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Abstract

The graph reconstruction conjecture asserts that every finite simple graph on at least three
vertices can be reconstructed up to isomorphism from its deck - the collection of its vertex-deleted
subgraphs. Kocay’s Lemma is an important tool in graph reconstruction. Roughly speaking,
given the deck of a graph G and any finite sequence of graphs, it gives a linear constraint that
every reconstruction of G must satisfy.

Let ψ(n) be the number of distinct (mutually non-isomorphic) graphs on n vertices, and
let d(n) be the number of distinct decks that can be constructed from these graphs. Then the
difference ψ(n) − d(n) measures how many graphs cannot be reconstructed from their decks.
In particular, the graph reconstruction conjecture is true for n-vertex graphs if and only if
ψ(n) = d(n).

We give a framework based on Kocay’s lemma to study this discrepancy. We prove that if
M is a matrix of covering numbers of graphs by sequences of graphs, then d(n) ≥ rankR(M).
In particular, all n-vertex graphs are reconstructible if one such matrix has rank ψ(n). To
complement this result, we prove that it is possible to choose a family of sequences of graphs
such that the corresponding matrix M of covering numbers satisfies d(n) = rankR(M).

1 Introduction

The graph reconstruction conjecture was proposed by Ulam [14] and Kelly [4]. Informally, it
states that if two finite, undirected, simple graphs on at least three vertices have the same collection
(multi-set or deck) of unlabelled vertex-deleted subgraphs, then the graphs are isomorphic; in other
words, any such graph can be reconstructed up to isomorphism from the collection of its unlabelled
vertex-deleted subgraphs.

The conjecture has been verified by McKay [8] for all undirected, finite, simple graphs on eleven
or fewer vertices. In addition, it has been proven for many particular classes of graphs, such as
regular graphs, disconnected graphs and trees (Kelly [5]). In fact, Bollobás [2] showed that for
almost all graphs, just three (carefully chosen) subgraphs in the deck are sufficient to reconstruct
the graph. On the other hand, a similar conjecture does not hold for directed graphs: Stockmeyer
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[11, 12] constructed a number of infinite families of non-reconstructible directed graphs. For a more
comprehensive introduction to the problem, we refer to a survey by Bondy [3]. For the standard
graph theoretic terminology not defined here, we refer to West [15].

Kelly’s Lemma [5] is one of the most useful results in graph reconstruction. Let s(F,G) denote
the number of subgraphs of G isomorphic to F . Kelly’s lemma states that for v(F ) < v(G),
the parameter s(F,G) is reconstructible, in the sense that if G and G′ have the same deck then
s(F,G′) = s(F,G). Several propositions in graph reconstruction rely on this useful lemma.

Kocay’s Lemma [6] allows us, to some extent, to overcome the restriction v(F ) < v(G) in Kelly’s
lemma. It provides a linear constraint on s(·, G) that must be satisfied by every reconstruction of
G. Informally, it says that, if F = (F1, . . . , Fm) is a sequence of graphs, each of which has at most
v(G) − 1 vertices, then there are constants c(F , H) such that the value of the sum

∑
H c(F , H) ·

s(H,G) is reconstructible, where the sum is taken over all unlabelled n-vertex graphs H. Roughly
speaking, the constant c(F , H) counts the number of ways to cover the graph H by graphs in the
sequence F .

Kocay’s Lemma has been used to show several interesting results in graph reconstruction. For
instance, by carefully selecting the sequence F , it is possible to give a simple proof that disconnected
graphs are reconstructible. In addition, it can be used to show that the number of perfect matchings,
the number of spanning trees, the characteristic polynomial, the chromatic polynomial, and many
other parameters of interest are reconstructible; see Bondy [3].

It is natural to wonder whether even more restrictions may be imposed on the reconstructions
of G by applications of Kocay’s Lemma. Recall that it is possible to use different sequences of
graphs in each invocation of the lemma, and as explained before, for each sequence we get a linear
constraint that the reconstructions of G must satisfy. By analysing such equations one would expect
to obtain a wealth of information about the structure of any reconstruction of G (perhaps enough
equations may even allow us to conclude that G is reconstructible). In this paper we investigate
how much information one can obtain by setting up such equations.

We prove that the equations obtained by applying Kocay’s Lemma to the deck of a graphG using
distinct sequences of graphs provide important information not only about the reconstructions of
G, but also on the total number of non-reconstructible graphs on n vertices. More formally, let d(n)
be the number of distinct decks obtained from n-vertex graphs. We show that if M is the matrix
of coefficients corresponding to these equations, then d(n) ≥ rankR(M), i.e., the rank of this matrix
provides a lower bound on the number of distinct decks. In particular, the existence of a full-rank
matrix of coefficients would imply that all graphs on n vertices are reconstructible. In addition, we
give a proof that there exist d(n) sequences of graphs F1,F2, . . . ,Fd(n), with corresponding matrix
M of covering numbers, such that rankR(M) = d(n). In other words, if the graph reconstruction
conjecture holds for graphs with n vertices, then there is a corresponding full-rank matrix certifying
this statement.

We state our results in more generality for graphs, hypergraphs, directed graphs, and also for
classes of graphs for which similar equations can be constructed; for example, analogous results
hold for planar graphs, disconnected graphs and trees.

Similar system of equations where considered by Kocay [7], where he restricted the total number
of edges appearing in each sequence of graphs on a given system of equations to be the same.
Interestingly, in this case it is not possible to show an equivalence to the graph reconstruction
conjecture. In particular, Kocay computed the ratio of the number of independent edge-identities
and the number of mutually non-isomorphic graphs with v vertices, e edges, and no isolated vertices
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(for small parameters v, e), and observed that these values can be strictly less than one. Kocay
asked if the reconstruction conjecture would fail to be true if the ratio became small enough.

Our contribution may be summarised as follows. We remove the restriction, as in Kocay’s paper
[Theorem 5.2 in 6], that the total number of edges be fixed among the sequences of graphs used to
derive edge-identities. We show that the number of independent equations available at our disposal
is precisely the number of distinct decks on a given number of vertices. Thus we give an algebraic
characterisation, based on Kocay’s lemma, for the discrepancy between the number of different
decks and the number of distinct graphs - a measure of how badly Ulam’s conjecture would fail to
hold, if indeed it were to be false. In view of the result of Bollobás mentioned earlier, the ratio of
the number of independent equations and the number of distinct graphs cannot be small.

A different mathematical perspective on such equations is presented in Mnukhin [10], where
reconstruction problems are discussed in the more general context of orbit algebras. Mnukhin’s
paper also mentions a formulation of Ulam’s conjecture in algebraic terms, based on whether the
graph algebra is generated by disconnected graphs only. While there may be a translation between
the two formulations, this is not immediately obvious to the authors. We refer the reader to
Mnukhin’s paper for further details, and to the original reference [9] (in Russian) discussed in [10].
Our results are simple to prove, can be specialised to several classes of graphs, as well as generalised
to digraphs and hypergraphs, and provide an exact characterisation of the maximum number of
independent equations.

Finally, our results may also be viewed as a limitation of the lemmas of Kelly and Kocay (which
is proved using Kelly’s lemma), and in this regard we share the pessimism expressed by Tutte
(see Chapter 9, page 113, [13]). The fact that the number of independent equations is equal to
the number of decks suggests that the difficulties with Ulam’s conjecture lie somewhere else. In
particular, it seems unlikely that applications of Kelly’s lemma and Kocay’s lemma will shed light
on these difficulties.

2 Preliminaries

In this paper, we consider general finite graphs - undirected graphs, directed graphs, hyper-
graphs, graphs with or without multiple edges, and with or without loops. We take the vertex set
of a graph to be a finite subset of N. We write V (k) for the family of k-element subsets of a set V .

Further, we use the notation v(G)
def
= |V (G)| and e(G)

def
= |E(G)|.

Definition 2.1 (Graphs). A hypergraph G is a triple (V,E, φ), where V is its vertex set (also
called ground set, and written as V (G)) and E is its set of hyperedges (written as E(G)), and a map
φ : E → 2V \∅. An undirected graph G is a hypergraph with the restriction that φ : E → V (1)∪V (2);
in this case we call a hyperedge e an edge (if |φ(e)| = 2) or a loop (if |φ(e)| = 1). An undirected
graph is simple if it contains no loop. A directed graph G is a triple (V,E, ψ), where V is its vertex
set and E is the set of its arcs, and a map ψ : E → V × V . The first element of ψ(e) is called the
tail of the arc e, and the second element of ψ(e) is called the head of e. We denote the set of all
finite graphs (including hypergraphs, undirected graphs and directed graphs) by G∗.1

Remark 2.2. Although our results and proofs are stated in full generality, it may be helpful in a
first reading to consider only finite, simple, undirected graphs.

1Observe that we are defining graphs using triples because multiple edges are allowed.
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Definition 2.3 (Graph isomorphism). Let G and H be two graphs. We say that G and H are
isomorphic (written as G ∼= H) if there are one-one maps f : V (G)→ V (H) and g : E(G)→ E(H)
such that an edge e and a vertex v are incident in G if and only the edge g(e) and the vertex f(v)
are incident in H. Additionally, in the case of directed graphs, a vertex v is the head (or the tail)
of an arc e if and only if f(v) is the head (or, respectively, the tail) of g(e). The isomorphism class
of a graph G, denoted by G/∼=, is the set of graphs isomorphic to G.

Definition 2.4. A class of graphs is a set of graphs that is closed under isomorphism. A class of
graphs is said to be finite if contains finitely many isomorphism classes.

Definition 2.5 (Reconstruction). Let G be graph and let v be a vertex of G. The induced subgraph
of G obtained by deleting v and all edges incident with v is called a vertex-deleted subgraph of G,
and is written as G − v. We say that H is a reconstruction of G (written as H ∼ G) if there is a
one-one map f : V (G) → V (H) such that for all v ∈ V (G), the graphs G − v and H − f(v) are
isomorphic. The relation ∼ is an equivalence relation. We say that a graph G is reconstructible if
every reconstruction of G is isomorphic to G (i.e., if H ∼ G implies H ∼= G). A parameter t(G) is
said to be reconstructible if t(H) = t(G) for all reconstructions H of G. Let C be a class of graphs.
We say that C is recognisable if, for any G ∈ C, every reconstruction of G is in C. Furthermore, we
say that C is reconstructible if every graph G ∈ C is reconstructible.

Example 2.6. Let G(V,E, φ) be a hypergraph. The number of edges incident with all vertices (i.e.,
edges e ∈ E such that φ(e) = V , which we call big edges), is not a reconstructible parameter. For
example, if Gk is a graph obtained from G by adding k new edges e1, e2, . . . , ek and making them
incident with all vertices in V , then Gk is a reconstruction of G. In this sense, no hypergraphs are
reconstructible, and each hypergraph has infinitely many mutually non-isomorphic reconstructions.
If G is a graph in class C, then C is not recognisable if for some k, the graph Gk is not in C; and
C is not finite if graphs Gk are all in C. On the other hand, the number of small edges, i.e., edges
e ∈ E such that φ(e) 6= V , is a reconstructible parameter.

In view of the above example, we will always use G∗ for the set of all graphs, G for the set of all
graphs without big edges, and Gn for the set of n-vertex graphs without big edges. A class Cn will
always be a subset of Gn. We will use the following slightly restrictive definitions for some other
reconstruction terms.

Definition 2.7. A graph G in G is reconstructible if it is reconstructible modulo big edges, i.e., if G′

is a reconstruction of G and G′ ∈ G, then G′ is isomorphic to G. A subclass C of G is recognisable if
for each graph G in C, each reconstruction of G in G is also in C. A subclass C of G is reconstructible
if each graph in C is reconstructible (modulo big edges).

Example 2.8. Disconnected undirected graphs on 3 or more vertices are recognisable and re-
constructible. However, there are classes of graphs that are recognisable, but not known to be
reconstructible. An important example is the class of planar graphs (Bilinski et al. [1]).

Since ∼= and ∼ are equivalence relations, the quotient notation may be conveniently used to
define various equivalence classes of graphs. We write the set of all isomorphism classes of graphs
as G∗/∼=; analogously we use Gn/∼=, C/∼=, Cn/∼=, and so on. We define an unlabelled graph to be
an isomorphism class of graphs. But sometimes we abuse the notation slightly, e.g., if a quantity
is invariant over an isomorphism class H, then in the same context we may also use H to mean
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a representative graph in the class. Similarly, we denote various reconstruction classes by G/∼,
Gn/∼, C/∼, Cn/∼, and so on. Note that equivalence classes of any class of graphs under ∼ are
refined by ∼=; in particular, |Cn/∼| ≤ |Cn/∼=|, and equality holds if and only if the class Cn is
reconstructible. We will refer to reconstruction classes of Cn (i.e., members of Cn/∼) by R1, R2, . . . ,
and isomorphism classes of Ri (i.e., members of Ri/∼=) by Ri,1, Ri,2, . . . .

Given graphs G and H, the number of subgraphs of G isomorphic to H is denoted by s(H,G).
The following two subgraph counting lemmas are important results about the reconstructibility of
the parameter s(H,G).

Lemma 2.9 (Kelly’s Lemma, [5]). Let H be a reconstruction of G. If F is any graph such that
v(F ) < v(G), then s(F,G) = s(F,H).

Definition 2.10. Let G be a graph and let F := (F1, F2, . . . , Fm) be a sequence of graphs. A cover
of G by F is a sequence (G1, G2, . . . , Gm) of subgraphs of G such that Gi ∼= Fi, 1 ≤ i ≤ m, and⋃
Gi = G. The number of covers of G by F is denoted by c(F , G).

Lemma 2.11 (Kocay’s Lemma, [6]). Let G be a graph on n vertices. For any sequence of graphs
F := (F1, F2, . . . , Fm), where v(Fi) < n, 1 ≤ i ≤ m, the parameter∑

H

c(F , H)s(H,G)

is reconstructible, where the sum is over all unlabelled n-vertex graphs H.

Proof. We count in two ways the number of sequences (G1, . . . , Gm) of subgraphs of G such that
Gi ∼= Fi, 1 ≤ i ≤ m. We have

m∏
i=1

s(Fi, G) =
∑
X

c(F , X)s(X,G), (1)

where the sum extends over all unlabelled graphs X on at most n vertices. Since v(Fi) < n, it
follows by Kelly’s Lemma that the left-hand side of this equation is reconstructible. On the other
hand, the terms c(F , X)s(X,G) are also reconstructible whenever v(X) < n. The result follows
after rearranging Equation 1.

To state our results in full generality, we make the following definition.

Definition 2.12. Let Cn be a class of graphs on n vertices. We say that Cn satisfies Kocay’s lemma
if, for every graph G ∈ Cn and every sequence of graphs F = (F1, F2, . . . , Fm), where v(Fi) < n,
1 ≤ i ≤ m, the sum ∑

H∈ Cn/∼=

c(F , H)s(H,G)

is reconstructible.

The following proposition gives a simple condition that is sufficient for a class of graphs Cn to
satisfy Kocay’s lemma.

Proposition 2.13. Let Cn be a class of graphs on n vertices. Suppose that s(H,G) is reconstructible
for every G ∈ Cn and for every n-vertex graph H /∈ Cn. Then the class Cn satisfies Kocay’s lemma.
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Proof. Let G ∈ Cn. Let F := (F1, F2, . . . , Fm) be any sequence of graphs such that v(Fi) < n,
1 ≤ i ≤ m. We write the R.H.S. of Equation 1 as∑

H∈ Cn/∼=

c(F , H)s(H,G) +
∑

H/∈ Cn/∼=

c(F , H)s(H,G),

where the second summation is reconstructible. Now we rearrange the terms in Equation 1 to
obtain

∑
H∈ Cn/∼= c(F , H)s(H,G).

The class of connected simple graphs satisfies Kocay’s lemma, since if G is any connected graph
and H is any disconnected graph, then s(H,G) is reconstructible (see Bondy [3]). Other classes
of graphs that satisfy Kocay’s lemma include planar graphs, trees and of course the class of all
graphs. Our theorems apply to finite and recognisable classes of graphs satisfying Kocay’s Lemma.
All the above classes of graphs are recognisable as well.

Let Cn ⊆ Gn be a finite, recognisable class of n-vertex graphs satisfying Kocay’s Lemma. In
the rest of this paper, we study equations obtained by applying Kocay’s Lemma to Cn. It is useful
to view this lemma as follows. Let F := (F1, . . . , Fm), be a sequence of graphs where v(Fi) < n
for each 1 ≤ i ≤ m. Let G,G′ ∈ R ∈ Cn/∼, i.e., G′ is a reconstruction of G, and since Cn is
recognisable, G′ is in Cn. Then we have∑

H∈ Cn/∼=

c(F , H)s(H,G′) = kF ,R,

where kF ,R is a constant that depends only on the sequence F and the reconstruction class R, i.e., it
is a reconstructible parameter. In this expression, c(F , H) is constant (i.e., it is independent of the
reconstruction class) and s(H,G′) depends on the isomorphism class of a particular reconstruction
G′ of G under consideration. Therefore, each application of Kocay’s Lemma provides a linear
constraint on s(H,G′) that all reconstructions G′ of G must satisfy.

This paper is devoted to a study of systems of such linear constraints obtained by applications
of Kocay’s lemma. In particular, we study the rank of a matrix of covering numbers that we define
next.

Definition 2.14. Let Cn be a finite class of graphs on n vertices. Let F = (F1,F2, . . . ,Fl) be a
family of sequences of graphs on at most n − 1 vertices. We let MF, Cn/∼= ∈ R|F|×| Cn/

∼=| to be a
matrix whose rows are indexed by the sequences Fi, i = 1, 2, . . . , l and whose columns indexed by
the distinct isomorphism classes of graphs in Cn. The entries of MF, Cn/∼= are the covering numbers
defined by c(F , H), where F ∈ F and H ∈ Cn/∼=.

3 On the rank of a matrix obtained from Kocay’s Lemma

3.1 Large rank implies few non-reconstructible graphs

As observed earlier, for any finite class Cn of graphs, |Cn/∼| ≤ |Cn/∼=|, and the bigger the
number of distinct reconstruction classes, the smaller is the number of non-reconstructible graphs.
The main result of this section, Theorem 3.2, states that for any finite, recognisable class of graphs
satisfying Kocay’s lemma, the number of distinct reconstruction classes is bounded from below by
the rank of the matrix of covering numbers, for any family of sequences of graphs.
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Let Cn be a finite, recognisable class of n-vertex graphs satisfying Kocay’s Lemma. Let F be a
finite family of sequences of graphs on at most n − 1 vertices. Let MF, Cn/∼= be the corresponding
matrix of covering numbers c(F , H), where F ∈ F and H ∈ Cn/∼= (see Definition 2.14). Let
W = {x ∈ R|Cn/∼=| | MF, Cn/∼= · x ≡ 0} be a subspace of the vector space R|Cn/∼=| over R. We
associate with Cn the constant α(Cn) := |Cn/∼=| − |Cn/∼|.

Lemma 3.1. dim(W ) ≥ α(Cn).

Proof. If α(Cn) = 0, the result is trivial. Otherwise, letR1, . . . , Rs ∈ Cn/∼ be the non-reconstructible
reconstruction classes in Cn, i.e., ri := |Ri/∼=| > 1 for all i ∈ {1, 2, . . . , s}. Let Ri,j , j ∈ {1, 2, . . . , ri}
be the isomorphism classes in Ri, i ∈ {1, 2, . . . , s}. Let Gi,j be representative graphs from Ri,j .

For each Gi,j , we define a vector wi,j ∈ R|Cn/∼=|, with its entries, which are indexed by unlabelled
graphs H ∈ Cn/∼=, defined as follows:

wi,j(H) := s(H,Gi,j)− s(H,Gi,1), whereH ∈ Cn/∼= .

Observe that to prove the lemma it is enough to show that the vectors wi,j satisfy the following
properties:

(i) for all i ∈ {1, 2, . . . , s}, for all j ∈ {1, 2, . . . , ri}, wi,j ∈W ; and

(ii) the vectors in the set U := {wi,j | 1 ≤ i ≤ s, 2 ≤ j ≤ ri} are non-zero and linearly
independent, where |U | = α(Cn).

Proof of (i): Graphs Gi,j and Gi,1 are reconstructions of each other, and Cn satisfies Kocay’s
Lemma. Therefore, for every row MF of MF, Cn/∼=, we have,∑

H∈ Cn/∼=

c(F , H)s(H,Gi,j) =
∑

H∈ Cn/∼=

c(F , H)s(H,Gi,1)

∴ MF · wi,j =
∑

H∈ Cn/∼=

c(F , H)(s(H,Gi,j)− s(H,Gi,1)) = 0.

Therefore, MF, Cn/∼= · wi,j = 0.

Proof of (ii): Let the vectors in U be ordered u1, u2, . . . , uα(Cn) so that the corresponding graphs
are ordered by non-decreasing numbers of small edges. We prove that u1 is non-zero, and for each
k ∈ {2, . . . , α(Cn)}, the vector uk is non-zero and is linearly independent of u1, u2, . . . , uk−1, which
would imply that the vectors in U are linearly independent.

Let u` = wi,j for some i ∈ {1, 2, . . . , s} and j ∈ {2, . . . , ri}. First recall that Cn is recognisable,
Ri ∈ Cn/∼, and Gi,j ∈ Ri/∼=; therefore, Gi,j ∈ Cn/∼=. In addition, Gi,j � Gi,1 since j ≥ 2 and these
two graphs belong to distinct isomorphism classes within the same reconstruction class Ri. Finally,
the number of small edges is reconstructible, i.e., e(Gi,j) = e(Gi,1). Therefore,

u`(Gi,j) = wi,j(Gi,j) = s(Gi,j , Gi,j)− s(Gi,j , Gi,1) = 1− 0 = 1.

Now consider the vectors uk = wi
′,j′ and u` = wi,j , where 1 ≤ k < `. We prove that uk(Gi,j) = 0.

Since k < `, according to the ordering of U , we have e(Gi′,j′) ≤ e(Gi,j). Since Gi′,j′ and Gi′,1 are
reconstructions of each other, we have e(Gi′,j′) = e(Gi′,1).
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Now, if e(Gi′,j′) < e(Gi,j), then

uk(Gi,j) = wi
′,j′(Gi,j) = s(Gi,j , Gi′,j′)− s(Gi,j , Gi′,1) = 0− 0 = 0.

On the other hand, if e(Gi′,j′) = e(Gi,j), then again s(Gi,j , Gi′,j′) = 0 (since Gi,j and Gi′,j′ are
non-isomorphic but have the same number of edges) and s(Gi,j , Gi′,1) = 0 (because j > 1, so Gi,j
and Gi′,1 are non-isomorphic but have the same number of edges).

Now the lemma follows from α(Cn) := |Cn/∼=| − |Cn/∼| = ∑s
i=1(ri − 1) = |U |.

Theorem 3.2. Let Cn be a finite, recognisable class of n-vertex graphs satisfying Kocay’s Lemma.
Let F be a family of sequences of graphs on at most n− 1 vertices. If MF, Cn/∼= is the corresponding
matrix of covering numbers associated with F and Cn, then |Cn/∼| ≥ rankR(MF, Cn/∼=).

Proof. Applying the Rank-Nullity Theorem, we have

dim(W ) + rankR(MF, Cn/∼=) = |Cn/∼=| .

It follows from Lemma 3.1 that

α(Cn) + rankR(MF, Cn/∼=) ≤ dim(W ) + rankR(MF, Cn/∼=) = |Cn/∼=| .

Now recalling the definition of α(Cn), we have

|Cn/∼=| − |Cn/∼|+ rankR(MF, Cn/∼=) ≤ |Cn/∼=| ,

which implies that |Cn/∼| ≥ rankR(M)F, Cn/∼=.

Corollary 3.3. Under the hypotheses of Theorem 3.2, if rankR(MF,Cn) = |Cn/∼=| then every graph
in Cn is reconstructible.

Figure 1 illustrates an application of Corollary 3.3 to the class of connected graphs on four
vertices. We show six sequences of graphs (indexing rows) and the corresponding covering numbers
for each of the six connected graphs on four vertices (indexing the columns). A zero in i-th row and
the j-th column (e.g., most entries in the upper triangle) indicates that there is no way to cover the
corresponding graph (indexing a column) by graphs in the corresponding sequence (indexing the
row). The matrix has full rank, implying that connected graphs on four vertices are reconstructible.

3.2 The existence of matrices with optimal rank

Theorem 3.4. Let Cn be a recognizable class of n-vertex graphs satisfying Kocay’s lemma. Then
there exists a family F of sequences of graphs with corresponding matrix of covering numbers
MF, Cn/∼= such that rankR(MF, Cn/∼=) = |Cn/∼|.

Proof. Let F be the family of all inequivalent sequences of length at most n of (n−1)-vertex graphs.
Here we consider two sequences Fi and Fj to be inequivalent if for each bijection f from Fi to
Fj , there is at least one graph F in Fi for which f(F ) is not isomorphic to F . Since the covering
numbers for sequences of length 1 in F are all 0, we assume that F contains only sequences of length
at least 2. Let MF, Cn/∼= be the corresponding matrix of covering numbers. We show below that
this choice for the family of sequences and its corresponding matrix of covering numbers satisfy the
desired property.

8



2 3 0 0 0 0

6 6 0 0 0 0

0 0 1 0 0 0

36 36 24 24 0 0

150 150 240 240 120 0

540540 1536 1800 720

,
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, , , ,

,,,,,

F1 =

F2 =

F3 =

F6 =

F5 =

F4 =

G1 G2 G3 G4 G5 G6

1536

Figure 1: A full-rank matrix M of covering numbers c(Fi, Gj) providing a proof through Corollary
3.3 that all connected graphs on four vertices are reconstructible.

For a sequence F and a graph G, let c∗(F , G) denote the number of tuples (G1, G2, . . . , Gm) of
subgraphs of G with distinct vertex sets such that Gi ∼= Fi, 1 ≤ i ≤ m, and

⋃
Gi = G. We call such

covers non-overlapping. Correspondingly, we have the matrix M∗F, Cn/∼= of non-overlapping covering
numbers.

Now let F := (F1, F2, . . . , F`) be a sequence in F. We have the following recurrence for c(F , G):

c(F , G) =
∑̀
k=2

∑
P∈Pk

`

∑
H:=(H1,H2,...,Hk)

γ(H)c∗(H, G)

k∏
i=1

c(F|P−1(i), Hi),

where Pk` denotes the set of all onto functions from {1, 2, . . . , `} to {1, 2, . . . , k}, and F|P−1(i) is
the subsequence of F consisting of Fj ; j ∈ P−1(i), and the innermost sum is over all inequivalent
sequences H of length k of graphs on (n − 1) vertices. This may be explained as follows. Each
cover (G1, G2, . . . , G`) of G by F naturally corresponds to a partition of {1, 2, . . . , `} in k blocks
for some k ∈ [2..`], so that i, j are in the same partition if and only if graphs Gi and Gj have the
same vertex set. We denote partitions of {1, 2, . . . , `} in k blocks by onto maps P from {1, 2, . . . , `}
to {1, 2, . . . , k} so that the inverse image P−1(i) denotes the i-th block. For the i-th block P−1(i)
of an onto map P , the union of graphs Gj ; j ∈ P−1(i) is a graph Hi on n − 1 vertices. We
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denote the subsequence of F with indices j ∈ P−1(i) by F|P−1(i). Now the cover of G by the
sequence H := (H1, H2, . . . ,Hk) is non-overlapping, and each Hi may be covered by Fj ; j ∈ P−1(i)
in c(F|P−1(i), Hi) ways. We do not need to consider the trivial partition of {1, 2, . . . , `} into a single
block, because there is no cover (G1, G2, . . . , G`) of G by F such that all Gi have the same vertex
set. In other words, the above formula computes c(F , G) by partitioning the coverings according
to k, P , and H, and then counting the number of coverings in each block of the partition. Since
in the formula we use onto functions instead of partitions, the same block of coverings under this
partition may be counted more than once, and therefore there is factor γ(H) in the formula. If
sequence H contains k1 copies of a graph Γ1, k2 copies of a graph Γ2, and so on, where Γi are
mutually non-isomorphic graphs, then γ(H) = (

∏
i ki!)

−1.
Now we rearrange the terms and write

c∗(F , G) = c(F , G)−
`−1∑
k=2

∑
P∈Pk

`

∑
H:=(H1,H2,...,Hk)

γ(H)c∗(H, G)
k∏
i=1

c(F|P−1(i), Hi).

Thus we have expressed the non-overlapping covering numbers for a sequence of length ` of graphs
in terms of the non-overlapping covering numbers for sequences of length at most `−1. In the above
equation, c(F|P−1(i), Hi) are constants independent ofG. Also, if ` = 2, we have c∗(F , G) = c(F , G).
Therefore, by repeatedly applying the above equation to terms containing non-overlapping covering
numbers, we eventually obtain

c∗(F , G) =
∑
F ′

βF (F ′)c(F ′, G).

We have written the coefficients as βF (F ′) to emphasize that they arise from factors c(F|P−1(i), Hi)
and γ(H) that do not depend on G. That is, the linear dependence of the non-overlapping covering
numbers on the covering numbers is the same for all graphs (but of course depends on F). Therefore,
we can write

c∗(F , ·) =
∑
F ′

βF (F ′)c(F ′, ·).

In this manner we have shown that the rows of M∗F, Cn/∼= are in the span of the rows of MF, Cn/∼=.
Therefore, we have

rankR(M∗F, Cn/∼=) ≤ rankR(MF, Cn/∼=).

To show that the rank of M∗F, Cn/∼= is |Cn/∼|, we construct a square submatrix K of M∗F, Cn/∼=
as follows. Let {Ri, i = 1, 2, . . . } := Cn/∼. First, for each reconstruction class Ri, i = 1, 2, . . . ,
we choose one reconstruction Gi arbitrarily from Ri/∼=. For each i = 1, 2, . . . , we keep the row
indexed by the sequence (say Fi) that is equivalent to the sequence (Gi − v, v ∈ V (Gi)), where
the vertices of Gi may be ordered arbitrarily, and we keep the column indexed by Gi. We delete
all other rows and columns of M∗F, Cn/∼=. We show that K has full rank, which will imply that

rankR(M∗F, Cn/∼=) ≥ rankR(K) = |Cn/∼|.
We define a partial order ≤ on Cn/∼ so that Ri ≤ Rj if there exists a bijection f from V (Gi)

to V (Gj) such that for each v in V (Gi), the graph Gi− v is isomorphic to a subgraph of Gj − f(v).
First we verify that the above relation ≤ is a partial order on Cn/∼. The reflexivity and the

transitivity are straightforward to verify. We now verify antisymmetry. Let f be a bijection as
in the above paragraph. Therefore, for each v ∈ V (Gi), we have e(Gi − v) ≤ e(Gj − f(v)). Let
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g be a similar bijection from V (Gj) to V (Gi). Therefore, the bijective composition g ◦ f from
V (Gi) to V (Gi) is such that for all v in V (Gi), we have Gi − v is isomorphic to a subgraph of
Gi − (g ◦ f)(v), implying that e(Gi − v) ≤ e(Gj − f(v)) ≤ e(Gi − (g ◦ f)(v)). Now observe that∑

v e(Gi − v) =
∑

v e(Gi − (g ◦ f)(v)), since g ◦ f is a bijection from V (Gi) onto itself. Therefore,
we must have e(Gi − v) = e(Gj − f(v)) for all v ∈ V (Gi), implying that Gi − v and Gj − f(v) are
isomorphic for all v ∈ V (Gi). In other words, Ri = Rj .

We sort the rows and the columns of K so that if Ri < Rj , then Gj is to the right of Gi, and
the row corresponding to the sequence Fi is above the row corresponding to the family Fj .

Now if c∗(Fi, Gj) > 0 then Ri < Rj , therefore, the matrix K is upper-triangular. Also,
c∗(Fi, Gi) > 0 for all Gi. Therefore, K has full rank; in fact rankR(K) is equal |Cn/∼|. Since
the class Cn is recognizable and satisfies Kocay’s lemma, Theorem 3.2 is applicable. Therefore,

|Cn/∼| = rankR(K) ≤ rankR(M∗F, Cn/∼=) ≤ rankR(MF, Cn/∼=) ≤ |Cn/∼| ,

which implies the claim for our choice of F, and the corresponding matrix MF, Cn/∼=.

Example 3.5. We provide another simple but non-trivial example in directed graphs, which are in
general not reconstructible. Figure 2 illustrates a matrix of covering numbers for directed graphs on
3 vertices, with no multi-arcs or loops. Observe that there are 7 distinct graphs in 4 reconstruction
classes: G1 and G2 are reconstructible; G3, G4, G5 belong to the same reconstruction class; G6, G7

belong to the same reconstruction class. The figure shows 4 rows of the matrix corresponding to 4
graph sequences. The rank of the matrix is 4, which is also the number of reconstruction classes.
It is possible to verify that the rank cannot be improved by adding more sequences of graphs.

,

,

,

0 0 0

6

G1 G2 G3 G4 G5 G6

0

0 6 6 6

0

00

00

0

2

0

220

2

006

0

0

0 6

G7

, ,

F1 =

F2 =

F3 =

F4 =

Figure 2: A matrix of covering numbers for directed graphs on 3 vertices. There are 4 reconstruction
classes and the rank of the above matrix is also 4.
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