/S.

Proof. This is a folklore argument. We define a space-bounded Turing machine M operating
in space S′ such that L(M) 6∈ i.o.DSPACE(S)/S. On inputs of length n, M uses the space-
constructibility of S′ to compute S′(n) in unary using space O(S′(n)). It marks out S′(n) cells on
each of its tapes, and if at any point in its computation, it reads an unmarked cell, it halts and
rejects. Thus, on any input of length n, M uses space O(S′(n)). M also computes and stores S(n)
on one of its tapes.

The high-level intuition is that M diagonalizes against machine Mi with advice z, for each
1 ≤ i ≤ log n and advice z ∈ {0, 1}S(n). In particular, for any fixed i and large enough n, M
diagonalizes against Mi with any advice z ∈ {0, 1}S(n), and hence L(M) satisfies the conclusion of
the Lemma.

By a counting argument, there are at most log n ·2S(n) truth tables of Boolean functions f on n
bits such that f is computed by a machine Mi with 1 ≤ i ≤ log n operating in space S(n) and using
S(n) bits of advice. Thus, since S(n) = o(2n), for large enough n, by the pigeon-hole principle there
exists a Boolean function f ′ : {0, 1}n → {0, 1} which is 0 on all but the first logn+ S(n) inputs of
length n, such that f ′ is not computed by machine Mi with advice z for any i with 1 ≤ i ≤ log n
and z ∈ {0, 1}S(n).

M computes such a function iteratively as follows. It processes the inputs of length n in
lexicographic order. At stage i + 1, where i ≥ 0, M has stored a binary string yi of length i
representing the values of f ′ on the first i inputs of length n, and M is trying to determine f ′ on
the (i+ 1)-th input of length n. For each machine Mi, 1 ≤ i ≤ log n, and each advice string z for
Mi of length S(n), by simulating those Mi’s with advice z which do not use space more than S(n)
on any of the first i inputs, M determines if the truth table of Mi with advice z is consistent with yi
on the first i inputs. Call such a pair (i, z) a consistent machine-advice pair at stage i+ 1. M sets
f ′ to 0 for the (i+ 1)-th string if a minority of consistent machine-advice pairs halt with 0 on the
(i+ 1)-th string, and to 1 otherwise. Determining whether a minority of consistent machine-advice
pairs halt with 0 on the (i + 1)-th string can be done by merely keeping a count of how many
consistent machine-advice pairs halt with 0, and how many halt with 1, which only requires space
O(S(n)). Note that using the minority value cuts down the number of consistent machine-advice
pairs for the next stage by at least a factor of half. This implies that at stage log n + S(n), there
are no consistent machine-advice pairs left, and hence M has successfully diagonalized. It is not
hard to see that the overall simulation can be carried out in space O(S(n)), using the fact that
S(n) = Ω(log n).

30

Corollary 2 (Diagonalizing in uniform space against non-uniform circuits).
Let S1, S2 : N → N be space-constructible functions such that S2(n)2 = o(S1(n)), S2(n) = Ω(log n)
and S1(n) = o(2n). There is a language L ∈ DSPACE(S1) such that L 6∈ i.o.Circuit[S2]. In
particular, for each k, there is a language Lk ∈ PSPACE such that Lk 6∈ Circuit[nk].

Proof. Corollary 2 follows from Lemma 11 using the fact that Circuit[S] ⊆ DSPACE(S2)/S2.

In fact, a tighter simulation holds, and therefore a tighter separation in Corollary 2, but we will
not need this for our purposes. We are now ready to prove Theorem 12.

Proof of Theorem 12. Let C be a typical circuit class. By assumption, C[nk] has a non-trivial
learner for each k > 0. Since C is typical, we can use Lemma 7 to conclude that for each ε > 0 and
for each k > 0, C[nk] is strongly learnable in time 2n

ε
.

Let L? be the PSPACE-complete language in the statement of Theorem 13. Using Theorem 13
and the conclusion of the previous paragraph, we have that at least one of the following is true:
(1) For all k, L? 6∈ C[nk], or (2) For all ε > 0, L? ∈ BPTIME(2n

ε
).

In case (1), since L? ∈ DSPACE(n) ⊆ DTIME(2O(n)), we have that for each k > 0, DTIME(2O(n)) 6⊆
C[nk], and hence also BPTIME(2O(n)) 6⊆ C[nk].

In case (2), we have that L? ∈ BPTIME(2n
ε
) for every ε > 0. Since L? is PSPACE-complete, this

implies that the language Lk in the statement of Corollary 2 is also in BPTIME(2n
ε
), for every fixed

ε > 0 and k ∈ N. (Here the polynomial blowup of instance size in the reduction from Lk to L? is
taken care of by the universal quantification over ε.) In particular, we have Lk ∈ BPTIME(2n), for
every k. Since for any typical circuit class we have C[nk] ⊆ Circuit[nc] for a large enough c = c(k),
there is a language Lc ∈ BPTIME[2n] such that Lc /∈ C[nk]. This establishes the desired result.

We mention for completeness that the same approach yields a trade-off involving the running
time of the learning algorithm and its accuracy in the hypothesis of Theorem 12.

Theorem 14 (Trade-off between error and running time).
Let C be a typical circuit class, and γ : N→ (0, 1/2] ∩ Q be a polynomial time computable function.
If for each k, C[nk] can be learned with advantage at least γ(n) in time γ(n)2 · 2n/nω(1), then for
each k, BPTIME[2O(n)] * C[nk].

Proof. (Sketch) The proof is entirely analogous to the argument in Theorem 12. It is enough to
observe that such learning algorithms yield the complexity distinguishers required in Lemma 7 via
a natural generalization of the proof of Lemma 5. The quantitative trade-off between accuracy and
running time is a consequence of Lemma 4.

Remark 3. Observe that as the advantage γ(n) approaches 2−n/2 from above, the running time
required in Theorem 14 becomes meaningless. This quantitative connection between γ(n) and the
running time is not entirely unexpected. On the one hand, it is a consequence of the concentration
bound, which is essentially optimal. But also note that every function g : {0, 1}n → {0, 1} can be
approximated with advantage ≥ 2−n/2 by a parity function (or its negation), and that heavy fourier
coefficients corresponding to such parity functions can be found using membership queries by the
Goldreich-Levin Algorithm (see e.g. [O’D14]).

We can expand the scope of application of Theorem 12, using a win-win argument. The more
general result below applies to subclasses of Boolean circuits satisfying the very weak requirement
that they are closed under projections, rather than just to the more specialized “typical” classes.

31

Theorem 15 (Lower bounds from non-trivial learning algorithms for subclasses of circuits).
Let C be any subclass of Boolean circuits closed under projections. If for each k, C[nk] has non-trivial
learning algorithms, then for each k, BPTIME(2O(n)) 6⊆ C[nk].

Proof. Consider the Circuit Value Problem (CVP), which is complete for Circuit[poly] under poly-
nomial size projections. Either CVP is in C[nc] for some fixed c, or it is not. If it is not, then we
have the desired lower bound for CVP and hence also for the class BPTIME(2O(n)), which contains
this problem. If CVP is in C[nc], then since CVP is closed under poly-size projections, we have by
completeness and the assumption of the theorem that for each k, Circuit[nk] has non-trivial learn-
ing algorithms. Now applying Theorem 12, we have that for each k, BPTIME(2O(n)) 6⊆ Circuit[nk],
which implies that BPTIME(2O(n)) 6⊆ C[nk], since C is a subclass of Boolean circuits.

Remark 4. Observe that it is possible to instantiate Theorem 15 for very particular classes such
as AND ◦ OR ◦ THR circuits, and that the lower bound holds for exactly the same circuit class. In
particular, there is no circuit depth blow-up.

We get an improved lower bound consequence for the circuit class ACC0, but under the assump-
tion that subexponential-size circuits are non-trivially learnable. (Recall that there are satisfiability
algorithms for such circuits with non-trivial running time [Wil14c].)

Theorem 16 (Improved lower bounds from non-trivial learning algorithms for ACC0).
If for every depth d ∈ N and modulo m ∈ N there is ε > 0 such that ACC0

d,m[2n
ε
] has non-trivial

learning algorithms, then REXP 6⊆ ACC0[poly].

Proof. Under the assumption on learnability, using Lemma 7, we have that for each k > 0, ACC0[nk]
has strong learners running in time 2polylog(n). Now applying Theorem 13, we have that at least
one of the following is true for the PSPACE-complete language L? in the statement of the theorem:
(1) L? 6∈ ACC0[nk] for any k, or (2) L? ∈ BPQP, where BPQP is bounded error probabilistic
quasi-polynomial time.

In case (1), we have that L? 6∈ ACC0[poly], and are done as in the proof of Theorem 12.
In case (2), by PSPACE-completeness of L?, we have that PSPACE ⊆ BPQP. This implies that

NP ⊆ BPQP, and hence that NP ⊆ RQP, where RQP is probabilistic quasi-polynomial time with
one-sided error. The second implication follows using downward self-reducibility to find a witness
for SAT given the assumption that SAT is in BPQP, thus eliminating error on negative instances.
Now NP ⊆ RQP implies NEXP = REXP, using a standard translation argument. Williams showed
that NEXP 6⊆ ACC0[poly], and so it follows that REXP 6⊆ ACC0[poly], as desired.

More generally, the same argument combined with the connection between non-trivial satisfia-
bility algorithms and circuit lower bounds [Wil14c] imply the following result.

Corollary 3 (Lower bounds from learning and satisfiability). Let C be any typical circuit class.
Assume that for each k, C[nk] admits a non-trivial satisfiability algorithm, and that for some ε > 0,
C[2n

ε
] admits a non-trivial learning algorithm. Then REXP * C[poly].

Recall that randomized learning algorithms and BPP-natural properties are strongly related by
results of [CIKK16]. We can give still stronger lower bound conclusions from assumptions about
P-natural proofs. The idea is to combine the arguments above with an application of the easy
witness method of Kabanets [Kab01].

Theorem 17 (Improved lower bounds from natural proofs).
Let C be any subclass of Boolean circuits closed under projections. If there are P-natural proofs
useful against C[2n

ε
] for some ε > 0, then ZPEXP 6⊆ C[poly].

32

The following immediate consequence is of particular interest.

Corollary 4 (ACC0 lower bounds from natural proofs).

If for some δ > 0 there are P-natural proofs against ACC0[2n
δ
] then ZPEXP * ACC0[poly].

In order to prove Theorem 17, we will need the following lemma.

Lemma 12 (Simulating bounded error with zero error given natural proofs). Suppose there is a

constant δ > 0 such that there are P-natural proofs against Circuit[2n
δ
]. Then BPEXP = ZPEXP.

Proof. Note that zero-error probabilistic time is trivially contained in bounded-error probabilistic
time, so we only need to show that BPEXP ⊆ ZPEXP under the assumption. We will in fact show
that BPP ⊆ ZPQP, where ZPQP is zero-error bounded probabilistic quasi-polynomial time. The
desired conclusion follows from this using a standard translation argument.

By assumption, there is a natural property R useful against Circuit[2n
δ
] for some constant δ > 0,

such that LR ∈ P. Let M be any machine operating in bounded-error probabilistic time nd for
some d > 0. We define a zero-error machine M ′ deciding L(M) in quasi-polynomial time as follows.

On input x of length n, M ′ guesses a random string r of size 2log(n)d
′
, where d′ is a large enough

constant to be defined later. It then checks if r ∈ LR or not, using the polynomial-time decision
procedure for the natural property R. If not, it outputs ‘?’ and halts. If it does, it runs the
procedure of Theorem 6 on input n2d in unary and r, to obtain the range of a (polylog(n), 1/n2d)
PRG against Circuit[n2d]. Since r ∈ LR, Theorem 6 applies, and the output of the procedure is
guaranteed to be the range of such a PRG. M ′ then runs M on x independently with each element
of the range of the PRG used as randomness, and takes the majority vote. This is guaranteed to
be correct when r ∈ LR, which happens with probability at least 1/2 by the density property of R.
Thus M ′ is a zero-error machine, and it is clear that M ′ can be implemented in quasi-polynomial
time.

Proof of Theorem 17. We proceed as in the proof of Theorem 15. Either CVP is in C[poly], or it is
not. If not, we have the desired lower bound for CVP, and hence for ZPEXP, which contains this
problem.

On the other hand, if CVP is in C[poly], we have that CVP is in C[nk] for some k > 0. By
the completeness of CVP for poly-size circuits under poly-size projections, and the closure of C
under projections, we have that Circuit[n] ⊆ C[nk] for some k > 0, and hence by a standard

translation argument, we have that Circuit[2n
δ
] ⊆ C[2n

ε
] for any δ < ε. By assumption, we have P-

natural properties useful against C[2n
ε
] and hence we also have P-natural properties useful against

Circuit[2n
δ
] for any δ < ε. Now, applying Lemma 12, we get BPEXP = ZPEXP.

We argue next that under the existence of P-natural properties useful against Circuit[2n
δ
] for a

fixed δ > 0, we also have EXPSPACE = BPEXP. The mentioned hypothesis implies that there exist
complexity distinguishers against Circuit[2n

δ
] running in deterministic time 2O(n) (the acceptance

probability can be amplified using truth-table concatenation). As a consequence, Lemma 6 provides
strong learning algorithms for Circuit[poly] running in quasi-polynomial time. By Theorem 13, either
PSPACE * Circuit[poly], and we are done, or PSPACE ⊆ BPQP. Now a standard upward translation
gives EXPSPACE ⊆ BPEXP, which shows that EXPSPACE = BPEXP.

Altogether, we have EXPSPACE = ZPEXP. Now this collapse and Corollary 2 with S1(n) = 2
√
n

and S2(n) = nlogn yield a language L ∈ ZPEXP such that L /∈ Circuit[poly], which completes the
proof of Theorem 17.

Recall that the existence of useful properties against a circuit class C is essentially equivalent to
the existence of non-deterministic exponential time lower bounds against C [Wil16, Oli15]. We do

33

not expect a similar equivalence in the case of natural properties and lower bounds for probabilistic
exponential time. The results described in this section show that natural properties imply such
lower bounds. However, if the other direction were true, then any lower for C with respect to
probabilistic exponential time classes would also provide a non-trivial learning algorithm for C. In
particular, since we believe in separations such as EXP * Circuit[poly], this would imply via the
Speedup Lemma that polynomial size circuits can be learned in sub-exponential time, which seems
unlikely.

6 Karp-Lipton Collapses for Probabilistic Classes

6.1 A Lemma About Learning with Advice

In this section we will need some notions of computability with advice. While this is a standard
notion, we provide some definitions, as bounded-error randomized algorithms taking advice can be
defined in different ways.

Recall that an advice-taking Turing machine is a Turing machine equipped with an extra tape,
the advice tape. At the start of any computation of an advice-taking Turing machine, the input is
present on the input tape of the machine and a string called the “advice” on the advice tape of the
machine, to both of which the machine has access.

Definition 13 (Probabilistic time with advice). Let T : N → N and a : N → N be functions.
BPTIME(T)/a is the class of languages L ⊆ {0, 1}∗ for which there is an advice-taking probabilistic
Turing machine M which always halts in time T (n) and a sequence {zn}n∈N of strings such that :

1. For each n, |zn| ≤ a(n).

2. For any input x ∈ L such that |x| = n, M accepts x with probability at least 2/3 when using
advice string zn.

3. For any input x 6∈ L such that |x| = n, M rejects x with probability at least 2/3 when using
advice string zn.

Note that in the above definition, there are no guarantees on the behaviour of the machine
for advice strings other than the “correct” advice string zn. In particular, for an arbitrary advice
string, the machine does not have to satisfy the bounded-error condition on an input, though it
does have to halt within time T .

The notion of resource-bounded computation with advice is fairly general and extends to other
models of computation, such as deterministic computation and computation of non-Boolean func-
tions. These extensions are natural, and we will not define them formally.

A slightly less standard notion of computation with advice is learnability with advice. We
extend Definition 1 to capture learning with advice by giving the learning algorithm an advice
string, and only requiring the learning algorithm to work correctly for a “correct” advice string of
the requisite length.

We will also need the standard notions of downward self-reducibility and random self-reducibility.

Definition 14 (Downward self-reducibility). A function f : {0, 1}∗ → {0, 1} is said to be downward
self-reducible if there is a polynomial-time oracle procedure Af (x) such that :

1. On any input x of length n, Af (x) only makes queries of length < n.

2. For every input x, Af (x) = f(x).

34

Definition 15 (Random self-reducibility). A function f : {0, 1}∗ → {0, 1} is said to be random
self-reducible if there are constants k, ` ≥ 1 and polynomial-time computable functions g : {0, 1}∗ →
{0, 1}∗ and h : {0, 1}∗ → {0, 1} satisfying the following conditions:

1. For large enough n, for every x ∈ {0, 1}n and for each i ∈ N such that 1 ≤ i ≤ nk, g(i, x, r) ∼
Un when r ∼ Un`.

2. For large enough n and for every function f̃n : {0, 1}n → {0, 1} that is (1/nk)-close to f on
n-bit strings, for every x ∈ {0, 1}n:

f(x) = h(x, r, f̃n(g(1, x, r)), f̃n(g(2, x, r)), . . . , f̃n(g(nk, x, r)))

with probability ≥ 1− 2−2n when r ∼ Un`.

Theorem 18 (A special PSPACE-complete function [TV07]).
There is a PSPACE-complete function fTV : {0, 1}∗ → {0, 1} such that fTV is downward self-reducible
and random self-reducible.

Below we consider the learnability of the class of Boolean functions {fTV} that contains only
the function fTV.

Lemma 13 (Learnability with advice for PSPACE implies randomized algorithms).
For any polynomial-time computable non-decreasing function a : N→ N with a(n) ≤ n, and for any
non-decreasing function T : N→ N such that n ≤ T (n) ≤ 2n, if {fTV} is strongly learnable in time
T with a bits of advice, then fTV is computable in bounded-error probabilistic time T (n)2·2a(n)·nO(1),
and hence PSPACE ⊆ BPTIME(T (poly(n))2 · 2a(poly(n)) · poly(n)).

Proof. The argument is based on and extends ideas from [KKO13, FK09, TV07, IW01]. Recall
that fTV is the same Boolean function as in the statement of Theorem 18. As stated there, this
function is downward self-reducible and random self-reducible. Now suppose {fTV} is learnable in
time T with a bits of advice. We design a probabilistic machine M solving fTV on inputs of length
n with bounded error in time T (n)2 ·2a(n) ·nO(1). The addition inclusion in the statement of Lemma
13 follows from the completeness of fTV.

Let x ∈ {0, 1}n be the input to M . Let Alearn be a (1/n4k, 1/22n)-learner for {fTV} that takes
a(n) bits of advice and runs in time T (n).12 Here k is the exponent in the number of queries in the
random self-reduction for fTV given by Theorem 18.

Overview. The plan of the proof is that M will use the advice-taking learner to inductively
produce, with high probability, circuits computing fTV correctly on inputs of length 1 . . . n. The
crucial aspect is not to allow the size of these circuits to grow too large. There will be n phases in
the operation of M – during Phase i, M will produce with high probability a randomized circuit
computing fTV on inputs of length i.

Each phase consists of 2 parts. In Part 1 of Phase i, M computes, for each possible advice string
z of length a(i) that can be fed to the advice-taking learner on input 1i, a candidate deterministic
circuit Czi on i-bit inputs of size at most T (i). In order for M to do this, it uses the properties
of the learner, as well as the circuits for smaller lengths that have already been computed. The
only guarantee on the candidate circuits is that at least one of them is a approximately correct

12In this argument, we do not care about poly(n) multiplicative factors applied to the final running time, so we can
assume the failure probability of the learner to be exponentially small by amplification. This is a standard argument,
and we refer to [KV94a] for more details.

35

circuit for fTV at length i, in the sense that it is correct on most inputs of this length. In Part
2 of Phase i, M uses the random self-reducibility and downward self-reducibility of fTV to select
the “best-performing” candidate among these circuits and compute a “correction” Ci of the best-
performing circuit. The circuit Ci will have size T (i) · poly(n), and with high probability, it will
be a randomized circuit that computes fTV correctly on all i-bit inputs, in the sense that on each
such string it is correct with overwhelming probability over its internal randomness. At the end of
Phase n, M evaluates the circuit Cn on x and outputs the answer.

We now give the details of how Part 1 and Part 2 work for each phase. We will then need to
argue that M is correct, and that it is as efficient as claimed. Phase 1, which is the base case for
M ’s inductive operation, is trivial. The circuit C1 computing fTV correctly on inputs of length 1
is simply hard-coded into M .

Now let i > 1 be an integer. We describe how Part 1 and Part 2 of Phase i work, assuming
inductively that M already has stored in memory a sequence of circuit {Cj}, for 1 ≤ j ≤ i − 1,
such that for each such j, Cj has size at most T (j) · poly(n), and with all but exponentially small
probability, computes fTV correctly on each input of length j.

Part 1. M first uses the polynomial-time computability of a to compute a(i). It then cycles over
strings z ∈ {0, 1}a(i), and for each string z it does the following. It simulates Alearn(1i) with advice
z. Each time Alearn makes a membership query of length i, M answers the membership query using
the downward self-reducibility of fTV as follows. If the downward self-reduction makes a query of
length j < i, M answers it by running the stored circuit Cj on the corresponding query.

If Alearn(1i) with advice z does not halt with an output that is a circuit on i bits, M sets Czi to
be a trivial circuit on i bits, say the circuit that always outputs 0. Otherwise M sets Czi to be the
circuit output by the learning algorithm. Since Alearn is guaranteed to halt in time T (i) for every
advice string, the circuit Czi has size at most T (i).

Part 2. M samples strings y1, . . . , yt, where t = n10k, uniformly and independently at random
amongst i-bit strings. It computes “guesses” b1, . . . , bt ∈ {0, 1} for the values of fTV on these inputs
by running the downward self-reducibility procedure for fTV, and answering any queries of length
j < i using the stored circuits Cj . Then, for each advice string z, it simulates Czi on each input
y`, where 1 ≤ ` ≤ t, and computes the fraction ρz of inputs y` for which Czi (y`) = b`. Let zmax

be the advice string z for which ρzmax is maximum among all such advice strings. Let Di be the
(deterministic) circuit Czmax

i . M produces a randomized circuit Ci from Di as follows. Ci applies
the random self-reduction procedure for fTV O(n) times independently, using the circuit Di to an-
swer the random queries to fTV, and outputs the majority answer of these runs. Note that Ci can
easily be implemented in size T (i) ·poly(n), using the fact that the random self-reduction procedure
runs in polynomial time. (We stress that Ci is a randomized circuit even though Di is deterministic.)

It is sufficient to argue that M halts in time T (n) · poly(n) · 2a(n), and that the final circuit Cn
computed by M is a correct randomized circuit for fTV on inputs of length n with high probability
over the random choices of M .

Complexity of M . We will show that M uses time at most T (i)2 · poly(n) · 2a(i) in Phase i,
and computes a circuit Ci of size at most T (i) · poly(n). Since a and T are non-decreasing, this
implies that M uses time at most T (n)2 · poly(n) · 2a(n) in total. We will analyze Part 1 and Part
2 separately.

The first step in Part 1, which is computing a(i), can be done in time poly(n). For each z,

36

simulating the learner and computing the circuit Czi can be done in time at most T (i) · T (i − 1) ·
poly(n), since the learner runs in time T (i) and makes at most that many oracle queries, each of
which can be answered by simulating a circuit Cj of size at most T (j) · poly(n), where j ≤ i − 1.
There are 2a(i) advice strings z which M cycles over, hence the total time taken by M in Part 1 of
Phase i is at most T (i)2 · 2a(i) · poly(n) by the non-decreasing property of T .

In Part 2 of Phase i, computing the bits b1, . . . , bt takes time at most T (i) · poly(n), since the
downward self-reducibility procedure runs in time poly(n), and every query can be answered by
simulation of a circuit Cj with j < i in time at most T (i) · poly(n). For each Czi , computing the
fraction ρz takes time at most T (i) · poly(n), since it involves simulating Czi on poly(n) inputs, and
Czi is of size at most T (i). Doing this for each z takes time at most T (i) ·2a(i) ·poly(n) time, as there
are 2a(i) possible advice strings of length a(i). Computing zmax takes time poly(n), and then com-
puting the “corrected” circuit Ci takes time at most T (i)·poly(n), since the random self-reducibility
procedure runs in polynomial time and can therefore be simulated using polynomial-size circuits.

Correctness of M . Clearly Phase 1 concludes with a correct circuit C1 for fTV on 1-bit inputs.
We will argue inductively that, given that the randomized circuit Ci−1 computed at the end of
Phase i− 1 is a correct circuit for fTV on inputs of length i− 1 such that its error probability is at
most 2−2n on any input, with all but exponentially small probability over the random choices of M
in Phase i, the randomized circuit Ci computed at the end of Phase i is a correct circuit for fTV on
inputs of length i, with error probability at most 2−2n on any input. By a union bound over the
phases, it follows from this that with all but exponentially small probability, the final circuit Cn is
a correct randomized circuit for fTV on inputs of length n (with error probability at most 2−2n),
and hence that carrying out all the phases and then simulating Cn on x yields the correct value
fTV(x) with overwhelming probability.

Therefore our task reduces to arguing the correctness of Phase i given the correctness of Phase
i − 1, for an arbitrary i such that 1 < i ≤ n. We discuss the correctness of Part 1 and Part 2
separately.

In Part 1, we argue that with all but exponentially small probability, at least one of the circuits
Czi computes fTV correctly on all but a 1/i3k fraction inputs of length i. Consider the string zi of
length a(i) that is the “correct” advice string for Alearn on input 1i. We only analyze Part 1 for
the advice string zi – the other advice strings are irrelevant to our analysis of correctness for this
part. Alearn with advice zi is a correct learner for {fTV}; hence with probability at least 1 − 2−2i,
it outputs a circuit that computes fTV on at least a 1 − 1/i4k fraction of inputs of length i, when
it is given access to a correct oracle for fTV. By running the learner poly(n) times independently
and doing standard amplification, the success probability can be boosted to 1−2−2n, while keeping
the agreement of the hypothesis with fTV at least 1− 1/i3k, and not affecting the efficiency of M
by more than a polynomial factor. M might not be able to answer queries to fTV with perfect
accuracy, however by the inductive hypothesis that Cj has error at most 2−2n on any specific input
for j < i, it follows by a union bound that with probability at least 1 − T (i)2−2n ≥ 1 − 2−n over
the internal randomness of M , the simulation of the learner is correct. Hence with probability at
least 1− 2−n, M outputs a circuit Czii during Phase i, Part 1, such that Czii agrees with fTV on at
least a 1− 1/i3k fraction of inputs of length i.

Next we analyze Part 2 of Phase i. By a union bound, with probability at least 1−poly(n)/22n,
the “guesses” b1, . . . , bt ∈ {0, 1} are all the correct values for fTV on inputs y1, . . . , yt ∈ {0, 1}i,
where by construction t = n10k. By using a standard concentration bound such as Lemma 2, we
have that the estimate ρzi is at least 1 − 1/i2k with probability at least 1 − 2−4n, and that with
probability at least 1−2−4n any z such that the agreement ρz is at least 1−1/i2k must be such that
Czi agrees with fTV on at least a 1 − 1/i3k/2 fraction of inputs of length i. Thus with probability

37

at least 1− poly(n)/22n, we have that Czmax
i has agreement at least 1− 1/i3k/2 with fTV on inputs

of length i. By again using a union bound and a standard concentration bound such as Lemma 2,
we have that with all but exponentially small probability, the corrected circuit Ci is a randomized
circuit which computes fTV correctly on all inputs of length i, making error < 2−2n on any single
input. This completes the inductive argument for correctness.

6.2 Karp-Lipton Results for Bounded-Error Exponential Time

Lemma 14 (Learnability with advice from distinguishability). Let f ∈ EXP be a Boolean function
and a : N→ N be a advice function.

1. (High-End Generator) There is a constant c ≥ 1 such that for any ε ∈ (0, 1], there is a

sequence of functions {GHE
n }n∈N with GHE

n : {0, 1}nc → {0, 1}2n
ε

computable in deterministic
time 2O(nc) such that if there is a probabilistic procedure A(1n) taking a(n) bits of advice and
running in time 2O(nε), and outputting a circuit distinguisher for GHE

n (Unc) with constant
probability for all large enough n, then {f} is strongly learnable in time 2O(nε) with a(n) bits
of advice.

2. (Low-End Generator) There is a constant c ≥ 1 such that for any d ≥ 1, there is a sequence

of functions {GLE
n }n∈N with GLE

n : {0, 1}nc → {0, 1}2(logn)
d

computable in deterministic time
2O(nc) such that if there is a probabilistic quasipolynomial-time procedure A(1n) taking a(n)
bits of advice and outputting a circuit distinguisher for GLE

n (Unc) with constant probability for
all large enough n, then {f} is strongly learnable in quasi-polynomial time with a(n) bits of
advice.

Proof. (Nutshell) This follows from the reconstruction procedure for the Nisan-Wigderson generator
together with hardness amplification. We refer to [NW94] for more details.

Theorem 19 (Low-end Karp-Lipton Theorem for bounded-error exponential time).
If there is a k ≥ 1 such that BPE ⊆ i.o.Circuit[nk], then BPEXP ⊆ i.o.EXP/O(log n).

Proof. We will prove the contrapositive. For each bounded-error probabilistic exponential time ma-
chine M , we will define for each rational ε > 0 a deterministic exponential-time machine Mε taking
logarithmic advice which attempts to simulate it. If all of the attempted simulations Mε fail almost
everywhere, we will show that PSPACE ⊆ BPSUBEXP, and we will then use a translation argument
and Corollary 2 to conclude that BPE 6⊆ i.o.Circuit[nk], thus establishing the contrapositive.

Let M be any bounded-error probabilistic machine running in time 2m
j
, where m is the input

length, and j is a constant. We assume without loss of generality that j ≥ 1, and that M has
error < 1/4 on any input. Let ε > 0 be any rational. We define the deterministic exponential-time
machine Mε taking O(logm) bits of advice on inputs of length m below. It uses the generators
{GHE

n } given by Lemma 14 corresponding to the PSPACE-complete language fTV in the statement
of Theorem 18, which is clearly in exponential time.

On input x of length m, Mε first uses the advice on its tape to determine an integer n such that
22mj ≤ 2n

ε
< 22(m+1)j . Note that any n ∈ N satisfying these conditions is such that n = Θ(mj/ε).

Hence there are poly(m) possibilities for n, and any of these possibilities can be encoded using
O(logm) bits on the advice tape. Given a number i on the advice tape, Mε can decode the relevant
n by determining the i-th number in increasing order satisfying both inequalities. This can be done
in poly(m) time since we can assume ε is hard-coded into Mε, and any single inequality verification
can be done in poly(m) time. Mε then computes R(y) = GHE

n (y) for every string y ∈ {0, 1}nc . It

38

simulates M on x using each string R(y) in turn as the randomness for M , and outputs the majority

result of these simulations. It is easy to see that Mε can be implemented to run in 2O(nc) = 2O(mcj/ε)

time, i.e, in time that is exponential on its input length m.
If any of the simulations Mε succeeds on infinitely many input lengths m, we have that L(M) ∈

i.o.EXP/O(logm). Suppose, contrariwise, that all of the simulations Mε fail almost everywhere.
We will argue that fTV ∈ BPSUBEXP and hence, by completeness of fTV, PSPACE ⊆ BPSUBEXP.

For any x ∈ {0, 1}m, let Cx be the circuit of size at most 22mj defined as follows: the input
of Cx is the sequence of random bits r used by M in its computation on x. Cx(r) accepts iff M
accepts on x using the sequence r of random bits. By the standard translation of deterministic
computations into circuits, Cx can be implemented in size at most 22mj , using the fact that M
halts in time 2m

j
.

Fix any ε > 0. Let n be an arbitrary positive integer, and let m(n) be the unique m such that

22mj ≤ 2n
ε
< 22(m+1)j (observe that h(a)

def
= 22aj is an increasing function, so this m is indeed

unique if n is not too small). We claim that for every large enough n, there is an input x of length
m(n) such that Cx is a distinguisher for GHE

n (Unc). Indeed, if not, there are infinitely many n such
that for all inputs x of length m(n), Cx is not a distinguisher, but this implies that the simulation
Mε on inputs of length m(n) would succeed infinitely often with advice encoding the input length n.
Since for each m, there are only finitely many n such that m = m(n), it follows that the simulation
Mε succeeds on infinitely many input lengths with logarithmic advice. But this contradicts our
assumption that the simulation Mε fails almost everywhere.

Now that our claim is established, we define a deterministic procedure A(1n) taking O(nε) bits of
advice and running in time 2O(nε), which for each large enough n produces a circuit distinguisher for
GHE
n . The procedure A computes m(n) in polynomial time. Note that m(n) = O(nε/j) = O(nε), by

our assumption that j ≥ 1. A then interprets its advice as an string x of length m(n). It computes
Cx, which it can do given x in time polynomial in the size of Cx, and outputs Cx. The time taken
by A is dominated by the time required to compute Cx, which is 2O(nε), and the advice used by A
is of size O(nε).

By applying Lemma 14, we get that {fTV} is strongly learnable in time 2O(nε) with O(nε) bits
of advice. By applying Lemma 13, we get that fTV is computable in bounded-error probabilistic
time 2O(nε). Note that this is the case for every ε > 0, since our choice of ε was arbitrary. Thus
we have fTV ∈ BPSUBEXP, and hence by completeness that PSPACE ⊆ BPSUBEXP. Using a
standard upward translation argument and applying Corollary 2, we get that for every k > 0,
BPE 6⊆ i.o.Circuit[nk], which is the desired conclusion.

Theorem 20 (High-end Karp-Lipton Theorem for bounded-error exponential time).

If BPEXP ⊆ i.o.Circuit[2n/3], then for each ε > 0, BPEXP ⊆ i.o.DTIME(22n
ε

)/nε.

Proof. (Sketch) The proof is entirely analogous to the proof of Theorem 19, except that we use
generators GLE

n rather than the generators GHE
n , adjusting other parameters accordingly. We get

that either PSPACE ⊆ BPQP, or that for every ε > 0, BPEXP ⊆ i.o.DTIME(2n
ε

)/nε. In the first
case, by upward translation, we get that EXPSPACE = BPEXP, and then by using Corollary 2, we
conclude that BPEXP 6⊆ i.o.Circuit[2n/3].

Theorem 21 (Low-end fully uniform Karp-Lipton style theorem for probabilistic time).
If there is a k ≥ 1 such that BPE ⊆ i.o.Circuit[nk], then REXP ⊆ i.o.EXP.

Proof. (Sketch) We use the crucial fact that the union of hitting sets is also a hitting set to eliminate
the advice in the simulation. The argument is the same as in the proof of Theorem 19, except that
the simulating machine Mε runs M on x using as randomness R every element in turn that is in

39

the range of GHE
n for every n such that 22mj ≤ 2n

ε
< 22(m+1)j , accepting if and only if any of these

runs accepts. Note that Mε does not take advice. We do not need to give the “correct” n as advice
to the machine because, if any n in the interval produces an accepting path (corresponding to a
string in the range of the generator), then

⋃
nG

HE
n (Unc) for n as above contains an accepting path

for M on x. Finally, we observe that computing the range of the generator for every such n does
not blow-up the complexity of the simulation by more than a polynomial factor.

Theorem 22 (High-end fully uniform Karp-Lipton style theorem for probabilistic time).
If BPEXP ⊆ i.o.Circuit[2n/3], then REXP ⊆ i.o.ESUBEXP.

Proof. (Sketch) The proof is entirely analogous to the proof of Theorem 21, except that we use
generators GLE

n rather than the generators GHE
n , adjusting other parameters accordingly.

These results can be combined with a Karp-Lipton collapse for deterministic exponential time.
For instance, the following holds.

Corollary 5. If there is k ∈ N such that BPE ⊆ Circuit[nk], then REXP ⊆ i.o.MA.

Proof. It follows from the hypothesis that E ⊆ Circuit[nk], and hence EXP ⊆ Circuit[poly] by
translation. This in turn implies that EXP = MA [BFNW93]. Moreover, the hypothesis gives
REXP ⊆ i.o.EXP using Theorem 21. Consequently, we get REXP ⊆ i.o.MA, which completes the
proof.

6.3 Karp-Lipton Results for Zero-Error Exponential Time

Lemma 15 (Fully uniform simulations using easy witness and truth-table concatenation).
Either BPP ⊆ ZPQP, or ZPEXP ⊆ i.o.ESUBEXP.

Proof. We use the “easy witness” method of Kabanets [Kab01]. Let M be any probabilistic Turing
machine with zero error running in time 2m

j
for some j ≥ 1, such that on each random computation

path of M on any input x, the output is either the correct answer for M on x or ‘?’, and moreover
the probability of outputting ‘?’ is less than 2−2m for any input x ∈ {0, 1}m. For each ε > 0, we
define the following attempted deterministic simulation Mε for M . On input x of length m, Mε

cycles over all circuits C of size 2m
ε/2

on mj inputs. For each such circuit, it explicitly computes the
truth table tt(C) of the circuit C, and runs M on x with tt(C) as randomness. If the run accepts,
it accepts; if the run rejects, it rejects. If the run outputs ‘?’, it moves on to the next circuit C
in lexicographic order of circuit encodings. If all runs output ‘?’, the machine rejects. It should

be clear that the simulation Mε runs in deterministic time ≤ 22m
ε

on inputs of length m for any
sufficiently large m, and only accepts inputs x ∈ L(M).

If for each ε > 0, we have that the simulation Mε solves L(M) correctly on all inputs of length
m for infinitely many input lengths m, we have that L(M) ⊆ i.o.ESUBEXP.

Suppose, on the contrary, that there is some ε > 0 such that the simulation Mε fails on at least
one input x of each large enough input length m. We show how to use this to decide every language
in BPP in ZPQP.

Let N be any bounded-error probabilistic machine running in time at most nk for some constant
k and large enough n. Assume without loss of generality that N has error ≤ 1/10 on any input of
length n. We use M to give a zero-error simulation N ′ of N on all inputs of large enough length.

Given an input y of length n, N ′ simulates M on each input x of length m(n)
def
= (dlog ne)d in turn,

for some constant d ≥ 1 to be specified later. If M outputs ‘?’, N ′ outputs ‘?’, otherwise it moves on
to the next input in lexicographic order. If running M gives ‘?’ outputs for every input x of length

40

m(n), N ′ outputs ‘?’. Otherwise, N ′ concatenates the random strings used on the computation
paths of M for each input of length m(n) into a single string Rn of length O(2polylog(n)). It then
uses Rn as the truth-table of the hard function for the generator in Theorem 6, setting parameters
so that at least n2k pseudorandom bits are produced by the generator. It cycles over all possible
seeds of the generator and runs N using each output in turn as the sequence of random choices,
accepting if and only if a majority of runs accepts.

Setting d to be a large enough constant depending on j, k, ε and the constant c in the statement
of Theorem 6, it can be shown that this simulation can be done in quasi-polynomial time, and
that it is correct for each input y of large enough length whenever N ′ does not output ‘?’. The
key here is that by the failure of Mε for at least one input of any large enough length, the string
Rn is guaranteed to be hard enough that the generator is correct. This is because Rn contains a
subfunction of sufficiently large worst-case circuit complexity. Hence cycling over all seeds of the
generator and taking the majority value gives the correct answer for N on input y. Finally, under
our initial assumption that M has exponentially small failure probability, by a union bound the
probability that N ′ outputs ‘?’ on any large enough input is small. This concludes the proof that
BPP ⊆ ZPQP.

Theorem 23 (High-end fully uniform Karp-Lipton theorem for zero-error exponential time).
If ZPEXP ⊆ i.o.Circuit[2n/3], then ZPEXP ⊆ i.o.ESUBEXP.

Proof. Observe that the proof of Theorem 22 establishes that if REXP 6⊆ i.o.ESUBEXP, then
PSPACE ⊆ BPQP. By Lemma 15, if ZPEXP 6⊆ i.o.ESUBEXP, then BPP ⊆ ZPQP, and hence by up-
ward translation, BPQP = ZPQP. Putting these together, we have that if ZPEXP 6⊆ i.o.ESUBEXP,
then PSPACE ⊆ ZPQP. Now by upward translation, we have that EXPSPACE = ZPEXP, and hence
by Corollary 2, we get ZPEXP 6⊆ i.o.Circuit[2n/3].

We have learned from Valentine Kabanets (private communication) that he has independently
established Theorem 23 in an unpublished manuscript.

In fact, we can get a non-trivial consequence from the weakest possible non-trivial assump-
tion about the circuit size of Boolean functions computable in zero-error exponential time. This
extension of Theorem 23 relies on the following simple lemma.

Lemma 16 (Maximally hard functions in exponential space). Let smax : N → N be such that for
each n ∈ N, smax(n) is the maximum circuit complexity among Boolean functions on n bits. Then
EXPSPACE 6⊆ i.o.Circuit[smax − 1].

Proof. (Sketch) The proof is by simple diagonalization. In exponential space, we can systematically
list the truth tables of Boolean functions on n bits, and maintain the one with the highest circuit
complexity. To compute the circuit complexity of a listed truth table can be done by cycling
over all circuits, starting from the smallest one, and checking for each circuit whether it computes
the given truth table. Once the truth table of a function with maximum circuit complexity has
been computed, we simply look up the corresponding entry in the truth table for any particular
input.

Now by using the same proof as for Theorem 23 but applying Lemma 16 instead of Corollary
2, we have the following stronger version of Theorem 23. (We note that Theorems 20 and 22 admit
similar extensions.)

Theorem 24 (Strong Karp-Lipton Theorem for zero-error probabilistic exponential time).
Let smax : N → N be such that for each n ∈ N, smax(n) is the maximum circuit complexity among
Boolean functions on n bits. If ZPEXP ⊆ i.o.Circuit[smax − 1], then ZPEXP ⊆ i.o.ESUBEXP.

41

7 Hardness of the Minimum Circuit Size Problem

We will be dealing with various notions of non-uniform reduction to versions of the Minimum
Circuit Size Problem (MCSP). Reductions computable in a non-uniform class C are formalized
using oracle C-circuits, which are C-circuits with oracle gates. We only use oracle circuits where
oracle gates appear all at the same level. In this setting, we can define size and depth of oracle
circuits to be the size and depth respectively of the oracle circuits with oracle gates replaced by
AND/OR gates.

Definition 16 (Non-uniform Reductions). Let C be a typical class of circuits, and L and L′ be
languages.

• (m-reduction) We say L C-reduces to L′ via m-reductions if there is a sequence of poly-size
oracle C-circuits computing the slices Ln of L when the circuits are given oracle L′, and such
that each oracle circuit has a single oracle gate, which is also the top gate of the circuit.

• (tt-reduction) We say L C-reduces to L′ via tt-reductions if there is a sequence of poly-size
oracle C-circuits computing the slices Ln of L when the circuits are given oracle L′, and such
that no oracle circuit has a directed path from one oracle gate to another.

• (ε-approximate reductions) We extend these notions to hold between approximations of a
language. Given a function ε : N → [0, 1] and languages L and L′, we say that L reduces
to ε-approximating L′ under a certain notion of reduction if for each L̃′ which agrees with
L′ on at least a 1 − ε(n) fraction of inputs of length n for large enough n, L reduces to
L̃′ under that notion of reduction. We say that ε-approximating L reduces to L′ if there is
a language L̃ which agrees with L on at least a 1 − ε(n) fraction of inputs of length n for
large enough n, such that L̃ reduces to L′. More generally, we say that ε-approximating L
reduces to ε′-approximating L′ under a certain notion of reduction if for any language L̃′ that
ε′(n)-approximates L′ on inputs of length n for large enough n, there is a language L̃ that
ε(n)-approximates L on inputs of length n for large enough n, and a corresponding reduction
from L̃ to L̃′.

• (Parameterized reduction) If a reduction is not computed by polynomial size circuits, we
extend these definitions in the natural way, and say that L C[s]-reduces to L′, where s : N→ N
is the appropriate circuit size bound.

The following proposition is immediate from the definitions and the fact that typical circuit
classes are closed under composition.

Proposition 2 (Transitivity of reductions). Let C be a typical circuit class, L, L′, L′′ be languages,
and ε, ε′, ε′′ : N→ [0, 1] be functions.

(i) If L C-reduces to L′ via m-reductions (resp. tt-reductions) and L′ C-reduces to L′′ via
m-reductions (resp. tt-reductions), then L C-reduces to L′′ via m-reductions (resp. tt-
reductions).

(ii) If ε(poly(n))-approximating L C-reduces to ε′(poly(n))-approximating L′ via m-reductions
(tt-reductions) and ε′(poly(n))-approximating L′ C-reduces to ε′′(poly(n))-approximating L′′

via m-reductions (tt-reductions), it follows that ε(poly(n))-approximating L C-reduces to
ε′′(poly(n))-approximating L′′ via m-reductions (tt-reductions).

Using the notation introduced above, the following fact is trivial to establish.

42

Proposition 3 (Relation between parameterized and unparameterized versions of MCSP).
For any typical circuit class C, MCSP-C[2n/2] AC0-reduces to MCSP-C via m-reductions.

Theorem 25 (Hardness of MCSP for weakly approximating functions in typical circuit classes).
Let C be a typical circuit class that contains AC0[p], for some fixed prime p. For every Boolean
function f ∈ C[nk] there exists c = c(k, δ) ∈ N such that (1/2 − Ω(1/nc))-approximating f AC0-
reduces to MCSP-C[2n/2] via tt-reductions, as well as to any property with density at least 1/4 that
is useful against C[2δn] for some fixed δ ∈ (0, 1).

Proof. (Sketch) Let f = {fn}n∈N be a function in C[nk], where fn : {0, 1}n → {0, 1} and AC0[p] ⊆
C[poly]. Further, let 0 < δ < 1 be a constant. We let

NWc(fn)
def
= {gz : {0, 1}c logn → {0, 1} | z ∈ {0, 1}Θ(n2)}

be the family (multiset) of functions obtained by instantiating the Nisan-Wigderson [NW94] con-
struction with the AC0[p]-computable designs from [CIKK16] and fn. A bit more precisely, each
gz is a function specified by a seed z of length Θ(n2), the family of sets Sn = {Sw ⊆ [Θ(n2)] | w ∈
{0, 1}c logn}, and fn, and we have gz(w)

def
= fn(zSw). Here each Sw ⊆ [Θ(n2)] contains exactly n

elements (Sw is the w-th set in the design), and zSw ∈ {0, 1}n is the projection of z to coordinates
Sw. By taking c = c(δ, k) sufficiently large and using that δ > 0, fn ∈ C[nk], and that the design
can be implemented in C[poly], it follows from [NW94, CIKK16] that for large enough n:

(A) Each gz is a function on m
def
= c log n input bits of C-circuit complexity ≤ 2δm.

On the other hand, if hm ∼ Fm is a uniformly random Boolean function on m input bits, using
that δ < 1 it easily follows from a counting argument (e.g. Lemma 3) that for large enough n
(recall that m = c log n):

(B) hm has C-circuit complexity > 2δm with probability 1− o(1).

Consequently, from (A) and (B) we get that an oracle to MCSP-C[2n/2] (corresponding to
δ = 1/2) can be used to distinguish the multiset NWc(fn) (sampled according to z ∼ {0, 1}Θ(n2))
from a random function on m input bits.

We argue next that it follows from the description of the Nisan-Wigderson reconstruction pro-
cedure [NW94] that there is a tt-reduction from (1/2−Ω(1/nc))-approximating fn to MCSP-C[2n/2]
that is computable by AC0-circuits. That some non-uniform approximate reduction with oracle ac-
cess to fn exists immediately follows from the proof of their main result. That it can be computed
in AC0[poly(n)] with oracle access to the distinguisher MCSP-C[2n/2] (and without oracle access
to fn) follows by our choice of parameters (in particular, |Sw1 ∩ Sw2 | = O(log n) for every pair
w1 6= w2), non-uniformity of the reduction, and the fact that the output of fn on any particular
n-bit input can be hardwired into the (non-uniform) AC0 circuit computing the reduction. Finally,
we remark that the Ω(1/nc) advantage in the approximation comes from the truth-table size of each
gz and the hybrid argument in [NW94], and that we get a tt-reduction because the reconstruction
procedure is non-adaptive.

In fact, the same argument shows that (1/2 − Ω(1/nc))-approximating f AC0-reduces via tt-
reductions to any property useful against C[2δn] for some δ ∈ (0, 1) and with density at least 1/4,
since this suffices to implement the Nisan-Wigderson reconstruction routine. This completes the
proof of Theorem 25.

43

Corollary 6 (Hardness of the standard circuit version of MCSP). For any Boolean function f ∈
Circuit[poly(n)], there exists c ≥ 1 such that (1/2 − 1/nc)-approximating f AC0-reduces via tt-
reductions to MCSP-Circuit and to any property with density at least 1/4 that is useful against
Circuit[2n/2].

Proof. The second item follows immediately from Theorem 25, since Circuit is typical. The first
item follows from Theorem 25, Proposition 3 and Proposition 2.

Proposition 4 (Hardness amplification for Formula). There exists a Boolean function f ∈ Formula
that is Formula-hard under AC0-reductions such that for every integer d ≥ 1, f TC0-reduces via
tt-reductions to (1/2− 1/nd)-approximating f .

Proof. (Sketch) This is achieved using a standard hardness amplification argument using the ex-
istence of a random self-reducible complete problem in NC1, as well as the XOR lemma. It
is known that the circuits used in the hardness amplification reconstruction procedure and for
random-self-reducibility can be implemented in non-uniform TC0. For more details, we refer to
[SV10, AAW10, GNW11].

Corollary 7 (Hardness of MCSP for NC1). For every Boolean function f ∈ Formula, f TC0-reduces
to the following problems via tt-reductions:

1. MCSP-Formula[2n/2].

2. Any property useful against Formula[2δn] for δ ∈ (0, 1) and with density at least 1/4.

3. MCSP-Formula.

4. MCSP-C for any typical circuit class C ⊇ Formula.

Proof. Items 1 and 2 follow from Theorem 25 applied to the typical class Formula, together with
Propositions 2 and 4. Item 3 follows from Item 1 and Propositions 2 and 3. Finally, in order to
prove Item 4, note that MCSP-C[2n/2] is useful against Formula[2n/2], using the assumption that
formulas are subclasses of C circuits. Moreover, MCSP-C[2n/2] as a property has density 1 − o(1),
since a random function has circuit complexity higher than 2n/2 with probability exponentially
close to 1 by the usual counting argument. Thus, it follows using the same argument as for Item 2
that MCSP-C[2n/2] is TC0-hard under tt-reductions for Formula. Item 4 now follows from this via
Propositions 2 and 3.

Hardness results as in Corollary 7 also follow for other classes such as non-uniform logarithmic
space and the class of problems reducible to the determinant using non-uniform TC0 reductions,
since these classes also have random self-reducible complete problems and admit worst-case to
average-case reducibility in low complexity classes. We will not further elaborate on this here.

A closely related problem is whether a string has high KT complexity (cf. [ABK+06]). KT
complexity is a version of Kolmogorov complexity, where a string has low complexity if it has a short
description from which its bits are efficiently computable. We will not explore consequences for
this notion in this work, but we expect that some of our results can be transferred to the problem
of whether a string has high KT-complexity using standard observations about the relationship
between this problem and MCSP.

44

8 Open Problems and Further Research Directions

We describe here a few directions and problems that we find particularly interesting, and that
deserve further investigation.

• Speedups in Computational Learning Theory. One of our main conceptual contributions
is the discovery of a surprising speedup phenomenon in learning under the uniform distribution us-
ing membership queries (Lemma 7). Naturally, it would be relevant to understand which learning
models admit similar speedups. In particular, is there an analogous result for learning under the
uniform distribution using random examples? An orthogonal question is to weaken the assumptions
on concept classes for which learning speedups hold.

• Applications in Machine Learning. Is it possible to use part of the machinery behind the
proof of the Speedup Lemma (Lemma 7) to obtain faster algorithms in practice? Notice that
speedups are available for classes containing a constant number of layers of threshold gates, as TC0

is a typical circuit class according to our definition. Since these circuits can be seen as discrete
analogues of neural networks, which have proven quite successful in several contexts of practical
relevance, we believe that it is worth exploring these implications.

•Non-Uniform Circuit Lower Bounds from Learning Algorithms. As discussed in [Wil14b],
strong lower bounds are open even for seemingly weak classes such as MOD2 ◦ AND ◦ THR and
AND ◦ OR ◦MAJ circuits. We would like to know if the learning approach to non-uniform lower
bounds (Theorem 15) can lead to new lower bounds against such heavily constrained circuits. More
ambitiously, it would be extremely interesting to understand the learnability of ACC0, given that
the existence of a nontrivial algorithm for large enough circuits implies REXP * ACC0 (Theorem 16).

• The Frontier of Natural Proofs. Is there a natural property against ACC0? Williams [Wil14c]
designed a non-trivial satisfiability algorithm for sub-exponential size ACC0 circuits, which implies
in particular that NEXP * ACC0. On the other hand, Corollary 4 shows that the existence of a
natural property against such circuits implies the stronger lower bound ZPEXP * ACC0.

• Connections between Learning, Proofs, Satisfiability, and Derandomization. Together
with previous work (e.g. [Wil13, Wil14c, SW14, JMV15]), it follows that non-trivial learning,
non-trivial proofs of tautologies (in particular, nontrivial satisfiability algorithms), and non-trivial
derandomization algorithms all imply (randomized or nondeterministic) exponential time circuit
lower bounds. These are distinct algorithmic frameworks, and the argument in each case is based
on a different set of techniques. Is there a more general theory that is able to explain and to
strengthen these connections? We view Corollary 3 as a very preliminary result indicating that a
more general theory along these lines might be possible.

• Unconditional Nontrivial Zero-Error Simulation of REXP. Establish unconditionally that
REXP ⊆ i.o.ZPESUBEXP. We view this result as an important step towards the ambitious goal of
unconditionally derandomizing probabilistic computations, and suspect that it might be within the
reach of current techniques. In particular, this would follow if one can improve Lemma 15, which
unconditionally establishes that either BPP ⊆ ZPQP or ZPEXP ⊆ i.o.ESUBEXP, to a result of the
same form but with REXP in place of ZPEXP.

• Learning Algorithms vs. Pseudorandom Functions. The results from Section 4 establish

45

an equivalence between learning algorithms and the lack of pseudorandom functions in a typical
circuit class, in the non-uniform exponential time regime. It would be interesting to further in-
vestigate this dichotomy, and to understand whether a more uniform equivalence can be established.

• Hardness of the Minimum Circuit Size Problem. Show that MCSP /∈ AC0[p]. We have es-
tablished that if MCSP ∈ TC0 then NC1 ⊆ TC0. Prove that if MCSP ∈ TC0 then Circuit[poly] ⊆ TC0.

Acknowledgements. We thank Eric Allender, Marco Carmosino, Russell Impagliazzo, Valentine
Kabanets, Antonina Kolokolova, Jan Kraj́ıček, Tal Malkin, Ján Pich, Rocco Servedio and Ryan
Williams for discussions. We also thank Ruiwen Chen for several conversations during early stages
of this work.

The first author received support from CNPq grant 200252/2015-1. The second author was
supported by the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007-2013)/ERC Grant No. 615075. Part of this work was done during a visit
of the first author to Oxford supported by the second author’s ERC grant.

References

[AAW10] Eric Allender, Vikraman Arvind, and Fengming Wang. Uniform derandomization from
pathetic lower bounds. In International Workshop on Randomization and Computation
(RANDOM), pages 380–393, 2010. 12, 44

[ABK+06] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ron-
neburger. Power from random strings. SIAM J. Comput., 35(6):1467–1493, 2006. 7,
10, 44

[AD14] Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. In Sympo-
sium on Mathematical Foundations of Computer Science (MFCS), pages 25–32, 2014.
10

[AGM15] Eric Allender, Joshua A. Grochow, and Cristopher Moore. Graph isomorphism and
circuit size. CoRR, abs/1511.08189, 2015. 10

[AHK15] Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum oracle circuit size
problem. In Symposium on Theoretical Aspects of Computer Science (STACS), pages
21–33, 2015. 10

[AHM+08] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks.
Minimizing disjunctive normal form formulas and AC0 circuits given a truth table.
SIAM J. Comput., 38(1):63–84, 2008. 10

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM J.
Comput., 36(4):845–888, 2006. 7

[AK10] Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-
reducibility. J. ACM, 57(3), 2010. 7

[Alt94] Ingo Althöfer. On sparse approximations to randomized strategies and convex combi-
nations. Linear Algebra Appl., 199:339–355, 1994. 11, 26, 29

46

[Ang87] Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1987.
5, 16

[AV08] Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In
Symposium on Foundations of Computer Science (FOCS), pages 67–75, 2008. 7

[BFKL93] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryp-
tographic primitives based on hard learning problems. In Advances in Cryptology
(CRYPTO), pages 278–291, 1993. 8

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subex-
ponential time simulations unless EXPTIME has publishable proofs. Computational
Complexity, 3:307–318, 1993. 6, 9, 40

[BFT98] Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations.
In Conference on Computational Complexity (CCC), pages 8–12, 1998. 9, 16

[BH92] Harry Buhrman and Steven Homer. Superpolynomial circuits, almost sparse oracles
and the exponential hierarchy. In Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), pages 116–127, 1992. 9

[BL93] Dan Boneh and Richard J. Lipton. Amplification of weak learning under the uniform
distribution. In Conference on Computational Learning Theory (COLT), pages 347–
351, 1993. 11

[Blu67] Manuel Blum. A machine-independent theory of the complexity of recursive functions.
J. ACM, 14(2):322–336, 1967. 7

[BM88] László Babai and Shlomo Moran. Arthur-Merlin games: A randomized proof system,
and a hierarchy of complexity classes. J. Comput. Syst. Sci., 36(2):254–276, 1988. 7

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina
Kolokolova. Learning algorithms from natural proofs. In Conference on Computational
Complexity (CCC), pages 10:1–10:24, 2016. 3, 11, 12, 18, 24, 32, 43

[CKK+15] Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David
Zuckerman. Mining circuit lower bound proofs for meta-algorithms. Computational
Complexity, 24(2):333–392, 2015. 5

[FK09] Lance Fortnow and Adam R. Klivans. Efficient learning algorithms yield circuit lower
bounds. J. Comput. Syst. Sci., 75(1):27–36, 2009. 8, 13, 29, 30, 35

[FS11] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011. 9

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental
poker keeping secret all partial information. In Symposium on Theory of Computing
(STOC), pages 365–377, 1982. 8

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984. 8

[GNW11] Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR-Lemma. In Studies
in Complexity and Cryptography, pages 273–301. 2011. 11, 44

47

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press, 2001. 8

[HH13] Ryan C. Harkins and John M. Hitchcock. Exact learning algorithms, betting games,
and circuit lower bounds. Transactions on Computation Theory (TOCT), 5(4):18, 2013.
8

[HP15] John M. Hitchcock and Aduri Pavan. On the NP-completeness of the minimum circuit
size problem. In Conference on Foundation of Software Technology and Theoretical
Computer Science (FSTTCS), pages 236–245, 2015. 10

[HW16] Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem as
oracle. In Conference on Computational Complexity (CCC), pages 18:1–18:20, 2016.
10

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy
witness: exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci.,
65(4):672–694, 2002. 6, 7, 9

[IL90] Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP instances
than picking uniformly at random. In Symposium on Foundations of Computer Science
(FOCS), pages 812–821, 1990. 8

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Symposium on Theory of Computing (STOC),
pages 220–229, 1997. 12, 18

[IW01] Russell Impagliazzo and Avi Wigderson. Randomness vs time: Derandomization under
a uniform assumption. J. Comput. Syst. Sci., 63(4):672–688, 2001. 7, 12, 13, 29, 30, 35

[Jac97] Jeffrey C. Jackson. An efficient membership-query algorithm for learning DNF with
respect to the uniform distribution. J. Comput. Syst. Sci., 55(3):414–440, 1997. 3

[J LR00] Svante Janson, Tomasz Luczak, and Andrzej Ruciński. Random graphs. Wiley-
Interscience, New York, 2000. 19

[JMV15] Hamid Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. In International
Colloquium on Automata, Languages, and Programming (ICALP), pages 749–760, 2015.
6, 45

[Kab01] Valentine Kabanets. Easiness assumptions and hardness tests: Trading time for zero
error. J. Comput. Syst. Sci., 63(2):236–252, 2001. 12, 32, 40

[KC00] Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In Symposium on
Theory of Computing (STOC), pages 73–79, 2000. 10

[KKO13] Adam Klivans, Pravesh Kothari, and Igor C. Oliveira. Constructing hard functions
using learning algorithms. In Conference on Computational Complexity (CCC), pages
86–97, 2013. 8, 13, 29, 30, 35

[KL80] Richard M. Karp and Richard J. Lipton. Some connections between nonuniform and
uniform complexity classes. In Symposium on Theory of Computing (STOC), pages
302–309, 1980. 6, 9

48

[KL07] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman
and Hall/CRC Press, 2007. 8

[Kra11] Jan Kraj́ıcek. Forcing with Random Variables and Proof Complexity, volume 382 of
London Mathematical Society Lecture Note Series. Cambridge University Press, 2011.
10

[KS08] Subhash Khot and Rishi Saket. Hardness of minimizing and learning DNF expressions.
In Symposium on Foundations of Computer Science (FOCS), pages 231–240, 2008. 10

[KV94a] Michael Kearns and Umesh Vazirani. An Introduction to Computational Learning The-
ory. MIT Press, 1994. 16, 21, 35

[KV94b] Michael J. Kearns and Leslie G. Valiant. Cryptographic limitations on learning boolean
formulae and finite automata. J. ACM, 41(1):67–95, 1994. 5

[LMN93] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, fourier
transform, and learnability. J. ACM, 40(3):607–620, 1993. 3, 8, 20

[LY94] Richard J. Lipton and Neal E. Young. Simple strategies for large zero-sum games with
applications to complexity theory. In Symposium on Theory of Computing (STOC),
pages 734–740, 1994. 11, 26, 29

[Mas79] William J. Masek. Some NP-complete set covering problems. Unpublished Manuscript,
1979. 10

[MW15] Cody D. Murray and Richard Ryan Williams. On the (non) NP-hardness of computing
circuit complexity. In Conference on Computational Complexity (CCC), pages 365–380,
2015. 7, 10

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-
random functions. J. ACM, 51(2):231–262, 2004. 3, 8, 9

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994. 10, 18, 38, 43

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst.
Sci., 52(1):43–52, 1996. 7

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. 31

[Oli15] Igor C. Oliveira. Unconditional Lower Bounds in Complexity Theory. PhD thesis,
Columbia University, 2015. 6, 33

[Pap94] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994. 7

[Pic15] Ján Pich. Circuit lower bounds in bounded arithmetics. Ann. Pure Appl. Logic,
166(1):29–45, 2015. 11

[PP10] Ramamohan Paturi and Pavel Pudlák. On the complexity of circuit satisfiability. In
Symposium on Theory of Computing (STOC), pages 241–250, 2010. 7

[Raz15] Alexander A. Razborov. Pseudorandom generators hard for k-DNF resolution and
polynomial calculus resolution. Ann. of Math. (2), 181(2):415–472, 2015. 10

49

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), 2009. 8

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci.,
55(1):24–35, 1997. 9, 17, 24

[San09] Rahul Santhanam. Circuit lower bounds for Merlin–Arthur classes. SIAM J. Comput.,
39(3):1038–1061, 2009. 8

[Sri15] Srikanth Srinivasan. A compression algorithm for AC0[⊕] circuits using certifying poly-
nomials. Electronic Colloquium on Computational Complexity (ECCC), 22:142, 2015.
5

[SV10] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority.
SIAM J. Comput., 39(7):3122–3154, 2010. 44

[SW14] Rahul Santhanam and Ryan Williams. On uniformity and circuit lower bounds. Com-
putational Complexity, 23(2):177–205, 2014. 45

[TV07] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity
via uniform reductions. Computational Complexity, 16(4):331–364, 2007. 12, 13, 14,
29, 35

[Val84] Leslie Valiant. A theory of the learnable. Communications of the ACM, pages 1134–
1142, 1984. 3, 5

[vN28] John v. Neumann. Zur Theorie der Gesellschaftsspiele. Math. Ann., 100(1):295–320,
1928. 26

[Vol14] Ilya Volkovich. On learning, lower bounds and (un)keeping promises. In International
Colloquium on Automata, Languages, and Programming (ICALP), pages 1027–1038,
2014. 8

[Vol16] Ilya Volkovich. A guide to learning arithmetic circuits. In Conference on Learning
Theory (COLT), pages 1540–1561, 2016. 8

[VZ13] Salil P. Vadhan and Colin J. Zheng. A uniform min-max theorem with applications in
cryptography. In Cryptology Conference (CRYPTO), pages 93–110, 2013. 29

[Wil13] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds.
SIAM J. Comput., 42(3):1218–1244, 2013. 5, 9, 45

[Wil14a] Ryan Williams. Algorithms for circuits and circuits for algorithms: Connecting the
tractable and intractable. Proceedings of the International Congress of Mathematicians
(ICM), Volume IV:659–682, 2014. 8

[Wil14b] Ryan Williams. New algorithms and lower bounds for circuits with linear threshold
gates. In Symposium on Theory of Computing (STOC), pages 194–202, 2014. 45

[Wil14c] Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014.
4, 6, 9, 14, 32, 45

[Wil16] Ryan Williams. Natural proofs versus derandomization. SIAM J. Comput., 45(2):497–
529, 2016. 9, 24, 33

50

[Yap83] Chee-Keng Yap. Some consequences of non-uniform conditions on uniform classes.
Theor. Comput. Sci., 26:287–300, 1983. 9

51

	1 Introduction
	1.1 Summary of Results
	1.2 Related Work
	1.2.1 Speedups in Complexity Theory
	1.2.2 Connections between Pseudorandomness, Learning and Cryptography
	1.2.3 Lower Bounds from Learning Algorithms
	1.2.4 Useful Properties, Natural Properties, and Circuit Lower Bounds
	1.2.5 Karp-Lipton Theorems in Complexity Theory
	1.2.6 The Minimum Circuit Size Problem

	1.3 Main Techniques
	1.3.1 Overview
	1.3.2 Sketch of Proofs

	2 Preliminaries and Notation
	2.1 Boolean Function Complexity
	2.2 Learning and Compression Algorithms
	2.3 Natural Proofs and the Minimum Circuit Size Problem
	2.4 Randomness and Pseudorandomness

	3 Learning Speedups and Equivalences
	3.1 The Speedup Lemma
	3.2 Equivalences for Learning, Compression, and Distinguishers

	4 Learning versus Pseudorandom Functions
	4.1 The PRF-Distinguisher Game
	4.2 A (Non-Uniform) Converse to ``Learning Implies no PRFs''

	5 Lower Bounds from Nontrivial Algorithms
	6 Karp-Lipton Collapses for Probabilistic Classes
	6.1 A Lemma About Learning with Advice
	6.2 Karp-Lipton Results for Bounded-Error Exponential Time
	6.3 Karp-Lipton Results for Zero-Error Exponential Time

	7 Hardness of the Minimum Circuit Size Problem
	8 Open Problems and Further Research Directions

