
Parity Helps to Compute Majority

Igor C. Oliveira∗

Department of Computer Science

University of Oxford

Rahul Santhanam†

Department of Computer Science

University of Oxford

Srikanth Srinivasan‡

Department of Mathematics

IIT Bombay

May 17, 2019

Abstract

We study the complexity of computing symmetric and threshold functions by constant-depth
circuits with Parity gates, also known as AC0[⊕] circuits. Razborov [Raz87] and Smolensky

[Smo87, Smo93] showed that Majority requires depth-d AC0[⊕] circuits of size 2Ω(n1/2(d−1)). By
using a divide-and-conquer approach, it is easy to show that Majority can be computed with

depth-d AC0[⊕] circuits of size 2Õ(n1/(d−1)). This gap between upper and lower bounds has
stood for nearly three decades.

Somewhat surprisingly, we show that neither the upper bound nor the lower bound above is
tight for large d. We show for d ≥ 5 that any symmetric function can be computed with depth-d

AC0[⊕] circuits of size exp(Õ(n
2
3 ·

1
(d−4))). Our upper bound extends to threshold functions (with

a constant additive loss in the denominator of the double exponent). We improve the Razborov-
Smolensky lower bound to show that for d ≥ 3 Majority requires depth-d AC0[⊕] circuits of

size 2Ω(n1/(2d−4)). For depths d ≤ 4, we are able to refine our techniques to get almost-optimal

bounds: the depth-3 AC0[⊕] circuit size of Majority is 2Θ̃(n1/2), while its depth-4 AC0[⊕] circuit

size is 2Θ̃(n1/4).

∗igor.carboni.oliveira@cs.ox.ac.uk
†rahul.santhanam@cs.ox.ac.uk
‡srikanth@math.iitb.ac.in

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 73 (2019)

mailto:igor.carboni.oliveira@cs.ox.ac.uk
mailto:rahul.santhanam@cs.ox.ac.uk
mailto:srikanth@math.iitb.ac.in

Contents

1 Introduction 3
1.1 Our results . 3
1.2 Proof ideas . 4

2 The Upper Bounds 6
2.1 An improved upper bound for all large depths . 6
2.2 An upper bound for linear threshold functions . 8
2.3 A depth-4 upper bound . 9

3 The Lower Bounds 12
3.1 A refined analysis of approximate-degree bounds 12
3.2 A depth-3 lower bound . 14
3.3 An improved lower bound for all depths . 17

2

1 Introduction

Given the difficulty of proving lower bounds for general Boolean circuits, much work in cir-
cuit complexity has focused on restricted classes, and in particular on bounded-depth classes.
Super-polynomial lower bounds are known for explicit Boolean functions against various classes
of bounded-depth circuit classes, including AC0 (constant-depth circuits with unbounded fan-in
AND and OR gates) and AC0[⊕] (constant-depth circuits with unbounded fan-in AND, OR and
Parity gates).

In the case of AC0, we have almost optimal size bounds [Ajt83, FSS84, H̊as86] for the Parity
function. A simple divide-and-conquer argument shows that Parity on n variables can be computed
by depth-d AC0 circuits of size Õ(2n

1/(d−1)
). The classic lower bound of H̊astad [H̊as86] shows that

Parity requires depth-d AC0 circuits of size 2Ω(n1/(d−1)). Thus the upper bound is tight up to
the constant factor in the exponent. The same lower bound holds for the Majority function
[H̊as86], but the upper bound given by the divide-and-conquer argument [Bop84] weakens slightly

to 2Õ(n1/(d−1)), meaning that the upper bound is tight up to a logarithmic factor in the exponent.
For AC0[⊕], however, we do not have optimal bounds. The celebrated polynomial approxima-

tion method of Razborov and Smolensky [Raz87, Smo87, Smo93] yields a lower bound of 2n
1/2(d−1)

on the size of depth-d AC0[⊕] circuits computing Majority. The best known upper bound thus far
for Majority was the one mentioned in the previous paragraph, which in fact gives constant-depth
circuits that don’t use Parity gates.

Note that there is a significant gap between upper and lower bounds for Majority – the exponent
in the upper bound is quadratically larger than the exponent in the lower bound. This gap between
upper and lower bounds has stood for almost three decades.

Since the best known upper bound for Majority can be implemented without Parity gates,
a natural question arises. Do Parity gates help when computing Majority using bounded-depth
circuits? It is easy to see that Majority gates help to compute Parity – indeed, Parity can be
easily written as a small DNF of Majorities. However, it is far from clear how to take advantage
of Parity to compute Majority. Indeed, we ourselves believed until recently that the upper bound
was close to optimal for AC0[⊕] circuits computing Majority.

1.1 Our results

Our main result in this paper is that neither the upper bound using divide-and-conquer nor
the lower bound given by the Razborov-Smolensky method is tight for Majority, when the depth
is large enough. We first describe our new upper bound, and then our lower bound that slightly
improves Razborov-Smolensky.

First, we show how to save a constant factor in the double exponent when computing Majority.

Theorem 1. Let d ≥ 5 be an integer. Majority on n bits can be computed by depth-d AC0[⊕]

circuits of size 2Õ
(
n

2
3 ·

1
(d−4)

)
.

Theorem 1 follows from a result giving the same upper bound for the AC0[⊕] size complexity
of any symmetric function. Similar techniques combined with another idea and a more careful
implementation allow us to obtain an improved upper bound at depth d = 4 (stated in Corollary
3 below). We also show how to extend the upper bound in Theorem 1 to any linear threshold
function, though we lose a small additive term in the denominator of the double exponent. We
refer to the body of the paper for more details about the latter result.

3

Next, we show how to improve the Razborov-Smolensky lower bound slightly to achieve a
better double exponent.

Theorem 2. For any integer d ≥ 3, Majority on n bits requires depth-d AC0[⊕] circuits of size

2Ω(n1/(2d−4)).

Note that there is still a gap between our new upper bound for Majority given by Theorem 1
and our new lower bound given by Theorem 2. We do not have a clear belief at this point about
what the optimal size bound should be at large depths.

For depths d = 3 and d = 4, our results do provide nearly optimal bounds. For d = 3, the new
lower bound is close to the upper bound given by the divide-and-conquer strategy, showing that
parity gates do no significantly help when d = 3. On the other hand, for depth d = 4 our improved
upper bound construction essentially matches the new lower bound from Theorem 2.

Corollary 3. The following results hold :

(i) The depth-3 AC0[⊕] circuit size complexity of Majority is 2Θ̃(n1/2).

(ii) The depth-4 AC0[⊕] circuit size complexity of Majority is 2Θ̃(n1/4).

Note the contrast with the known size bounds for AC0 circuits, as a result of which we have a
significantly stronger AC0[⊕] upper bound than an AC0 lower bound at depth d = 4, but not at
smaller depths.

Our results indicate that even for simple circuit models, naive upper bound strategies might
not be optimal, and surprising savings can be achieved in circuit size. It might be worthwhile to
look for other examples of this phenomenon.

1.2 Proof ideas

Upper bounds. We describe the upper bound for the Majority function (the same idea works
for any symmetric function.) We follow the same basic high-level strategy as a construction of
better approximating polynomials for the Majority function due to Alman and Williams [AW15].
They observed that while the Majority function on n variables seems hardest to compute when
the Hamming weight is close to n/2, by polynomial interpolation, it is easy to obtain a low-degree
polynomial that computes Majority on such inputs. Conversely, when the input has weight far
from n/2, one can use sampling to reduce the input size and recurse.

A similar idea works in our setting as well. For inputs of weight within distance t of n/2,
we use a degree-t polynomial to compute the Majority function. This polynomial is over F2 and
moreover symmetric, and thus by standard techniques can be represented as a AC0[⊕] circuit of
depth d and size roughly exp(t2/d log n). When the weight is t-far from n/2, we use sampling not to
recurse but to solve the problem directly. In fact, using standard results on the complexity of the
Coin Problem from the literature [OW07, Ama09], it follows that there are AC0 circuits that solve
Majority on inputs that are t-far from n/2 in depth d and size roughly exp((n/t)1/d)). Putting
these strategies together and optimizing the value of t yields the upper bound.

The above strategy yields a constant factor improvement in the double exponent of known
upper bounds for large enough d. Using these ideas and a bit more work, we are also able to
obtain a similar improvement at depth 4. In particular, all these upper bounds are stronger than
known AC0 lower bounds for symmetric functions [H̊as86], proving that parity gates indeed help
in computing arbitrary symmetric functions.

4

It is worth understanding what these upper bounds mean at a higher level. A possible com-
parison can be made with the well-known result of Barrington, Beigel and Rudich [BBR94], which
showed that the OR function on n variables can be represented by a polynomial modulo 6 of degree
just O(

√
n). The crucial observation there was that given any two distinct integers i, j ∈ {0, . . . , n},

their difference i− j cannot simultaneously be divisible by a large power of 2 and a large power of
3 (here, “large” means more than

√
n). This can be stated in the language of p-adic norms: recall

that for a prime p, the p-adic distance between i and j is inversely related to the largest power of
p that divides i− j. Thus, the result of [BBR94] uses the fact that no i, j as above can be at small
2-adic as well as 3-adic distances. Our result leverages a similar contrast between the 2-adic norm
and the standard Euclidean norm.

Lower Bounds. First we describe a new but weaker circuit size lower bound of 2Ω(n1/(2d−3)).
Our proof follows the general polynomial approximation framework of Razborov [Raz87]. The
high-level idea is to show that any AC0[⊕] circuit of small size can be approximated by low-degree
polynomials from F2[x1, . . . , xn]: this is done by approximating each AND/OR gate1 in the circuit
by a low-degree polynomial and composing these approximations together. The second step is
to show that the hard function (the Majority function in our scenario) does not have low-degree
polynomial approximations of this form; here, the proofs that yield the best known parameters
are due to Smolensky [Smo87, Smo93].

To improve on known lower bounds, we need two new ingredients.

1. The first is the observation that the standard Razborov approximations for the OR and AND
functions are one-sided. While this is obvious from the construction, we do not know of a
previous lower-bound application of this. In our setting, we use this to show that any AC0[⊕]
circuit C has a low-degree polynomial approximation P where the approximation is much
better on one of C−1(0) or C−1(1).

2. To use these improved polynomial approximations, we need an improved lower bound for
approximating the Majority function in the sense described above. It follows from Smolen-
sky’s work [Smo87] that any polynomial that computes the Majority function on all but
an ε-fraction of inputs must have degree Ω(

√
n log(1/ε)). In our setting, however, we need

to lower bound the degree of a polynomial computing the Majority function on all but an
ε-fraction of the 0-inputs but may err on a constant (say 1/10) fraction of the 1-inputs. We
are able to recover the lower bound of Ω(

√
n log(1/ε)) even under these weaker assumptions,

which finishes the proof. This extension of Smolensky’s lower bound uses results on the
combinatorics of Hilbert functions [Wei91, KS05, NW15].

Using some of the above ideas in conjunction with standard AC0 lower bound techniques [Ajt83,
FSS84, H̊as86] based on random restrictions, we show how to get a lower bound of exp(Ω(

√
n)) on

the size of depth-3 circuits for the Majority function, matching the known AC0 lower bound [H̊as86]
and nearly matching the AC0 upper bound of exp(Õ(

√
n)) [Bop84].

Finally, we observe that the method of random restrictions employed in the depth-3 lower
bound allows us to further improve the lower bound in the general case. To achieve that, we
combine the refined analysis of approximate degree from items 1. and 2. above with the effects of
a random restriction on the approximate degree of depth-2 subcircuits. This gives a 2Ω(n1/(2d−4))

lower bound on the depth-d AC0[⊕] circuit size of Majority, completing the proof of Theorem 2.

1The parity gates are already low-degree polynomials and hence trivially approximable in this sense.

5

2 The Upper Bounds

2.1 An improved upper bound for all large depths

Theorem 4. For every integer d ≥ 5, if fn : {0, 1}n → {0, 1} is a symmetric boolean function then

it can be computed by an AC0[⊕] circuit of depth d and of size 2Õ
(
n

2
3 ·

1
(d−4)

)
.

Proof. For convenience, given a string x ∈ {0, 1}∗, we let |x|1
def
=
∑

i xi denote its hamming weight.
For 0 ≤ i, j ≤ n and i 6= j, let Di,j and Ei be boolean functions on n-bit inputs satisfying

Di,j(y) =

{
1 if |y|1 = i,

0 if |y|1 = j.
Ei(y) =

{
1 if |y|1 = i,

0 otherwise.

(The behaviour of Di,j on inputs of different hamming weight is not relevant in our construction.)
Notice that, for every 0 ≤ i ≤ n,

Ei(y) =
∧

0≤ j≤n
j 6= i

Di,j(y).

Clearly, if fn : {0, 1}n → {0, 1} is a symmetric boolean function, then it can be written as a
disjunction of at most n+ 1 functions Ei. (In other words, separating two layers of the hypercube
can be as difficult as computing the hardest symmetric function.) Consequently, our task is reduced
to the construction of AC0[⊕] circuits for each (partial) boolean function Di,j .

Given 0 ≤ i, j ≤ n with i 6= j, we describe two circuits that agree with Di,j over the relevant
input strings. The first circuit relies on an “algebraic” construction, while the second circuit is of
a more “combinatorial” nature. Before going into further details, let us informally describe the
main properties of the circuits (the discussion omits polylogarithmic factors in exponents).

1. Algebraic construction. If |i − j| ≤ n1/4, there is an AC0[⊕] circuit for Di,j of depth d and

size roughly 2n
1/2d

. This circuit explores parity gates in a crucial way.

2. Combinatorial construction. If |i− j| ≥ n1/2, there is an AC0 circuit for Di,j of depth d and

size roughly 2n
1/2d

. This circuit is obtained from AND/OR circuits solving the coin problem.

3. In the “critical” interval n1/4 ≤ |i− j| ≤ n1/2, we still don’t know if there are circuits com-

puting Di,j of size roughly 2n
1/2d

. Jumping ahead, we will rely on the algebraic construction
when n1/4 ≤ |i−j| ≤ n1/3, and on the combinatorial construction when n1/3 ≤ |i−j| ≤ n1/2.
The maximum circuit complexity peaks at |i− j| = n1/3, where both constructions provide

depth-d circuits of size roughly 2n
2/3d

.

We now present the technical details.

AC0[⊕] circuits for small |i− j|. We need the following lemma.

Lemma 5 ([AW15, Proof of Lemma 3.1]). For integers n ≥ 1, k ≥ 0, and ` ≥ 1 such that
n ≥ k + ` − 1, and for every c0, . . . , c`−1 ∈ Z, there is a multivariate polynomial Q : {0, 1}n → Z
of degree at most ` − 1 and with integer coefficients such that p(x) = ct for every x ∈ {0, 1}n for
which |x|1 = k + t, where 0 ≤ t ≤ `− 1. Moreover,

Q(x) =

`−1∑
t=0

at ·Qt(x),

6

where each at ∈ Z, and Qt(x) =
∑

S∈([n]
t)
∏
j∈S xj denotes the t-th elementary symmetric polyno-

mial.

Since the function ψ : Z → F2 that maps each integer to its parity is a ring homomorphism,
it follows from Lemma 5 that there is a polynomial P ∈ F2[y1, . . . , yn] of degree ` ≤ |i − j| that
agrees with Di,j on every input y ∈ {0, 1}n such that |y|1 ∈ {i, j}. Moreover,

P (y) =
∑̀
t=0

bt · Pt(y),

where each bt ∈ {0, 1}, Pt ∈ F2[y1, . . . , yn] is the t-th elementary symmetric polynomial (over F2),
and t ≤ `.

It is well known that each polynomial Pt can be computed by an algebraic branching program of
width n and length t+1 (the j-th layer contains nodes 1, . . . , n that store the largest coordinate in
[n] that has been read so far). Using a standard divide-and-conquer approach which is analogous
to the construction of bounded-depth circuits for distance-k connectivity (see e.g. [COST16]), it
follows that for every even depth d′ ≥ 2, Pt can be computed by a layered AC0[⊕] circuit of depth

d′ (consisting of ⊕ and ∧ gates) and of size at most nO(t2/d
′
). Moreover, the top gate of this circuit

is a parity gate. Using the definition of P as a sum of polynomials Pt over F2 (which allows us
to collapse two layers of parities), and the fact that t ≤ ` ≤ |i − j|, it follows that for every even

integer d′ ≥ 2, each Di,j can be computed by a depth-d′ AC0[⊕] circuit of size at most nO(|i−j|2/d′).

Consequently, there are circuits for Di,j of size nO(|i−j|2/(d′−1)) and depth d′ for each integer d′ ≥ 3.

AC0 circuits for large |i− j|. We assume without loss of generality that i > j, since negating the
output of the circuit will handle the other case. First, we note that the computation of Di,j can be
reduced to the case where i and j are near the middle layer. For 0 ≤ a < b ≤ m, let Promise-Thma,b
be an m-bit boolean function such that

Promise-Thma,b(y) =

{
0 if |y|1 ≤ a,
1 if |y|1 ≥ b.

Let r
def
= i − j. Then Di,j can be obtained as a projection of Promise-Th10n

5n−dr/10e,5n+dr/10e. More
precisely, it is easy to check that, over the inputs of interest for Di,j ,

Di,j(y) = Promise-Th10n
5n−dr/10e,5n+dr/10e(1

5n−dr/10e−j y 010n−(5n−dr/10e−j+n)).

It follows from the work of [RS17] (see also [LSS+18]) that this promise threshold function can
be computed by randomized AC0 circuits of depth d′ ≥ 2 and of size exp(O(1/δ)1/(d′−1)), where

δ
def
= Θ(r/n). By a standard derandomization argument (see e.g. [AB84]) that increases the num-

ber of layers by at most 2, and by collapsing adjacent layers during this derandomization, it follows
that for every d′ ≥ 3, Promise-Th10n

5n−dr/10e,5n+dr/10e can be computed by a (deterministic) depth-d′

circuit of size exp(O(n/r)1/(d′−2)). Therefore, for every integer d′ ≥ 3, each Di,j can be computed
by a depth-d′ AC0 circuit of size at most exp(O(n/|i− j|)1/(d′−2)).

Let d ≥ 5 be given. In order to compute the symmetric function fn, we proceed as described
above. Two layers are employed to combine the sub-circuits Di,j in the appropriate way (via

the functions Ei). In the remaining d′
def
= d − 2 layers, we pick the best construction for Di,j

7

depending on the value |i− j|. If |i− j| ≤ n1/3, we employ the algebraic construction. It provides
for each integer d′ ≥ 3 a depth-d′ AC0[⊕] circuit of size at most exp(O(log n · |i − j|2/(d′−1))) =

exp(Õ
(
n

2
3
· 1
(d′−1)

)
). On the other hand, if |i−j| > n1/3 the combinatorial construction gives for each

integer d′ ≥ 3 a depth-d′ AC0 circuit of size at most exp(O(n/|i− j|)1/(d′−2)) = exp(O
(
n

2
3
· 1
(d′−2)

)
).

Overall, we obtain a depth-d AC0[⊕] circuit for fn of size at most 2Õ
(
n

2
3 ·

1
(d−4)

)
.

2.2 An upper bound for linear threshold functions

Recall that an exact threshold function is a boolean function f(x1, . . . , xn) that evaluates to 1
if and only if

∑
iwixi = t, where w1, . . . , wn, t ∈ R.

Lemma 6. Any threshold function on n variables can be computed by a polynomial-size constant-
depth circuit with unbounded fan-in AND and OR gates, and a single layer of exact threshold gates
each of fan-in n.

Proof. The lemma is implicit in the work of Hansen and Podolskii [HP10]. Indeed, the proof of
Theorem 7 in their paper shows that every threshold function on n variables can be written as a
polynomial-sized OR of exact threshold functions, each of which is also on n variables.

Lemma 7. Any exact threshold function on n variables can be computed by a polynomial-size
constant-depth circuit with unbounded fan-in AND and OR gates, and a single layer of symmetric
gates each of fan-in n.

Proof. Our proof proceeds via Chinese remaindering, which is a common technique in the study
of threshold functions.

Suppose the exact threshold function is
∑

iwixi = t, where we can assume w.l.o.g. that each
wi as well as t are integers that are nO(n) (we refer to [HP10] for more information about exact
threshold gates). Let p1, p2 . . . pn2 be the first n2 primes. Using the upper bounds on each wi,
we have that for any input x,

∑
iwixi is characterized by its sequence of remainders modulo

{pj}, j = 1 . . . n2; the same holds for t. We design a circuit that is an AND of n2 circuits Cj , one
for each pj , where circuit Cj verifies that (

∑
iwixi) mod pj = t mod pj .

We now describe how to construct any fixed Cj . Note that t mod pj is a fixed quantity
independent of the input, so our task reduces to computing (

∑
iwixi) mod pj and taking an

AND of the output bits or their negations as appropriate.
Let wij be wi mod pj for each i ∈ [1, n], j ∈ [1, n2]. We need to compute

∑
iwijxi using a

polynomial-size constant-depth circuit with unbounded fan-in AND and OR gates, and a single
layer of symmetric gates each of fan-in n.

It follows from the Prime Number Theorem that each wij has at most 3 log(n) bits in its binary
representation, for large enough n. We write each wij as

∑
k wijk2

k, where wijk is the kth bit in
the binary representation of wij , for k ≤ 3 log(n).

For each j and k, consider the following circuit Bjk. It has n inputs, where the i’th input bit
is the AND of wijk (which is a fixed bit independent of the input) and xi. Bjk computes the sum
of these n inputs – this can be done by using at most dlog(n)e symmetric gates in parallel, each
of fan-in n.

Let yjk be the output of each circuit Bjk. Cj computes (
∑

k yjk2
k) mod pj using a constant-

depth circuit of polynomial size. This can be done because there are only O(log(n))2 input bits
and the function we are computing is in NC1 (see e.g. [MT98]); it is folklore that any NC1 function
on polylogarithmically many bits can be computed by polynomial-size AC0 circuits.

8

Summing up, our circuit has poly(n) size and O(1) depth, and has a single layer of symmetric
gates with fan-in n, as promised.

Theorem 8. There is an integer c such that for every integer d > c, if fn : {0, 1}n → {0, 1} is a

threshold function, then it can be computed by an AC0[⊕] circuit of depth d and of size 2Õ(n
2
3 ·

1
(d−c)).

Proof. We combine Lemmas 6 and 7 with Theorem 4. From Lemma 6 and Lemma 7, it follows
that every threshold function on n variables can be computed by a polynomial-size constant-depth
circuit with unbounded fan-in AND and OR gates, and a single layer of symmetric gates each of
fan-in n. Suppose that the depth of this circuit is k. We set c = k + 4.

By using Theorem 4, we can replace each symmetric gate by a AC0[⊕] circuit of depth d − k

and of size 2Õ(n
2
3 ·

1
(d−c)). The total size of the resulting circuit is poly(n)2Õ(n

2
3 ·

1
(d−c)) and its depth

is d. We can absorb the polynomial factor in the circuit size into the exponential term, to yield
the result stated in the theorem.

We have made no attempt to optimize the integer c in the statement of Theorem 8.
Note that the same proof as for Theorem 8 yields that any Boolean function truth-table re-

ducible to linear threshold functions using a polynomial-size AC0 reduction, where the size of any
query is at most n, is also computable by AC0[⊕] circuits of the same size and depth as in the
statement of the theorem. In particular, this is the case for polytopes, since any polytope over n
variables is simply an AND of linear threshold functions over n variables.

2.3 A depth-4 upper bound

For any n ≥ 1 and i ∈ {0, . . . , n}, let En,i denote the n-variable Boolean function that accepts
inputs of Hamming weight i and rejects all other inputs.

Theorem 9. Any symmetric function on n variables has a depth-4 AC0[⊕] circuit of size exp(O(n1/4·
(log n)3/4)).

This improves on the AC0 upper bound of exp(Õ(n1/3)) [Bop84], which is tight up to log factors
in the exponent [H̊as86]. To prove the above theorem, it suffices to show the following upper bound
for exact majorities.

Lemma 10. Assume n is even. Then En,n/2 has a depth-4 AC0[⊕] circuit C of size exp(O(n1/4 ·
(log n)3/4)) with the output gate being an OR gate.

We first prove Theorem 9 assuming Lemma 10.

Proof of Theorem 9. By Lemma 10, we have a depth-4 AC0[⊕] circuit C of size exp(O(n1/4 ·
(log n)3/4)) with an OR output gate that computes E2n,n. Note that this yields a circuit Ci for
En,i via the substitution Ci(x1, . . . , xn) = C(x0i1n−i); observe that Ci is also a depth-4 AC0[⊕]
circuit of size exp(O(n1/4(log n)3/4)) with an OR output gate.

Since any symmetric function on n variables is an OR of a subset of the En,i, this yields the
theorem.

We now discuss the proof of Lemma 10. Let r, s be growing functions of n with s = o(n/ log n).
We will design a random depth-3 circuit C ′n,r,s such that

1. For any input a of Hamming weight k 6= n/2, PrC′n,r,s
[C ′n,r,s(a) = 1] = 0.

9

2. For any input a of Hamming weight n/2, PrC′n,r,s
[C ′n,r,s(a) = 1] ≥ p def

= n−r.

(The parameter s will be used to optimize the size of the final circuit.)
The construction of C will easily follow from that of C ′n,r,s. The latter, which we now describe,

uses a modification of Amano’s construction [Ama09] of random formulas for approximating the
Majority function (which itself builds upon [AB84, Val84, OW07]), some basic facts about poly-
nomial interpolation, and well-known ideas for computing Exact majorities [Bop84, PSZ00].

The lemma below is Amano’s construction with a few parameters modified.

Lemma 11. Let m be a growing parameter and δ = o(1/ logm). There exists a random
∧∨∧

formula F3 of size exp(O(
√

(logm)/δ)) such that

1. For any input a of Hamming weight i ≤ m((1/2)− δ), PrF3 [F3(a) = 1] = 0.

2. For any input a of Hamming weight i ≥ m/2, PrF3 [F3(a) = 1] ≥ (3/4).

A proof sketch is given later in this section. The construction of the random circuit C ′n,r,s now
proceeds as follows.

1. Divide the n input variables x1, . . . , xn randomly into r buckets B1, . . . , Br of size n/r each.

We assume r|n and that m
def
= n/r is even for simplicity.

2. Let δ = s/m. For each bucket Bi, use Lemma 11 to construct a random
∧∨∧

formula
F (i) of size exp(O(

√
(1/δ) logm)) on the variables in Bi that accepts no input of Hamming

weight at most m((1/2) − δ) and accepts each input of Hamming weight at least m/2 with
probability at least 3/4.

Define G(i) to be F (i)(¬x : x ∈ Bi). Note that G(i) accepts no input of Hamming weight at
least m((1/2) + δ) and accepts each input of Hamming weight at most m/2 with probability
at least 3/4.

Let H(i) = F (i) ∧ G(i). By a union bound, H(i) accepts each input of Hamming weight
exactly m/2 with probability at least 1/2 and no input of Hamming weight k such that
|k − (m/2)| ≥ δm.

3. For each bucket Bi, let P (i) ∈ F2[x : x ∈ Bi] be a multilinear polynomial of degree at most
2s that accepts inputs of Hamming weight m/2 but no input of Hamming weight k such that
|k − (m/2)| < s. Such a polynomial exists by standard interpolation arguments (cf. Lemma
5; for a proof see e.g. Alman and Williams [AW15, Proof of Lemma 3.1]).

We think of P (i) as a depth-2
⊕∧

formula of size nO(s).

4. Finally, we define C ′n,r,s =
∧
i∈[r]

(
H(i) ∧ P (i)

)
.

By construction,C ′n,r,s is a depth-3 AC0[⊕] circuit of size poly(n)·exp(O(s log n+
√

(m/s) log n)).

Given any input a of Hamming weight k 6= n/2, there is a bucket Bi such that the restriction
a(i) to Bi has weight ki 6= m/2. In this case, either H(i) or P (i) rejects a(i) (depending on
whether |ki −m| ≥ s or |ki −m| < s respectively). Hence, C ′n,r,s rejects a (with probability
1).

Conversely, given an input a of Hamming weight n/2, C ′n,r,s accepts a if its restriction a(i) of
a to each bucket Bi has weight exactly m/2 and we have a good choice for the randomness
of each H(i). The probability of this is at least(

3

4

)r
·

(
m
m/2

)r(
n
n/2

) ≥ (2m/10
√
m)r

2n
≥ 1

nr
= p.

10

So we have constructed C ′n,r,s as required. In order to convert this to a circuit for En,n/2, we use
a standard covering argument. Let t = n/p. We choose independent random circuits C1, . . . ,Ct
where each Ci has the same distribution as C ′n,r,s. Define Cn,r,s =

∨
iCi.

Clearly, Cn,r,s accepts no input a of Hamming weight k 6= n/2. On the other hand, the
probability that Cn,r,s rejects an input a of weight n/2 can be upper bounded by (1 − p)t ≤
exp(−pt) = exp(−n). By a union bound, the probability that Cn,r,s rejects some input of weight
n/2 is at most

(
n
n/2

)
· exp(−n) < 1.

In particular, by averaging, there is a fixed circuit Cn,r,s in the support of the distribution of
Cn,r,s that computes En,n/2 correctly on all inputs.

By construction, the circuit Cn,r,s has size poly(n) · exp(O((r+ s) log n+
√

(m/s) log n)). Set-
ting r = s = Θ((n/ log n)1/4), we get a circuit C of the claimed size. This completes the proof of
Lemma 10.

Proof Sketch of Lemma 11. We provide a sketch of the proof, omitting calculations. The
reader is invited to consult Amano’s paper [Ama09] for more details.

Set ` = d
√

(logm)/δe and define the random formulas Fi (i ∈ [3]) of depth i as follows.

1. F1 is simply an AND of size `, where each input is chosen i.u.a.r. from among the input
variables {x1, . . . , xm}.

2. F2 is an OR of L
def
= d2` · (100` ln 2)e independent copies of F1.

3. F ′3 is an AND of M
def
= 2100`−3 independent copies of F2.

4. We define F3 to be F ′3 conditioned on the event that F ′3 does not accept any input of Hamming
weight i ≤ m((1/2)− δ).

Clearly, F3 is a random formula of the required size.
To argue that F3 has the required input-output behaviour, we proceed as follows.

1. Say a is an input of Hamming weight at least m/2.

(a) A uniformly random co-ordinate of a is 1 with probability at least 1/2. Hence, F1(a) = 1

with probability at least p1
def
= 2−`.

(b) Hence, the probability that F2 rejects a is at most (1− p1)L ≤ p2
def
= 2−100`.

(c) Therefore, the probability that F ′3 rejects a is at most Mp2 ≤ 1/8.

2. Now assume a′ is an input of Hamming weight at most m((1/2)− δ).

(a) A uniformly random co-ordinate of a′ is 1 with probability at most 1/2 − δ. Hence,

F1(a′) = 1 with probability at most q1
def
= p1 · (1− δ`).

(b) Hence, the probability that F2 rejects a′ is at least (1−q1)L ≥ q2
def
= p2 ·exp(10δ`2 ln 2) ≥

p2 ·m10.

(c) Therefore, the probability that F ′3 accepts a′ is at most (1−q2)M ≤ exp(−M ·p2 ·m10) ≤
exp(−m9).

3. Thus, the probability that F3 accepts an input a of Hamming weight at least m/2 is at least
(7/8)− 2m · exp(−m9) ≥ (3/4). This concludes the proof.

11

3 The Lower Bounds

3.1 A refined analysis of approximate-degree bounds

The main theorem of this section is the following result.

Theorem 12. Fix any d ≥ 2. Let C be a depth-d AC0[⊕] circuit computing the n-bit majority
function Majn. Then, C has size at least exp(Ω(n1/(2d−3))).

We follow the lower bound approach of Razborov [Raz87], who showed that any small AC0[⊕]
circuit C can be suitably approximated by a low-degree polynomial. This is proved by iteratively
constructing low-degree polynomials for the OR and AND gates of C (parity gates are low-degree
by definition, and hence trivial to approximate), and then composing the polynomials together
to obtain a low-degree approximation to C. We follow a similar idea, but make the (crucial)
observation that the approximations for the AND and OR gates are one-sided (on opposite sides).
This means that the construction of Razborov is slightly better than normally advertised: the
error is much lower on C−1(b) than C−1(1− b) for some b ∈ {0, 1}.

Definition 13. Let f : {0, 1}n → {0, 1} be any Boolean function. For parameters ε0, ε1 ∈ (0, 1),
an (ε0, ε1)-error Probabilistic polynomial for f is a random multilinear polynomial P chosen from
F2[x1, . . . , xn] such that for b ∈ {0, 1} and any a ∈ f−1(b),

Pr
P

[P (a) 6= f(a)] ≤ εb.

We say that P has degree at most d (denoted deg(P) ≤ d) if the underlying distribution is supported
on multilinear polynomials of degree at most d. We define the (ε0, ε1)-error probabilistic degree of
f (denoted pdegε0,ε1(f)) to be the least d such that there is a P as above of degree at most d.

Typically, the above is stated for ε0 = ε1, but it will be important for us to track the errors on
the 0 and 1 inputs of f separately. For example, it allows us to observe the following feature of a
construction due to Razborov [Raz87]. (See also Kopparty’s lecture notes [Kop13] for a proof.)

Lemma 14 (Razborov [Raz87]). Let ANDm and ORm denote the AND and OR functions on
m inputs respectively. Then, for any ε > 0, pdegε,0(ANDm) and pdeg0,ε(ORm) are both at most
dlog(1/ε)e.

From this, we get the following corollary.

Corollary 15. Let C be an AC0[⊕] circuit of size s and depth d ≥ 1. Then, for any c ≥ 1 and
large enough s, we have

min{pdeg(1/10),(1/sc)(C),pdeg(1/sc),(1/10)(C)} ≤ O(c log s)d−1

where the O(·) hides an absolute constant.

Proof Sketch. We assume that the output gate of C is either a parity gate or an OR gate (the case
of the AND gate is similar to the case of the OR gate).

For each non-output gate g in the circuit (viewed as a function of its input wires), we first
construct a (1/sc+2, 1/sc+2)-error probabilistic polynomial Pg of degree O(c log s) for g. Note that
the existence of Pg is trivial if g is a parity gate (since the parity function is a polynomial of degree
1) and otherwise, Lemma 14 gives us such a probabilistic polynomial.

12

For the output gate g0, we construct a (0, 1/20)-error probabilistic polynomial Pg0 of degree
O(1): again, this is trivial if g0 is a parity gate and follows from Lemma 14 if g0 is an OR gate.

Composing these polynomials together, we get a probabilistic polynomial P of degreeO(c log s)d−1·
O(1) = O(c log s)d−1. Further for any input a ∈ {0, 1}n, we have P (a) = C(a) unless there is some
gate g of C such that Pg does not simulate g faithfully on the corresponding setting of its inputs.
For non-output gates, this probability is at most 1/sc+2. For the output gate, this probability is
either 0 or at most 1/20 depending on whether a ∈ C−1(0) or C−1(1) respectively. A union bound
now implies that pdeg1/sc,1/10(C) = O(c log s)d−1.

The rest of the proof follows the lower bound of Smolensky [Smo87] on the probabilistic degree
of the Majority function. More precisely, we prove the following.

Lemma 16. Let n be a growing parameter. There exist absolute constants α, β > 0 such that for
all large enough n and all ε ∈ (1/2αn, β), we have

min{pdeg1/10,ε(Majn), pdegε,1/10(Majn)} = Ω(
√
n log(1/ε)).

Smolensky2 proved the above for pdegε,ε(Majn). Note that the above statement in conjunction
with Corollary 15 immediately implies Theorem 12. Putting the upper bound in Corollary 15 for
c = 1 together with the lower bound in Lemma 16, we get

O(log s)d−1 ≥ Ω(
√
n log s),

which yields s = exp(Ω(n1/(2d−3))).
To prove Lemma 16, we follow a ‘dual’ version of Smolensky’s proof that appears in a result

of Kopparty and Srinivasan [KS18], which itself follows the closely-related ideas of Aspnes, Beigel,
Furst and Rudich [ABFR94] and Green [Gre00]. It is not clear that this dual reformulation is
necessary for the proof below, but the language of this formulation makes it easier to use some
other results from the literature in this context.

We start with the notion of a certifying polynomial for a Boolean function.

Definition 17 (Certifying polynomials). A non-zero multilinear polynomial R ∈ F2[x1, . . . , xn] is a

certifying polynomial for f : {0, 1}n → {0, 1} if f is constant on Supp(R)
def
= {a ∈ Fn2 | R(a) 6= 0}.

The following is an easy corollary of standard properties of multilinear polynomials (see e.g. [KS18,
Lemma 3.3]).

Fact 18. If R is a certifying polynomial for Majn, then deg(R) ≥ dn/2e.

We now return to Lemma 16. Let P be an (ε, 1/10)-error3 probabilistic polynomial for Majn,
and let us assume deg(P) ≤ d. We need to lower bound d. By a union bound and averaging, we
can find a (deterministic) polynomial P ∈ F2[x1, . . . , xn] of degree at most d such that

Pr
x∈Maj−1

n (0)
[P (x) 6= 0] ≤ 2ε and Pr

x∈Maj−1
n (1)

[P (x) 6= 1] ≤ 1

4
. (1)

It suffices to lower bound deg(P). To do so, we show that there is a non-zero polynomial Q ∈
F2[x1, . . . , xn] of low degree such that Q vanishes on all points in E0

def
= {x ∈ Maj−1

n (0) | P (x) 6= 0}.
2Smolensky actually proves lower bounds for mod functions, which we don’t consider here. However, it is clear

that his proof works also for Majority. As far as we know, this proof first appeared in Szegedy’s PhD thesis [Sze89].
See [CHLT19] for a more recent exposition. A different proof, also due to Smolensky, appears in [Smo93].

3A symmetric argument can be used to argue about pdeg1/10,ε(Majn).

13

We then consider the multilinear polynomial R = P · Q (we use the identity x2
i = xi to ensure

that R is multilinear). Note that R vanishes on all points of Hamming weight less than n/2:
given a of weight less than n/2, either a ∈ E0, in which case Q(a) = 0, or a 6∈ E0, which implies
that P (a) = 0. If we could argue that R is a non-zero polynomial, then it follows that R is a
certifying polynomial for Majn and hence has degree at least dn/2e (by Fact 18). On the other
hand, deg(R) ≤ deg(P) + deg(Q) which implies a lower bound on deg(P).

The main part of the above argument is arguing the non-zeroness of R. To do this, we would
like to show that there is a low-degree polynomial Q such that Q vanishes on E0, but there is an
a ∈ Supp(P) such that Q(a) 6= 0. To argue the existence of a suitable such Q, we use a result of
Nie and Wang [NW15]. Informally, the result says that if a parameter D is chosen so that the
number of multilinear monomials of degree at most D is much larger than |E0|, then constraining
a polynomial of degree at most D to be zero on E0 does not constrain it at too many other points.

To make this precise, we define the degree-D Closure of E0, denoted clD(E0), to be the set
of all a ∈ Fn2 such that Q(a) = 0 for each Q of degree at most D such that Q vanishes at all
points in E0. Clearly, clD(E0) ⊇ E0 but could potentially be much larger. The result of Nie and
Wang [NW15] bounds the closure of small sets in Fn2 (see also the earlier results of Wei [Wei91] and
Keevash and Sudakov [KS05] which prove similar or stronger statements in different language).

Theorem 19 (Nie and Wang [NW15]). Fix any E ⊆ Fn2 and any D ≥ 1. Let ND denote the
number of multilinear monomials of degree at most D. Then, we have

|clD(E)|
2n

≤ |E|
ND

.

Remark 20. Note that the above theorem generalizes the following standard fact (which follows
easily from linear algebra): if |E| < ND, then there is a non-zero polynomial of degree at most D
that vanishes on E. Smolensky’s proof (as formulated in [KS18]) can be seen as using only this
special case of Theorem 19. Using the theorem in its full generality is what yields the stronger
result below.

We are now ready to prove Lemma 16.

Proof of Lemma 16. It suffices to lower bound deg(P) where P is as in (1). Let E0 be as defined
above; by (1), we have |E0| ≤ 2ε · 2n. Also define S = Supp(P). Note that S contains all those
a ∈ Maj−1

n (1) such that P (a) = 1 which, by (1), has size at least 2n · (3/8− o(1)).
Now, choose the least D such that ND ≥ (20ε) · 2n. As long as α and β are small enough

constants, we have D = (n/2)−Ω(
√
n log(1/ε)). Also, by Theorem 19, we know that |clD(E0)| ≤

2n/10 < |S|. In particular, S * clD(E0). This means that there is some a0 ∈ S and some Q of
degree at most D such that Q vanishes on E0 but not at a0.

Let R = P ·Q (we assume R is multilinear by using the identity x2
i = xi). As argued above, R

vanishes at all points in Maj−1
n (0) and further, R(a0) = P (a0)Q(a0) 6= 0. Hence, R is a non-zero

polynomial such that Majn is the constant function 1 on inputs from Supp(R). By Fact 18, we
have deg(R) ≥ n/2.

This implies that deg(P) ≥ n/2−D = Ω(
√
n log(1/ε)).

3.2 A depth-3 lower bound

In this section, we show how to use the ideas from the proof of Theorem 12 in conjunction with
standard AC0 lower bound techniques to get a near optimal lower bound of exp(Ω(

√
n)) for depth-3

circuits (there is an AC0 circuit of size exp(Õ(
√
n)) computing the Majority function [Bop84]).

14

Theorem 21. Let C be any depth-3 AC0[⊕] circuit computing the n-bit Majority function Majn.
Then, C has size exp(Ω(

√
n)).

The proof requires random restriction arguments [FSS84, Ajt83]. Recall that a restriction
on n variables x1, . . . , xn is a function ρ : {x1, . . . , xn} → {0, 1, ∗}. A Random restriction with
∗-probability p ∈ [0, 1] is a random function ρ : {x1, . . . , xn} → {0, 1, ∗} where ρ−1(∗) is chosen to
be a random subset S ⊆ [n] of size bpnc and each ρ(xi) (xi 6∈ S) is set to 0 or 1 independently
with probability (1− p)/2 each. We use ρ ∼ Rnp to denote the fact ρ is a random restriction on n
variables with ∗-probability p.

Given a Boolean function f : {0, 1}n → {0, 1}, and a restriction ρ : {x1, . . . , xn} → {0, 1, ∗}, we
use f |ρ to denote the restriction of f obtained by substituting variables as dictated by ρ (variables
in ρ−1(∗) are left as is).

We recall the Switching Lemma of H̊astad [H̊as86] (this version is from Beame’s survey [Bea94]).

Lemma 22 (H̊astad’s Switching Lemma). Let ϕ be a k-CNF or k-DNF. Then for p ≤ 1/10k, we
have

Pr
ρ∼Rp

[ϕ|ρ has no decision tree of depth at most t] ≤ (7pk)t.

We say that a restriction ρ is balanced if |ρ−1(1)| = |ρ−1(0)|. Balanced restrictions will be
useful for us since for a balanced restriction ρ, we have Majn|ρ = Maj|ρ−1(∗)|. Lemma 22 easily
implies a similar corollary for random balanced restrictions.

Corollary 23. Let ϕ be a k-CNF or k-DNF on n variables. Then for p ≤ 1/10k such that
(n− bpnc) is even, we have

Pr
ρ∼Rn

p

[ϕ|ρ has no decision tree of depth at most t | ρ is balanced] ≤ O(
√
n) · (7pk)t.

Proof. Follows directly from Lemma 22 and Bayes’ rule since the probability that a random ρ ∼ Rnp
is balanced is at least Ω(1/

√
n).

Using Corollary 23, we can derive the following simplification lemma for general depth-2 AC0[⊕]
circuits.

Lemma 24. Let n, s be growing parameters with s ≥ n2. Let C ′ be any AC0[⊕] circuit on n
variables of depth 2 and size at most s. Assume p ≤ 1/(500 log s) is chosen so that (n − bpnc) is
even. Then, for large enough n, s, we have

Pr
ρ∼Rn

p

[pdeg1/s2,1/s2(C ′|ρ) > 10 log s | ρ is balanced] <
1

10s
.

Proof. The proof is a routine application of the switching lemma. We provide details for com-
pleteness.

To avoid some technicalities, we assume that n and n/10 are even integers. The proof can
easily be extended to the other cases.

We use ρ ∼ Rnp,bal to denote that ρ is a random restriction on n variables with ∗-probability
p conditioned on being balanced. We sample ρ in two steps: we sample random restrictions

ρ1 ∼ Rn1/10,bal and ρ2 ∼ Rn/10
10p,bal and set ρ to be their composition ρ2 ◦ρ1 (i.e. we apply ρ2 to the

variables in ρ−1
1 (∗)).

15

We first analyze the effect of applying ρ1. Consider any OR or AND gate g at depth 1 in C ′.
Say that g is bad for ρ1 if g|ρ1 has fan-in at least 5 log s. Applying Corollary 23 with k = 1, we
get for any gate g at depth 1,

Pr
ρ1

[g bad for ρ1] ≤ O(
√
n) · (7/10)5 log s < 1/(20s2)

for large enough s. Union bounding over all gates g at depth 1 (there are at most s of them), we
see that with probability at least 1 − 1/(20s), all gates at depth 1 are good for ρ1. Condition on

such a setting ρ1 of the random restriction ρ1. By definition of ρ1, the circuit C ′1
def
= C ′|ρ1 has the

property that all the AND and OR gates of depth 1 in C ′1 have fan-in at most 5 log s: in particular,
they are polynomials of degree at most 5 log s.

Now we analyze the effect of ρ2 on C ′1. This is by a case analysis on the output gate g0 of C ′1.
Since the statement of the lemma is true for C ′ if and only if it is true for ¬C ′, we can assume
w.l.o.g. that the output gate of C ′ is either a parity gate or an OR gate.

1. g0 is a parity gate: In this case, since the OR and AND gates at depth 1 compute
polynomials of degree at most 5 log s, the entire circuit C ′1 already computes a polynomial
of degree at most 5 log s. In particular, C ′1|ρ2 has degree at most 5 log s with probability 1.

2. g0 is an OR gate: Then, we can write C ′1 = C ′1,1∨C ′1,2, where C ′1,1 is an OR of parity gates
and C ′1,2 is a (5 log s)-DNF.

C ′1,2|ρ2 continues to be an OR of parities. By Lemma 14, any OR (and hence any OR of

parities) has (0, 1/s2)-probabilistic degree at most d2 log se ≤ 3 log s. In particular, we have
pdeg0,1/s2(C ′1,2|ρ2) ≤ 5 log s with probability 1.

For C ′1,1, we apply Corollary 23 (the Switching lemma) with k = 5 log s. The random
restriction ρ2 has ∗-probability 10p ≤ 1/50 log s = 1/10k. Corollary 23 implies that the
probability that C ′1,1 does not have a decision tree of height 5 log s is at most O(

√
n) ·

(1/10)5 log s < 1/(20s). As a decision tree of height t can be represented as a polynomial of
degree at most t, we see that with probability 1− 1/(20s), the restricted C ′1,1 has degree at
most 5 log s.

Consequently, we see that with probability 1 − 1/(20s), we have both pdeg0,1/s2(C ′1,2|ρ2) ≤
5 log s and deg(C ′1,1) ≤ 5 log s. When this happens, we also have pdeg0,1/s2(C ′1|ρ2) ≤ 10 log s
(the probabilistic polynomial for C ′1 can be obtained by composing the polynomial for the
2-bit OR function with polynomials for C ′1,1 and C ′1,2).

In both cases above, we have shown that

Pr
ρ2

[pdeg(1/s2,1/s2)(C
′
1|ρ2) > 10 log s] <

1

20s
.

Along with our analysis of ρ1, this implies

Pr
ρ

[pdeg(1/s2,1/s2)(C
′|ρ) > 10 log s] <

1

20s
+

1

20s
=

1

10s
.

We are now ready to prove Theorem 21.

16

Proof of Theorem 21. Assume that C has size s ≤ exp(
√
n/100), since otherwise we are done. Let

C ′1, . . . , C
′
s be the depth-2 subcircuits of C. Fix p = Θ(1/ log s) so that Lemma 24 is applicable.

Using Lemma 24 and applying a union bound over i ∈ [s], we get

Pr
ρ∼Rn

p

[∃i ∈ [s], pdeg1/s2,1/s2(C ′i|ρ) > 10 log s | ρ is balanced] <
1

10
.

In particular, there is a balanced restriction ρ on {x1, . . . , xn} such that |ρ−1(∗)| = m =
Θ(n/ log s), and further, pdeg(C ′i|ρ) ≤ 10 log s for each i ∈ [s]. Fix such a restriction ρ. W.l.o.g.
we assume ρ−1(∗) = {x1, . . . , xm}.

Fix (1/s2, 1/s2)-error probabilistic polynomials Pi(x1, . . . , xm) of degree at most 10 log s for
C ′i (i ∈ [s]). We assume that the output gate g of C is either an OR gate or a parity gate (the
case when the output is an AND gate is similar). In either case, Lemma 14 implies that g has a
(0, 1/10)-error probabilistic polynomial P of constant degree.

Define Q(x1, . . . , xm) = P (P1, . . . ,Ps). Clearly, deg(Q) ≤ O(maxi deg(Pi)) = O(log s). Also,
it is easy to see that Q is a (1/s, 1/5)-error probabilistic polynomial for C|ρ = Majn|ρ = Majm.
Lemma 16 therefore implies that deg(Q) ≥ Ω(

√
m · log s) = Ω(

√
n), which implies that s =

exp(Ω(
√
n)).

3.3 An improved lower bound for all depths

In this section, we complete the proof of Theorem 2. The proof extends the ideas employed in
the preceding sections in a natural way. The difference here is that the argument below employs
the construction from Corollary 15 as an intermediate step, while the proof of Theorem 21 is
slightly simpler and only requires Lemma 14.

Proof of Theorem 2. Let C be a depth-d AC0[⊕] circuit of size s that computes Majority over

n input bits, where d ≥ 3. Proceeding as in the proof of Theorem 21, we fix p
def
= Θ(1/ log s),

and apply Lemma 24 to the depth-2 subcircuits of C. By the same argument and after renaming

input variables, this provides a balanced restriction ρ on {x1, . . . , xm} with m
def
= |ρ−1(∗)| =

Θ(n/ log s) and (1/s2, 1/s2)-error probabilistic polynomials Pi(x1, . . . , xm) of degree O(log s) for
each (ρ-restricted) depth-2 subcircuit C ′i of C.

We apply now the construction in Corollary 15 to the top d − 2 layers of C|ρ, replacing its
depth-2 subcircuits by the probabilistic polynomials Pi(x1, . . . , xm) obtained above. Adapting
parameters in a straightforward way, this argument shows that C|ρ satisfies

ζ
def
= min{pdeg(1/10),(1/s)(C|ρ), pdeg(1/s),(1/10)(C|ρ)} ≤ O(c log s)d−2.

Moreover, since ρ is a balanced restriction the function computed by C|ρ is precisely Majority on
m input bits.

We can assume w.l.o.g. that s ≤ 2γ
√
n for a small enough (universal) constant γ > 0 independent

of n and d. This allows us to invoke Lemma 16, which implies that ζ = Ω(
√
m · log s). Using the

previously obtained upper bound on ζ and the value of m completes the proof of Theorem 2.

Acknowledgments

This paper is the result of a collaboration that happened at the Simons Institute program on
Lower Bounds in Computational Complexity, where all three authors were long-term visitors. We
are grateful to the Simons Institute for their support.

17

This work was supported in part by the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2014)/ERC Grant Agreement no. 615075.

References

[AB84] Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth compu-
tations. In Symposium on Theory of Computing (STOC), pages 471–474, 1984.

[ABFR94] James Aspnes, Richard Beigel, Merrick L. Furst, and Steven Rudich. The expressive
power of voting polynomials. Combinatorica, 14(2):135–148, 1994.

[Ajt83] Miklós Ajtai.
∑1

1-formulae on finite structures. Annals of Pure and Applied Logic,
24(1):1–48, 1983.

[Ama09] Kazuyuki Amano. Bounds on the size of small depth circuits for approximating major-
ity. In International Colloquium on Automata, Languages and Programming (ICALP),
pages 59–70, 2009.

[AW15] Josh Alman and Ryan Williams. Probabilistic polynomials and hamming nearest neigh-
bors. In Symposium on Foundations of Computer Science (FOCS), pages 136–150,
2015.

[BBR94] David A. Mix Barrington, Richard Beigel, and Steven Rudich. Representing boolean
functions as polynomials modulo composite numbers. Computational Complexity,
4:367–382, 1994.

[Bea94] Paul Beame. A switching lemma primer. Technical report, UW-CSE-95-07-01, 1994.

[Bop84] Ravi B. Boppana. Threshold functions and bounded depth monotone circuits. In
Symposium on Theory of Computing (STOC), pages 475–479, 1984.

[CHLT19] Eshan Chattopadhyay, Pooya Hatami, Shachar Lovett, and Avishay Tal. Pseudoran-
dom generators from the second Fourier level and applications to AC0 with parity gates.
In Innovations in Theoretical Computer Science Conference (ITCS), pages 22:1–22:15,
2019.

[COST16] Xi Chen, Igor Carboni Oliveira, Rocco A. Servedio, and Li-Yang Tan. Near-optimal
small-depth lower bounds for small distance connectivity. In Symposium on Theory of
Computing (STOC), pages 612–625, 2016.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

[Gre00] Frederic Green. A complex-number Fourier technique for lower bounds on the Mod-m
degree. Computational Complexity, 9(1):16–38, 2000.

[H̊as86] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Symposium
on Theory of Computing (STOC), pages 6–20, 1986.

[HP10] Kristoffer Hansen and Vladimir Podolskii. Exact threshold circuits. In Conference on
Computational Complexity (CCC), pages 270–279, 2010.

18

[Kop13] Swastik Kopparty. AC0 lower bounds and pseudorandomness, 2013. Lecture notes
on ‘Topics in Complexity Theory and Pseudorandomness’. Can be found at: http:

//sites.math.rutgers.edu/~sk1233/courses/topics-S13/lec4.pdf.

[KS05] Peter Keevash and Benny Sudakov. Set systems with restricted cross-intersections and
the minimum rank of inclusion matrices. SIAM J. Discrete Math., 18(4):713–727, 2005.

[KS18] Swastik Kopparty and Srikanth Srinivasan. Certifying polynomials for AC0[⊕] circuits,
with applications to lower bounds and circuit compression. Theory of Computing,
14(1):1–24, 2018.

[LSS+18] Nutan Limaye, Karteek Sreenivasiah, Srikanth Srinivasan, Utkarsh Tripathi, and
S. Venkitesh. The coin problem in constant depth: Sample complexity and parity
gates. Electronic Colloquium on Computational Complexity (ECCC), 157, 2018.

[MT98] Alexis Maciel and Denis Thérien. Threshold circuits of small majority-depth. Inf.
Comput., 146(1):55–83, 1998.

[NW15] Zipei Nie and Anthony Y Wang. Hilbert functions and the finite degree Zariski closure
in finite field combinatorial geometry. Journal of Combinatorial Theory, Series A,
134:196–220, 2015.

[OW07] Ryan O’Donnell and Karl Wimmer. Approximation by DNF: Examples and coun-
terexamples. In International Colloquium on Automata, Languages and Programming
(ICALP), pages 195–206, 2007.

[PSZ00] Ramamohan Paturi, Michael E. Saks, and Francis Zane. Exponential lower bounds for
depth three boolean circuits. Computational Complexity, 9(1):1–15, 2000.

[Raz87] Alexander A. Razborov. Lower bounds on the size of constant-depth networks over a
complete basis with logical addition. Mathematicheskie Zametki, 41(4):598–607, 1987.

[RS17] Benjamin Rossman and Srikanth Srinivasan. Separation of AC0[⊕] formulas and
circuits. In International Colloquium on Automata, Languages, and Programming
(ICALP), pages 50:1–50:13, 2017.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Symposium on Theory of Computing (STOC), pages 77–82, 1987.

[Smo93] Roman Smolensky. On representations by low-degree polynomials. In Symposium on
Foundations of Computer Science (FOCS), pages 130–138, 1993.

[Sze89] Mario Szegedy. Algebraic Methods in Lower Bounds for Computational Models. PhD
thesis, University of Chicago, 1989.

[Val84] Leslie G. Valiant. Short monotone formulae for the majority function. J. Algorithms,
5(3):363–366, 1984.

[Wei91] Victor K. Wei. Generalized hamming weights for linear codes. IEEE Transactions on
Information Theory, 37(5):1412–1418, 1991.

19
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

http://sites.math.rutgers.edu/~sk1233/courses/topics-S13/lec4.pdf
http://sites.math.rutgers.edu/~sk1233/courses/topics-S13/lec4.pdf

