
Pseudodeterministic Constructions in Subexponential Time

Igor C. Oliveira∗

Charles University in Prague

Rahul Santhanam†

University of Oxford

December 5, 2016

Abstract

We study pseudodeterministic constructions, i.e., randomized algorithms which output
the same solution on most computation paths. We establish unconditionally that there is
an infinite sequence {pn}n∈N of increasing primes and a randomized algorithm A running
in expected sub-exponential time such that for each n, on input 1|pn|, A outputs pn with
probability 1. In other words, our result provides a pseudodeterministic construction of
primes in sub-exponential time which works infinitely often.

This result follows from a much more general theorem about pseudodeterministic con-
structions. A property Q ⊆ {0, 1}∗ is γ-dense if for large enough n, |Q∩ {0, 1}n| ≥ γ2n. We
show that for each c > 0 at least one of the following holds: (1) There is a pseudodetermin-
istic polynomial time construction of a family {Hn} of sets, Hn ⊆ {0, 1}n, such that for each
(1/nc)-dense property Q ∈ DTIME(nc) and every large enough n, Hn ∩Q 6= ∅; or (2) There
is a deterministic sub-exponential time construction of a family {H ′n} of sets, H ′n ⊆ {0, 1}n,
such that for each (1/nc)-dense property Q ∈ DTIME(nc) and for infinitely many values of
n, H ′n ∩Q 6= ∅.

We provide further algorithmic applications that might be of independent interest. Per-
haps intriguingly, while our main results are unconditional, they have a non-constructive
element, arising from a sequence of applications of the hardness versus randomness paradigm.
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1 Introduction

Number theory tells us that a significant fraction of n-bit integers are prime, but can we
efficiently generate an n-bit prime deterministically? This is a fundamental question in com-
putational number theory and cryptography. A naive solution is to test the n-bit numbers for
primality in order, starting with 2n−1 + 1, using the AKS primality test [AKS02], until we find
one that is prime. Known results about the distribution of prime numbers guarantee that this
procedure works in time 20.525n+o(n) [BHP01]. Despite all the progress that has been made
in understanding the behaviour of prime numbers, the best known deterministic algorithm for
generating n-bit primes runs in time 2n/2+o(n) [LO87], which is not significantly better.

If we are allowed randomness in our generating algorithm, the problem becomes almost
trivial: we repeatedly guess an n-bit number at random and test it for primality, halting if
a prime is found. Using the Prime Number Theorem, we will succeed with probability 1 −
o(1) after Õ(n) tests, each of which can be implemented in poly(n) time. Thus the efficient
deterministic generation problem reduces to derandomizing this algorithm. Under a strong
hardness hypothesis, such as the assumption that linear exponential time requires exponential
size circuits almost everywhere, this derandomization can be performed using known results
from the theory of hardness-randomness tradeoffs [IW97]. However, we appear to be very far
from proving such strong circuit lower bounds.

A few years ago, the Polymath 4 project considered precisely this question of efficient gener-
ation of primes, with the goal of using the state of the art in complexity theory and in number
theory to obtain better results. It was observed during the project that several famous number-
theoretic conjectures, such as Cramer’s conjecture and Schinzel’s hypothesis H, imply better
generation algorithms, as do circuit lower bound assumptions, as described above. All of these
conjectures seem far beyond our reach at present. The Polymath 4 project established [TCH12]
an improved algorithm for determining the parity of the number of primes in a large interval,
but this has not yet yielded an unconditional improvement to the best known deterministic gen-
eration algorithm. The project posed the following question of interest to complexity theorists:
does BPP = P imply more efficient deterministic generation of primes? This is not clear because
the randomized generation algorithm for primes is not an algorithm for a decision problem.

Given the difficulty of finding more efficient deterministic generation algorithms, a natural
approach is to relax the question. We know that randomized generation is easy, and we do not
know of good deterministic generation algorithms. Is there an intermediate notion that could
perhaps be useful?

Such a notion of pseudodeterministic algorithms was defined by Goldwasser and Gat [GG11],
motivated by applications in cryptography and distributed computing, and further studied in
[GGR13, GG15, Gro15]. A pseudodeterministic algorithm is a randomized algorithm, but the
algorithm generates the same output with high probability. Thus, while the algorithm is not
deterministic, the output of the algorithm looks deterministic to a computationally bounded
observer. In the context of generating primes, pseudodeterministic generation means that the
same prime is output on most computation paths. Note that the naive random generation
algorithm does not have this property.

Goldwasser and Gat [GG11] describe the question of pseudodeterministic generation of
primes as “perhaps the most compelling challenge for finding a unique output”. To the best
of our knowledge, it is not known how to do better for this problem than to use the fastest
deterministic algorithm.
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1.1 Main Results

The main application of our techniques is that there is unconditionally a subexponential-time
pseudodeterministic algorithm for generating infinitely many primes.

Theorem 1. Let ε > 0 be any constant. There is an infinite sequence {pn}n∈N of increasing
primes, and a randomized algorithm A running in expected time O(2m

ε
) on inputs of length m

such that for each n ∈ N, A on input 1|pn| outputs pn with probability 1.

Note that the algorithm A is zero-error : on input 1|pn|, it outputs the same prime pn on all
computation paths. In fact, on any input 1m, the algorithm either operates deterministically
and halts without output, or else it outputs the same m-bit prime on all computation paths.

Using the proof idea of Theorem 1, we answer a variant of the question from Polymath
4: under the assumption that ZPP ⊆ i. o.DTIME(2n

c
) for some fixed c > 0 (which is much

weaker than BPP = P), we show that there is a subexponential-time deterministic algorithm for
generating infinitely many primes (see Theorem 9 in Section 3.2).

Theorem 1 has some unusual features: we show that an algorithm exists satisfying the
described properties, but we are not able to explicitly give such an algorithm. Similarly, while
we show the existence of an infinite sequence of primes {pn}, we are unable to bound |pn+1| as
a function of |pn|. These non-constructive features, which are surprising in the context of an
algorithmic solution to a natural problem, arise because Theorem 1 is proved as a corollary of
the following generic result about explicit constructions.

Theorem 2. Call a property Q ⊆ {0, 1}∗ γ-dense if for each large enough n, |Q ∩ {0, 1}n|/2n ≥
γ(n). For each c > 0 at least one of the following holds:

1. There is a deterministic sub-exponential time construction of a family {Hn} of sets, Hn ⊆
{0, 1}n, such that for each (1/nc)-dense property Q ∈ DTIME(nc) and for infinitely many
values of n, Hn ∩Q 6= ∅.

2. There is a zero-error pseudodeterministic polynomial time algorithm outputting a family
{H ′n} of sets, H ′n ⊆ {0, 1}n, such that for each (1/nc)-dense property Q ∈ DTIME(nc) and
every large enough n, H ′n ∩Q 6= ∅.

We derive Theorem 1 by taking Q to be the set of primes in Theorem 2, and observing that
the statement of Theorem 1 follows both from the first and second item of Theorem 2. The
non-constructivity comes from not knowing which of these two items holds, and we discuss this
issue in more detail in Section 1.4.

Consider any property Q as in the statement of Theorem 2, namely with polynomial density
and decidable in deterministic polynomial time. For any such property, there is a randomized
generation algorithm in polynomial time analogous to the one we described for Primes: generate
strings of length n at random and test for membership in Q, halting if a string in Q is found.
What Theorem 2 says is that this randomized generation algorithm can unconditionally be
made pseudodeterministic in a generic fashion, albeit at the cost of increasing the running time
to subexponential, and only succeeding for infinitely many input lengths n.

Theorem 2 is a very general result, and the generality of our techniques enables us to apply
them to give unconditional pseudodeterministic algorithms in other contexts. Even if Theorem
1 does not give an explicit algorithm for generating primes of every input length, it does provide
evidence that such algorithms might not be out of reach of current techniques. More explicit
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and more efficient algorithms could perhaps be designed by tailoring them more closely to the
property at hand.

Nevertheless, we are interested in the question of whether there is a fundamental bottleneck
to constructivity in our proof technique for Theorem 2. By refining some aspects of our approach,
we are able to get somewhat explicit algorithms for generating primes as follows.

Theorem 3. For each ε > 0, there is a constant k > 1, an infinite sequence {qn}n∈N of
increasing primes, and an explicit randomized algorithm A halting in time O(2m

ε
) on inputs of

length m such that for each n ∈ N, A(1|qn|) outputs qn with probability 1 − o(1), and moreover
|qn+1| < |qn|k for each n ∈ N.

The algorithm in Theorem 3 is explicit, but we still cannot say for sure on which input
lengths it will succeed. We do have the guarantee that the gaps between successive input
lengths on which the algorithm succeeds are not superpolynomially large. Theorem 3 does not
strictly improve on Theorem 1 – it is not necessarily true, for example, that the same prime is
output on all computation paths. Namely, we get a bounded-error pseudodeterministic algorithm
rather than a zero-error one. However, the issue of non-constructivity is somewhat mitigated in
Theorem 3.

Theorem 2 yields subexponential-time pseudodeterministic generation algorithms for proper-
ties that are both easy and dense. A more general context is polynomial-time sampling. Here we
are given a sampler that either outputs a string (with high probability) or aborts, and we wish
to design a new sampler that outputs a fixed string with high probability, with the constraint
that this fixed string should belong to the range of the original sampler. We show how to adapt
our ideas to give an analogue of Theorem 2 for this problem. We refer to Section 3.3 for more
details.

We also study the relationship between pseudodeterminism and derandomization. A nat-
ural problem associated with derandomization is the Circuit Acceptance Probability Problem
(CAPP): given a circuit C, output a small-error additive approximation to the acceptance prob-
ability of C. There is a simple randomized polynomial-time algorithm for this problem – sample
polynomially many inputs of C at random, and output the fraction of these inputs on which
C accepts. This algorithm outputs different estimations of the acceptance probability of C
on different computation paths. We show how to get a pseudodeterministic algorithm as in
Theorem 2 for infinitely many input lengths, but our algorithm is only guaranteed to succeed
distributionally rather than in the worst case. (We refer to Section 4 for a precise formulation
of the result.)

Theorem 4. For any ε > 0 and any polynomial-time samplable sequence D = {Dn} of distribu-
tions over Boolean circuits, CAPP is pseudodeterministically solvable for infinitely many input
lengths n in time 2O(nε) with high probability over Dn.

One of the main questions in the theory of derandomization concerns the relationship between
“white-box” and “black-box” derandomization. Black-box derandomization refers to derandom-
ization using a fixed pseudorandom generator, while in white-box derandomization, we are given
a circuit and asked to approximate its acceptance probability deterministically. Black-box de-
randomization implies white-box derandomization of randomized algorithms, and white-box
derandomization implies deterministic simulations of languages in BPP. However, it is unknown
whether these implications can be reversed in general (cf. [For01, Gol11]), and separations are
known in relativized worlds [For01].
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We prove that these notions are all in fact equivalent in the setting of subexponential-time
derandomization that works infinitely often on average over polynomial-time samplable distri-
butions. (While Theorem 4 provides a randomized algorithm, we stress that the algorithms
postulated in Theorem 5 below are all deterministic. We refer to Section 4 for definitions.)

Theorem 5. The following statements are equivalent :

1. For each polynomial-time samplable distribution D of Boolean circuits and each ε > 0,
there is an i.o.PRG G on average over D with seed length nε that is computable in time
2O(nε).

2. For each polynomial-time samplable distribution D over Boolean circuits and each ε > 0,
CAPP is solvable infinitely often in time 2O(nε) on average over D.

3. For each polynomial-time samplable distribution D over input strings and each ε > 0, BPP
is solvable infinitely often in time 2O(nε) with O(log(n)) bits of advice on average over D.

4. For each ε > 0, BPP is solvable infinitely often in time 2O(nε) on average over Un.

Therefore, in order to establish all these items it is necessary and sufficient to turn the
(unconditional) pseudodeterministic algorithm from Theorem 4 into a deterministic algorithm.

1.2 Related Work

There has been a lot of work on explicitly constructing combinatorial objects that can be
shown to exist by the probabilistic method. Vadhan [Vad12] surveys known unconditional
constructions of such objects, and connections to the theory of pseudorandomness. There are
important properties, such as the Ramsey property, for which optimal explicit constructions are
still not known, though there has been much recent progress (cf. [CZ16, Coh16]). However, in
many cases, such constructions do exist if the notion of explicitness is weakened or if a sufficiently
strong derandomization hypothesis is made [Tre06, San12].

The techniques used to show explicit constructions of combinatorial objects do not seem to be
directly relevant to constructions of algebraic objects such as irreducible polynomials or number-
theoretic objects such as primes. Shoup [Sho90] shows how to deterministically construct an
irreducible polynomial of degree n over the field Fp in time polynomial in n and p. This is useful
for constructions of irreducible polynomials over fields of small characteristic, but the large-
characteristic case is still open – ideally we would like the construction algorithm to operate in
time poly(n, log(p)).

For primes, known results are even weaker. The fastest known algorithm generates n-bit
primes in time 2(γ+o(1))n, for γ = 1/2 [LO87]. There are algorithms that achieve an arbitrarily
small constant γ > 0, but assume certain number-theoretic conjectures. Faster running times
can be obtained under stronger conjectures, and we refer to the introduction of [TCH12] for
more information.

Assuming standard (but hard to prove) derandomization hypotheses, stronger explicit con-
structions are known. It is folklore that the existence of hitting sets against a class C of algorithms
yields explicit deterministic constructions for every dense property computed by C-algorithms.
References that discuss this include [Tre06, San12, Gol11]). As an example, the assumption
that E requires exponential-size Boolean circuits implies polynomial-time explicit constructions
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of irreducible polynomials and of primes. However, in this work, we are interested in uncon-
ditional, albeit pseudodeterministic, constructions for properties decidable in polynomial time.
(While there are unconditional pseudorandom generators against restricted classes of algorithms
such as small-depth polynomial size circuits, it is known that such circuits cannot decide several
properties of interest, such as prime numbers [ASS01].)

Perhaps the most closely related result is a certain unconditional derandomization of one-
sided polynomial time randomized algorithms in subexponential time established in [Kab01].
However, the focus there is on decision problems, and as remarked above, such results do not
immediately imply pseudodeterministic constructions. The easy witness method from [Kab01]
is an important tool in some of our proofs.

The investigation of the power and limitations of pseudodeterministic algorithms is fairly
recent. A sequence of works [GG11, GGR13, GG15, Gro15] has started the development of a
more general theory of pseudodeterministic computation. These papers give pseudodeterministic
algorithms that are faster than their known deterministic counterparts for various concrete search
problems of interest, and also give some structural results.

Connections between black-box derandomization, white-box derandomization and determin-
istic simulation of BPP are explored by Fortnow [For01], who shows relativized separations
between these notions. Goldreich [Gol11] shows an equivalence between white-box derandom-
ization and black-box derandomization in the average-case setting; however he consider pseudo-
random generators that work against uniform algorithms, rather than against non-uniform cir-
cuits. Implagliazzo, Kabanets and Wigderson [IKW02] give an equivalence between white-box
and black-box derandomization in the setting where we allow the derandomization to be done
non-deterministically with a small amount of advice, and the derandomization is only required
to be correct for infinitely many input lengths.

1.3 Techniques

Suppose we wish to pseudodeterministically generate strings satisfying some property Q
that is dense and is decidable in polynomial time, such as Primes.1 It is well-known that using
standard hardness-randomness tradeoffs, efficient deterministic generation can be done under a

strong enough circuit lower bound assumption for E
def
= DTIME(2O(n)) (linear exponential time).

Our first observation is that efficient pseudodeterministic generation follows from weaker
circuit lower bound assumptions, namely circuit lower bounds for the probabilistic classes BPE =
BPTIME(2O(n)) (bounded-error linear exponential time) and ZPE = ZPTIME(2O(n)) (zero-error
linear exponential time). Pseudodeterministic algorithms come in two flavours: zero-error, where
the algorithm outputs a fixed string (with high probability) or else aborts, and bounded-error,
where it outputs a fixed string on most computation paths but might output other strings on
exceptional computation paths. It turns out that strong enough circuit lower bounds for BPE
imply efficient bounded-error pseudodeterministic generation, and strong enough circuit lower
bounds for ZPE imply efficient zero-error pseudodeterministic generation. This is because a
hard function in BPE (resp. a hard function in ZPE) yields a bounded-error (resp. zero-error)
pseudodeterministic construction of a discrepancy set (see Section 2). In turn, once such a
discrepancy set is obtained, its elements can be checked in some fixed order for membership in
Q, and the first such element belonging to Q can then be output pseudodeterministically.

1For concreteness, we let Primes
def
= {w ∈ {0, 1}∗ | w = wn−1wn−2 . . . w0, wn−1 = 1, and

∑n−1
i=0 2iwi is prime }.

6



Note that circuit lower bounds for BPE do not seem useful for decision problems: using a suf-
ficiently hard function in BPE in a pseudorandom generator would merely yield the tautologous
inclusion BPP ⊆ BPP. However, such circuit lower bounds are useful for pseudo-derandomization
of search problems.2

To turn our conditional pseudodeterministic generation algorithms into unconditional ones,
we use the uniform hardness-randomness tradeoffs of [IW01, TV07] and win-win analysis, show-
ing that both the success and the failure of certain pseudorandom generators can be exploited
to give non-trivial pseudodeterministic constructions. The specific win-win analysis we use de-
pends on the intended application. In order to make some constructions zero-error, we further
combine the arguments with the easy witness method [Kab01].

We describe next the main conceptual ideas behind the proof of each main result stated in
Section 1.1.

Theorem 1 (Non-constructive zero-error pseudo-deterministic algorithm for Primes). Recall
that Theorem 1 is a straightforward consequence of Theorem 2. In each case, it follows that
there is a pseudodeterministic subexponential time algorithm which simply outputs the lexico-
graphic first n-bit prime in the hitting set. The non-constructive aspect of Theorem 1 arises
because we do not know which of items (1) and (2) holds in Theorem 2.

Theorem 2 (Unconditional pseudo-deterministic hitting set generators). Here we use a win-
win-win analysis. We try two different candidate hitting set generators Heasy and Hhard, both
computable in deterministic subexponential time. The first generator is based on the easy wit-
ness method of Kabanets [Kab01], and the second is the generator of Trevisan-Vadhan [TV07].
If either of the corresponding hitting set families intersects Q ∩ {0, 1}n infinitely often, we have
that the first item of Theorem 2 holds. If not, then we show that we have the complexity col-
lapse PSPACE = ZPP. We exploit this collapse to derive strong circuit lower bounds in ZPE,
and are then able to use our conditional argument for efficient pseudodeterministic generation
to conclude the second item.

Theorem 3 (Constructive bounded-error pseudo-deterministic algorithm for Primes). The proof
for Theorem 2 gives no information on the sparsity of input lengths for which the construction
succeeds, nor does it give us an explicit algorithm. An important reason for this is that we prove
item (2) to hold in Theorem 2 only if the candidate hitting set generators in item (1) fail almost
everywhere. We first show a refinement of the main technical lemma which allows us to derive
a consequence for item (2) from a failure of item (1) for all input lengths in a polynomially
large range of input lengths. We then crucially use the fact that item (1) gives deterministically
generatable hitting sets which can be checked for correctness somewhat efficiently to guarantee
that either item (1) or item (2) must hold in every large enough polynomial range of input
lengths.3 The details are somewhat technical, and we provide a more intuitive explanation in
Section 3.4.

Theorem 4 (Pseudodeterministic algorithm for CAPP). We use a win-win analysis once again,

2It is natural to wonder if there are techniques tailored to BPE and ZPE lower bounds. We refer the interested
reader to the approaches outlined in [OS16].

3The possible sparsity of the sequence of primes produced by our algorithm is an artifact of our complexity-
theoretic techniques. In contrast, constructions using standard number-theoretic techniques typically use analytic
methods and succeed for every large enough input length (James Maynard, personal communication).
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relying on the fact that pseudo-random generators can be employed to approximate the accep-
tance probability of circuits in a deterministic fashion. If the candidate pseudo-random generator
we use succeeds infinitely often, we can solve CAPP deterministically infinitely often; if it fails
in an average-case sense, we adapt the arguments used in the proof of Theorem 2 to show how
to solve CAPP pseudodeterministically in polynomial time.

Theorem 5 (Equivalences for deterministic algorithms in the average-case ). The most in-
teresting implications rely on results from previous works. The simulation in (3) assuming (2)
introduces advice, and this advice is eliminated in item (4) as follows. Under assumption (3),
it follows by diagonalization that EXP 6= BPP. In turn, [IW01] showed that this hypothesis
provides sub-exponential time simulations of BPP, as required in (4). Perhaps a more surprising
connection is that (4) implies (1). Our argument is based on another win-win analysis, and
relies on results from [BFNW93, IW01, TV07]. Under (4), it can be shown that EXP 6= BPP,
and that this implies that either EXP * P/poly, or PSPACE 6= BPP. In each case, we argue
that any samplable distribution admits an average-case pseudo-random generator satisfying the
conditions in (1).

1.4 Constructivity: PSEUDO versus SPARSE

Note the quantification in the statement of Theorem 2: there is a pseudodeterministic poly-
nomial time algorithm producing a hitting set family which works for every sufficiently dense
easy property, or there is a deterministic subexponential time algorithm producing hitting set
families which work infinitely often for every sufficiently dense easy property. Thus we provably
live in one of two worlds:4 a world PSEUDO where there is a generic hitting set family for suf-
ficiently dense easy properties that is computable in zero-error pseudodeterministic polynomial
time, or a world SPARSE where generic hitting set families are computable deterministically
but only in subexponential time, and moreover the hitting sets only work infinitely often. These
two worlds could co-exist. Indeed many complexity theorists believe that linear exponential time
requires exponential size circuits on almost all input lengths, which would imply the co-existence
of the two worlds. However, given the available techniques at this point in time, we are only
able to establish that we live in one of the two worlds.

The fact that we can show that we live in one of these two worlds, but don’t know which one,
leads to a certain non-constructivity in our results, which is ironic given that we are motivated by
explicit constructions! We can show that we live in one of the worlds PSEUDO or SPARSE,
and in the latter case, our proof provides an explicit algorithm witnessing that we live in that
world, namely the algorithm producing the union of the hitting set families Heasy and Hhard.
However, in the former case, the proof does not provide an explicit algorithm witnessing that
we live in that world. This is because the proof relies on the existence of an easy dense property
which acts as distinguisher for the hitting set families, and we do not know a priori which
property this is.

A further element of non-constructivity in Theorem 2 is that in case we live in the world
SPARSE, we have no information on the set of input lengths for which the hitting set works,
except that this set is infinite. This set could be arbitrarily sparse. The reason is that we can
only show the second item based on the hitting set families Heasy and Hhard failing to work on
all large enough input lengths.

4Inspired by the worlds of Impagliazzo [Imp95].
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We partially address both issues in Section 3.4, and we refer to that section for further
discussions on PSEUDO and SPARSE.

2 Preliminaries

2.1 Basic Definitions and Notation

We refer to algorithms in a sufficiently strong computational model, such as the 2-tape Tur-
ing Machine over the alphabet {0, 1,⊥}. We use standard encodings of objects such as numbers

and finite sets by strings. For convenience, we let N def
= {1, 2, . . .}. Given a string u ∈ {0, 1}≥n,

we let leftn(u) denote its leftmost n bits.

Properties and Density. A property5 is an arbitrary set Q ⊆ {0, 1}∗. Let Qn
def
= Q ∩ {0, 1}n,

and Q≤n
def
=
⋃
m≤nQm. Given a function γ : N→ R, we say that Q is γ-dense if |Qn|/2n ≥ γ(n)

for every large enough n. We say that Q is dense if there is c > 0 such that Q is γ-dense with
γ(n) ≥ n−c for every sufficiently large n. We say that Q is easy if Q is decidable in deterministic
polynomial time.

Hitting Sets and Discrepancy Sets. Let H = {Hn}n∈N be a sequence, where Hn ⊆ {0, 1}n
for each n ∈ N, and let Q ⊆ {0, 1}∗ be a property. We say that H is a hitting set for Q at length
n if Hn ∩Qn 6= ∅. Given a set S ⊆ N of input lengths, we say that H is a hitting set family for
Q on S if it is a hitting set for Q at length n for each n ∈ S. We say that H is a hitting set
family for Q in case it is a hitting set family for Q on some co-finite set S, and we say that H
is an i.o. hitting set family for Q if it is a hitting set for Q on some infinite set S.

Let γ : N → R be an arbitrary function. We say that a sequence H of (multi-) sets Hn is a
γ-discrepancy set for Q at length n if ||Qn|/2n − |Hn ∩Qn|/|Hn|| < γ(n). The notions of being
a γ-discrepancy set family at a set S ⊆ N of input lengths, an i.o. γ-discrepancy set family and
a γ-discrepancy set family are defined in analogy to the previous paragraph. Note that if Q is
γ-dense, then a γ-discrepancy set family H for Q is also a hitting set family for Q.

Pseudodeterministic Algorithms. By default, we consider randomized algorithms whose
input and output are both strings. Let p be a real-valued parameter. A randomized algorithm
A(·) is said to be a bounded-error pseudodeterministic algorithm with success probability p if
there is a function f : {0, 1}∗ → {0, 1}∗ such that A(x) = f(x) with probability at least p over
the random choices of A. We call such a function f a p-canonical function for A, and an out-
put f(x) of the function a p-canonical output of A(x). A randomized algorithm A(·) is said to
be a zero-error pseudodeterministic algorithm with success probability p if there is a function
f : {0, 1}∗ → {0, 1}∗ such that on each computation path, A(x) outputs either f(x) or ⊥, and
A(x) = f(x) with probability at least p over the random choices of A.

Given a set S of inputs, we say that an algorithm is pseudodeterministic on S if the pseu-
dodeterministic promise is only required to hold for inputs in S. When the algorithm takes a
unary input, we sometimes identify subsets of inputs with subsets of N, in the natural way.

For any bounded-error pseudodeterministic algorithm with success probability > 1/2 or
any zero-error pseudodeterministic algorithm with success probability > 0, there is a unique

5We use the term “property” rather than “language” or “Boolean function” to highlight that in our setting,
we are more interested in the efficient constructibility of positive instances than in efficient recognizability.
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p-canonical function, defined in the former case by the unique output produced with probability
> 1/2, and in the latter case by the unique non-⊥ output. In both cases, we simply call the
function and the corresponding output canonical.

Let Q be a property, p a real-valued parameter, and T : N→ N be a time function. We say
that there is a bounded-error pseudodeterministic construction with success probability p for Q
in time T if there is a bounded-error pseudodeterministic algorithm A with success probability
p such that for all large enough n, A(1n) halts in time T (n) and has a p-canonical output in
Qn. Similarly, we say that there is a zero-error pseudodeterministic construction with success
probability p for Q in time T if there is a zero-error pseudodeterministic algorithm A with success
probability p, such that for all large enough n, A(1n) halts in time T (n) and has a p-canonical
output in Qn.

As with hitting sets and discrepancy sets, given a set S ⊆ N, we can generalize the notion of a
pseudodeterministic construction to the notion of a pseudodeterministic construction on S, which
means that A(1n) has a p-canonical output in Qn for each n ∈ S. An i.o. pseudodeterministic
construction is a pseudodeterministic construction on some infinite set S.

When the parameter p = p(n) for a pseudodeterministic algorithm is omitted, it is taken
by default to be 1 − o(1). For such a pseudodeterministic algorithm A on input x of length n,
for a large enough n, we will sometimes abuse notation and use A(x) to refer to the canonical
output of A on x. Indeed, as observed next, bounded-error pseudodeterministic constructions
and zero-error pseudodeterministic constructions are largely robust to variations in the success
probability.

Proposition 1. Let Q ⊆ {0, 1}∗ be a property, and T : N→ N be a time function.

(i) There exists a bounded-error pseudodeterministic construction for Q with success probabil-
ity ≥ 1/2 + 1/poly(n) in time T · poly(n) if and only if there is a bounded-error pseudo-
deterministic construction for Q with success probability ≥ 1− 2−n in time T · poly(n).

(ii) There exists a zero-error pseudodeterministic construction for Q with success probability
≥ 1/poly(n) in time T · poly(n) if and only if there is a zero-error pseudodeterministic
construction for Q with success probability ≥ 1− 2−n in time T · poly(n).

Proof. The proof is a simple adaptation of the proof of error amplification for bounded-error
and zero-error algorithms which recognize languages. Hence we just give a sketch.

We show the equivalence for bounded-error constructions first. We only need to show the
forward implication, as the backward implication is trivial. By assumption, there is a bounded-
error pseudodeterministic algorithm A with success probability 1/2 + 1/ poly(n) such that the
canonical output of A(1n) belongs to Qn for n large enough. We amplify the success probability
of A by running it poly(n) times independently, and outputting the string that is produced most
often as an output among these runs, breaking ties arbitrarily. Using standard concentration
bounds, it is easy to show that this new algorithm is bounded-error pseudodeterministic with
success probability at least 1− 2−n, and has the same canonical output as A.

The proof is similar for zero-error constructions. Given a zero-error pseudodeterministic
algorithm A with success probability 1/ poly(n), we amplify the success probability by running
A poly(n) times independently where the number of runs is chosen large enough depending on
the success probability, outputting the canonical output of A if it is produced on any of the runs,
and ⊥ otherwise. Simply by independence of the runs, the canonical output of A is produced
by this new algorithm with success probability 1− 2−n, and the new algorithm is still zero-error
pseudodeterministic.
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As opposed to Theorem 1, the algorithm from Theorem 3 might generate different primes
on inputs 1` for which it is not the case that ` = |qn| for some n. It is not excluded that on
some inputs of this form each prime is generated with approximately equal and non-negligible
probability. This can be partially addressed using the following simple proposition.

Proposition 2 (Purifying infinitely-often pseudo-deterministic constructors). Let S ⊆ N be
arbitrary, and let A be a bounded-error pseudodeterministic construction for Q with success
probability ≥ 2/3 on every input 1m with m ∈ S. Then there is a bounded-error pseudodeter-
ministic construction A′ for Q for which the following holds:

(i) On every input 1m with m ∈ S, A′ outputs the same canonical solution A(1m) with high
probability.

(ii) On an arbitrary input 1n with n ∈ N, there exists a set V ′n ⊆ {0, 1}n ∪ {⊥} satisfying
|V ′n ∩ {0, 1}n| ≤ 1 such that A′(1n) ∈ V ′n with high probability.

(iii) The running time of A′ is at most a polynomial factor larger than the running time of A.

Proof. On input 1n, A′ simulates t = n2 executions of A on input 1n. Let a1, . . . , at be random
variables supported over {0, 1}n ∪ {⊥} representing the output of A on each such computation.
A′ outputs the lexicographic first string in {0, 1}n that appears more than 0.6t times among
a1, . . . , at. If no such string exists, A′ outputs ⊥.

Clearly, A′ satisfies (iii). It is easy to see that it also satisfies (i) by a standard concentration
bound, since on each such input 1m algorithm A outputs a fixed solution with probability
≥ 2/3. To establish (ii), note that on an arbitrary input 1n, there is at most one element
b ∈ {0, 1}n ∪ {⊥} such that Pr[A(1n) = b] > 1/2. Take V ′n = {b,⊥} if such element exists,
and set V ′n = {⊥} otherwise. In the latter case, the probability that any fixed string in {0, 1}n
appears ≥ 0.6t times among a1, . . . , at is exponentially small, and by a union bound with high
probability A′ outputs ⊥∈ V ′n. Similarly, in the former case no string b′ 6= b that belongs to
{0, 1}n will appear more than ≥ 0.6t times among a1, . . . , at, except with exponentially small
probability. By a union bound, the output of A′ must be in V ′n with high probability.

Complexity Classes. We use the standard definitions for classes such as P, BPP, RP,

ZPP, and PSPACE. We will also use BPE
def
= BPTIME(2O(n)), ZPE

def
= ZPTIME(2O(n)) and

ESPACE
def
= DSPACE(2O(n)). We refer to standard textbooks such as [AB09, Gol08] for more

information about complexity theory.

Boolean Circuits and Pseudorandom Generators. We consider Boolean circuits consisting
of fan-in two gates over the standard B2 basis, and measure circuit size by the number of wires
in the circuit. The precise details will not be important here, and we refer to [Juk12] for more
background in circuit complexity. Given a size function s : N → N, SIZE(s) is the class of
properties Q such that Qn has Boolean circuits of size s(n), for each n ∈ N.

We say that a function G : {0, 1}` → {0, 1}m ε-fools algorithms (circuits) of running time
(circuit size) t if for every such algorithm (circuit) D,∣∣∣∣ Pr

w∼{0,1}`
[D(G(w)) = 1]− Pr

u∼{0,1}m
[D(u) = 1]

∣∣∣∣ < ε.

Otherwise, we say that D ε-distinguishes G (on seed length `).
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We will consider a sequence {G`}`∈N of generators G` : {0, 1}` → {0, 1}m(`), which we also
view as a single function G : {0, 1}∗ → {0, 1}∗. The function m(·) is the stretch of G. We say that
a generator G with stretch m(·) is quick if on every input w ∈ {0, 1}`, G(w) can be computed in
time O(m(`)d), where d is a fixed constant independent of the remaining parameters. Finally,
we say that an algorithm D is a t(m)-distinguisher for G if D runs in time at most t(m), and
on every sufficiently large `, D 1/t(m)-distinguishes G`.

2.2 Technical Results

We make use of the following “hardness versus randomness” results.

Theorem 6 (Impagliazzo and Wigderson [IW97]). There is a function F : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗, computable in polynomial time, for which the following holds. For every γ > 0, there
exist constants a, b ≥ 1 such that for every r ∈ N,

F ({0, 1}ra × {0, 1}b log r) ⊆ {0, 1}r,

and if Th ∈ {0, 1}r
a

is the truth-table of a function h : {0, 1}a log r → {0, 1} of circuit complexity
≥ rγa, then

Gh : {0, 1}b log r → {0, 1}r, given by Gh(w)
def
= F (Th, w),

is a (quick) pseudorandom generator that (1/r)-fools size-r circuits.

The next generator is based on a downward-self-reducible and self-correctable PSPACE-
complete language L? described in [TV07], and the corresponding result can be seem as a uniform
“low-end” version of Theorem 6. The following formulation is sufficient for our purposes.

Theorem 7 (Impagliazzo and Wigderson [IW01], Trevisan and Vadhan [TV07]). For every
integers b, c ≥ 1, there exists an integer d ≥ 1 and a function G? : {0, 1}∗ → {0, 1}∗ with
restrictions

G?` : {0, 1}` → {0, 1}m(`), where m(`) = `b,

such that G? can be computed in time O(m(`)d) = poly(`) when given oracle access to L?≤`, and
the following holds. If the output of G?` can be (1/m(`)c)-distinguished from random for every
large enough ` ∈ N by an algorithm running in time O(m(`)c), then PSPACE ⊆ BPP.

3 Pseudodeterministic Constructions

3.1 Conditional Constructions

Lemma 1. If there is an ε > 0 and a Boolean function h ∈ BPE (resp. h ∈ ZPE) that requires
circuits of size 2εm on all large enough input lengths m ∈ N, then for each constant c > 0, there
is a bounded-error (resp. zero-error) pseudodeterministic algorithm A running in polynomial
time such that {A(1n)} is a (1/nc)-discrepancy set family for every property Q decidable in
deterministic time nc.

Proof. We give the proof for the case that h ∈ BPE; the case that h ∈ ZPE is exactly analogous.
Assume without loss of generality that the probabilistic exponential-time machine N computing
h has failure probability < 2−2m on any input of length m.

12



We define the behaviour of pseudodeterministic algorithm A on input 1n using Theorem 6
as follows. We apply this result with constants a and b corresponding to the choice γ = ε. Let
r = n2c. The algorithm A first computes the truth table Th of the function h on input size a log r
by evaluating h on every input of size a log r using the probabilistic exponential-time machine
N . (We assume here that r is a power of 2; if not, the same argument works by setting r to be
the smallest power of 2 larger than n2c.) Note that by a union bound, A computes the entire
truth table correctly with probability 1 − o(1), and runs in time poly(n). A then computes
F (Th, y) for each string y ∈ {0, 1}b log r, using the polynomial-time algorithm for F guaranteed
by Theorem 6, and forms a multi-set H ′n ⊆ {0, 1}n

2c
composed of the union of these strings. It

then forms the (multi-) set Hn
def
= {leftn(u) | u ∈ H ′n}, and outputs Hn.

Note that the same set Hn is output whenever the correct truth table Th is computed, which
happens with probability 1−o(1) as argued before. Hence A is a pseudodeterministic algorithm
with success probability 1− o(1). Let Hn be the canonical output of A(1n).

It remains to argue that Hn is a 1/nc-discrepancy set for Qn for large enough n, where Q
is any property decidable in time nc for n large enough. Let M be a deterministic machine
deciding Q with a running time of this form, and let Dn be the Boolean circuit of size n2c

obtained by translating M ’s computation on inputs of length n into a circuit, as in the proof of
the Cook-Levin theorem. Let Cn be the circuit of size n2c on input x of size n2c, which simulates
Dn on leftn(x) and outputs the answer. Finally, let n be large enough that h requires circuits of
size at least m2acε on inputs of size 2ac logm for any m ≥ n that is a power of two. By Theorem
6, Gh : {0, 1}b log r → {0, 1}r 1/n2c-fools Cn. It follows that Hn is a 1/nc-discrepancy set for Qn
for n large enough, using the facts that Cn accepts a string u of length n2c if and only if Dn

accepts leftn(u), and that Dn accepts a string z ∈ {0, 1}n if and only if z ∈ Qn.

Remark 1. We note that the conclusion of Lemma 1 holds even for properties decidable by
Boolean circuits of size ≤ nc, since we do not take advantage of uniformity in the argument
above.

Corollary 1. Let Q be any property that is easy and dense. If there is an ε > 0 and a Boolean
function f ∈ BPE (resp. f ∈ ZPE) that requires circuits of size 2εm on all large enough input
lengths m ∈ N, then there is a bounded-error (resp. zero-error) pseudodeterministic construction
for Q in polynomial time.

Proof. Again we give the proof for the case that f ∈ BPE; the case that f ∈ ZPE is exactly
analogous. Let Q be any property that is easy and dense. Let M be a polynomial-time Turing
machine deciding Q. Let c be a constant chosen large enough such that Qn is 1/nc-dense and M
runs in time at most nc for n large enough. Using Lemma 1, we have that there is a bounded-error
pseudodeterministic algorithm A running in polynomial time such that the canonical output Hn

of A(1n) is a 1/nc-discrepancy set for Qn. Hence, by the density condition on Q, we have that
Hn is a hitting set for Qn for n large enough.

We define a bounded-error pseudodeterministic algorithm AQ running in polynomial time,
whose canonical output on input 1n belongs to Qn for n large enough. AQ(1n) first simulates
A(1n) to obtain a subset Sn of {0, 1}n; if the output of A(1n) is not such a subset, it outputs
an arbitrary string. With probability 1− o(1), Sn is the canonical output of A(1n), which is the
hitting set Hn ⊆ {0, 1}n of size poly(n). AQ then orders the strings in Sn in lexicographic order
to obtain a list y1, y2, . . . , ym, where m = poly(n), and each yi, i = 1, . . . ,m, is an n-bit string.
AQ simulates M on each of the yi’s, in order, until it finds a yi on which M accepts. If it finds
such a yi, it outputs yi, otherwise it rejects.
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For n large enough, let zn be the smallest element of Hn in lexicographic order which belongs
to Qn. Since Hn is a hitting set for Qn for n large enough, such a string zn exists. It is easy to
see that AQ outputs zn with probability 1− o(1), and hence that zn is the canonical output of
AQ(1n). This is because Sn = Hn with probability 1− o(1), and whenever Sn = Hn, the string
zn is output by AQ. Clearly AQ runs in time poly(n) and is a pseudodeterministic algorithm
with success probability 1− o(1) whose canonical output is in Qn for n large enough.

The proof of Corollary 1 can easily be adapted to give a bounded-error pseudodeterministic
construction in polynomial time even when the condition on easiness of Q is relaxed to Q ∈ BPP,
and a zero-error pseudodeterministic construction in polynomial time even when the condition
on easiness of Q is relaxed to Q ∈ ZPP. There is also a natural tradeoff between the hardness
assumption and the running time of the corresponding pseudodeterministic construction, which
can be obtained by using a generalization of Theorem 6 giving a hardness-randomness tradeoff
based on circuit lower bounds varying from superpolynomial to exponential.

Note that the easiness assumption on Q is used twice to obtain Corollary 1, the first time
in the proof of Lemma 1 to obtain pseudodeterministic algorithms outputting discrepancy sets
based on the hardness assumption, and the second time in the proof of Corollary 1 to obtain a
pseudodeterministic construction for Q from the discrepancy set. The first use of the assumption
can be eliminated by using a stronger hardness assumption with respects to circuits that have
oracle access to Q, but the second use seems essential.

3.2 Unconditional Constructions that Work Infinitely Often

By using in addition uniform hardness-randomness tradeoffs, we obtain unconditionally that
there are pseudodeterministic constructions for easy dense sets in polynomial time, or else there
are deterministic constructions for easy dense sets in subexponential time which work infinitely
often. In fact, we obtain the following stronger result stating that in either case, there is a
generic hitting set family that works simultaneously for all easy dense sets where the easiness
and density parameters are fixed in advance.

Theorem 8 (Restatement of Theorem 2). Let c > 0 be any constant. At least one of the
following is true:

1. There is a pseudodeterministic algorithm A running in polynomial time such that {A(1n)}
is a hitting set family for every 1/nc-dense property Q decidable in time nc.

2. For each ε > 0, there is a deterministic algorithm Bε running in time O(2n
ε
), such that

{Bε(1n)} is an i.o. hitting set family for every 1/nc-dense property Q decidable in time
nc.

We now give the proof of Theorem 8. Informally, the proof is a “win-win-win” argument using
uniform hardness-randomness tradeoffs. We will describe two candidate hitting set familiesHeasy

and Hhard computable in sub-exponential time, the first based on the “easy witness” method
of Kabanets [Kab01], and the second based on the uniform hardness-randomness tradeoffs of
Impagliazzo-Wigderson and Trevisan-Vadhan [IW01, TV07]. We will show that if there is a
sufficiently easy dense property Q such that Heasy is not an i.o. hitting set family for Q, then
BPP = ZPP. We will also show that if there is a sufficiently easy dense property Q such that
Hhard is not an i.o. hitting set family for Q, then PSPACE = BPP. Thus, in each of these
cases, we either “win” for each sufficiently easy dense property Q by computing an i.o. hitting
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set family in sub-exponential time, or we have a complexity collapse. Finally, we show how to
“win” in the case that both complexity collapses occur, by using Lemma 1. The win in this case
is in the form of a polynomial-time pseudodeterministic algorithm which outputs a hitting set
family for each sufficiently easy dense property. When either of the first two wins occur, item 2
of Theorem 8 holds, and when the third win occurs, item 1 holds.

Fix a c > 0 as in the statement of Theorem 8, and let ε > 0 be any constant. The candidate
hitting set families Heasy and Hhard depend on ε, but we work with a fixed arbitrarily small ε > 0
through the proof, and therefore do not need to formalize this dependence.

We first define the candidate hitting set family Heasy. Consider the set Cn of all Boolean

circuits C on dlog ne input variables and of size at most nδ, where δ
def
= ε/10. Each circuit

C ∈ Cn computes a Boolean function fC : {0, 1}dlog(n)e → {0, 1}, and its truth-table tt(fC) is a
string of length ≥ n. We consider the following family Heasy = {Heasy

n } obtained from Cn:

Heasy
n

def
= {leftn(tt(fC)) | C ∈ Cn} ⊆ {0, 1}n.

By our choice of δ = ε/10 and a standard upper bound on the number of small circuits (cf.

[AB09]), there are at most O(2n
2δ

) ≤ O(2n
ε/2

) strings in Heasy
n . Furthermore, an ordered list

containing all such strings can be printed in time O(2n
ε
).

The following lemma is key to our analysis of Heasy.

Lemma 2. If there is a 1/nc-dense property Q decidable in deterministic time nc such that
Heasy is not an i.o. hitting set family for Q, then BPP ⊆ ZPP.

Proof. Let L ∈ BPP, and VL be a polynomial time verifier that decides L in time ncL/2, where
cL ≥ 1. In other words, if x ∈ L then Pry[VL(x, y) = 1] ≥ 2/3, while if x /∈ L we have
Pry[VL(x, y) = 1] ≤ 1/3. By assumption, there is a 1/nc-dense property Q decidable in deter-
ministic time nc such that Heasy

n ∩Qn = ∅ whenever n ≥ n0, where n0 is a fixed constant. Let
V be a deterministic Turing machine running in time nc for n large enough, and deciding Q.

The following zero-error algorithm B1 decides L in polynomial time. Let x ∈ {0, 1}n be the
input string of B1. If n < n0, B1 outputs the correct answer by storing it on its code. Otherwise,
consider the Boolean circuit Dx of size at most ncL obtained from VL by fixing its first input
to x. In order to decide L on x it is enough to estimate the acceptance probability of Dx with
additive error at most 1/10.

Let m
def
= ncL , γ

def
= δ, and assume from now on that n ≥ n0. Let F be the polynomial time

computable function from Theorem 6, and a, b ≥ 1 be the respective constants for our choice of

γ. Finally, set `
def
= a · log(r) = a · cL · log(n), and m

def
= 2` = na·cL ≤ poly(n).

Algorithm B1 samples k
def
= m10c independent uniformly distributed strings z1, . . . , zk ∼

{0, 1}m. Let zi be the first string on this list such that V (zi) = 1, if such string exists. Otherwise,
B1 aborts its computation. Using the hypothesis that Q is n−c-dense, we get that whenever n is
sufficiently large, algorithm B1 succeeds with high probability in finding a string zi of this form.
By redefining n0, we can assume without loss of generality that B1 succeeds whenever n ≥ n0.

Sincem ≥ n ≥ n0 and zi ∈ Q, it follows from our previous discussion that zi /∈ Heasy
m . In other

words, zi is not the leftmost segment of the truth-table of a Boolean function f : {0, 1}a·log r →
{0, 1} of circuit complexity at most mδ = rγa.

Let h : {0, 1}a logm → {0, 1} be the Boolean function encoded by the string zi completed with
zeroes until the next power of two. The previous paragraph implies that h has circuit complexity
greater than rγa. It follows from Theorem 6 that Gh : {0, 1}b log r → {0, 1}r is a generator that
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(1/10)-fools circuits of size at most r = ncL . Since F and h are efficiently computable in n,
B1 can compute Gh(w) = F (zi, w) on every input w ∈ {0, 1}a log r in time poly(n). Moreover,
the seed length of Gh is O(log n). By standard methods, i.e. by trying all possible seeds of
Gh and taking a majority vote using Dx, it follows that B1 can efficiently decide whether x is
in L. In addition, it is clear that B1 decides L with zero-error, since it aborts (with a small
probability) when a good string zi is not found. Consequently, L ∈ ZPP, which completes the
proof of Lemma 2.

Next we define the candidate hitting set family Hhard. Assume that the PSPACE-complete

language L? from Theorem 7 can be decided in space O(na), where a ∈ N. Let δ
def
= ε/(10a).

Consider the function G? obtained from an application of Theorem 7 with stretch parameter
b = 1/δ and the parameter c set as in the statement of Theorem 2. This gives a sequence {G?`}`∈N
of functions computable with oracle access to L?≤` in time poly(`), where each G?` : {0, 1}` →
{0, 1}`b . Consider a seed function s(n)

def
= dnδe, and let Gn

def
= G?s(n). Since b = 1/δ, we have

Gn : {0, 1}dnδe → {0, 1}≥n.

In addition, Gn can be computed in time O(2n
ε/5

) without access to an oracle. This is because
the oracle answers to L≤nδ can be computed within this running time due to our choice of
parameters and the fact that bounded-space algorithms run in time at most exponential.

Each set Hhard
n is obtained from Gn as follows:

Hhard
n

def
= {leftn(Gn(w)) | w ∈ {0, 1}s(n)}.

The following lemma is key to our analysis of Hhard.

Lemma 3. If there is a 1/nc-dense property Q decidable in deterministic time nc such that
Hhard is not an i.o. hitting set family for Q, then PSPACE ⊆ BPP.

Proof. If Hhard is not an i.o. hitting set family for Q, it must be the case that Hhard
n ∩Qn = ∅ for

every large enough n. Equivalently, leftn(G?s(n)({0, 1}
s(n))) ∩ Qn = ∅, where s(n) = nδ. Since

s(·) is surjective as a function in N→ N, for every large enough `,

G?` ({0, 1}`) ∩ Q`b = ∅.

On the other hand, Q is a n−c-dense property, and for large enough `,

Pr
y∼{0,1}`b

[y ∈ E`b ] = Pr
y∼{0,1}`b

[V (y) = 1] ≥ `−bc = m−c,

using m = `b as in Theorem 7. Furthermore, by assumption there is a deterministic Turing
machine V running in time at most mc on inputs of length m for large enough m, and deciding
Q. Therefore, it can be used as a distinguisher against G?, matching the parameters of Theorem
7. Thus PSPACE ⊆ BPP, completing the proof of Lemma 3.

We complete the proof of Theorem 8 using a third and final application of the hardness
versus randomness paradigm. If Heasy is an i.o. hitting set family for every n−c-dense property
Q decidable in deterministic time nc, the second item of Theorem 8 holds by letting Bε be the
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deterministic algorithm which, on input 1n, outputs Heasy
n in time 2O(nε). If not, then we have

BPP = ZPP by Lemma 2. If Hhard is an i.o. hitting set family for every n−c-dense property Q
decidable in deterministic time nc, then again, the second item of Theorem 8 holds by letting
Bε be the deterministic algorithm which, on input 1n, outputs Hhard

n in time 2O(nε). If not, then
we have PSPACE = BPP by Lemma 3. Thus, if the second item of Theorem 8 fails to hold, we
have the complexity collapse PSPACE = ZPP. This facilitates a zero-error pseudodeterministic
construction of an unconditional hitting set in polynomial time as follows.

First, it follows by direct diagonalization that there is a language computed in DSPACE(2O(m))
that requires circuits of size ≥ 2m/2 for every large m. From PSPACE ⊆ ZPP, a standard padding
argument implies that this language can be computed in ZPTIME(2O(m)). In other words, there
is a function h : {0, 1}∗ → {0, 1} in ZPTIME(2O(m)) that for every large m cannot be computed
by circuits of size ≤ 2m/2.

Now, by setting ε = 1/2 in Lemma 1, we have that there is a pseudodeterministic algorithm
A running in polynomial time such that {A(1n)} is a 1/nc-discrepancy set family for every
property Q decidable in deterministic time nc, and consequently a hitting set family for every
1/nc-dense property Q decidable in deterministic time nc. This completes the proof of Theorem
8.

Remark 2. Observe that the argument presented above provides a stronger discrepancy set in
the first case of Theorem 8. While this is not needed in our applications, it might be helpful
elsewhere.

The generic Theorem 8 can be used to show unconditionally the existence of certain kinds
of explicit constructions for easy dense properties.

Corollary 2. Let Q ⊆ {0, 1}∗ be any easy dense property. Then for each ε > 0, there is an
i.o. zero-error pseudodeterministic construction for Q in time O(2n

ε
).

To establish Corollary 2, note that if the first item of Theorem 8 holds, a zero-error pseudo-
deterministic construction for Q in polynomial time follows exactly as Corollary 1 follows from
Lemma 1. On the other hand, if the second item of Theorem 8 holds, for every ε > 0, there is an
i.o. deterministic construction for Q in time O(2n

ε
), just by computing the i.o. hitting sets for

Q and outputting the lexicographically first element of the hitting set in Q, if such an element
exists, and an arbitrary fixed string otherwise. Thus, in either case, for every ε > 0 there is an
i.o. zero-error pseudodeterministic construction for Q in time O(2n

ε
).

We could trade off the parameters of items (1) and (2) of Theorem 8 to obtain a stronger
bound on the running time of the construction in Corollary 2 by using a more general version
of Theorem 6, but we do not pursue this direction here, as a polynomial-time bound for the
construction does not appear to be provable using such an approach.

Corollary 2 also has a non-constructive element. We know that for any easy dense Q, there
is an i.o. zero-error pseudodeterministic construction, but we are unable to say explicitly what
this construction is, as we do not which of the worlds PSEUDO or SPARSE we live in. Also,
similarly to Theorem 8, we do not have any information on the set of input lengths for which the
construction works, except that it is infinite. This can be a somewhat unsatisfactory situation
where explicit constructions are concerned, and we show how to address both issues in Section
3.4.

Corollary 3 (Restatement of Theorem 1). For each ε > 0, there is an i.o. zero-error pseudo-
deterministic construction for Primes in time O(2n

ε
).
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Corollary 3 follows from Corollary 2 because Primes is 1/ poly(n)-dense by the Prime Num-
ber Theorem, and is in deterministic polynomial time by the Agrawal-Kayal-Saxena algorithm
[AKS02].

Using the ideas of the proof of Theorem 8, we can partially answer a question of the Polymath
4 Project on generating primes. The following question was posed there: does BPP = P imply
a polynomial-time algorithm for generating primes? We consider a much weaker assumption,
namely that ZPP ⊆ i. o.DTIME(2n

c
) for some fixed constant c. Under this assumption, we

show that there is a subexponential-time deterministic algorithm for generating infinitely many
primes.

Theorem 9. If there is a c ≥ 1 such that ZPP ⊆ i. o.DTIME(2n
c
), then for each ε > 0 there is

a deterministic algorithm A running in time O(2n
ε
) such that for infinitely many n, A(1n) is

an n-bit prime.

Proof. We just give a sketch, as the argument largely relies on the proof of Theorem 8. The
proof of Theorem 8 establishes that if PSPACE 6= ZPP, there is a subexponential-time algorithm
for generating an i.o. hitting set family for sufficiently easy dense properties, and hence an
i.o. deterministic construction for primes in subexponential time.

Now consider the case that PSPACE = ZPP. Either we have that EXP admits polynomial-size
circuits, or it does not. In the latter case, by using Theorem 6, we again have subexponential-time
generatable hitting sets for properties that are easy and dense, and hence an i.o. deterministic
construction for primes in subexponential time. In the former case, by standard Karp-Lipton
theorems [KL80], EXP = PSPACE, and hence EXP = ZPP. But in this case, the assumption
that ZPP ⊆ i. o.DTIME(2n

c
) gives a contradiction to the almost-everywhere deterministic time

hierarchy theorem. This concludes the argument.

As an example of how the generic nature of Theorem 8 is useful, consider the question of
generating incompressible strings. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial time computable
function. We say that f is a compression scheme if f is an injective function and on every

x ∈ {0, 1}∗, |f(x)| ≤ |x|. We use If
def
= {x ∈ {0, 1}∗ : |f(x)| ≥ |x| − 1} to denote the set of

f -almost incompressible strings.

Corollary 4. Let f : {0, 1}∗ → {0, 1}∗ be an arbitrary polynomial time compression scheme.
For every ε > 0, there is a zero-error pseudodeterministic algorithm A running in time O(2n

ε
)

such that on infinitely many values of n, A(1n) outputs an f -almost incompressible string of
length n.

Proof. Observe that If can be decided in polynomial time, since f is a polynomial time com-

putable function. Let Ifn
def
= If ∩{0, 1}n. By a simple counting argument that uses the injectivity

of f , for every n ∈ N we have |Ifn|/2n ≥ 1/2. Consequently, If is a dense language. The result
now follows immediately from Corollary 2.

3.3 Pseudodeterministically Sampling Distributions

In order to state the main result of this section we will need the following additional definition.

Samplable Distributions. Let D = {Dn}n∈N be an ensemble of probability distributions,
where each Dn is supported over {0, 1}∗. For a string a ∈ {0, 1}∗, we let Dn(a) denote the prob-
ability of a under Dn. We say that D is polynomial time samplable if there exists a polynomial
time computable function g : 1∗ × {0, 1}∗ → {0, 1}∗ ∪ {�} for which the following holds:
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• There exists an integer c ≥ 1 such that for every n, g(1n, {0, 1}nc) ⊆ Support(Dn) ∪ {�}.

• There exists k ≥ 1 such that for every n, Prw∼Unc [g(1n, w) = � ] ≤ 1− 1/nk.

• For every n and a ∈ {0, 1}∗, Dn(a) = Prw∼Unc [g(1n, w) = a | g(1n, w) 6= � ]. In other
words, Dn and g(1n, Unc) are equally distributed conditioned on the output of g being
different from the error symbol “�”.

Observe that the support of each Dn is not required to be efficiently computable.

We define the computational problem of generating a canonical sample from D in the natural
way. In other words, given 1n, the algorithm must produce a “canonical” string in the support
of Dn. Since every dense and easy property is polynomial time samplable, this setting provides
a generalization of the explicit construction problem associated with such properties. (Observe
that the difficulty of producing a canonical sample comes from the fact that the polynomial time
function g can fail with high probability. Of course, if g never fails, it is enough to output, say,
g(1n, 0n

c
).)

Theorem 10 (Pseudodeterministic Samplers in i.o.Subexponential Time). Let D be a polyno-
mial time samplable ensemble. Then D admits subexponential time randomized algorithms that
output a canonical sample from Dn for infinitely many values of n.

(We stress that the pseudodeterministic sampler from Theorem 10 is not zero-error: it will
output on every input n where it succeeds a fixed sample in the support of Dn with very high
probability, but it might output a different sample in Dn with negligible probability. On the
input lengths where it fails, it will never output a sample.)

Proof. The argument is a reduction to Theorem 8, or more precisely, to Corollary 2. First, we

partition N+ into infinitely many sets Si
def
= {ic, . . . , (i+ 1)c − 1}, where c is the positive integer

provided by the definition of the polynomial time samplable ensemble D, and i ∈ N+. Let gD
be the polynomial time computable function associated with D. For convenience, given a string
x ∈ {0, 1}m and an interval S ⊆ [m], we use xS to denote the substring of x with coordinates
in S. Next we define a property Q ⊆ {0, 1}∗ via the following polynomial time algorithm AQ.
On an input x ∈ {0, 1}m, let i be the unique positive integer such that m ∈ Si. AQ computes
αx = g(1i, x[1,ic]), and accepts x if and only if αx 6= �.

We claim thatQ is dense and efficiently computable. First, observe thatm ≥ ic, sincem ∈ Si.
Consequently, i ≤ m1/c, and since g is polynomial time computable, so is AQ. Similarly, using
that g has a non-� output with inverse polynomial probability and that i and m are polynomially
related, it follows that Q is a dense property.

Using the claim from the previous paragraph and Corollary 2, it follows that for every ε > 0,
Q admits a zero-error pseudodeterministic constructor Bε running in zero-error time ≤ 2m

ε
that

succeeds on infinitely many values of m. We argue next that each Bε can be used to sample
a canonical string from Dn for infinitely many values of n, where n and m are polynomially
related.

Fix an arbitrary algorithm Bε as above. Since Bε is a zero-error algorithm, we can assume
without loss of generality and increase of running time that on every input 1m where it succeeds,
its output is ⊥ with probability at most 2−m. We define from Bε a randomized algorithm Aε
that computes as follows. Given an input of the form 1n, we run Bε(1

m) on every m ∈ Sn using
independent random strings of length ≤ 2m

ε
. Let m′ be the smallest element in Sn such that
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Bε(1
m′) 6=⊥ among such executions, if it exists, and let zm′ ∈ {0, 1}n

c
be the random variable

denoting the first nc bits of the output of Bε for m′. We set the output of Aε to g(1n, zm′) in
this case, and to ⊥ if no such m′ exists. This completes the construction of Aε from Bε and D.

First, observe that Aε is a randomized algorithm that runs in time ≤ 2O(ncε), since each
m ∈ Sn is of size O(nc), there are polynomially many simulations of Bε on input 1n, each
running in time at most 2O(mε), and g is polynomial time computable. In order to argue the
correctness of Aε, recall that each Bε succeeds on infinitely many values of m, and that the sets
Si form a partition of N+ into infinitely many classes of finite size. Therefore, for infinitely many
values of n, there will be some m ∈ Sn where Bε succeeds. Furthermore, using that whenever
Bε succeeds it does so except with an exponentially small failure probability, we have that with
very high probability m′(n) will be the smallest such m on each interval Sn where Bε succeeds
somewhere. Consequently, Aε either fails with probability 1 on a bad interval Sn (where Bε fails
everywhere), or it outputs with high probability a fixed sample from Dn. The last conclusion
relies also on the definition of Aε and on the fact that Bε is a (infinitely often) zero-error
pseudodeterministic constructor for Q. (We observe that Aε is not zero-error because Bε may
succeed on more than one input length in Sn, and it can happen with negligible probability that
Aε will use a different substring of length nc during its computation.)

Finally, by taking ε > 0 arbitrarily small and using that c is constant, it follows that D
admits subexponential time randomized algorithms that output a canonical sample from Dn for
infinitely many values of n.

We describe here an immediate application of Theorem 10 that might be of independent
interest in complexity theory, in certain situations where one has to select a hard function
among a family of efficiently representable functions.

Suppose there is a polynomial time randomized algorithm that on input 1n outputs some
Boolean circuit with non-negligible probability, and fails otherwise (the algorithm is allowed
to output different circuits among different executions). Let Cn be the random variable that
denotes either “�” or the polynomial size circuit output by this algorithm, and fCn be the
corresponding Boolean function whenever Cn 6= �.

It follows from Theorem 10 that there is a subexponential time randomized algorithm that
selects a canonical circuit Dn for infinitely many values of n, and that outputs a circuit comput-
ing, say, the constant 0 function on the remaining values of n. In particular, if every circuit En
in the support of the original algorithm computes a Boolean function fEn with a certain desired
property, there is a fixed Boolean function h : {0, 1}∗ → {0, 1} in BPSUBEXP that has the same
property infinitely often. (Observe though that if on every n only most functions fCn have some
property, but not all of them, we cannot guarantee that h will share this property on infinitely
many input lengths.)

3.4 Unconditional Constructions that are Explicit

In this section, we show how to make our constructions for easy dense properties explicit, in
the sense that the algorithm implementing the construction is an explicit algorithm. Consider for
instance the problem of pseudodeterministically generating primes. Since Theorem 1 establishes
that some algorithm runs in sub-exponential time and outputs a canonical prime infinitely often,
a natural approach would be to employ a universal search procedure that runs all algorithms
with short descriptions until a prime is produced. Unfortunately, this idea does not seem to work
when the algorithms involved are randomized and we would like to maintain pseudodeterminism.
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We will employ a different strategy which will actually give us a bit more. In addition to
addressing the issue of explicitness, we also control the gaps between input lengths on which
the construction succeeds. However, this comes at the cost of tailoring the construction to a
specific easy dense property, and the proof becomes more intricate. For simplicity, we will focus
on bounded-error pseudodeterministic constructions for Primes. This corresponds to a simpler
version of Theorem 8, where we not consider the hitting set family Heasy obtained using the easy
witness method, and do a win-win analysis based on the hitting set family Hhard rather than a
win-win-win analysis. In this variant setting, we will consider bounded-error pseudodeterministic
polynomial time constructions for Primes, rather than zero-error ones.

Recall that a fundamental issue with obtaining an explicit algorithm using the proof of
Theorem 2 is that we do not know which of the worlds PSEUDO and SPARSE we live in
(Section 1.4). There is an explicit algorithm corresponding to the world SPARSE, but we
only obtain an explicit algorithm corresponding to the world PSEUDO if the algorithm for
SPARSE fails on all large enough input lengths, and we do not know a priori if this is the case.

Imagine the following ideal situation: the win-win analysis we carry out works input length
by input length. Namely, for each large enough input length n, a given candidate hitting
set Hn constructible in deterministic subexponential time works, or else a different candidate
hitting set H ′n constructible in pseudodeterministic subexponential time works. If we were in
this ideal world, we would get an explicit construction for each large enough length as follows.
We first test each element in Hn for primality, in some fixed order. If at least one of the tests
succeed, we output the first element satisfying a test. If not, we generate H ′n and again test the
elements in some fixed order for primality. Now we are guaranteed to succeed by the assumption
that the win-win analysis succeeds on each large enough input length, and as H ′n is generated
pseudodeterministically, we will output a fixed prime with high probability.

However, we are quite far from being in this ideal situation. Indeed, our argument that a
pseudodeterministic algorithm succeeds relies on the hitting set family failing for all large enough
input lengths, rather than on a single input length n. This enables us to obtain the complexity
collapse PSPACE = BPP and apply Lemma 1.

If we are to have any hope of controlling the set of input lengths on which the construction
succeeds using such an argument, we need to mitigate this issue. Note that if we are only
interested in a pseudodeterministic construction in subexponential time, the collapse PSPACE =
BPP is overkill; it is enough to have PSPACE ⊆ BPSUBEXP.

Consider the PSPACE-complete language L? in the statement of Theorem 7. The first element
of our new argument is a refined version of Theorem 7, which for any δ > 0, yields a probabilistic
algorithm solving L? correctly on inputs of length n in time 2n

δ
assuming that the hitting set

family {H`} fails at all input lengths ` ∈ [n1/D, nD], where D is some constant depending on δ.
Thus we now only need the failure of the hitting set family on some polynomially bounded range
of input lengths to obtain a complexity collapse consequence, albeit a milder one than before.

We also observe that this refined version can be used in an alternative argument for generating
primes pseudodeterministically, by reducing the search version of Primes on input length n to the
PSPACE-complete language L? on some polynomially larger input length nk. Hence, if we knew
that the probabilistic algorithm based on the failure of the hitting set family for a polynomially
bounded range of input lengths solved L? correctly at some fixed input length nk, we would be
able to construct primes pseudodeterministically at length n in subexponential time.

However, we have no easy way of knowing this. The straightforward method would be to
explicitly test the success of the hitting set family on the appropriate range of input lengths,
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but this could take more than exponential time.
Imagine instead the pseudodeterministic algorithm we wish to define being given a single

advice bit per input length. If this advice bit is 0 at length n, it indicates to the algorithm A(1n)
that the hitting set family does indeed fail on all input lengths in [nk/D, nkD]; if the advice bit is
1, it indicates that the hitting set family succeeds somewhere on that range. The point is that
the requisite information is just a single bit depending on the input length n. The advice bit
can be thought of as information for the algorithm about whether the world looks locally like
PSEUDO or SPARSE, even if we do not know what the global picture is.

If the algorithm somehow had access to this advice bit, it could act as follows: if the advice
bit were 0, it would know that the probabilistic algorithm given by the refined version of Theo-
rem 7 solves L? correctly at input length nk, and by using the reduction from the search version
of Primes to L? and simulating the probabilistic algorithm when needed, it could pseudodeter-
ministically output a prime in subexponential time. If the advice bit were 1, “all bets are off”,
and the algorithm simply halts without an output.

For those readers familiar with the work on hierarchies for probabilistic polynomial time
with advice [Bar02, FS05], the use of a advice bit here might be reminiscent of that work.
The similarity is that the advice bit is a way around constructibility issues, but the details are
different.

An advantage in our setting is that while the advice bit might be conceptually useful, it is
not really needed. The reason is that while the algorithm might not have the time to check if the
hitting set family fails on all input lengths in a polynomially large range around n, it certainly
can check if Hn is a hitting set for Primesn in deterministic subexponential time. If it is, the
algorithm outputs the first prime in Hn, and we are done. If not, then the algorithm behaves as
if the advice bit were 0. The algorithm with this behaviour will not always be correct, but it will
always succeed on some input length in any polynomially large enough interval of input lengths.
Moreover, the algorithm is explicit. We are exploiting here the fact that the world SPARSE is
a deterministic world, and that we can check deterministically and not too inefficiently whether
a given hitting set works at an input length.

We now give details, but first some extra notation.

Polynomial Gaps. We call a set S ⊆ N polynomially gapped if S is non-empty and there is a
constant k > 1 such that for any n ∈ S, there is m ∈ S, n < m ≤ nk.

We require the following refinement of Theorem 7, which holds for the same language L?

discussed before.

Theorem 11. For any integers b, c ≥ 1, there exists an integer d ≥ 1 and a function G? : {0, 1}∗ →
{0, 1}∗ with restrictions

G?` : {0, 1}` → {0, 1}m(`), where m(`) = `b,

such that G? can be computed in time O(m(`)d) = poly(`) when given oracle access to L?≤`, and
the following holds. For every δ > 0, there is a δ′ > 0 and a probabilistic algorithm Bδ such
that for any large enough n ∈ N for which the output of G?` can be (1/m(`)c)-distinguished from
random for every ` ∈ [nδ

′
, n3] by an algorithm A running in time O(m(`)c), Bδ when given

access to 1n, x ∈ {0, 1}≤n and to the description of A, runs in time O(2n
δ
), and computes L?(x)

with error at most 1/n2 over its internal randomness.

Proof. We give only a sketch, as the proof refines the proof of Theorem 7. The proof of Theorem
7 proceeds by showing that a distinguisher for the output of G?` can be used to learn circuits for

22



L? on input length n(`) polynomially related to `. By using the random self-reducibility and
downward self-reducibility properties of L? and hardness amplification, a distinguisher implies a
polynomial-time probabilistic oracle algorithm that outputs circuits for L?n(`), where the oracle

algorithm only makes L∗-queries of length < n(`). By using the distinguishing property for each
length r ∈ [1, `], circuits for L? can be learned iteratively in probabilistic polynomial time for
input lengths from 1 to n(`), and thus L? can be decided in probabilistic polynomial time on
any input of length n(`).

Suppose that we wish to compute L? on inputs of length |x| ≤ n. The main idea in our
refinement here is to begin the iteration at input length nδ

′
, where δ′ is chosen depending on δ,

so that a circuit of size 2n
δ′

for L? at length nδ
′

can be computed in time 2n
O(δ)

using brute-force
search and the fact that L? is in polynomial space. Now we use the distinguishing property
for each length r ∈ [nδ

′
, n3] to obtain learners for corresponding input lengths for L, and thus

iteratively build circuits for L? for all input lengths up to n. Then it is enough to run the circuit
for length |x| to evaluate L? on any input of that length. The total time taken is O(2n

δ
), if we

choose δ′ sufficiently small as a function of δ.

Theorem 12 (Restatement of Theorem 3). For every ε > 0, there is a polynomially gapped
set S and a (bounded-error) pseudodeterministic construction for Primes on S, running in time
O(2n

ε
).

Proof. Let ε > 0 be any constant. We show that there is a polynomially gapped set S and a
pseudodeterministic algorithm Aε on S such that for each n ∈ S, the canonical output of Aε(1

n)
is an n-bit prime, and moreover Aε always halts in time O(2n

ε
).

Define the language LexFirstPrime to consist of all tuples < 1n, i > such that the i’th bit of
the lexicographical first n-bit prime is 1, where n ≥ 2. By Bertrand’s Postulate, LexFirstPrime
is well-defined. It is easy to see that this language is decidable in polynomial space, as follows.
Enumerate the n-bit integers in order and check each one for primality until an integer pn is
found that passes the primality test. Accept on input < 1n, i > iff the i’th bit of pn is 1. Since
LexFirstPrime is in PSPACE and L? is PSPACE-complete, there is a constant k ≥ 1 such that
LexFirstPrime reduces to L? in deterministic time nk.

Let C > 0 be an integer to be determined later. We partition N into intervals Ii, where
Ii = (2C

i−1
, 2C

i
] for i ≥ 1, and I0 = [1, 2]. We define the algorithm Aε and show that it satisfies

the required properties for at least one input length in each Ii, when i is large enough. The
algorithm operates in two phases, the first of which is deterministic and the second probabilistic.

Let a > 0 be a constant such that L? is computable in deterministic time 2`
a

on inputs of
length `, and let c > 1 be a constant such that the Primality algorithm of [AKS02] runs in
deterministic time nc. Aε operates as follows on input 1n. It first invokes the generator G? from
Theorem 11 using parameters b = d2a/εe and c as chosen above, on input length ` = dnε/2ae. It
computes Hn = {leftn(u) | u ∈ G?({0, 1}`)} in time O(2n

ε
), exploiting the efficiency guarantee

for G? from Theorem 11 and the fact that L? is computable in deterministic time 2`
a
. It checks

each element of Hn in lexicographic order for primality, outputting the first n-bit prime in
Hn that it finds, if such a prime exists. Given Hn, the total time required for this testing is
O(2` · poly(n)), which is O(2n

ε
).

If no element of Hn is prime, Aε commences its probabilistic phase. It sets δ = ε/k in the
second part of Theorem 11; let δ′ < δ be the corresponding constant given by the theorem. Aε
attempts to compute an n-bit prime in probabilistic time O(2n

ε
) as follows. It tries to determine

for each i satisfying 1 ≤ i ≤ n, whether < 1n, i > ∈ LexFirstPrime by using the reduction from

23



LexFirstPrime to L?, which produces instances of length ≤ nk. It answers each query x to L?

by assuming that Primes 1/`bc-distinguishes G?` from random for each ` ∈ [nkδ
′
, n3k], where b

is as defined in the previous para, and running the corresponding algorithm Bδ on 1n
k
, x, and

the code of the AKS primality algorithm. By Theorem 11, if Primes does indeed distinguish
the output of the generator from random for the given range of input lengths, the algorithm
Bδ decides L?(x) correctly with error at most 1/n2k, since x ∈ {0, 1}≤nk . Hence, in this case,
by a simple union bound, all n queries of Aε to Bδ are answered correctly with probability at
least 1 − 1/n, using the fact that k ≥ 1, and hence Aε correctly determines all the bits of the
lexicographically first n-bit prime pn with error at most 1/n. Thus, in this case, a fixed prime pn
is output with probability at least 1− 1/n, which fulfils the bounded-error pseudodeterministic
guarantee for Aε. Using that δ = ε/k and the bound on the running time of Bδ given by
Theorem 11, it follows that Aε halts in time O(2n

ε
).

We argue that for each interval Ii of input lengths for i large enough, there is ni ∈ Ii such
that either one of the elements of Hni is prime, or Aε outputs a fixed prime with high probability
using the reduction to L? as in the previous para. Note that in the first case, the deterministic
phase of the algorithm has an output and the algorithm does not enter its probabilistic phase,
while in the second case, the probabilistic phase has a fixed output with high probability. In
either case, Aε operates pseudodeterministically on input 1ni and outputs a prime.

We set C to be d3k/δ′e, where k and δ′ are as above. If there is no ni in Ii such that at
least one of the elements of Hni is prime, and if i is large enough, then it is indeed the case

that Primes 1/`bc-distinguishes G?` from random for each ` ∈ [nkδ
′

i , n3k
i ], where ni = 2C

i/3k,
just using the fact that Primes is 1/nc-dense for large enough n. Hence, in this case, Aε does
output the lexicographically first prime on ni bits with probability 1−o(1), which concludes the
argument.

To compare Theorem 12 to Corollary 3, the advantages of the former are that the algorithm
is explicit, and that the input lengths for which it is guaranteed to produce primes are not too
far apart. However, a somewhat subtle advantage of Corollary 2 is that the construction is
guaranteed never to output two different primes on any input length – it either outputs a fixed
prime with high probability, or does not output a prime at all. With the construction of Theo-
rem 12, this might not be the case. The algorithm has the bounded-error pseudodeterministic
guarantee on at least one input length in each large enough interval, but there is no guarantee
on the behaviour of the algorithm for other input lengths in the interval. This situation can be
improved using Proposition 2.

Finally, we remark that one of the difficulties involved in proving a zero-error version of
Theorem 12 is that it seems one would need to convert a sub-exponential time bounded-error
randomized computation into a zero-error computation, as opposed to the relevant simulation
behind the proofs of Theorem 8 and Corollary 3, which is concerned with polynomial-time
computations.

4 Pseudodeterminism and Derandomization

In order to state the results of this section we will need a few additional definitions. Here we
work with ensembles D = {Dn} of distributions, where we assume that each Dn is supported over
{0, 1}n. Moreover, we say that such a sequence of distributions is polynomial-time samplable if
there is a randomized polynomial-time algorithm B (the sampler) such that for each n ∈ N and
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each y ∈ {0, 1}n, Pr[B(1n) = y] = Dn(y), where Dn(y)
def
= Pr[y ∈ Dn]. As usual, we use Un to

refer to the uniform distribution on n-bit strings, which is clearly polynomial-time samplable.
In some cases we view elements of {0, 1}n as descriptions of Boolean circuits of size at most n,
under some natural encoding. We may informally refer to D as a distribution instead of as an
ensemble of distributions.

We define various notions of derandomization on average over polynomial-time samplable
distributions D. Our setting closely mirrors that of Impagliazzo-Wigderson [IW01], and our
proofs are inspired by their ideas.

Average-Case Definitions. Let ` : N→ N be a function. We say that a sequence G = {Gn},
where each Gn : {0, 1}`(n) → {0, 1}n, is a PRG (resp. i.o.PRG) on average over a distribution
D of Boolean circuits if for each c > 0 and for large enough n (resp. for infinitely many n), Gn
(1/10)-fools Cn with probability at least 1 − 1/nc over Cn ∼ Dn. We call `(n) the seed length
of the PRG.

Let T : N → N be a time bound. We say that the Circuit Acceptance Probability Problem
(CAPP) is solvable in time T (resp. solvable infinitely often in time T ) on average over D if for
all c > 0 there is a deterministic algorithm A running in time T (n) such that for all n ∈ N
(resp. for infinitely many n), PrCn∼Dn [|A(Cn)− Prx∼Un [Cn(x) = 1]| < 1/10] ≥ 1− 1/nc.

Let L ⊆ {0, 1}∗ a language. We say that L is solvable in time T (resp. solvable infinitely
often in time T ) on average over D if for all c > 0 there is a deterministic algorithm running in
time T (n) which for all n (resp. infinitely many n) solves Ln with success probability at least
1− 1/nc over Dn. Given a function a : N→ N, we also use the notion of being solvable in time
T with a(n) bits of advice on average over D – here the algorithm solving L gets access to an
auxiliary advice string of length a(n) which depends only on the input length.

We say that CAPP is solvable pseudodeterministically in time T (resp. solvable infinitely
often pseudodeterministically in time T ) on average over D if for all c > 0 there is a randomized
algorithm A running in time T (n) such that for all n (resp. infinitely many n), with probability
at least 1−1/nc over Cn ∼ Dn, A(Cn) outputs the same number f(Cn) with probability 1−o(1)
over its internal randomness, and f(Cn) is a (1/10)-additive approximation to the acceptance
probability of Cn.

The lemma below is implicit in [TV07], which itself uses a variation of the argument in
[IW01]. We omit the proof because it is almost identical to the proof of Theorem 7.

Lemma 4. [IW01, TV07] For each ε > 0 there is a sequence G = {Gn}, where Gn : {0, 1}nε →
{0, 1}n and G is computable in time 2O(nε), such that if there is a polynomial-time samplable
distribution D = {Dn} of Boolean circuits and a constant c > 0 for which for all large enough n,
with probability ≥ 1/nc over Cn ∼ Dn, Cn is a (1/10)-distinguisher for Gn, then PSPACE = BPP.

We prove the following unconditional result on the (randomized) pseudodeterministic com-
plexity of CAPP.

Theorem 13 (Restatement of Theorem 4). For each ε > 0 and polynomial-time samplable dis-
tribution D, CAPP is solvable infinitely often pseudodeterministically in time 2O(nε) on average
over D.

Proof. Let D be any polynomial-time samplable distribution and ε > 0 be any constant. We
show that at least one of the following holds: (1) CAPP is solvable pseudodeterministically in
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time poly(n) in the worst case, or (2) CAPP is solvable infinitely often deterministically in time
2O(nε) on average over D.

Let G = {Gn} be the sequence of generators given by Lemma 4, and consider the algorithm
A that works as follows given a input circuit C represented by a string of length n. A counts
the fraction of outputs of Gn accepted by C, and outputs this fraction. If Gn is an i.o.PRG on
average over D, the algorithm A solves CAPP infinitely often on average over D, since A does
not output a 1/10-approximation for C if and only if C (1/10)-distinguishes the output of Gn
from a random n-bit string. The algorithm A can be implemented in time 2O(nε) using the fact
that Gn is computable in time 2O(nε). Thus item (2) holds in this case.

If G is not an i.o.PRG on average over D, then we can apply Lemma 4 to get PSPACE = BPP.
In this case, by a simple translation argument, we have that ESPACE = BPE, and since ESPACE
requires circuits of size ≥ 2m/2 on all large enough m by direct diagonalization, we have that BPE
requires circuits of size 2Ω(m) on all large enough m. Now by Lemma 1 and Remark 1, we have
a pseudodeterministic polynomial time algorithm which outputs a discrepancy set family which
works for any circuit C of size n for large enough n, and hence again by outputting the fraction
of elements in the discrepancy set which belong to C, we get a worst-case pseudodeterministic
polynomial time algorithm solving CAPP.

Finally, we establish the following equivalences. Note that all algorithms mentioned below
are deterministic.

Theorem 14 (Restatement of Theorem 5). The following statements are equivalent :

1. For each polynomial-time samplable distribution D of Boolean circuits and each ε > 0,
there is an i.o.PRG G on average over D with seed length nε that is computable in time
2O(nε).

2. For each polynomial-time samplable distribution D over Boolean circuits and each ε > 0,
CAPP is solvable infinitely often in time 2O(nε) on average over D.

3. For each polynomial-time samplable distribution D over input strings and each ε > 0, BPP
is solvable infinitely often in time 2O(nε) with O(log(n)) bits of advice on average over D.

4. For each ε > 0, BPP is solvable infinitely often in time 2O(nε) on average over Un.

Proof. The equivalence is established by the following chain of implications.

(1) ⇒ (2): Fix a distribution D, and let G be some PRG for D that is guaranteed to exist
by item (1). The algorithm for CAPP on a circuit Cn of size n simply runs Gn on all seeds of
size nε and counts the fraction of seeds for which Cn accepts. It outputs this fraction. Clearly,
the algorithm can be implemented in time 2O(nε), as Gn is computable in that amount of time.
The correctness of the algorithm follows immediately from the guarantee on the PRG G given
by (1).

(2) ⇒ (3): Fix a distribution D, let L ∈ BPTIME(nk), where k ≥ 1 is a fixed constant, and
let M be a bounded-error probabilistic Turing machine solving L in time nk with error ≤ 1/3
for n large enough. To solve L infinitely often in time 2O(nε) on average over D, we invoke the
algorithm A = AD′,ε′ given by item (2) for the distribution D′ specified below, and parameter
ε′ = ε/2k.

To sample from the distribution D′ on n′-bit strings, we first determine n = b(n′)1/2kc. We
sample an input x of length n from Dn, then compute the randomized circuit Cx

n2k obtained by
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applying the standard translation of randomized algorithms to circuits to the computation of M
on x. We then pad Cx

n2k in a standard way to an equivalent circuit Cxn′ of size n′. Cxn′ has input
of length n, but we can simply pad the input length to n′ using dummy input bits. Clearly D′ is
polynomial-time samplable, and hence there is an algorithm A as above solving CAPP infinitely

often on average over D′ in time 2O((n′)ε
′
), which is at most 2O(nε).

We show how to solve L infinitely often in time 2O(nε) with O(log(n)) bits of advice on
average over D. We define a deterministic machine N taking O(log(n)) bits of advice as follows.
On input x of length n, N uses its advice to determine a length n′ such that n2k ≤ n′ < (n+1)2k.
N finds a randomized circuit Cx

n2k corresponding to the computation of M on x by performing
the standard translation, and then pads this circuit in the standard way to a circuit Cxn′ on
n′ input bits. It applies the algorithm A to Cxn′ , accepting if and only if A outputs a number
greater than 1/2.

We are given that A solves CAPP infinitely often in subexponential time on average over D′,
and we would like to conclude that N solves L infinitely often in subexponential time on average
over D. Indeed, let {ni} be an infinite sequence of input lengths on which A solves CAPP in
subexponential time on average over D′. It is not hard to see that {b(ni)1/2kc} is an infinite
sequence of input lengths on which N solves L in subexponential time with logarithmic advice
on average over D.

(3)⇒ (4): It follows immediately from item (3) that for each ε > 0, BPP is solvable infinitely
often in time 2O(nε) with O(log(n)) advice on average over Un, simply because Un is polynomial-
time samplable. Corollary 7 and Corollary 9 of [IW01] then imply that for each ε > 0, BPP is
solvable infinitely often in time 2O(nε) on average over Un.

(4) ⇒ (1): Here we use Lemma 4. By diagonalization (cf. Theorem 6 in [IW01]), we have
that (4) implies EXP 6= BPP. Now there are two cases: either EXP does not have polynomial-size
circuits, or PSPACE 6= BPP. Indeed, if both were false, we would have that EXP = PSPACE
(by the Karp-Lipton theorem for EXP) and that PSPACE = BPP, which would together imply
EXP = BPP, contradicting our assumption.

In the first case, by the hardness-randomness tradeoff of [BFNW93], it follows that for each
ε > 0 there is an i.o.PRG with seed length nε, which is computable in time 2O(nε). Note that
this i.o.PRG works even in the worst case, without a distributional assumption on circuits it
fools. In the second case, we use Lemma 4 to conclude that for each polynomial-time samplable
sequence D of distributions and for each ε > 0, there is an i.o.PRG with seed length nε on
average against D, computable in time 2O(nε). Hence in either case (1) follows, concluding our
proof.

5 Further Directions

We propose some directions for further research:

1. Theorem 1 is proved using general complexity-theoretic considerations, using no infor-
mation about the set Primes apart from its polynomial density and its decidability by a
polynomial-time algorithm. The primes have been intensively studied, and a lot is known
about their structure. Can this structural information be leveraged to prove stronger re-
sults about generating primes? Perhaps the technique of using complexity-theoretic pseu-
dorandomness applied here could be combined with earlier ideas for generating primes
deterministically to show stronger results.
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2. Can other kinds of probabilistic algorithms be made pseudodeterministic? In very recent
work, we use our ideas to give such algorithms unconditionally for various approximate
counting problems.

3. Are black-box derandomization, white-box derandomization and BPP = P equivalent in
the standard setting? Here, by the standard setting, we mean that we are interested in
worst-case polynomial-time simulations that work for all large enough input lengths. As a
first step toward this goal, it would be interesting to get the equivalence for average-case
simulations, where we are even prepared to relax the “works almost everywhere” condition
on the simulation to “works infinitely often”.
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