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Abstract

We continue the study of pseudo-deterministic algorithms initiated by Gat and Goldwasser
[GG11]. A pseudo-deterministic algorithm is a probabilistic algorithm which produces a fixed
output with high probability. We explore pseudo-determinism in the settings of learning and ap-
proximation. Our goal is to simulate known randomized algorithms in these settings by pseudo-
deterministic algorithms in a generic fashion – a goal we succinctly term pseudo-derandomization.

Learning. In the setting of learning with membership queries, we first show that randomized
learning algorithms can be derandomized (resp. pseudo-derandomized) under the standard hard-
ness assumption that E (resp. BPE) requires large Boolean circuits. Thus, despite the fact that
learning is an algorithmic task that requires interaction with an oracle, standard hardness as-
sumptions suffice to (pseudo-)derandomize it. We also unconditionally pseudo-derandomize any
quasi-polynomial time learning algorithm for polynomial size circuits on infinitely many input
lengths in sub-exponential time.

Next, we establish a generic connection between learning and derandomization in the reverse
direction, by showing that deterministic (resp. pseudo-deterministic) learning algorithms for a
concept class C imply hitting sets against C that are computable deterministically (resp. pseudo-
deterministically). In particular, this suggests a new approach to constructing hitting set gen-
erators against AC0[p] circuits by giving a deterministic learning algorithm for AC0[p].

Approximation. Turning to approximation, we unconditionally pseudo-derandomize any poly-
time randomized approximation scheme for integer-valued functions infinitely often in sub-
exponential time over any samplable distribution on inputs. As a corollary, we get that the (0, 1)-
Permanent has a fully pseudo-deterministic approximation scheme running in sub-exponential
time infinitely often over any samplable distribution on inputs.

Finally, we investigate the notion of approximate canonization of Boolean circuits. We
use a connection between pseudodeterministic learning and approximate canonization to show
that if BPE does not have sub-exponential size circuits infinitely often, then there is a pseudo-
deterministic approximate canonizer for AC0[p] computable in quasi-polynomial time.
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1 Introduction

1.1 Context and Motivation

Randomness is a powerful algorithmic resource, used widely in tasks such as cryptography, dis-
tributed computing, learning, sampling and approximation. Although it often makes algorithmic
tasks more efficient, randomness comes with issues. It introduces uncertainty – running a ran-
domized algorithm multiple times, we cannot always expect to get the same answer. Moreover,
randomized algorithms assume access to a source of independent and unbiased random bits, and
this assumption is not always justified in the physical world.

Ideally, we would like to perform any efficient randomized task almost as efficiently without
using randomness at all, or while using as little randomness as possible. This is the goal of deran-
domization, which has been widely studied in complexity theory. While generic derandomization is
possible in many settings under widely believed circuit lower bound hypotheses, it also implies cir-
cuit lower bounds that are believed to be hard to establish (cf. [IKW02, KI04, Wil13]). Thus, while
many specific randomized tasks can be derandomized, provable generic derandomization seems out
of reach with our current state of knowledge.

A few years ago, Gat and Goldwasser [GG11] introduced the notion of pseudo-deterministic
algorithms, motivated by applications in cryptography and distributed computing. A pseudo-
deterministic algorithm is one that, on a given input, produces a fixed output with very high
probability. Thus, a pseudo-deterministic algorithm is one that looks deterministic to an outside
observer who is computationally bounded – even if such an observer were to run the algorithm
multiple times, she is likely to always get the same answer.

Pseudo-deterministic algorithms have a very desirable feature possessed by deterministic al-
gorithms, viz. little to no uncertainty in the output. Thus it is of interest to convert random-
ized algorithms to equivalent pseudo-deterministic ones – we term such a conversion “pseudo-
derandomization”.

There are several interesting examples of pseudo-derandomization known, including finding
primitive roots [Gro15] and quadratic non-residues (cf. [GG11]) in prime fields, finding variable
settings for polynomial identity testing [GG11], and finding perfect matchings in bipartite graphs in
parallel [GG17]. These pseudo-derandomization results exploit specific properties of the known ran-
domized algorithms for these problems. The authors introduced a generic pseudo-derandomization
approach for search problems in [OS17b], and used it to give a sub-exponential pseudo-deterministic
construction of primes infinitely often. This generic approach has been explored further by [Hol17]
and [GGH17].

One limitation of the generic approach of [OS17b] is that it seems to work only for search
problems whose underlying relation is decidable in P or in BPP. In particular, the approach
requires the ability to test in P or in BPP whether a given sequence of random choices made by
a randomized algorithm is “good” or not. There are several important settings of randomized
tasks where such a test is not available. We consider two such settings in this paper: learning and
approximation.

1.2 Pseudoderandomization and learning

Our learning model is that of learning with membership queries, where the accuracy of the
output hypothesis is measured with respect to the uniform distribution. A pseudo-deterministic

3



learning algorithm in this model is a randomized algorithm that, when given access to a prede-
termined oracle, makes a fixed set of queries and outputs a fixed output hypothesis with high
probability.1 (The pseudo-deterministic learning model is formalized in the natural way in Section
2.2.)

This setting falls outside the “search problem” paradigm for a couple of different reasons: first,
the algorithmic task is not self-contained but requires interaction with an oracle, and second, the
test of whether an output hypothesis is good is not precise but approximate, and again requires
interaction with the oracle.2

Pseudo-determinism is naturally a desirable property for learning algorithms. Indeed, consider
a setting where Alice and Bob run the same learning program independently on the same data but
wish to co-ordinate their predictions. Pseudo-determinism of the learning algorithm enables them
to co-ordinate their predictions perfectly with high probability. In an alternative scenario, suppose
Alice runs the learning algorithm to generate a hypothesis, and the hypothesis gets corrupted. Alice
can recover the original hypothesis with high probability just by running the learning algorithm
again.

The main question we ask is: can learning algorithms be derandomized or at least pseudo-
derandomized in a generic fashion? Our first result is the observation that standard pseudo-
random generators suffice to derandomize learning. This is somewhat surprising because standard
pseudo-random generators are designed for self-contained algorithmic tasks, while learning requires
interaction with an unknown oracle.

Recall that we consider randomized algorithms that learn under the uniform distribution and
have membership-query access to the unknown function.

Theorem 1 (Conditional derandomization and pseudo-derandomization of learning).
Let C ⊆ P/poly be an arbitrary circuit class, and suppose C(s(n)) can be learned to any constant
accuracy by a randomized algorithm running in time t(n) ≥ n.

• If E = DTIME[2O(n)] requires circuits of size 2Ω(n) on all large input lengths, then there exists
a constant c ≥ 1 such that C can be deterministically learned to any constant accuracy in time
at most O(t(n)c).

• If BPE = BPTIME[2O(n)] requires circuits of size 2Ω(n) on all large input lengths, then there
exists a constant c ≥ 1 such that C(s) can be pseudo-deterministically learned to any constant
accuracy in time at most O(t(n)c).

The proof of conditional derandomization in Theorem 1 works as follows. Under the assump-
tion that E requires exponential-size Boolean circuits almost everywhere, it is a standard conse-
quence from [NW94, IW97, Uma03] that there is a pseudo-random generator G computable in
time poly(t(n)) with seed length O(log(t(n)) secure against circuits of size t(n)3. We simulate the
randomized learning algorithm using each output of the generator G as random sequence in turn
to obtain hypothesis circuits D1 . . . Dpoly(t(n)), and then output the majority of these circuits as
our hypothesis. To argue that this works, we show that if the simulation fails to output a correct
hypothesis, there is a distinguisher for the PRG G, contrary to our assumption. The key idea is

1We stress that we allow adaptive learning algorithms, and that the “canonical” set of inputs queried by the
learner can depend on the target function. We do not require the order of the queries to be fixed.

2Also observe that the usual way of testing a learning hypothesis by drawing a set of random examples is not
pseudo-deterministic.
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that a distinguisher can be constructed in t(n)3 size by replacing the oracle in the simulation of
the learning algorithm by a circuit from the class C for which the simulation fails. The proof of
conditional pseudo-derandomization works similarly, but we need to use an additional idea from
[OS17b]. Details are in Section 3.3

We get some interesting corollaries from Theorem 1. Under standard hardness assumptions,
both Jackson’s polynomial-time learning algorithm for DNFs with membership queries [Jac97] and
the recent algorithm of [CIKK16] for AC0[p] can be derandomized. Note that the randomized
learner of [LMN93] for AC0 has already been derandomized unconditionally by Sitharam [Sit95].4

Sitharam’s deterministic learner exploits specific properties of AC0 circuits, while we are interested
here in generic methods to derandomize and pseudo-derandomize learning algorithms.

Theorem 1 is conditional, but it can be used to establish an unconditional result for pseudo-
derandomizing learning. This is in contrast to generic derandomization, which can only be done
conditionally given our current knowledge of circuit lower bounds.

Theorem 2 (Unconditional pseudo-derandomization of learning).
If P/poly can be learned to any constant accuracy by a randomized algorithm running in quasi-
polynomial time, then for each γ > 0, P/poly can be pseudo-deterministically learned to any constant
accuracy in time O(2n

γ
) for infinitely many input lengths n.

The proof of Theorem 2 proceeds in two steps. In the first step, we use a result of [OS17a]
to get circuit lower bounds for BPE from a non-trivial randomized learning for P/poly. In the
second step, we apply a variant of Theorem 1 to derive an infinitely-often subexponential-time
pseudo-deterministic learner using the circuit lower bounds for BPE.

The assumption in Theorem 2 is very strong; indeed, under standard cryptographic assump-
tions, P/poly does not have non-trivial learning algorithms (see e.g. [BR17]). However, the proof
technique of Theorem 2 works in the more general setting of self-learners, where a self-learner is a
learning algorithm for a circuit class C that produces a hypothesis in C and moreover can itself be
implemented in C. Theorem 2 is just the cleanest instantiation of this proof technique, since any
learner for P/poly is automatically a self-learner. (Self-learning is a phenomenon that might be of
independent interest, and we refer to Section 3.3 for further discussion of this concept.) The more
general version of Theorem 2 presented in Section 3.3 shows that the same result holds for any
self-learnable class that contains T C0 and is closed under composition. (For the interested reader,
we mention that threshold gates are necessary to perform hardness amplification, a technical ingre-
dient in our proof.) This is still a strong assumption, and we leave obtaining a version of Theorem
2 under a weaker hypothesis as an interesting research direction.

Theorem 1 applies pseudo-random generators to the setting of learning. Our next result goes in
the opposite direction, showing that derandomizing or pseudo-derandomizing learning algorithms
has interesting consequences in the theory of pseudo-randomness. We say that a circuit is γ-dense
if it accepts at least a γ-fraction of strings in {0, 1}n.

Theorem 3 (Hitting sets from deterministic and pseudo-deterministic learning).
Let C = {Cn} be an arbitrary circuit class, and assume that for every ε > 0, C-circuits of size s(n)
can be deterministically learned to accuracy ε in time T (n) ≥ n.

3For simplicity, we have restricted the statement of Theorem 1 to constant-accuracy learners. As explained in
Section 3, from a randomized ε-accuracy learner one can get a deterministic O(ε)-accuracy learner by using sufficiently
strong generators (see Lemma 7).

4See also [SS97] for related results in the context of learnability using a linear combination of parity functions.
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Then, for every γ > 0, there exists a hitting set generator Gn : {0, 1}log T (n) → {0, 1}n com-
putable in time O(T (n)) against the class of γ-dense circuits in Cn(s(n)). Similarly, if C is pseudo-
deterministically learnable, there exist pseudodeterministic hitting set generators against Cn(s(n))
with the same parameters.

The proof of Theorem 3 is along the lines of the argument used to prove that a deterministic
black-box PIT algorithm implies a hitting set. Suppose that there exists a deterministic learner.
We run the deterministic learner with oracle the identically zero function, and output the set of
queries it makes as our candidate hitting set. If the set of queries is not a hitting set, then there
must be a somewhat dense function f computable in C for which all the queries answer 0, just as
they do for the identically zero function. But by the correctness of the learning algorithm, this
would mean that f can be well-approximated by the identically zero function, which contradicts
the assumption that it is somewhat dense. The consequence for pseudo-deterministic learners is
shown by appropriately adapting this argument.

An interesting application of Theorem 3 is to the question of whether small hitting sets exist
for AC0[p] circuits. Despite much effort, no hitting sets even of sub-exponential size are known
for such circuits (we refer to [FSUV13] for related results and discussion). Theorem 3 suggests an
approach to this question via learning. Carmosino et al. [CIKK16] recently gave a quasi-polynomial
time randomized learning algorithm for AC0[p] – if this algorithm could be made deterministic, we
would immediately get quasi-polynomial size hitting sets for AC0[p] in quasi-polynomial time! In
particular, that would imply that randomized poly-size AC0[p] circuits with one-sided error can be
simulated by deterministic quasi-poly size circuits. Even a pseudo-derandomization of the [CIKK16]
algorithm would be interesting, as this would give somewhat efficient pseudo-deterministic hitting
sets against AC0[p], which is also unknown. We mention that the derandomization of weak learning
algorithms can also be used to construct pseudorandomness, and refer to Section 4 for additional
results.5

Theorem 3 also has consequences for non-uniform circuit lower bounds that can be derived
from learning algorithms. It is known that non-trivial learning algorithms (i.e., those running in
time 2n/nω(1)) for a circuit class C yield lower bounds against C (cf. [KKO13, OS17a, FK09, HH13,
Vol14]). However, different algorithms provide different types of lower bounds. For a deterministic
learner, one obtains a function in E that is hard almost everywhere [KKO13], while for randomized
learners, the hard function lives in BPE and is only hard infinitely often [OS17a]. Interestingly,
it is possible to use Theorem 3 to get something stronger from non-trivial pseudo-deterministic
(randomized) learning algorithms: they can be used to define a function in BPE that is hard
almost-everywhere for C. We discuss this application in more detail in Section 4.3.

Table 1 appearing below summarizes and puts in perspective some of our learning results.

1.3 Pseudoderandomization and approximation

We next turn our attention to a different setting, the setting of approximation. We are interested
in integer-valued functions, i.e., functions from strings to non-negative integers, that have efficient
randomized approximation schemes. The question is whether the existence of a good randomized
approximation scheme generically implies the existence of a somewhat efficient pseudo-deterministic

5Recall that a weak learner is only required to output a hypothesis that correctly computes the unknown function
on slightly more than half of the input strings.
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Circuit Existing learning PRGs/HSGs Self-learning → Pseudodet. learning
Class algorithms (seed length) Pseudodet. learning → Pseudodet. HSGs

DNF(poly) randomized, poly-time ≈ (log n)2 unknown yes

AC0
d deterministic, quasi-poly (log n)d+O(1) unknown yes

AC0[p] randomized, quasi-poly (1− o(1))n unknown yes

T C0 unknown n (trivial) yes yes

P/poly unknown n (trivial) yes yes

Table 1: An informal description of some learning algorithms (cf. [Jac97, LMN93, Sit95, CIKK16])
and PRGs/HSGs (see e.g. [DETT10, TX13, FSUV13]) for different circuit classes, including impli-
cations among these notions in the pseudodeterministic setting (Theorems 2 and 3 and extensions).
These results further motivate the investigation of pseudodeterministic learning algorithms, self-
learnability, and connections between learning and pseudorandomness.

approximation scheme. (Pseudo-deterministic approximation schemes are formalized in the natural
way in Section 2.3.)

Note that this setting too does not conform to the “search problem” paradigm. Given a value
w, it might be hard to test if the value is close to the correct value, since the correct value might
be very hard to compute. Indeed, in our results, we make no assumptions about the complexity of
exact computation of the integer-valued function.

Our main result here is a generic pseudo-derandomization of randomized approximation schemes;
however, this pseudo-derandomization is only guaranteed to work on infinitely many input lengths
with high probability over any poly-time samplable distribution of inputs.

Theorem 4 (Unconditional pseudo-derandomization of approximation). Let f : {0, 1}∗ → N be any
function with a polynomial-time randomized approximation scheme. Then for each polynomial-time
samplable sequence D of distributions and for each constant δ > 0, f has a pseudo-deterministic
approximation scheme for infinitely many n over D running in time O(2n

δ
).

The main idea in the proof of Theorem 4 is to exploit the uniform hardness-randomness tradeoffs
used in the generic pseudo-derandomization results of [OS17b], but adapted to this new setting.
The crucial point is: how do we test efficiently that a value w is a good approximation to the
correct value? We test this simply by running the randomized approximation scheme to produce a
value w′ and checking if w is close to w′. This is not a deterministic polynomial-time test or indeed
a bounded-error probabilistic polynomial-time test; however, we can show that it is good enough
for our purposes. The details are technical, and can be found in Section 5.

As a corollary of this result and [JSV04], we get unconditionally that the (0, 1)-Permanent has
a pseudo-deterministic approximation scheme running in sub-exponential time on infinitely many
input lengths over any poly-time samplable distribution on inputs.

Finally, we consider a notion of approximate canonization of circuits. Canonization is a natural
notion for an equivalence relation, where for each element of the set we compute a representative
member of its equivalence class. Needless to say, canonization and canonical forms are fundamental
notions with a variety of applications both in mathematics and computer science. We are interested
in the natural equivalence relation between circuits: two circuits are equivalent if they compute the
same function.

7



It is easy to see that efficient canonization is impossible for even weak circuit classes such as
DNFs, under standard complexity assumptions (see Section 5.2). Therefore we relax the notion of
canonization. We still require the output of the canonizer to be the same for any two equivalent
circuits, but this output need not be a circuit equivalent to the original circuit, instead it is allowed
to be close to the original circuit over the uniform distribution on inputs.6

Inspired by an observation in [BGI+12], we show that efficient deterministic (resp. pseudo-
deterministic) learning implies efficient deterministic (resp. pseudo-deterministic) approximate can-
onization. (We refer to Section 2.3 for a precise definition of approximate canonization.) Using The-
orem 1 and the learning algorithm in [CIKK16], we get quasi-polynomial time pseudo-deterministic
approximate canonization for AC0[p] circuits under a standard circuit lower bound assumption for
BPE.

Theorem 5 (Approximate canonization for AC0[p], Informal).

Let p ≥ 2 be a fixed prime. If BPE requires circuits of size 2n
Ω(1)

almost everywhere, then AC0[p]
circuits can be approximately canonized in pseudo-deterministic quasi-polynomial time.

The proof of Theorem 5 and other related results appear in Section 5.2. We leave as an
open problem obtaining an unconditional version of this theorem. Another interesting research
direction is the investigation of connections between approximate canonization and other meta-
computational problems. In this sense, we mention that [BBF16] provides evidence that expressive
circuit classes do not admit approximate canonization. (In fact, even more relaxed notions of
approximate canonization are conditionally ruled out by the results from [BBF16], and we refer to
their work for further details.)

2 Preliminaries

While the exposition of our main ideas is mostly self-contained, we assume familiarity with basic
notions from complexity theory (cf. [AB09]), learning theory (cf. [KV94]), and circuit complexity
theory (cf. [Juk12]). In particular, we refer to these references for the definition of standard circuit
classes.

Let Fn be the set of all boolean functions f : {0, 1}n → {0, 1} on n input variables, and F =⋃
n≥1Fn be the set of all boolean functions. We use boldface letters such as w and x to denote

random variables. We say that boolean functions f and g from Fn are ε-close if Prx∼Un [f(x) 6=
g(x)] ≤ ε, where Un denotes the uniform distribution over {0, 1}n. We often view a string in
{0, 1}∗ that represents a boolean circuit D as if it were the actual circuit D, or the function that
it computes.

2.1 Randomness, pseudorandomness and pseudodeterminism

We will require the notion of polynomial-time samplability of a sequence of distributions. Let
D = {Dn} be a sequence of distributions, where each Dn is supported on {0, 1}n. We say that D
is polynomial-time samplable if there is a probabilistic polynomial-time algorithm B such that for
each n ∈ N and each y ∈ {0, 1}∗, PrB[B(1n) = y] = Pr[y ∈ Dn].

6A form of approximate obfuscation is also investigated in [BGI+12], but their definition requires a much stronger
correctness guarantee.
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We also require notions of pseudorandomness, introduced next.

Pseudorandom generators and hitting set generators. Let Dm be a probability distribution
supported over {0, 1}m. We say that Dm is (η, s)-pseudorandom for a circuit class C ⊆ Fm if for
each size-s circuit g ∈ C(s), ∣∣∣ Pr

x∼Um
[g(x) = 1]− Pr

y∼Dm
[g(y) = 1]

∣∣∣ < η.

In other words, the circuit g is η-fooled by Dm. This definition extends to an ensemble D =
{Dm}m≥1 of distributions, by requiring the condition above to hold for every m ≥ 1. Moreover,
we say that a function Gm : {0, 1}`(m) → {0, 1}m is an η-pseudorandom generator for a class C
if the induced distribution Gm(U`(m)) is (η,m)-pseudorandom for C. Equivalently, the induced
distribution η-fools every size-m C-circuit over m-input variables. The function `(m) computes the
seed length of the generator Gm.

We also consider the weaker notion of hitting sets. We say that a set Hm ⊆ {0, 1}m is an
(η, s)-hitting set for C if for each size-s circuit g ∈ C(s) such that Prx∼Um [g(x) = 1] ≥ η, we have
g−1(1) ∩ Hn 6= ∅. This definition extends to ensembles of sets in the natural way. Similarly, a
function Hm : {0, 1}`(m) → {0, 1}m is an η-hitting set for C if the induced set Hm({0, 1}`(m)) ⊆
{0, 1}m is an (η,m)-hitting set for C. (Note that the support of a pseudorandom distribution is a
hitting set with the same parameter η.)

We say that a pseudorandom generator or a hitting set generator is quick if it can be computed
in time 2O(`(m)), where `(m) is the corresponding seed length.

The following result will be useful.

Theorem 6 ([Uma03]). Given a function f : {0, 1}log ` → {0, 1} of circuit complexity at least s, it
is possible to construct a pseudorandom generator G : {0, 1}O(log `) → {0, 1}m that (1/m)-fools size
m circuits, where m = sΩ(1). Moreover, G can be computed in time `O(1) given the description of
the truth table of f .

Pseudodeterministic pseudorandommness. We will make use of pseudorandom distributions
Dm and hitting sets Hm that are constructed pseudodeterministically. For our purposes, we define
the relevant concepts as follows. Let Gm : {0, 1}t(m) × {0, 1}`(m) → {0, 1}m. We say that Gm is
a µ-pseudodeterministic (η,m)-pseudorandom generator for C if there is an (η,m)-pseudorandom
generator G?m : {0, 1}`(m) → {0, 1}m for C such that

Pr
a∼Ut

[G(a, ·) ≡ G?m(·)] ≥ 1− µ,

where the “≡” symbol represents identity among functions. A µ-pseudodeterministic hitting set
generator Hm : {0, 1}t(m) ×{0, 1}`(m) → {0, 1}m is defined analogously. Analogously, we say that a
pseudodeterministic pseudorandom or hitting set generator is quick if it can be computed in time
2O(`(m)), where `(m) is the seed length.

Note that the pseudodeterministic parameter µ of a quick pseudorandom or hitting set generator
can be boosted by standard techniques. Indeed, since quick generators can tolerate a running time
overhead of 2O(`(n)), one can always design a new generator that uses a larger random string,
samples independent copies of the initial pseudodeterministic generator, and behaves as the most
common generator among the induced generators provided by these samples.
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2.2 Learning

Learning algorithms. We consider randomized learning algorithms under the uniform distribu-
tion that can make membership queries to the unknown function. We formalize such algorithms
next.

Fix a class of functions C ⊆ F, often referred to as the concept class. For convenience, we write
C = {Cn}n≥1, where Cn ⊆ Fn. A randomized algorithm A (ε, δ)-learns a class C if for every n ≥ 1
and for each f ∈ Cn, when given oracle access to f and access to inputs 1n, ε > 0 (accuracy), and
δ > 0 (confidence), A outputs the description of a boolean circuit D such that

Pr
w

[D = Af (1n, ε, δ,w) is ε-close to f ] ≥ 1− δ.

Here w ∈ {0, 1}∗ is a uniformly random boolean string representing the randomness of A, and
D = Af (1n, w, ε, δ) is a random variable denoting the (representation of the) circuit output by
A over these inputs and with oracle access to f . For convenience, we might omit some input
parameters when discussing the computation of A.7

While many of our results hold in a more general setting, for simplicity we will focus on the
learnability of classes of boolean circuits. Therefore, Cn will always denote a class of the form
C(s(n)), where C ∈ {AC0,AC0[p], T C0, etc.}, and s(n) is an upper bound on circuit size complexity.
When there is no risk of confusion, we might write Cd to restrict the class to circuits of depth at
most d. The worst-case running time of the learning algorithm A over the choice of f ∈ C(s(n))
and of its internal random string w is measured by the function tA(n, s, 1/ε, 1/δ).

Pseudodeterministic learning. A randomized algorithmA (ε, δ, γ)-pseudodeterministically learns
a class C = {Cn} if A (ε, δ)-learns this class, and moreover for every n ≥ 1 and f ∈ Cn there is a
fixed set of queries Qf ⊆ {0, 1}n and a fixed string Df representing a boolean circuit such that

Pr
w

[Af (1n,w) queries f exactly over Qf and Af (1n,w) = Df ] ≥ 1− γ.

In other words, with high probability the learner makes the same set of queries and outputs
the same boolean circuit (representation) as its hypothesis. We say in this case that A is a γ-
pseudodeterministic learning algorithm.

We would like to stress that it makes sense to consider variants of this notion where only the set
of queries is pseudodeterministic (query-pseudodet. learner), or where only the output hypothesis
is pseudodeterministic (hypothesis-pseudodet. learner). For instance, if A is a pseudodeterminis-
tic learner, running several independent copies of A and outputting the most common hypothesis
will boost the initial hypothesis-pseudodeterminism parameter, but the resulting learner will be no
longer query-pseudodeterministic.

The circuit complexity of learning algorithms. It is crucial in our investigations to consider
a notion of complexity for learning algorithms that is more refined than running time. We measure
instead the circuit complexity of learning algorithms. In other words, we specify a learning algorithm
by a sequence {Dn}n≥1 of multi-output oracle circuits Dn that have access to w, ε, and δ, and
whose oracle queries are answered according to the unknown function f ∈ Cn. (In particular, the

7It is well-known that the confidence parameter δ can be made arbitrarily small (cf.[KV94]). It is also known how
to boost the accuracy parameter ε if the concept class satisfies a certain closure property (see e.g. [BL93]).
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main input string of the oracle circuit is the random string, and in many cases we will fix ε and δ
in advance.) The output bits of Dn encode a circuit describing the output hypothesis.8

In the case of learning circuits that are less powerful than general circuits (such as AC0, T C0,
etc.), we further restrict the output hypothesis of the learner. We say that a class C is learnable by
D-circuits if the sequence {Dn} consists of circuits from D, and moreover the output string is an
effective encoding of a D-circuit. The meaning of effective description is that it should be possible
for D-circuits to interpret the output string as the description of a D-circuit, and to efficiently
evaluate computations given this description. We will not be explicit about such encodings, and
simply note that they exist for the typical circuit classes investigated in our work.9

For definiteness, we briefly discuss a notion of uniformity for such sequence of learning circuits.
In learning upper bounds, we assume that the sequence can be generated from 1n by a deterministic
algorithm that runs in time polynomial in the size of the circuits. We will not discuss circuit lower
bounds for learning in this paper, but in such a context it is also natural to consider non-uniform
sequences of learning circuits (see e.g. [OS17a, Section 4]).

We say that a circuit class C is self-learnable if it can be learned by a sequence of C-circuits,
typically of quasi-polynomial size. This is an informal working definition, since for instance we do
not specify the dependence on the parameters ε and δ. We will leave such details to the formal
statement of our results, where we will often assume that these learning parameters are sufficiently

small constants, and allow the class Cd(nk) to be learned by Cd′(n(logn)k
′
)-circuits (multi-output

and with oracle gates).

We assume that functions related to algorithmic parameters such as time bounds, circuit size,
learning accuracy, etc. are sufficiently constructive, in the sense that they do not affect the asymp-
totic complexity of our reductions whenever an algorithm needs to compute one of these functions.

2.3 Approximation

Approximation schemes. We define notions of approximation for computing integer-valued
functions. An integer-valued function is a function from strings to non-negative integers, i.e.,
from {0, 1}∗ to N. We say that an integer-valued function f has a polynomial-time randomized
approximation scheme (PRAS) if for each rational number ε > 0 there is a probabilistic polynomial-
time machine M , which given any string x as input, outputs an integer M(x) (which might depend
on the random choices of M) such that with probability 1 − 2−Ω(|x|) over the random choices of
M , we have that (1 − ε)f(x) ≤ M(x) ≤ (1 + ε)f(x). We say that f has an fully polynomial-time
randomized approximation scheme (FPRAS) if there is a probabilistic machine M , which given a
string x and a rational number ε (in some prespecified format) as input, runs in time poly(|x|, 1/ε)
and outputs a number M(x) such that with probability 1− 2−Ω(|x|) over the random choices of M ,
we have that (1− ε)f(x) ≤M(x) ≤ (1 + ε)f(x).

An example of an integer-valued function is the permanent of a (0, 1)-matrix, when the matrix
is represented as a bitstring. By the celebrated result of Jerrum, Sinclair and Vigoda [JSV04], this
integer-valued function has an FPRAS.

8In the case of deterministic learning circuits, we remark that each Dn has access to the constant input bits 0 and
1, and one can think of its “input string” as the first batch of answers provided by the oracle queries.

9For bounded-depth circuit classes, we tolerate a constant-factor depth blow-up during the evaluation if this is
necessary from the choice of encoding.
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We will be interested in converting randomized approximation schemes to pseudo-deterministic
ones, where with high probability the algorithm outputs a fixed number that is a good approxima-
tion to the correct value. Given a time function T : N→ N, we say that an integer-valued function
f has a pseudo-deterministic approximation scheme (PDAS) running in time T if for each rational
number ε > 0 there is a function g : {0, 1}∗ → N and a probabilistic machine M , which given a
string x as input, runs in time T (|x|) and outputs g(x) with probability 1− 2−Ω(|x|), and moreover
we have that (1 − ε)f(x) ≤ g(x) ≤ (1 + ε)f(x). A PDAS running in polynomial time is called a
PPDAS. We say that an integer-valued function f has a fully pseudo-deterministic approximation
scheme (FPDAS) running in time T if there is a function g : {0, 1}∗ ×Q+ → N and a probabilistic
machine M , which given a string x and a rational number ε (in some prespecified format) as input,
runs in time T (|x|, 1/ε) and outputs g(x, ε) with probability 1−2−Ω(|x|), and moreover we have that
(1− ε)f(x) ≤ g(x, ε) ≤ (1 + ε)f(x). An FPDAS running in polynomial time is called a PFPDAS.

Note that a deterministic approximation scheme running in time T is a special case of a PDAS
running in time T where the machine M uses no randomness, and similarly a fully deterministic
approximation scheme running in time T is a special case of an FPDAS running in time T where
the machine M uses no randomness.

We also need more relaxed notions of pseudo-deterministic approximation schemes which are not
guaranteed to work for all inputs. An infinitely-often pseudo-deterministic approximation scheme
(i.o.PDAS) is only guaranteed to be pseudo-deterministic and output a correct approximation for
infinitely many input lengths (rather than all of them). The notion of infinitely-often fully pseudo-
deterministic approximation scheme (i.o.FPDAS) is defined analogously.

Finally, given a samplable distribution D = {Dn}, an i.o.PDAS over D is only guaranteed to be
pseudo-deterministic and output a correct approximation with probability 1− 1/nω(1) over inputs
sampled according to Dn, for infinitely many n. Again, the notion of i.o.FPDAS over D is defined
analogously.

Canonization and approximate canonization. Next we define notions of canonization and
approximate canonization for circuit classes. Let C be a circuit class and s : N → N be a size
function. Given a time function T : N → N, we say that C(s(n)) has deterministic (resp. pseudo-
deterministic) canonization in time T if there is a deterministic (resp. 1/3-pseudo-deterministic)
Turing machine M such that (i) M operates in time T (n) when given as input any circuit C in
C(s(n)), (ii) for any circuit C in C(s(n)), M(C) is a Boolean circuit on n variables that is equivalent
to C, i.e., computes the same Boolean function as C, and (iii) for any two equivalent circuits C
and C ′ in C(s(n)), M(C) = M(C ′). Note that a pseudo-deterministic canonization algorithm is
allowed to output an arbitrary circuit with probability at most 1/3.

We relax the notion of canonization by requiring the output to only be approximately equivalent
to the input. Given a parameter ε > 0, we say that C(s(n)) has deterministic (resp. pseudo-
deterministic) ε-approximate canonization in time T if there is a deterministic (resp. 1/3-pseudo-
deterministic) Turing machine M such that (i) M operates in time T (n) when given as input any
circuit C in C(s(n)), (ii) for any circuit C in C(s(n)), M(C) is a Boolean circuit on n variables
that is an ε-approximation to C, i.e., disagrees with C on at most an ε-fraction of inputs of length
n, and (iii) for any two equivalent circuits C and C ′ in C(s(n)), M(C) = M(C ′).

Finally, we stress that in the definition of canonization and approximate canonization it is
important that the size bound s(n) is fixed before the formalization of the problem. Indeed, by
using an alternative definition that simply postulates that on an arbitrary circuit C from the
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class C the machine M must output (say) in polynomial time on the description length of C an
equivalent canonical circuit M(C), one can easily use M to define a natural property useful against
C (in the sense of [RR97]).10 However, as far as we know, there might be circuit classes that
admit approximate canonization in the original sense introduced above, but do not admit natural
properties. The first definition is therefore preferred.

3 Pseudo-derandomization for randomized learning algorithms

In this section we consider the derandomization and pseudoderandomization of learning algo-
rithms via pseudorandom generators and pseudodeterministic pseudorandom generators, respec-
tively. For simplicity, we will mostly focus on self-learnable circuit classes, but our results can be
extended to more general settings, as explained later in this section.

3.1 Derandomizing from a pseudorandom generator

We start with a technical lemma showing that standard pseudorandom generators can be used
to derandomize learning algorithms.

Lemma 7 (PRG-based derandomization of learning algorithms). Let C be a circuit class closed
under composition. Let s, s′ : N → N be functions, where s′(n) ≥ n. Further, let ε, δ > 0 be real-
valued parameters satisfying δ ≤ ε ≤ 1/100 and possibly depending on n. Finally, assume that for
each n ≥ 1 the depth-d class Cd(s(n)) can be (ε, δ)-learned by a (randomized) oracle Cd′(s′(n))-
circuit.

There are constants e = O(d ·d′) and k ≥ 1 for which the following holds. If there is a family of
quick pseudorandom generators Gm : {0, 1}`(m) → {0, 1}m that ε-fool depth-e size-m C-circuits, for

m = O(s(n) · s′(n) + s′(n)k),

then Cd(s(n)) can be deterministically learned to accuracy ε′ = 8ε in time at most 2O(`(m)) ·
poly(s′(n)).11

Proof. Let {Dn}n≥1 be the corresponding (uniform) sequence of learning circuits with fixed param-
eters ε and δ. We claim that the deterministic algorithm A described below learns every function
f ∈ Cd(s(n)) to accuracy ε′ in time at most 2O(`(m)) · poly(s′(n)).

Algorithm A. Input: 1n and oracle access to an unknown function f ∈ Cd(s(n)).

1. Computes a multi-set Sm
def
= {Gm(a) | a ∈ {0, 1}`(m)} of m-bit strings (with multiplicities),

where Gm is the pseudorandom generator with parameters as in the statement of the lemma.

2. For each w ∈ Sm, simulates Dn with oracle access to f and with its random input set to w.

Let hw
def
= Df

n(w) be the hypothesis output by the learning circuit under f and w.

3. Outputs the description of a circuit C̃f that on an input x ∈ {0, 1}n computes the majority

10Given a truth-table f , construct an exponential size C-circuit C for f . Since M is a canonizer and has to run in
polynomial time on every circuit D equivalent to C, one can infer from its output on C the approximate C-circuit
complexity of f .

11For unbounded-depth classes, the circuit depth parameters can be omitted from the statement.

13



function over the multi-set {hw(x) | w ∈ Sm}.

Clearly, under our assumptions A is a deterministic algorithm that runs in time at most 2O(`(m)) ·
poly(s′(n)). Suppose now that A fails to learn some function f? ∈ Cd[s(n)]. In other words, the
corresponding output hypothesis C̃f? is not ε′-close to f?. We use this information to construct
a randomized C-circuit B of size at most m and depth at most e that distinguishes the output of
Gm from random with advantage at least ε. We then fix the randomness of B using a standard
argument in order to obtain a deterministic distinguisher. This contradicts the pseudorandomness
of Gm, completing the proof of the lemma.

In the description of B presented next, z is a candidate string (either produced from the gener-
ator, or uniformly random), and r is a fixed string sampled according to r ∼ Un, a random variable
representing the randomness of the distinguisher.

Description of B. Input: z ∈ {0, 1}m and r ∈ {0, 1}n.

1. Let Cf? be a Cd(s(n))-circuit that computes f?. B uses a prefix of z as the randomness of

Dn, and simulates the oracle computation Df?
n (z) with Cf? replacing its oracle gates.

2. Suppose hz is the output hypothesis. B outputs 1 if and only if hz(r) = Cf?(r).

Since Cf? has depth ≤ d and size ≤ s(n), and Dn is an oracle circuit of depth ≤ d′ and
size ≤ s′(n), Step 1 can be implemented by a C-circuit of depth at most d · d′ and of size at most
s(n)·s′(n). By definition, the output hypothesis of Dn is restricted to circuits in Cd′(s′(n)), and hz is
an effective description of a C-circuit. Consequently, the evaluation hz(r) in Step 2 can be computed
by a C-circuit of depth O(d′) and size poly(s′(n)). It follows that Step 2 can be implemented by a
C-circuit of depth no more than O(d′+ d) and of size no more than O(s(n) + poly(s′(n))). Overall,
we get that B is a (randomized) C-circuit of depth at most e and of size at most m, where these
parameters are as in the statement of the lemma.

We argue in what follows that∣∣∣ Pr
x∼Um,r∼Un

[B(x, r) = 1] − Pr
y∼U`(m),r∼Un

[B(Gm(y), r) = 1]
∣∣∣ > ε. (1)

Observe that this implies in particular that for some fixed choice of r ∈ {0, 1}n, Br
def
= B(·, r) is a

deterministic C-circuit of no larger complexity that distinguishes Um and Gm(U`(m)) with advantage
at least ε, which completes the proof.

Consider the leftmost probability in Equation 1. Since Dn learns every f ∈ Cd(s(n)) to accuracy
ε and with confidence parameter δ and Cf? ≡ f?, with probability at least 1− δ over x, Step 2 of
circuit B computes a hypothesis hx that is ε-close to f?. For each fixed x ∈ {0, 1}m that produces
an ε-close hx, in Step 2 circuit B accepts the input pair (x, r) with probability at least 1− ε over
the choice of r ∼ r. Consequently, using that δ ≤ ε, the leftmost probability in Equation 1 is at
least (1− δ)(1− ε) ≥ 1− 2ε.

It remains to upper bound the rightmost probability. Because A fails to learn f? to accuracy
ε′, there is a set T ⊆ {0, 1}n of measure at least ε′ such that on every x ∈ T , C̃f?(x) 6= f?(x).
Consequently, for x ∈ T at least half of the values hw(x) generated in Step 3 of A’s description
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do not agree with f?(x). It follows that over the choice of y and r, B(Gm(y), r) rejects with
probability at least ε′/2 = 4ε. Consequently, the rightmost probability ≤ 1− 4ε.

It follows from these estimates that the distinguishing probability in Equation 1 is strictly larger
than ε, from which the result follows.

It is important in the preceding argument for the distribution employed in the derandomiza-
tion to be pseudorandom against non-uniform C-circuits.12 First, this allows us to disregard the
complexity of uniformly generating Dn in the proof that B is an appropriate distinguisher. Most
importantly, we have no control over the “bad” function f? where the derandomization might fail,
and consequently Cf? appears as a non-uniform advice in the proof of Lemma 7. Finally, r is also
fixed non-uniformly when derandomizing the distinguisher.

3.2 Pseudoderandomization of learning algorithms

Similarly to Lemma 7, we now show that self-learning classes admit pseudodeterministic learners
under the existence of suitable pseudodeterministic pseudorandom generators.

Lemma 8 (Pseudoderandomization via pseudodeterministic PRGs). Let C be a circuit class closed
under composition. Let s, s′ : N → N be functions, where s′(n) ≥ n. Further, let ε, δ, µ > 0 be
real-valued parameters satisfying δ ≤ ε ≤ 1/100 and possibly depending on n. Finally, assume that
for each n ≥ 1 the depth-d class Cd(s(n)) can be (ε, δ)-learned by a (randomized) oracle Cd′(s′(n))-
circuit.

There are constants e = O(d ·d′) and k ≥ 1 for which the following holds. If there is a family of
quick µ-pseudodeterministic pseudorandom generators Gm : {0, 1}t(m) × {0, 1}`(m) → {0, 1}m that
ε-fool depth-e size-m C-circuits, for

m = O(s(n) · s′(n) + s′(n)k),

then Cd(s(n)) can be (8ε, µ, µ)-pseudodeterministically learned in randomized time at most 2O(`(m)) ·
poly(s′(n)).

Proof. We proceed as in the proof of Lemma 7, except that the corresponding derandomized al-
gorithm A is replaced here by a pseudoderandomized algorithm A′. This procedure uses its ran-

dom input y ∈ {0, 1}t(m) to define a candidate (deterministic) pseudorandom generator Gy
m

def
=

Gm(y, ·) : {0, 1}`(m) → {0, 1}m. By assumption, it succeeds with probability at least 1 − µ, and
whenever this happens, A′ outputs a hypothesis hy that is ε′-close to f , the unknown function,
where ε′ = 8ε is as in Lemma 7. Consequently, A′ is a (ε′, µ)-learner for the class. Furthermore,
with probability at least 1 − µ, A′ constructs the same pseudorandom generator. Since the rest
of its computation is deterministic, the corresponding learner will make a fixed set Qf of queries,
and generate a fixed output hypothesis hf . This shows that A′ is µ-pseudodeterministic. As the
running time of A and A′ are the same up to low order terms, it follows that Cd(s(n)) can be
(8ε, µ, µ)-pseudodeterministically learned in randomized time at most 2O(`(m)) · poly(s′(n)).

Remark. As we alluded to before, Lemmas 7 and 8 hold in more generality provided that we
have sufficiently strong pseudorandom generators. In particular, it is sufficient to have a generator

12Distributions that are pseudorandom against uniform algorithms were crucially employed in the pseudodetermin-
istic construction of primes from [OS17b].
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that fools a circuit class closed under composition that is expressive enough to simulate circuits
in the concept class, the learning circuit, and its hypothesis class. Consequently, existing learning
algorithms can be derandomized under hardness assumptions.

Theorem 9 (Conditional learning derandomization). Let C ⊆ P/poly be an arbitrary circuit class,
and suppose C(s(n)) can be learned to any constant accuracy by a randomized algorithm running
in time t(n) ≥ n. If E = DTIME[2O(n)] requires circuits of size 2Ω(n) on all large input lengths,
then there exists a constant c ≥ 1 such that C(s) can be deterministically learned to any constant
accuracy in time at most O(t(n)c).

Proof. Observe that a learning algorithm running in time t(n) can be implemented by oracle circuits
of size at most poly(t(n)). The result is then a direct consequence of Lemma 7 and the hardness
vs. randomness paradigm (Theorem 6).

As a concrete example, Theorem 9 and Jackson’s polynomial time learning algorithm for DNFs
[Jac97] immediately imply the following result.

Corollary 10. If E = DTIME[2O(n)] requires circuits of size 2Ω(n) on all large input lengths, then
polynomial size DNFs can be learned to constant accuracy in deterministic polynomial time.

The same approach provides pseudoderandomization via Lemma 8 using that a hard truth-table
can be pseudodeterministically constructed from a weaker lower bound assumption.

Theorem 11 (Conditional learning pseudoderandomization). Let C ⊆ P/poly be an arbitrary
circuit class, and suppose C(s(n)) can be learned to any constant accuracy by a randomized algorithm
running in time t(n) ≥ n. If BPE = BPTIME[2n] requires circuits of size 2Ω(n) on all large input
lengths, then there exists a constant c ≥ 1 such that C(s) can be pseudodeterministically learned to
any constant accuracy in time at most O(t(n)c).

Proof. Note that, under this lower bound assumption, there exists a randomized algorithm that on
input 1`, runs in time at most 2O(`) and outputs with high probability the description of a fixed
function f` : {0, 1}` → {0, 1} that requires circuits of size 2Ω(`). In other words, exponentially hard
boolean functions can be pseudo-deterministically constructed in time polynomial in the size of
their truth tables. The result now follows from the learning assumption, Theorem 6, and Lemma
8.

For instance, thanks to the quasi-polynomial time randomized learning algorithm for AC0[p]
from [CIKK16], we get the following conditional result.

Corollary 12. If there is γ > 0 and a language in BPE = BPTIME[2n] that requires circuits of
size ≥ 2n

γ
on all large input lengths, then AC0[p] circuits can be learned to any constant accuracy

in pseudodeterministic quasi-polynomial time.

Proof. Simply observe that this lower bound is enough to get quasi-polynomial time (pseudo-
deterministic) derandomizations using the hardness versus randomness paradigm (Theorem 6).
The result follows as in the proof of Theorem 11 using the learning algorithm from [CIKK16].

A remark on PAC learning derandomization. In contrast to the PAC model framework
[Val84], it is crucial in derandomization applications that we define the learning model using an
oracle to the unknown function, even if the learner only queries the oracle at random inputs. More
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precisely, one can consider the PAC model formulation where a random example oracle EX (f)
(relative to some distribution) is provided to the learner, instead of membership-query access to
f . However, in the former model the success probability of a learner is measured with respect to
both its internal randomness and EX (f). A derandomized learner will still fail to learn to high
accuracy if the sequence of examples is uninformative. The derandomization procedure only acts
on the learning algorithm, and not on the example oracle.

3.3 Pseudodeterministic learners from randomized learners

Recall that AC0 circuits can be deterministically learned in quasi-polynomial time [SS97], and
that AC0[p] circuits are known to be learnable in randomized quasi-polynomial time [CIKK16]. In
this section, we prove a general result showing that, for strong enough self-learnable circuit classes,
any randomized learner running in quasi-polynomial time admits a non-trivial pseudoderandom-
ization.

As opposed to the results discussed in Section 3, the next theorem is unconditional and does
not assume the existence of pseudorandom generators. Theorem 2 is a particular case of this result.

Theorem 13 (Pseudodeterministic learners from randomized self-learners). Let C be a circuit class
that contains T C0 and is closed under compositions. Suppose that for every δ, ε > 0, C(poly) can be
(ε, δ)-learned by (uniform) C-circuits of quasi-polynomial size. Then, for every γ > 0 and c ≥ 1,
C(poly) can be µ-pseudodeterministically learned to accuracy ≤ n−c on infinitely many input lengths
by an algorithm running in time O(2n

γ
), where µ = 2−n.

Proof. First, the assumption implies by a padding argument that for every ε > 0 and k ≥ 1,
there exists k′ ≥ 1 such that C(exp((log n)k)) can be learned to accuracy ε by a uniform family

D(k) = {D(k)
n }n≥1 of C-circuits of size at most exp((log n)k

′
).13 We recall the following result from

[KKO13], which for convenience we state here as follows.

Lemma 14. There is a PSPACE-complete language L computable in linear space and a constant
b ≥ 1 such that the following holds. If C(s(n)) is learnable to error and accuracy ≤ n−b in time at
most t(n) ≥ n, then either

(i) L /∈ C(s(n)); or

(ii) L ∈ BPTIME[poly(t(n))].

By amplifying the success probability, we can assume that each family D(k) learns with confi-
dence parameter δ ≤ n−b, and by the result of [BL93], we can assume without loss of generality that
the accuracy parameter is also ≤ n−b. This implies via Lemma 14 that either there exists no con-
stant a ≥ 1 such that L ∈ C(exp((log n)a)), or for some a′ ≥ 1, we have L ∈ BPTIME[exp((log n)a

′
)].

In the former case, since L is computable in linear space, we get that BPE * C[exp((log n)O(1))].
On the other hand, in the latter scenario, as DSPACE[s′(n)] can diagonalize against circuits of size
s′(n)Ω(1) (cf. [OS17a, Corollary 39]), this fact together with a standard padding argument implies
that BPE * C[exp((log n)O(1))].

Let f ∈ BPE be a function that cannot be computed by quasi-polynomial size circuits from C
on infinitely many input lengths. We claim that the following result holds.

13See for instance the proof of Lemma 7 in [OS17a].
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Claim 15. Under our assumptions, there exists a function f ′ ∈ BPTIME[2O(n)] such that for every
constant β ≥ 1, on infinitely many input lengths n, any C-circuit of size ≤ exp((log n)β) can
compute f ′n with advantage at most exp((log n)−β).

Indeed, since T C0 ⊆ C, efficient worst-case to average-case reductions can be used to amplify
the hardness of f (cf. [GGH+07, GR08, GNW11]). In a bit more detail, a reduction of this form
is well-known to hold for functions f ∈ E = DTIME[2O(n)]. In order to amplify a function f in
BPE, it is enough to observe that the entire truth-table of f can be computed in randomized time
2O(n), except with negligible probability. Since the worst-case to average-case reduction acts on
truth-tables, it defines with high probability a fixed function f ′ obtained from f .

Let f ′ = {f ′n}n≥1 be given by Claim 15, and E be a randomized algorithm running in time
2O(n) that prints the truth-table of f ′n with probability at least 1 − 2−n. We use E together with
the Nisan-Wigderson generator [NW94] to pseudodeterministically compute a generator against C.
(While their result is stated with respect to general boolean circuits, it is well-known and easy to
check that their construction works for any circuit class containing T C0.)

Theorem 16 (Corollary of Theorem 1 from [NW94]). Let m ≤ t(m) ≤ 2m, and suppose there
is h ∈ DTIME[2O(m)] such that, on infinitely many input lengths, every C-circuit Dm of size ≤
t(m) satisfies Prx[Dm(x) 6= hm(x)] ≥ 1/m. Then there exists a constant λ > 0 and a quick

pseudorandom generator G : {0, 1}m → {0, 1}t(mλ) that t(mλ)-fools C(t(mλ))-circuits on infinitely
many input lengths.

Using Theorem 16, it is possible to prove the following result.

Claim 17. For every constants c ≥ 1, k ≥ 1, and γ > 0, there exists a function G : {0, 1}∗ ×
{0, 1}`(n) → {0, 1}n that is a quick µ-pseudodeterministic generator that η-fools C-circuits of size
≤ exp((log n)k) on infinitely many input lengths, where µ = 2−n, η = n−c, and `(n) = nγ.

Claim 17 is established by a standard application of the Nisan-Wigerson generator to the family
f ′, adapted to the pseudo-deterministic setting in the natural way.

Finally, using that C is closed under composition, the existence of such generators immediately
imply the statement of the theorem via an application of Lemma 8.

Ideally, we would like to obtain a pseudodeterministic learner of comparable running time.
However, this does not seem to be possible with these techniques. Consider for instance the
more extreme case of designing a sub-exponential time pseudodeterministic learner from a sub-
exponential time randomized learner. The main difficulty is that the lower bounds obtained from
such a learner are not strong enough to derandomize an algorithm that runs in sub-exponential
time.

Our techniques also require a strong assumption on the circuit class, namely, that it is closed
under composition and able to compute threshold functions. Since there is evidence that circuit
classes containing T C0 cannot be learned [NR04], it would be extremely interesting to obtain an
analogue of Theorem 13 under weaker assumptions. In particular, one might be able to apply such
a result to pseudoderandomize existing algorithms, such as [CIKK16].

Two remarks on the self-learnability of weak classes. These results further motivate the
study of self-learning circuit classes, a direction that some might find of independent philosophical
interest. In other words,
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When is a circuit class C learnable by algorithms that are no more powerful than C-circuits?

For very weak classes, this is probably impossible, given the very weak resources available to the
learning algorithm, and the fact that a self-learner is in particular a proper learner. However, when
C becomes stronger, as in the extreme case where C = P/poly, if learning algorithms exist then
they are automatically proper learners.

It is possible to show that MAJ ◦ AC0 circuits are self-learnable by a uniform family of sub-
exponential size circuits. This follows for instance from the results of [GS10], since the learning
algorithm is based on the estimation of fourier coefficients of bounded size, and the correspond-
ing parity computations can be simulated by randomized oracle AC0 circuits that output a sub-
exponential size hypothesis in MAJ ◦ AC0.14 Therefore, self-learnability is a phenomenon that is
present even in constant-depth classes.

On the other hand, we do not know if AC0 is self-learnable by quasi-polynomial size AC0

circuits.15 A natural approach here is to try to implement the LMN algorithm [LMN93] using AC0

circuits, perhaps by replacing a threshold gate for an approximate majority, which is known to
be computable in this class (see e.g. [Vio14]). However, as we briefly explain next, this and other
similar approaches cannot work. A self-learning algorithm of quasi-polynomial complexity for the
class AC0 is required to output a hypothesis that is itself a quasi-polynomial size AC0 circuit.
However, the approach in [LMN93] is also able to learn functions that cannot be approximated
by such circuits. This is an immediate consequence of [RST15, Theorem 3] using the connection
between the influence of a boolean function and fourier concentration (cf. [O’D14]).

4 Pseudorandomness from pseudodeterministic learning

In this section we explore the construction of pseudorandom objects and the proof of non-
uniform circuit lower bounds from the existence of pseudodeterministic learning algorithms. Recall
that our learning algorithms make membership queries to the unknown function, and learn under
the uniform distribution.

4.1 Deterministic learning algorithms

Our first result concerns deterministic learners. We say that a boolean function g is γ-dense if
Prx∼Un [g(x) = 1] ≥ γ.

Lemma 18 (Weak hitting set generators from deterministic learners). Let C be any class of
functions, and assume there exists a deterministic learning algorithm A for C(s) with advantage
α(n) > 0. If γ = γ(n) satisfies

γ > 1− 2α, (2)

there exists a function H : {0, 1}∗×{0, 1}∗ → {0, 1}∗ with the following properties. Let Qn ⊆ {0, 1}n

be the set of queries that A makes to the oracle according to the execution corresponding to A0(n)
(1n),

14For the interested reader, we stress that during this implementation the empirical estimate of each fourier co-
efficient is not computed by the circuit, since AC0 circuits cannot count. The bits obtained from products of the
form χS(x) · f(x) are hard-coded directly into the final hypothesis, which can make use of a single threshold gate to
compute the sign function.

15Note that, if this were the case, our techniques from Section 3 would provide an alternative, conceptually simpler
proof of a result of [Sit95] showing that such circuits can be learned in deterministic quasi-polynomial time.
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where 0(n) is the identically zero function on n-bit inputs. Moreover, let qn = |Qn|, and let t(n) be a
constructive upper bound on the number of steps used by A until the last such query is determined.
Then,

• H : {1}n × {0, 1}log qn → {0, 1}n is a hitting set generator for the family of γ-dense functions
in C(s(n)).

• On every w ∈ {0, 1}log qn, H(1n, w) can be computed in time ≤ t(n).

• Furthermore, H({1}n×{0, 1}log qn) = Qn, and H(1n, w) is the w-th query made by A according

to the computation corresponding to A0(n)
(1n).

Proof. In order to establish the result, it is enough to argue that the procedure H described in
the statement is a hitting set for the family of γ-dense functions in C(s(n)). Recall that A is a
deterministic algorithm. Fix n ∈ N. Suppose there exists a γ-dense function f ∈ C(s(n)) such that
Qn ∩ f−1(1) = ∅. We use the correctness of the learning algorithm A to derive a contradiction.

Given boolean functions g1, g2 : {0, 1}n → {0, 1}, we let dist(g1, g2)
def
= Prx[g1(x) 6= g2(x)] be the

relative hamming distance between these functions. Let h0 = A0(n)
(1n) be the hypothesis output

by A on the identically zero function over n input bits, and let hf = Af (1n) be the correspondent
hypothesis for f . Using that f is γ-dense and the advantage parameter of the learner, we have:

dist(h0, 0
(n)) ≤ 1/2− α(n), (3)

dist(hf , f) ≤ 1/2− α(n), (4)

dist(f, 1(n)) ≤ 1− γ(n). (5)

Under our assumption that Qn does not hit f , and using that A is deterministic, it follows
that the answers provided by the functions 0(n) and f to the queries made by A on input 1n are
identical. Consequently,

dist(h0, hf ) = 0, (6)

i.e., A outputs the same hypothesis on both functions.
Finally, it follows from inequalities 2, 3, 4, 5, and 6 that

1 = dist(0(n), 1(n)) ≤ dist(0(n), h0) + dist(h0, hf ) + dist(hf , f) + dist(f, 1(n))

≤ (1/2− α(n)) + 0 + (1/2− α(n)) + (1− γ(n))

= 1 + (1− γ(n))− 2α(n)

< 1,

which is a contradiction. This completes the proof that H is indeed a hitting set generator with
the desired parameters.

If the learning advantage α is too small in Lemma 18, the hitting set is only guaranteed to hit
very dense circuits. This can be easily fixed by the following straightforward construction.

Lemma 19 (Amplification of uniform family of hitting sets). Let C be a class closer under dis-
junctions, s(m) be a non-decreasing function, and 0 < ζ ′(m) < β(m) < 1. Let {Hm}m≥1 be a
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uniform family of functions Hm : {0, 1}`(m) → {0, 1}m, where each Hm is a hitting set for β(m)-
dense circuits in C(s(m)). Furthermore, assume Hm is computable in time t(m). If k′(m) : N→ N
and ζ ′ : N→ [0, 1] are functions satisfying

1− (1− ζ ′(m))k
′(m) ≥ β(m · k′(m)),

the following holds. There exists a uniform family {H ′m}m≥1 of functions H ′m : {0, 1}`′(m) → {0, 1}m
computable in time t′(m) such that each H ′m is a hitting set for ζ ′(m)-dense circuits in C(s′(m)),
where

`′(m) = `(m · k′(m)) + log k′(m), t′(m) = O(t(m · k′(m))), and s′(m) = s(m · k′(m))/k′(m).

Proof. We define H ′m as follows. It decomposes its input x ∈ {0, 1}`′(m) as a string x = x1x2, where
|x1| = `(m · k′(m)) and |x2| = log k′(m). Let y = Hm·k′(m)(x

1) ∈ {0, 1}m·k′(m), and decompose

y = y1 . . . yk
′(m), where each |yj | = m, j ∈ [k′(m)]. The generator H ′m view x2 as an index

i ∈ [k′(m)], and outputs yi. Clearly, the running time of H ′m is as desired.
Consider a ζ ′(m)-dense circuit D′ ∈ C(s′(m)) over m-bit inputs. Let D(z1, . . . , zk

′(m)) =∨k′(m)
i=1 D′(zi) be the circuit obtained by the disjunction of k′(m) copies of D′ over a disjoint

set of input variables. Since C is closed under disjunctions, D is a C-circuit of size at most
k′(m) · s′(m) ≤ s(m · k′(m)). Furthermore, since D′ is ζ ′(m)-dense, the assumption on k′(m)
and the definition of D imply that D is β(m · k′(m))-dense. Consequently, D is hit by some string
w ∈ {0, 1}m·k′(m) in the support of Hm·k′(m). In particular, for w = w1 . . . wk

′(m), there exists
i ∈ [k′(m)] such that the i-th copy of D′ in D is hit by wi ∈ {0, 1}m. By construction, wi is also in
the support of H ′m, which shows that D′ is hit by H ′m. In other words, for every m ≥ 1, H ′m hits
every ζ ′(m)-dense circuit in C(s′(m)), which completes the proof.

We can therefore get hitting set generators with strong parameters (i.e. hitting sparse circuits
and with non-trivial seed length) even from very weak deterministic learning algorithms.

Theorem 20 (Hitting set generators from weak deterministic learning algorithms). Let C be a cir-
cuit class closed under disjunctions. Suppose there is a deterministic algorithm that learns C(s(n))
with advantage α(n) > 0 in time t(n) ≥ n. Then, for every function ζ?(n) > 0 for which there is a
function k?(n) satisfying

(1− ζ?(n))k
?(n) ≤ α(n · k?(n)),

there is a uniform family {H?
n}n≥1 of functions H?

n : {0, 1}`?(n) → {0, 1}n for which the following
holds. Each H?

n is a quick hitting set generator for the class of ζ?(n)-dense circuits in C(s?(n)),
where

`?(n) = log(t(n · k?(n)) · k?(n)) and s?(n) = s(n · k?(n))/k?(n).

Proof. Every learning algorithm is a restricted learner for all values of γ. The result is immediate

from Lemmas 18 and 19 using the parameter β(n)
def
= 1−α(n) > 1−2α(n), where we used α(n) > 0.

Note that the resulting hitting set generator is indeed a quick generator, due to the value of `?.

We give a concrete application next. Recall that [CIKK16] recently discovered a quasi-polynomial
time randomized learning algorithm for AC0[p], and that constructing hitting sets and pseudoran-
dom generators against this circuit class is a notorious open problem (see e.g. [FSUV13]). Con-
sequently, a non-trivial derandomization of a much weaker formulation of [CIKK16] would have
important consequences in pseudorandomness.
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Corollary 21. If there is a deterministic algorithm that learns AC0[p] in sub-exponential time

2n
o(1)

and with an exponentially small advantage ≥ 2−n
1−ε

, where ε > 0 is fixed, then there are
hitting sets Hn : {0, 1}`(n) → {0, 1}n for (1/2)-dense AC0[p]-circuits with sub-polynomial seed length
`(n) = no(1).

In many cases, learning algorithms are designed in two stages. The first stage explores a
technique that provides a learner with small advantage over random guessing, while the second stage
employs additional machinery to boost the original learner to a high-accuracy learning algorithm
(cf. [Jac97], [CIKK16]). As a consequence of our results, derandomizing the first stage of such
algorithms is enough to produce non-trivial hitting set generators.

4.2 Pseudodeterministic learning algorithms

In this short section, we adapt the preceding results to the pseudodeterministic case. We start
with an analogue of Lemma 18, stated below as a theorem.

Theorem 22 (Pseudodet. hitting set generators from pseudodet. learners). Let C be any class of
functions, suppose δ ≤ µ < 1/2 and ε < 1/2, and assume that there is a (ε, δ, µ)-pseudodeterministic
learning algorithm A for C(s) running in time t = t(n, ε, δ, µ). If γ > 2ε, there exists a uniform
family {Hn}n≥1 of functions Hn : {0, 1}t×{0, 1}log t → {0, 1}n that is a quick µ-pseudodeterministic
hitting set for γ-dense functions in C(s(n)).

Proof. The proof is adapted in a natural way. For w ∈ {0, 1}t and i ∈ [t] represented as a string
on log t bits, Hn(w, i) outputs the i-th query made by the randomized learner A when it computes
with oracle access to 0(n) and random input string w. Clearly, Hn can be computed in time O(t).

Since A is µ-deterministic, there exists a canonical set of queries Qn ⊆ {0, 1}n and a canonical
output hypothesis h0 such that

Pr
w

[A0(n)
(1n,w) queries 0(n) exactly over Qn and A0(n)

(1n,w) = h0] ≥ 1− µ.

Moreover, since δ ≤ µ ≤ 1/2, we must have dist(h0, 0
(n)) ≤ ε. This also implies that there is a

fixed function H? : {0, 1}log t → {0, 1}n with support Qn such that Prw[H(w, ·) ≡ H?] ≥ 1−µ. We
claim that H? is a hitting set for γ-dense functions in C(s(n)).

Suppose not, and that some function f from this class is not hit by Qn = H?({0, 1}log t). Then,
with probability at least 1 − µ > 1/2, the computation of A on f is identical to the computation
of A on 0(n). If this happens then Af also outputs the hypothesis h0 for f . Now if dist(h0, f) ≤ ε,
since f is γ-dense we get that

1 = dist(0(n), 1(n)) ≤ dist(0(n), h0) + dist(h0, f) + dist(f, 1(n)) ≤ ε+ ε+ (1− γ) < 1,

where the last inequality used the assumption that γ > 2ε. Therefore, we must have dist(h0, f) > ε.
As this happens with probability strictly larger than 1/2 and δ < 1/2, we obtain a contradiction
to the correctness of A on f .

We provide a concrete instantiation of Theorem 22, showing a setting where a pseudoderan-
domization would have interesting consequences. Recall that CNFs can be learned to any accuracy
ε > 0 by a randomized polynomial time algorithm [Jac97]. On the other hand, it is a notable open
problem to construct pseudorandom generators and hitting set generators with logarithmic seed
length for the class of polynomial size CNFs (see [ST17] for a recent related result).
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Corollary 23. If there is a (ε, δ, µ)-pseudodeterministic polynomial-time learning algorithm for
the class of polynomial size CNFs, where ε, δ, µ ≤ 1/10, then for every k ≥ 1 there is a µ-
pseudodeterministic hitting set generator Hn : {0, 1}poly(n) × {0, 1}O(logn) → {0, 1}n for the class
of 3ε-dense CNFs of size at most nk.

It is easy to see that an analogue of Lemma 19 holds for pseudodeterministic hitting sets, and as
a direct consequence, they can also be obtained from weak pseudodeterministic learning algorithms.
We state for reference the following general result, which can be established in a way completely
analogous to the proof of Theorem 20.

Theorem 24 (Pseudodet. hitting sets from weak pseudodet. learning). Let C be a circuit class
closed under disjunctions. Suppose there is a µ(n)-pseudodeterministic algorithm that learns C(s(n))
with advantage α(n) > 0 in time t(n) ≥ n, where µ(n) < 1/2. Then, for every function ζ?(n) > 0
for which there is a function k?(n) satisfying

(1− ζ?(n))k
?(n) ≤ α(n · k?(n)),

there is a uniform family {H?
n}n≥1 of functions H?

n : {0, 1}∗ × {0, 1}`?(n) → {0, 1}n for which the
following holds. Each H?

n is a quick µ?(n)-pseudodeterministic hitting set generator for the class of
ζ?(n)-dense circuits in C(s?(n)), where

µ?(n) = µ(n · k?(n)), `?(n) = log(t(n · k?(n)) · k?(n)), and s?(n) = s(n · k?(n))/k?(n).

The following immediate consequence might be of complexity-theoretic interest.

Corollary 25. For every constant µ < 1/2, if there is a µ-pseudodeterministic algorithm that learns
polynomial size circuits in time 2o(n) and with a constant advantage α > 0, then there is a quick
µ-pseudodeterministic hitting set Hn : {0, 1}t(n) × {0, 1}`(n) → {0, 1}n for (1/2)-dense polynomial
size circuits, where `?(n) = o(n) is the seed-length, and t(n) = 2o(n) is the randomness complexity.

4.3 Consequences for circuit lower bounds from learning algorithms

It is well-known that hitting set generators can be used to define hard boolean functions com-
putable in deterministic exponential time. We observe next that pseudodeterministic hitting sets
provide hard functions computable in randomized exponential time. This will allow us to use our
techniques to derive a new result showing that pseudodeterministic learning algorithms yield almost
everywhere circuit lower bounds.

Lemma 26 (Lower bounds from pseudodeterministic hitting set). Let C be an arbitrary class of
functions. Let {Hm}m≥1 be a quick (1/3)-pseudodeterministic hitting set for (1/2)-dense circuits in
a class C(s(m)), where Hm : {0, 1}t(m)×{0, 1}`(m) → {0, 1}m, `(m) < m, and t(m) ≤ 2O(`(m)). Then
there is f in BPE = BPTIME[2O(n)] such that fn /∈ C(s(`−1(n))) for all n ≥ 1, where f = {fn}n≥1

and fn : {0, 1}n+1 → {0, 1}.

Proof. Given n ≥ 1, let m be the largest integer such that n = `(m), where we assume for simplicity
that it exists. We define a probabilistic algorithm B that computes fn. On an input x ∈ {0, 1}n+1,
it samples a random string w ∼ {0, 1}t(m), and accepts x is and only if x is not the (n + 1)-bit
prefix of an m-bit string in Hm(w, {0, 1}`(m)).
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By construction and using that Hm is quick, A runs in time at most 2O(n). Since Hm is (1/3)-
pseudodeterministic, it is easy to see that A is a bounded probabilistic algorithm, i.e., it defines
a function in BPTIME[·]. Moreover, each fn is (1/2)-dense, since it is defined over {0, 1}n+1, and
there are at most 2n strings in Hm(w, {0, 1}`(m)), for an arbitrary w ∈ {0, 1}t(m).

We claim that fn requires C-circuits of size larger than s(`−1(n)). Suppose otherwise, and let
Dn be a circuit of such size and over n + 1 input bits that computes fn. Then Dn viewed as a
circuit over m input variables still computes a (1/2)-dense function (that does not depend on the
new variables) of circuit complexity ≤ s(m) that is not hit by Hm. This contradicts the hitting set
property of the generator, and completes the proof of the lemma.

Theorem 27 (Lower bounds from non-trivial pseudodeterministic learners). Let C be an arbitrary
circuit class. If there is a (1/3)-pseudodeterministic learner that learns C(s(n)) to accuracy ε < 1/4
and in time t(n) = o(2n), then there are functions in BPE that require C-circuits of size ≥ s(n) on
every input length n ≥ 1.

Proof. The result follows from Theorem 22 (using γ = 1/2) and Lemma 26.

In comparison to the result from [OS17a], which shows BPE lower bounds from arbitrary ran-
domized learning algorithms, the proof of Theorem 27 is elementary and does not employ advanced
machinery from complexity theory. Most importantly, the new result shows that one can get almost
everywhere lower bounds from randomized learning algorithms operating pseudodeterministically,
while [OS17a] only yields infinitely often separations.

The proof of Theorem 27 also applies to the simpler setting of deterministic learners, and in
this case it shows lower bounds for a function in E = DTIME[2O(n)]. This is similar to a result from
[KKO13], but there are important differences in the two cases. In [KKO13], the learner is allowed
equivalence queries in addition to membership queries. On the other hand, their result assumes
that the hypothesis is correct on every input string, while the deterministic formulation of Theorem
27 only requires an approximate hypothesis.16

5 Pseudo-derandomizing approximation

In this section, we provide unconditional pseudo-derandomizations for approximate counting
algorithms, and present connections between (pseudo)deterministic learning and approximate can-
onization.

5.1 Approximation of integer-valued functions

We need the following simple lemma.

Lemma 28 (Computing the median in logarithmic space). The median of N integers, each at most
N bits long, can be computed in space O(log(N)).

Proof. The proof uses a simple guess-and-check procedure. Given N integers X1, X2 . . . XN , we
guess each one in turn to be the median, and attempt to verify the guess that Xi is the median
by counting the number of Xj , j 6= i such that Xj < Xi and the number of Xj , j 6= i such that

16Note that one can also get a trade-off between the running time assumption and the learning advantage, by
employing Theorem 24 instead of Theorem 22 in the proof of Theorem 27.
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Xj > Xi. If both these counts are at most bN/2c, we know that Xi is the median. If either of them
is larger, we move on to the next guess Xi+1.

In more detail, we search for the median in (up to) N phases, where phase i corresponds to the
guess that Xi is the median. We use an O(log(N)) bit counter to keep track of the current phase i.
In phase i, we loop through j from 1 to N , j 6= i, and check for each j in logarithmic space whether
Xj < Xi, Xj = Xi or Xj > Xi. We maintain two counters a and b that are initialized to zero at
the beginning of each phase – a keeps a running count of the number of j, j 6= i such that Xj < Xi

and b keeps a running count of the number of j, j 6= i such that Xj > Xi. Thus, if Xj < Xi, we
increment a by 1; if Xj > Xi, we increment b by 1. Note that the comparison of Xi with Xj can be
done in space O(log(N)) since Xi and Xj are each at most N bits long. Similarly, incrementing a
or b can also be done in space O(log(N)), as each of those counters can be represented in O(log(N))
bits. When we have looped through all j, we check if a and b are both at most bN/2c. Again, this
check can be done in space O(log(N)), as it involves comparing O(log(N))-bit numbers. If both
checks succeed, we copy Xi onto the output tape, otherwise, we increment i and move on to the
next phase. As the median exists, some phase with index at most N succeeds.

We apply Lemma 28 to pseudo-derandomize approximation algorithms in the case that PSPACE
collapses to BPP.

Lemma 29 (Pseudo-derandomizing approximation when PSPACE = BPP). Suppose PSPACE =
BPP. Then every integer-valued function with a PRAS (resp. FPRAS) has a PPDAS (resp. PFP-
DAS).

Proof. We establish the result for an integer-valued function with a PRAS, and then indicate how
the proof needs to be modified slightly for the case when the function has an FPRAS.

Let f be an integer-valued function with a PRAS. Fix ε > 0. Since f has a PRAS, there is a
probabilistic polynomial-time machine M such that for each input x, with probability 1− 2−Ω(|x|),
we have that (1 − ε)f(x) ≤ M(x) ≤ (1 + ε)f(x). We can assume without loss of generality that
M uses a random sequence of length nk and halts in time nk on any input of length n, where k
is some constant. Given a string R ∈ {0, 1}nk , let M(x,R) denote the output of M on input x of
length n and randomness R.

We define a language L as follows: an input < x, 1i > is in L if i ≤ |x|k and moreover the

i’th least significant bit of the median of the 2|x|
k

integers M(x,R), R ∈ {0, 1}|x|k is 1. We argue
that L ∈ PSPACE, by defining a polynomial-space bounded machine N to decide L. Given input
< x, 1i >, N first checks if i ≤ |x|k, rejecting if not. If this check succeeds, N simulates the

algorithm of Lemma 28 to compute the median of the 2|x|
k

numbers M(x,R), R ∈ {0, 1}|x|k . Each
time the algorithm accesses a number Xj , N re-computes and stores M(x,Rj), where Rj is the
j’th string of length |x|k, in lexicographic order. Clearly this re-computation and storage can be
implemented in polynomial space, as M can be simulated in polynomial time when its random
sequence is fixed. The median-finding algorithm runs in space logarithmic in the size of the list it
processes, which is polynomial as a function of |x|. The simulation ends by computing the median
value g(x), which N stores. Finally, N checks if the i’th least significant bit of g(x) is 1, accepting
if and only if this check succeeds. It should be clear that N can be implemented in polynomial
space overall.

By assumption, PSPACE = BPP, and hence there is a probabilistic polynomial-time machine
N ′ which decides L, with error at most 2−|y| on any input y. We use N ′ to define a polynomial-time
pseudo-deterministic approximation scheme M ′ for f , as follows. On input x, M ′ simulates N ′ on
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< x, 1i > for each i, 1 ≤ i ≤ |x|k. Let bi = 0 if N ′ rejects on < x, i >, and 1 otherwise. M ′ outputs
b|x|k . . . b1.

M ′ can be implemented in polynomial time, since it simulates the polynomial-time machine N ′

polynomially many times. We need to argue that M ′ implements a pseudo-deterministic approxi-
mation scheme for f . First, using a simple union bound and the fact that the probabilistic machine
N ′ deciding L has error at most 2−|y|, we have that with probability at least 1 − poly(|x|)2−|x|,
we get that M ′ outputs the true median g(x) of M(x,R), R ∈ {0, 1}|x|k , and hence satisfies the
pseudo-determinism condition. From the fact that M outputs a good approximation with very
high probability, it follows that the median g(x) of the values M(x,R), R ∈ {0, 1}|x|k is a good
approximation to f , i.e., (1− ε)f(x) ≤ g(x) ≤ (1 + ε)f(x). Thus we conclude that M ′ implements
a polynomial-time pseudo-deterministic approximation scheme for f .

Now we indicate how the argument needs to be changed if the integer-valued function has an
FPRAS. In this case, we run the argument as before, but with ε given as an extra input to the
machines M , M ′, N and N ′, and in the definition of the language L. All our previous reasoning
continues to be valid, and we conclude that there is a fully polynomial-time pseudo-deterministic
approximation scheme for f .

Note that in the above argument, we do not need any assumption about the complexity of
exact computation of the integer-valued function f . The argument works in the more general
setting where all we know is that a good probabilistic approximation can be efficiently computed.
Indeed, the argument can be shown to hold more generally when the function is real-valued, but
we choose not to emphasize this as it would involve us in questions of how to represent real values.

We will require the following uniform hardness-randomness tradeoff, which is essentially due to
Trevisan and Vadhan [TV07], in the proof of our main result in this section.

Theorem 30 (Uniform hardness-randomness tradeoff [TV07]). For each constant c ≥ 1, there is a
family of functions {Gcn}n≥1, where Gcn : {0, 1}n → {0, 1}nc is computable in deterministic time 2n,
such that if there is a probabilistic polynomial-time machine A with Boolean output and a constant
d for which

∣∣PrA,x∼Unc [A(1n,x)] − PrA,z∼Un [A(1n, Gcn(z))]
∣∣ > 1/nd for all but finitely many n,

then PSPACE = BPP.

Now we are ready to state, and establish our main lemma.

Lemma 31 (Pseudo-derandomization if no complexity collapse). Let f be an integer-valued func-
tion with a PRAS (resp. FPRAS). Then at least one of the following holds:

1. PSPACE = BPP.

2. For each polynomial-time samplable sequence D of distributions and each δ > 0, f has a
i.o. deterministic (resp. fully deterministic) approximation scheme over D running in time

2O(mδ).

Proof. We establish the result for an integer-valued function f with a PRAS, and sketch afterward
how to modify the proof to work for f with an FPRAS.

Suppose f has a PRAS, and let ε > 0 be arbitrary. We assume without loss of generality that
ε < 1/2; to see this, note that the machine implementing the approximation scheme for parameter
ε = 1/4 can also be used for all larger ε. Let M be a probabilistic polynomial-time machine
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implementing the approximation scheme for f with error parameter ε′ = ε/8. Let k be a constant
such that M uses at most |x|k random bits and runs in time at most |x|k on any input x.

Let δ > 0 be any constant. We define a deterministic algorithm Bδ running in time 2O(mδ)

on inputs of length m, and argue that if there exists a polynomial-time samplable sequence D of
distributions such that Bδ does not compute an ε-approximation to f on infinitely many input
lengths over D, then PSPACE = BPP.

Bδ operates as follows on input x with |x| = m. It runs the generator G
k/δ

mδ
given by Theorem

30 on each possible input z ∈ {0, 1}mδ to obtain 2m
δ

outputs Rz, where each Rz is of length mk.
For each Rz, it simulates the probabilistic polynomial-time machine M with random sequence Rz
to obtain an output wz. It computes the median g(x) of the 2m

δ
values wz, and outputs this value.

First we bound the running time of Bδ. By Theorem 30, the generator G
k/δ

mδ
can be computed

in time 2m
δ

on any input of length mδ. Thus, the computation of all strings Rz can be done in time
22mδ . Simulating M with random sequence Rz can be done in polynomial time for each Rz, and
hence cumulatively in time 2m

δ
poly(m). Computing the median of 2m

δ
values, each of size poly(m)

can be done in time poly(m)2m
δ
. Thus, overall, the running time of Bδ is 2O(mδ), as promised.

Next we argue that if there exists a polynomial-time samplable sequence D of distributions such
that Bδ does not compute an ε-approximation to f on infinitely many input lengths over D, then
PSPACE = BPP. This is the main argument in the proof, and crucially uses information about the
generator given by Theorem 30.

Suppose there exists a polynomial-time samplable sequence D of distributions such that Bδ
does not compute an ε-approximation to f on infinitely many input lengths over D. This means
that there is a constant b such that for all large enough m, with probability at least 1/mb over
x ∼ Dm, Bδ outputs a value g(x) such that g(x) < (1−ε)f(x) or g(x) > (1+ε)f(x). In contrast, by
assumption on M , we have that with all but exponentially small probability over the randomness
of M , (1 − ε/8)f(x) ≤ M(x) ≤ (1 + ε/8)f(x). We will use this contrast to define a probabilistic

algorithm distinguishing the output of G
k/δ

mδ
from random with noticeable probability, and then use

Theorem 30 to conclude that PSPACE = BPP.
We define a probabilistic algorithm A satisfying the condition specified in Theorem 30 with

respect to the generator {Gk/δ
mδ
}. A operates as follows on input (1n, y). It first determines m such

that n = mδ (we assume here and elsewhere that real parameters are truncated to integers when
necessary). It checks that y is of length mk, rejecting if not. It then samples an input x of length
m according to the polynomial-time samplable distribution Dm. It simulates M on x with random
sequence y to obtain a number w. Note that M uses |x|k = mk random bits, and y is of length
mk, hence this simulation can be carried out successfully. A then simulates M without a specified
random sequence, i.e., using its own internal randomness to obtain a number w′. It then checks if
(1− ε/2)w ≤ w′ ≤ (1 + ε/2)w. If yes, it accepts, otherwise it rejects.

We show that
∣∣PrA,y∼U

nk/δ
[A(1n,y)]− PrA,z∼Un [A(1n, G

k/δ
n (z))]

∣∣ > 1/nd for some constant d
and all but finitely many n, which by Theorem 30 implies PSPACE = BPP. We first show that
A rejects with noticeable probability on (1n, y) when y is chosen randomly from the range of the
generator, and then show that A accepts with probability nearly 1 when y is chosen uniformly at
random.

First, we estimate the rejection probability of A when run on (1n, y) for y chosen at random
from the output distribution of the generator, and n large enough. Let N be large enough that
for all input lengths m ≥M = N1/δ, Bδ fails to compute an ε-approximation to f over D. By the
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definition of computing an ε-approximation to f over D, this means that there is a constant b such
that for all input lengths m ≥M , with probability at least 1/mb over x chosen according to Dm, Bδ
outputs a value g(x) such that g(x) < (1− ε)f(x) or g(x) > (1 + ε)f(x). Since the value output by
Bδ is the median of the values obtained by running M using strings in the range of Gk/δ as random
sequence, this implies that for at least half the strings Rz in the range (counting multiplicities),
we have that wz < (1 − ε)f(x), or that for at least half the strings Rz in the range, we have
that wz > (1 + ε)f(x). Note, on the other hand, that when M is run using a uniformly random
sequence, the output w′ is between (1 − ε/8)f(x) and (1 + ε/8)f(x) with all but exponentially
small probability, by using the fact that M implements a randomized approximation scheme with
parameter ε/8. Thus, we have that with probability at least 1/3mb over the randomness of A and

the randomness of the seed to G
k/δ

mδ
, either the w obtained by A does not satisfy the condition

(1− ε/2)w ≤ w′ (this happens in the case that w > (1 + ε)f(x), using the fact that ε < 1/2 and the
non-negativity of f), or the w obtained by A does not satisfy the condition w′ ≤ (1 + ε/2)w (this
happens in the case that w < (1− ε)f(x), again using the bound on ε and the non-negativity of f).

In contrast, when A is run on (1n, y), where y is chosen uniformly at random, we have that with
all but exponentially small probability, the values w and w′ satisfy (1−ε/8)f(x) ≤ w ≤ (1+ε/8)f(x)
and (1 − ε/8)f(x) ≤ w′ ≤ (1 + ε/8)f(x). This implies that with all but exponentially small
probability, w and w′ are within a factor (1 + ε/8)/(1− ε/8) of each other, and in particular, using
the bound on ε and the non-negativity of f , we have that (1− ε/2)w ≤ w′ ≤ (1 + ε/2)w.

Thus we get that A distinguishes the output of the generator from random with probability at
least 1/4mb for m ≥ M , which is at least 1/4nd for d = b/δ. We conclude that PSPACE = BPP,
applying Theorem 30.

We have shown that if there exist a δ > 0, ε > 0 and a polynomial-time samplable sequence D of
distributions such that Bδ does not compute an ε-approximation to f infinitely often over D, then
PSPACE = BPP, which gives the first item of the lemma. On the other hand, if for each δ > 0, ε > 0
and polynomial-time samplable sequence D of distributions, Bδ does compute an ε-approximation
to f infinitely often over D, then we have that for each polynomial-time samplable sequence D of
distributions and each δ > 0, f has an i.o. deterministic approximation scheme running in time
2O(mδ) over D, which gives the second item of the lemma.

We now sketch how to obtain the analogous result for an integer-valued function f with an
FPRAS. We run the argument as before, except that we don’t fix ε in advance, but supply it as a
parameter to M and to Bδ. The probabilistic algorithm A used as the distinguisher samples not
just an x but also an ε, and when it does the simulation of M , it uses the parameter ε/8. The rest
of the argument works as before.

Theorem 32 (Unconditional pseudo-derandomization of polynomial-time approximation). Let f
be an integer valued function with a PRAS (resp. FPRAS). Then for each polynomial-time samplable
sequence D of distributions and for each constant δ > 0, f has an i.o.PDAS (resp. i.o.FPDAS)

over D running in time O(2n
δ
).

Proof. Suppose f has a PRAS (resp. FPRAS). We use a simple win-win argument. We apply
Lemma 31. If the first item in the lemma holds, we use Lemma 29 to conclude that f has a PPDAS
(resp. PFPDAS). If the second item holds, then by Lemma 31, we have that for each polynomial-
time samplable sequence D of distributions and for each constant δ > 0, f has an i.o. deterministic
(resp. i.o. fully deterministic) approximation scheme running in time O(2n

δ
) over D. In either case,
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for each polynomial-time samplable sequence D of distributions and for each constant δ > 0, f has
an i.o.PDAS (resp. i.o. FPDAS) running in time O(2n

δ
) over D.

Corollary 33 (Unconditional pseudo-derandomization of approximation for Permanent). For each
polynomial-time samplable sequence D of distributions and each constant δ > 0, the (0, 1)-Permanent

has an i.o.FPDAS over D running in time O(2n
δ
).

Corollary 33 follows from Theorem 32 using the FPRAS for (0, 1)-Permanent due to [JSV04].

5.2 Canonization and approximate canonization

In this section, we discuss connections between learnability and approximate canonization. Our
results are inspired by similar ideas from [BGI+12] in the context of deterministic exact learning
algorithms.

Proposition 34 (Exact canonization is hard). Let C be any circuit class that contains linear-sized
CNFs or DNFs. If C(poly) has deterministic polynomial-time canonization, then NP = P. If
C(poly) has pseudo-deterministic polynomial-time canonization, then NP ⊆ BPP.

Proof. Let C be a circuit class that contains linear-sized CNFs (the case where C contains linear-
sized DNFs can be treated dually). Assume C has deterministic polynomial-time canonization, and
let f be a polynomial-time computable canonizing function. We can solve CNF satisfiability for
linear-sized CNFs in polynomial time as follows: given a linear-sized CNF φ, we compute f(φ)
and f(φfalse), where φfalse is some easily computable unsatisfiable linear-sized CNF on the same
number of variables as φ. Note that since C contains linear-sized CNFs, the canonizing function
is applicable to CNFs. If f(φ) = f(φfalse) we output “unsatisfiable”, else we output “satisfiable”.
Clearly this algorithm runs in polynomial time. If φ is satisfiable, then φ is not equivalent to
φfalse, and hence the canonizing function f gives different outputs on input φ and input φfalse.
Consequently, we correctly output “satisfiable”. If φ is unsatisfiable, then φ is equivalent to φfalse,
and hence the canonizing function f gives the same output on inputs φ and φfalse. Consequently,
we correctly output “unsatisfiable”. Since satisfiability of linear-sized CNFs is NP-complete, we get
that NP = P.

The argument is similar if C has pseudo-deterministic polynomial-time canonization. In this
case again, we compare f(φ) and f(φfalse) and accept iff they are different, where f is now a
canonizing function computable in pseudo-deterministic polynomial time. The only difference from
the previous case is that now the procedure is randomized, and is correct with high probability, since
the canonical outputs f(φ) and f(φfalse) are both computed correctly with high probability.

Theorem 35 (Pseudo-deterministic approximate canonization from learning). Let C be an arbitrary
circuit class and ε > 0 be a parameter. Let t : N → N be a time bound, and s : N → N be a
polynomial-time computable size function. If there is a deterministic learning algorithm which
learns C[s(n)] to accuracy ε in time t(n), then C[s(n)] has deterministic ε-approximate canonization
in time t(n)s(n) poly(n). If there is a (1/3)-pseudodeterministic learning algorithm which learns
C[s(n)] to accuracy ε in time t(n), then C[s(n)] has pseudo-deterministic ε-approximate canonization
in time t(n)s(n) poly(n).

Proof. We first show the result for deterministic learning algorithms, and the result for pseudo-
deterministic learning algorithms follows similarly.
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Suppose there is a deterministic learning algorithm A which learns C[s(n)] to accuracy ε in time
t(n). We define a deterministic Turing machine M which computes an ε-approximate canonization
function f for C[s(n)] in time t(n)s(n) poly(n) as follows. Given input C from C, M checks if the
size of C is at most s(n), using the computability of the size function, where n is the number of
variables of C. If not, M produces an arbitrary output. If the check succeeds, M simulates the
learning algorithm A(1n). Each time A asks a membership query y, M answers the membership
query by evaluating C(y). Each such evaluation takes time at most s(n) poly(n), since C is of size
at most s(n). Eventually, A halts with a hypothesis circuit D. M outputs D. It should be clear
that M operates in time t(n)s(n) poly(n) overall.

We argue that M computes an ε-approximate canonization function f for C[s(n)]. We first
argue that the output of M is always the same for two different circuits of size s(n), and next that
the output is an ε-approximation to the input circuit. To see the first point, note that if two circuits
C and C ′ of size at most s(n) are equivalent, answers to membership queries made by the learning
algorithm A are answered the same way in the simulation by M . Also, the same membership queries
are made, since A is deterministic. Thus the output hypothesis circuit D is the same irrespective
of whether M is run on C or on C ′. To argue that the output is an ε-approximation to the input
circuit C, we just use the fact that A is a correct deterministic learning for C[s(n)] to accuracy ε.
Since C belongs to the class C[s(n)], the simulation of A by M produces an output hypothesis that
is an ε-approximation to C.

The argument for pseudo-deterministic learning algorithms is analogous. The machine M com-
puting a pseudodeterministic ε-approximate canonization is now probabilistic. It operates the same
way as before, except that it simulates the pseudodeterministic learning algorithm A. The argu-
ments that the same output is obtained with high probability on equivalent circuits C and C ′, and
that a fixed hypothesis circuit D that is an ε-approximation to C is output with high probability,
are essentially the same as before, using the assumption that A is a (1/3)-pseudodeterministic
learning algorithm.

Corollary 36 (Approximate canonization for AC0). For each ε > 0 and k ≥ 1, the class AC0(nk)
has deterministic ε-approximate canonization in quasi-polynomial time.

Proof. The result follows from Theorem 35 using Sitharam’s deterministic quasi-polynomial time
algorithm [Sit95] for polynomial-size AC0.

Corollary 37. Let p ≥ 2 be a fixed prime. The class AC0[p] admits approximate canonization
under the following assumptions:

1. If E requires circuits of size 2n
Ω(1)

almost everywhere, then for each ε > 0 and k ≥ 1,
AC0[p](nk) has deterministic ε-approximate canonization in quasi-polynomial time.

2. If BPE requires circuits of size 2n
Ω(1)

almost everywhere, then for each ε > 0 and k ≥ 1,
AC0[p](nk) has pseudo-deterministic ε-approximate canonization in quasi-polynomial time.

Proof. The second result follows from Theorem 35 and Corollary 12. The proof of the first result
is similar.
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