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Abstract

We survey results on the formalization and independence of mathematical statements related to major
open problems in computational complexity theory. Our primary focus is on recent findings concerning
the (un)provability of complexity bounds within theories of bounded arithmetic. This includes the tech-
niques employed and related open problems, such as the (non)existence of a feasible proof that P = NP.

Contents
1 Introduction 2

2 Preliminaries 3
2.1 Complexity Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Theories of Bounded Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2.1 PV1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 S12, T1

2, and Beyond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 APC1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Auxiliary Definitions and Results 6
3.1 Witnessing Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Bounded Arithmetic and Propositional Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Cuts of Models of Bounded Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 The Strength of Bounded Arithmetic 9
4.1 Formalization of Results from Algorithms and Complexity . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Concrete Example: Subbotovskaya’s Formula Lower Bound in PV1 . . . . . . . . . . . . . . . . . . 10

5 Unprovability of Complexity Bounds 14
5.1 Unprovability of Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1.1 LEARN-Uniform Circuits and Unprovability . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1.2 P = NP and Propositional Proof Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.2 Unprovability of Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.1 Average-Case Circuit Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.2 Extended Frege Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Connection Between Upper Bounds and Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Additional Recent Developments 23
1Department of Computer Science, University of Warwick, UK. Email: igor.oliveira@warwick.ac.uk.

1



1 Introduction

The investigation of the inherent complexity of computational tasks is a central research direction in
theoretical computer science. While unconditional results are known in a variety of restricted contexts
(i.e., with respect to weak models of computation), despite significant efforts, several central questions of
the field remain wide open. Prominent examples include the relation between complexity classes P and NP,
understanding the power of non-uniform Boolean circuits, and bounding the length of proofs in propositional
proof systems such as Frege and extended Frege.

The investigation of the difficulty of settling these problems has long been an important and influential
area of research by itself (e.g., barrier results such as [BGS75, RR97, AW09, CHO+22]). Unfortunately,
these results tend to be ad-hoc and do not consider a standard and robust notion of proof. In order to build
a general theory, several works have considered provability in the usual sense of mathematical logic. Most
importantly, this enables a deeper investigation of complexity theory that considers not only the running
time of a program or the size of a circuit but also the feasibility of proving their existence and correctness.
In particular, we can explore the fundamental question of what can and cannot be feasibly computed, along
with the meta-question of what lower and upper bounds can and cannot be feasibly proven.

A fundamental goal of this research is to

(⋆) identify a suitable logical theory capable of formalizing most, if not all, known results in algorithms and
complexity, and determine whether the major open problems mentioned above are provable or unprovable
within this theory.2

Although we are still far from reaching this goal, progress has been made in understanding the
(un)provability of statements concerning the complexity of computations within certain fragments of Peano
Arithmetic, collectively known as Bounded Arithmetic. These theories are designed to capture proofs that
manipulate and reason with concepts from a specified complexity class. For instance, a proof by induction
whose inductive hypothesis can be expressed as an NP predicate is one such example. The earliest theory
of this kind was I∆0, introduced by Parikh [Par71], who explored the intuitive concept of feasibility in
arithmetic and addressed the infeasibility of exponentiation. The relationship between Parikh’s theory and
computational complexity was fully recognized and advanced by Paris and Wilkie in a series of influential
papers during the 1980s (see [WP87]). Other significant theories include Cook’s theory PV1 [Coo75], which
formalizes polynomial-time reasoning; Jeřábek’s theory APC1 [Jeř04, Jeř05, Jeř07], which extends PV1 by
incorporating the dual weak pigeonhole principle for polynomial-time functions and formalizes probabilis-
tic polynomial-time reasoning; and Buss’s theories Si2 and Ti

2 [Bus86], which include induction principles
corresponding to various levels of the polynomial-time hierarchy.

These theories are capable of formalizing advanced results. For instance, it is known that PV1 can prove
the PCP Theorem [Pic15b], while APC1 can establish several significant circuit lower bounds [MP20],
including monotone circuit lower bounds for k-Clique and bounded-depth circuit lower bounds for the
Parity function. Further examples include the explicit construction of expander graphs [BKKK20] and the
correctness of randomized polynomial-time matching algorithms [LC11], among many others.

Given the expressive power of these theories, even if we are not yet able to establish a breakthrough
result of the magnitude of (⋆), determining the (un)provability of complexity bounds of interest in theories
of bounded arithmetic still represents significant progress towards our understanding of the power and limits
of feasible computations and proofs. This survey aims to provide an introduction to some of these results,

2As we elaborate in Section 5, the unprovability of a statement is equivalent to the consistency of its negation, which can be at
least as important.
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the underlying techniques, and related open problems. While our primary focus is on recent developments,
in order to provide a broader perspective we also cover some classical results. Due to space limitations, the
survey is not exhaustive, and several references had to be omitted (although some recent developments are
mentioned in Section 6).

2 Preliminaries

2.1 Complexity Theory

We will rely on a few additional standard definitions from complexity theory, such as basic complexity
classes, Boolean circuits and formulas, and propositional proof systems. These can be found in textbooks
such as [AB09] and [Kra19]. Below we only establish notation and review a classical result that offers a
convenient way to talk about polynomial-time computations in some logical theories.

We use SIZE[s] to denote the set of languages computed by Boolean circuits of size s(n).
In theoretical computer science, one typically considers functions and predicates that operate over binary

strings. This is equivalent to operations on integers, by identifying each non-negative integer with its binary
representation. Let N denote the set of non-negative integers. For a ∈ N, we let |a| ≜ ⌈log2(a+ 1)⌉ denote
the length of the binary representation of a. For a constant k ≥ 1, we say that a function f : Nk → N
is computable in polynomial time if f(x1, . . . , xk) can be computed in time polynomial in |x1|, . . . , |xk|.
(For convenience, we might write |x⃗| ≜ |x1|, . . . , |xk|.) Recall that FP denotes the set of polynomial time
functions. While the definition of polynomial time refers to a machine model, FP can also be introduced in
a machine independent way as the closure of a set of base functions under composition and limited recursion
on notation. In more detail, we can consider the following class F of base functions:

c(x) ≜ 0, s(x) ≜ x+ 1, a(x) ≜ ⌊x/2⌋, d(x) ≜ 2 · x, πiℓ(x1, . . . , xℓ) ≜ xi, x#y ≜ 2|x|·|y|,

x ≤ y ≜

{
1 if x ≤ y

0 otherwise,
Choice(x, y, z) ≜

{
y if x > 0

z otherwise.

We say that a function f(x⃗, y) is defined from functions g(x⃗), h(x⃗, y, z), and k(x⃗, y) by limited recursion
on notation if

f(x⃗, 0) = g(x⃗)

f(x⃗, y) = h(x⃗, y, f(x⃗, ⌊y/2⌋))
f(x⃗, y) ≤ k(x⃗, y)

for every sequence (x⃗, y) of natural numbers. Cobham [Cob65] proved that FP is the least class of functions
that contains F and is closed under composition and limited recursion on notation.

2.2 Theories of Bounded Arithmetic

Bounded arithmetic has a long and rich history (see [Bus97] for an introduction, and [HP93, Kra95,
CN10] for a detailed treatment). The correspondence between the theories and complexity classes mani-
fests in multiple ways. For instance, witnessing results show that every provably total function in a given
theory TC (i.e., when ∀x ∃!y ψ(x, y) is provable, for certain formulas ψ) is computable within the corre-
sponding complexity class C (i.e., the function y = f(x) is in C). There is also a close connection between
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theories of bounded arithmetic and propositional proof systems, e.g., propositional translations between
proofs of certain sentences in PV1 or S12 and polynomial-size proofs in the extended Frege proof system of
the corresponding propositional formulas. We review some related results in Section 3.1 and Section 3.2,
respectively. In this section, we provide an overview of some widely investigated theories of bounded arith-
metic: PV1, S12, T1

2, and APC1. We assume basic familiarity with first-order logic. Results claimed below
without reference can be found in [Kra95].

2.2.1 PV1

PV1 [Coo75] (see also [KPT91]) is a first-order theory whose intended model is the set N of natural
numbers, together with the standard interpretation for constants and functions symbols such as 0,+,×, etc.
The vocabulary (language) of PV1, denoted LPV1 , contains a function symbol for each polynomial-time
algorithm f : Nk → N (where k is any constant). These function symbols, and the axioms defining them,
are obtained through Cobham’s characterization of polynomial-time functions discussed in Section 2.1.

PV1 also postulates an induction axiom scheme that simulates binary search, and one can show that
it admits induction over quantifier-free formulas (i.e., polynomial-time predicates). We discuss induction
axioms in more detail in Section 2.2.2.

We will use later in the text that PV1 admits a formulation where all axioms are universal formulas
(i.e., ∀x⃗ ϕ(x⃗), where ϕ is a quantifier-free formula). In other words, PV1 is a universal theory.

While the details of the definition of PV1 are fairly technical (see, e.g., the longer overview in [CLO24b]
or the exposition in [Kra95]), such details are often not needed. In particular, PV1 has an equivalent formal-
ization that does not require Cobham’s result [Jeř06].

2.2.2 S12, T1
2, and Beyond

While PV1 can be related to polynomial-time computations and feasible proofs, Buss [Bus86] intro-
duced a hierarchy of theories with close ties to the different levels of the polynomial hierarchy. To specify
the theories, we will need a few definitions.

The language LB of these theories contains the predicate symbols = and ≤, the constant symbols 0 and
1, and function symbols S (successor), +, ·, ⌊x/2⌋, |x| (interpreted as the length of x as in Section 2.1), and
# (“smash”; interpreted as x#y = 2|x|·|y|).

A bounded quantifier is a quantifier of the form Qy ≤ t, where Q ∈ {∃, ∀} and t is a term not involving
y. Similarly, a sharply bounded quantifier is one of the formQy ≤ |t|. Formally, such quantifiers are simply
abbreviations. For instance,

∀y ≤ t(x⃗) φ(x⃗, y) ≜ ∀y (y ≤ t(x⃗) → φ(x⃗, y)), and

∃y ≤ t(x⃗) φ(x⃗, y) ≜ ∃y (y ≤ t(x⃗) ∧ φ(x⃗, y)) .

A formula where each quantifier appears bounded (resp., sharply bounded) is said to be a bounded
(resp., sharply bounded) formula. It is not hard to show that every sharply bounded formula defines a
polynomial-time predicate over the standard model N under its usual operations. On the other hand, bounded
quantifiers allow us to define predicates in NP, coNP, and beyond.

We can introduce a hierarchy of formulas by counting alternations of bounded quantifiers. The class
Πb

0 = Σb
0 contains the sharply bounded formulas. We then recursively define, for each i ≥ 1, the classes

Σb
i and Πb

i according to the quantifier structure of the sentence, ignoring the appearance of sharply bounded
quantifiers. For instance, if φ ∈ Σb

0 and ψ ≜ ∃y ≤ t(x⃗) φ(y, x⃗), then ψ ∈ Σb
1 (see, e.g., [Kra95] for the
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technical details in the general case). As alluded to above, it is known that, for each i ≥ 1, a predicate P (x⃗)
is in Σp

i (the i-th level of the polynomial hierarchy) if and only if there is a Σb
i -formula that agrees with it

over N.
The theories introduced by Buss share a common set BASIC of finitely many axioms postulating the

expected arithmetic behavior of the constants, predicates, and function symbols, e.g., x + y = y + x and
|1| = 1 (see, e.g., [Kra95, Page 68] for the complete list). The only difference among the theories is the kind
of induction axiom scheme that each of them postulates.

Theory T1
2. This is a theory in the language LB extending BASIC by the induction axiom IND

φ(0) ∧ ∀x (φ(x) → φ(x+ 1)) → ∀xφ(x)

for all Σb
1-formulas φ(a). The formula φ(a) may contain other free variables in addition to a.

We say that T1
2 supports induction for NP predicates. Intuitively, this means that we can aim to prove

a result in T1
2 by induction, provided the induction hypothesis is defined by a predicate computable in NP.

This definition can be extended to a theory that postulates induction for Σb
i -formulas, which gives rise to the

theory Ti
2.

Theory S12. This is a theory in the language LB extending BASIC by the polynomial induction axiom
PIND

φ(0) ∧ ∀x (φ(⌊x/2⌋) → φ(x)) → ∀xφ(x)

for all Σb
1-formulas φ(a). The formula φ(a) may contain other free variables in addition to a.

Intuitively, polynomial induction reduces the proof of φ(x) to proving φ(⌊x/2⌋). Unlike the standard
induction axiom, this approach allows us to reach the base case in just poly(n) steps when starting with an
integer x represented by poly(n) bits. This has implications for the efficiency of translating certain proofs
in S12 into sequences of propositional proofs and for the extraction of polynomial-time algorithms from
proofs (see Section 3.1 and Section 3.2) . Analogously to Ti

2, we can define the theories Si2 via polynomial
induction for Σb

i -formulas.
It is known that PV1 is essentially equivalent to T0

2 under an appropriate vocabulary and axioms [Jeř06],
and that Si2 ⊆ Ti

2 ⊆ Si+1
2 for every i ≥ 1.

When stating and proving results in S12, it is convenient to employ a more expressive vocabulary under
which any polynomial-time function can be easily described. Moreover, it is possible to achieve this in a
conservative way, i.e., without increasing the power of the theory. In more detail, let Γ be a set of LB-
formulas. We say that a polynomial-time function f : Nk → N is Γ-definable in S12 if there is a formula
ψ(x⃗, y) ∈ Γ for which the following conditions hold:

(i) For every a ∈ Nk, f (⃗a) = b if and only if N |= φ(⃗a, b).

(ii) S12 ⊢ ∀x⃗ (∃y (φ(x⃗, y) ∧ ∀z (φ(x⃗, z) → y = z)) .

Every function f ∈ FP is Σb
1-definable in S12. By adding all functions in FP to the vocabulary of S12 and

by extending S12 with their defining axioms (i.e., ∀xφ(x, f(x))), we obtain a theory S12(LPV) that can refer
to polynomial-time predicates using quantifier-free formulas. S12(LPV) proves the polynomial induction
scheme for both Σb

1-formulas and Πb
1-formulas in the extended vocabulary. S12(LPV) is conservative over

S12, in the sense that any LB-sentence provable in S12(LPV) is also provable in S12.
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A ∀Σb
i -sentence is simply a sentence ψ = ∀x⃗ φ(x⃗) where φ ∈ Σb

i . Every ∀Σb
1-sentence provable in

S12(LPV) is also provable in PV1. In other words, S12(LPV) is ∀Σb
1-conservative over PV1. On the other

hand, it is known that if S12(LPV) = PV1, then the polynomial-time hierarchy collapses.

2.2.3 APC1

In order to formalize probabilistic methods and randomized algorithms, Jeřábek [Jeř04, Jeř05, Jeř07]
formulated the theory APC1 (this terminology is from [BKT14]) by extending PV1 with the dual Weak
Pigeonhole Principle (dWPHP) for PV1 functions:3

APC1 ≜ PV1 ∪ {dWPHP(f) | f ∈ LPV}.

Informally, each sentence dWPHP(f) postulates that, for every length n = |N |, there is y < (1 + 1/n) ·N
such that f(x) ̸= y for every x < N .

It is known that the dual Weak Pigeonhole Principle for polynomial-time predicates can be proved in T2
2

[MPW02], and consequently APC1 ⊆ T2
2(LPV).

3 Auxiliary Definitions and Results

3.1 Witnessing Theorems

Suppose a sentence ψ of a certain syntactic form admits a proof in a theory T over a vocabulary L. A
witnessing theorem allows us to extract computational information from any such proof, by showing that an
existential quantifier in ψ can be witnessed by L-terms. The simplest example of such a result is stated next.

Theorem 3.1 (Herbrand’s Theorem (see, e.g., [Bus94, McK10])). Let T be a universal theory over a vo-
cabulary L. Let φ(x, y) be a quantifier-free L-formula, and suppose that T ⊢ ∀x ∃y φ(x, y) . There is a
constant k ≥ 1 and L-terms t1(x), . . . , tk(x) such that

T ⊢ φ(x, t1(x)) ∨ φ(x, t2(x)) ∨ . . . ∨ φ(x, tk(x)) .

As an immediate consequence, if we apply Theorem 3.1 to T ≜ PV1, we obtain LPV-terms (correspond-
ing to polynomial-time functions over N) such that, given a ∈ N, at least one of them produces a witness
b ∈ N such that N |= φ(a, b).

Next, we consider the provability of more complex sentences in a universal theory.

Theorem 3.2 (KPT Theorem [KPT91]). Let T be a universal theory with vocabulary L, φ(w, u, v) be a
quantifier-free L-formula, and suppose that T ⊢ ∀w ∃u∀v φ(w, u, v). Then there exist a constant k ≥ 1
and L-terms t1, . . . , tk such that

T ⊢ φ(w, t1(w), v1) ∨ φ(w, t2(w, v1), v2) ∨ . . . ∨ φ(w, tk(w, v1, . . . , vk−1), vk) ,

where the notation ti(w, v1, . . . , vi−1) indicates that these are the only variables occurring in ti.

Theorem 3.2 has a natural interpretation as an interactive game with finitely many rounds, which we
revisit in Section 5.1.1 in the context of the provability of circuit upper bounds.

3The dWPHP axiom scheme is also referred to as the surjective Weak Pigeonhole Principle in some references.
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A similar form of Theorem 3.2 holds under the provability of a ∀∃∀∃-sentence (see, e.g., [CKK+24]
for a concrete application in the context of circuit lower bounds). In contrast, there is no straightforward
analogue of the KPT Theorem for a larger number of quantifier alternations. In this case, more general
formulations are needed, such as the ones considered in [Pud06, BKT14, LO23].

It is also possible to establish witnessing theorems for theories that are not universal. This can be done
either by first transforming the theory into a universal theory through the inclusion of new function symbols
and quantifier elimination, or via direct approaches (see, e.g., [Kra95, Section 7.3]). Another example is
Buss’s Theorem for S12, which can be used to show that every ∀Σb

1-sentence provable in S12(LPV) is also
provable in PV1. This has two implications. First, we can combine this result with Theorem 3.1, which
yields polynomial-time algorithms from proofs of ∀Σb

1-sentences in S12(LPV). Second, this means that in
some situations we can establish the provability of a sentence in PV1 using the more convenient theory
S12(LPV) (see Section 4.2 for an example).

3.2 Bounded Arithmetic and Propositional Proofs

In this section, we explain a connection between PV1 and the extended Frege proof system discovered
by [Coo75]. In short, it says that if a universal LPV-sentence ϕ(x) is provable in PV1, then there is a
translation of ϕ(x) into a sequence {Gn}n≥1 of propositional formulas Gn(p1, . . . , pn) such that each Gn

has an extended Frege proof πn of size polynomial in n.4

First, we review some concepts and fix notation, deferring the details to a standard textbook
(e.g., [Kra19]). Recall that a propositional formula G(p1, . . . , pn) is formed using variables p1, . . . , pn,
constants 0 and 1, and logical connectives ∧, ∨, and ¬. A Frege (F) proof system is a “textbook” style proof
system for propositional logic. It can be formulated as a finite set of axiom schemes together with the modus
ponens rule. F is known to be sound and complete. The size of a Frege proof is the total number of sym-
bols occurring in the proof. In the extended Frege (eF) proof system, we also allow repeated subformulas
appearing in a proof to be abbreviated via new variables.

Cook’s Translation [Coo75]. Let φ be a universal LPV-sentence of the form φ ≜ ∀xψ(x), where ψ(x)
is a quantifier-free formula. Cook [Coo75] established that if φ is provable in PV1, then there is a sequence
{Gn}n≥1 of propositional tautologies such that

– Each Gn(p1, . . . , pn) is a polynomial-size formula.5

– Gn encodes that ψ(x) is true whenever |x| ≤ n, i.e., over all integers encoded as n-bit strings.

– Gn admits polynomial-size eF-proofs.

– Moreover, the existence of polynomial-size eF-proofs for each Gn is provable in PV1. (We will need
this additional property of the translation in Section 5.2.2.)

For a formula ψ(x) as above, we often write ||ψ||n to denote the corresponding propositional formula over
inputs of length n.

For more information about the relation between proofs in bounded arithmetic and propositional proofs,
including additional examples of propositional translations, we refer to [Bey09, Kra19].

4Conceptually, this is analogous to the translation of a polynomial-time Turing machine M into a sequence {Cn}n≥1 of
polynomial-size Boolean circuits, one for each input length n.

5We note that Gn(p1, . . . , pn) might contain auxiliary variables beyond p1, . . . , pn.
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3.3 Cuts of Models of Bounded Arithmetic

Many fundamental results in bounded arithmetic are established using model-theoretic techniques (see,
e.g., the exposition of Parikh’s Theorem in [Kra95]). We will provide an example in Section 5.2.2. In this
section, we include the required background for the result. We assume basic familiarity with model theory.

While the definitions and results presented below can be adapted to other theories of bounded arithmetic,
we focus on the theory S12 for concreteness.

Definition 3.3 (Cut in a Model of Arithmetic). A cut in a model M of S12 is a nonempty set I ⊆ M such
that:

1. For every a, b ∈M , if b ∈ I and a < b then a ∈ I .

2. For every a ∈M , if a ∈ I then a+ 1 ∈ I .

In this case, we write I ⊆e M .

Note that a cut is not necessarily closed under operations such as addition and multiplication.

Claim 3.4. Let M be a model of S12, and let I ⊆e M . Moreover, assume that I is closed under +, ·, and
# operations. Let φ(a, b⃗) be a bounded formula with all free variables displayed. Let v⃗ be elements of I .
Then for every u ∈ I ,

I |= φ(u, v⃗) ⇐⇒ M |= φ(u, v⃗).

Claim 3.4 can be proved by induction on the complexity of φ. Using the claim, one can establish the
following lemma.

Lemma 3.5. Let M be a model of S12, and let I ⊆e M . Moreover, assume that I is closed under +, ·, and
# operations. Then I is a model of S12.

Since it is not hard to check that a cut I as above satisfies the BASIC axioms of S12, the proof of
Lemma 3.5 essentially amounts to verifying that I satisfies the corresponding induction principle (see,
e.g., [Kra95, Lemma 5.1.3] for a similar argument).

For a model M , we say that n ∈M is a length if there is N ∈M such that n = |N |.

Lemma 3.6. LetM0 be a nonstandard countable model of S12. Then there is a (countable) cutM ofM0 that
is a model of S12 and a length n ∈ M , where n = |e| for some nonstandard e ∈ M , for which the following
holds. For every b ∈M there is a standard number k such that M |= |b| ≤ nk.

Proof. Let e ∈M0 be nonstandard, and let n ≜ |e|. Consider the set

Ie ≜ {a ∈M0 | a ≤ t(e) for some LB-term t(x)},

where we compare elements with respect to the interpretation of the relation symbol ≤ in M0. Note that Ie
is a cut of M0 and e ∈ Ie. Moreover, it is not hard to check that it is closed under addition, multiplication,
and smash operations. By Lemma 3.5, Ie is a model of S12. Finally, by construction, for every b ∈ Ie we
have b ≤ t(e) for some LB-term t. A simple induction on the structure of t shows the existence of a standard
number k such that |b| ≤ nk in Ie.

Finally, we will need the following definition.

Definition 3.7 (Cofinal extension). We say that an extension M ′ of a model M is cofinal (or M is cofinal
in M ′) if for every a ∈M ′ there is b ∈M such that a ≤ b in M ′. If this is the case, we write M ′ ⊇cf M .
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4 The Strength of Bounded Arithmetic

In connection with the fundamental research goal mentioned in Section 1, research on the provability
of complexity bounds has achieved significant progress on two complementary fronts: the formalization of
several established results from algorithms and complexity within theories of bounded arithmetic, and the
unprovability of complexity bounds in the same theories, often conditional on a computational assumption.

In Section 4.1, we explore what it means to formalize results from algorithms and complexity theory
within the framework of bounded arithmetic, highlighting some of the nuances involved. In Section 4.2, we
present some concrete details of the formalization of a formula lower bound in PV1.

4.1 Formalization of Results from Algorithms and Complexity

Several central theorems from mathematics and computer science can be proved in bounded arithmetic.
They include results from number theory [Woo81, PWW88], graph theory and extremal combinatorics
[Oja04], randomized algorithms and probabilistic arguments [Jeř05, LC11, Lê14], probabilistic checkable
proofs [Pic15b], circuit lower bounds [MP20], expander graphs [BKKK20], linear algebra [TC21], Zhuk’s
CSP algorithm [Gay23, Gay24], etc. The reader can find numerous other examples in [CN10, Kra19, MP20]
and references therein.

In some cases, the formalization of an existing result in bounded arithmetic is straightforward, specially
once an appropriate framework has been developed (e.g., the approximate counting framework of [Jeř07],
which enables the use of tools from probability theory in APC1). However, sometimes one needs to discover
a new proof whose concepts can be defined in the theory and their associated properties established using
the available inductive axioms (e.g., Razborov’s formalization of the Switching Lemma [Raz95a]).

We provide two instructive examples below. The first is a consequence of the formalization of the PCP
Theorem in PV1, while the second concerns different ways of formulating a circuit lower bound statement
in bounded arithmetic.

The PCP Theorem in PV1. Pich [Pic15b] proved the PCP Theorem in PV1 by formalizing Dinur’s proof
[Din07]. Exploiting the standard connection between PCPs and hardness of approximation, Pich’s result
can be used to show that PV1 establishes the NP-hardness of approximating the value of a k-SAT instance.
This means in particular that, for a suitable LPV-function symbol f obtained from Dinur’s argument, PV1

proves that f is a gap-inducing reduction from the Boolean Formula Satisfiability Problem to k-SAT (for a
sufficiently large k):

PV1 ⊢ ∀φ
(
Fla(φ) ∧ ∃y Sat(φ, y) → k-CNF(f(φ)) ∧ ∃z Sat(f(φ), z)

)
PV1 ⊢ ∀φ

(
Fla(φ) ∧ ∀y ¬Sat(φ, y) → k-CNF(f(φ)) ∧ ∀z Value≤1−δ(f(φ), z)

)
where all the expressions are quantifier-free LPV-formulas: Fla(x) checks if x is a valid description of
a Boolean formula, k-CNF(x) checks if x is a valid description of a k-CNF, Sat(u, v) checks if v is a
satisfying assignment for u, and Value≤1−δ(u, v) holds if v satisfies at most a (1− δ)-fraction of the clauses
in u (with δ > 0 being a universal constant from the formalized Dinur’s proof).

In the formalization the key point is that PV1 proves that the function symbol f behaves as expected.
In practice, in order to achieve this, a typical formalization is presented in a semi-formal way, and might
claim on a few occasions that some algorithm f1 constructed in a particular way from another algorithm
f2 can be defined in PV1. This means that PV1 proves that f1 behaves as described in the definition.
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This is possible thanks to Cobham’s characterization of FP and the axioms of PV1, which ensure that
the theory “understands” how different algorithms are constructed from one another. In many cases, the
verification that PV1 proves the desired properties is straightforward but tedious, requiring some initial setup
of basic capabilities of PV1 (often referred to as “bootstrapping”) which is part of the standard background
in bounded arithmetic.

Circuit Lower Bound Statements. We discuss two ways of formalizing a complexity lower bound. In
this example, for a given size bound s(n) (e.g., s(n) = n2), we consider an LPV-sentence FLB⊕

s stating that
Boolean formulas for the parity function on n bits require at least s(n) leaves:

∀N ∀n ∀F (n = |N | ∧ n ≥ 1 ∧ Fla(F ) ∧ Size(F ) < s(n) → ∃x (|x| ≤ n ∧ Eval(F, x) ̸= ⊕(x)) ,

where we identify n-bit strings with natural numbers of length at most n, and employ a well-behaved LPV-
function symbol ⊕ such that PV1 proves the basic properties of the parity function, e.g., PV1 ⊢ ⊕(x1) =
1−⊕(x).6

Note that FLB⊕
s is a ∀Σb

1-sentence. Consequently, if PV1 ⊢ FLB⊕
s , we obtain via Herbrand’s Theorem

(Theorem 3.1) a polynomial-time algorithm A that, when given N of length n and the description of an
n-bit formula F of size < s(n), A(N,F ) outputs a string x ∈ {0, 1}n such that F (x) ̸= ⊕(x). In other
words, circuit lower bounds provable in PV1 are constructive in the sense that they also provide an efficient
refuter witnessing that F does not compute parity (see [CJSW21] for more on this topic).

The aforementioned formalization is informally referred to as a “Log” formalization of circuit lower
bounds. This is because the main parameter n is the length of a variable N and all objects quantified over
are of length polynomial in n. It is also possible to consider a formalization where n = ||N || (n is the
length of the length of N ), which is known as a “LogLog” formalization. This allows us to quantify over
exponentially larger objects, e.g., under such a formalization the entire truth-table of a formula F has length
polynomial in the length of N .

Obtaining a Log formalization (e.g., [MP20]) is a stronger result than obtaining a LogLog formalization
(e.g., [Raz95a]). In particular, in contrast to the discussion above, a witnessing theorem applied to a LogLog
formalization provides a refuter with access toN and thus running in time poly(N) = poly(2n). Conversely,
the unprovability of a LogLog circuit lower bound statement (e.g., [PS21, LO23]) is a stronger result than
the unprovability of a Log statement. We refer to the introduction of [MP20] for a more extensive discussion
on this matter.

4.2 Concrete Example: Subbotovskaya’s Formula Lower Bound in PV1

In this section, we explore some details of a formalization in PV1 that the parity function ⊕ on n bits
requires Boolean formulas of size ≥ n3/2 [Sub61]. We follow the notation introduced in Section 4.1.

Theorem 4.1 ([CKK+24]). Let s(n) ≜ n3/2. Then PV1 ⊢ FLB⊕
s .

The formalization is an adaptation of the argument presented in [Juk12, Section 6.3], which proceeds as
follows:

1. [Juk12, Lemma 6.8]: For any formula F on n-bit inputs, it is possible to fix one of its variables so
that the resulting formula F1 satisfies Size(F1) ≤ (1− 1/n)3/2 · Size(F ).

6We often abuse notation and treat x as a string in semi-formal discussions.
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2. [Juk12, Theorem 6.10]: If we apply this result ℓ ≜ n−k times, we obtain a formula Fℓ on k-bit inputs
such that

Size(Fℓ) ≤ Size(F ) · (1− 1/n)3/2 · (1− 1/(n− 1))3/2 . . . (1− 1/(k+1))3/2 = Size(F ) · (k/n)3/2.

3. [Juk12, Example 6.11]: Finally, if the initial formula F computes the parity function, by setting
ℓ = n− 1 we get 1 ≤ Size(Fℓ) ≤ (1/n)3/2 · Size(F ), and consequently Size(F ) ≥ n3/2.

We present the argument in a more constructive way when formalizing the result in PV1. In more detail,
given a small formula F , we recursively construct (and establish correctness by induction) an n-bit input y
witnessing that F does not compute the parity function.7

Proof. We follow closely the presentation from [CKK+24]. For brevity, we only discuss the formalization
of the main inductive argument. More details can be found in [CKK+24]. Given b ∈ {0, 1}, we introduce
the function ⊕b(x) ≜ ⊕(x) + b (mod 2). In order to prove FLB⊕

s in PV1, we explicitly consider a
polynomial-time function R(1n, F, b) with the following property:8

If Size(F ) < s(n) then R(1n, F, b) outputs an n-bit string ybn such that Eval(F, ybn) ̸= ⊕b(ybn).

In other words,R(1n, F, b) witnesses that the formula F does not compute the function ⊕b over n-bit strings.
Note that the correctness of R is captured by a sentence RefR,s described as follows:9

∀1n ∀F (Fla(F ) ∧ Size(F ) < s(n) → |y0n|ℓ = |y1n|ℓ = n ∧ F (y0n) ̸= ⊕0(y0n) ∧ F (y1n) ̸= ⊕1(y1n)) ,

where we employ the abbreviations y0n ≜ R(1n, F, 0) and y1n ≜ R(1n, F, 1), and for convenience use |z|ℓ to
denote the bitlength of z. Our plan is to define R and show that PV1 ⊢ RefR,s. Note that this implies FLB⊕

s

in PV1 by standard first-order logic reasoning.
The correctness of R(1n, F, b) will be established by polynomial induction on N (equivalently, induc-

tion on n = |N |). Since RefR,s is a universal sentence and S12(LPV) is ∀Σb
1-conservative over PV1 (i.e.,

provability of such a sentence in S12(LPV) implies its provability in PV1), it is sufficient to describe a for-
malization in the more convenient theory S12(LPV). For this reason, polynomial induction for NP and coNP
predicates (admissible in S12(LPV); see, e.g., [Kra95, Section 5.2]) is available during the formalization.
More details follow.

The procedure R(1n, F, b) makes use of a few polynomial-time sub-routines (briefly discussed in the
comments in the pseudocode below) and is defined in the following way:

7Actuallly, for technical reasons related to the induction step, we will simultaneously construct an n-bit input y0
n witnessing

that F does not compute the parity function and an n-bit input y1
n witnessing that F does not compute the negation of the parity

function.
8For convenience, we often write 1n instead of explicitly considering parameters N and n = |N |. In practice, it means that R

gets as input N (together with other parameters) but with respect to N it only depends on n = |N |.
9Similarly, the notation ∀1n denotes ∀N∀n but we add the condition that n = |N | in the subsequent formula. We might also

write just F (x) instead of Eval(F, x)
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Input: 1n for some n ≥ 1, formula F over n-bit inputs, b ∈ {0, 1}.
1 Let s(n) ≜ n3/2. If Size(F ) ≥ s(n) or ¬Fla(F ) return “error”;
2 If Size(F ) = 0, F computes a constant function bF ∈ {0, 1}. In this case, return the n-bit string

ybn ≜ yb10
n−1 such that ⊕b(yb10

n−1) ̸= bF ;
3 Let F̃ ≜ Normalize(1n, F );
// F̃ satisfies the conditions in the proof of [Juk12, Claim 6.9],

Size(F̃ ) ≤ Size(F ), ∀x ∈ {0, 1}n F (x) = F̃ (x).

4 Let ρ ≜ Find-Restriction(1n, F̃ ), where ρ : [n] → {0, 1, ⋆} and |ρ−1(⋆)| = n− 1;
// ρ restricts a suitable variable xi to a bit ci, as in [Juk12,

Lemma 6.8].

5 Let F ′ ≜ Apply-Restriction(1n, F̃ , ρ). Moreover, let b′ ≜ b⊕ ci and n′ ≜ n− 1;
// F ′ is an n′-bit formula; ∀z ∈ {0, 1}ρ−1(⋆) F ′(z) = F̃ (z ∪ xi 7→ ci).

6 Let yb
′

n′ ≜ R(1n
′
, F ′, b′) and return the n-bit string ybn ≜ yb

′
n′ ∪ yi 7→ ci;

Algorithm 1: Refuter Algorithm R(1n, F, b) [CKK+24].

(The pseudocode presented above is only an informal specification of R(1n, F, b). As mentioned in Sec-
tion 4.1, a completely formal proof in PV1 would employ Cobham’s formalism and would specify how
R(1n, F, b) can be defined from previously defined algorithms (e.g., Apply-Restriction) via the allowed
operations.)

We note thatR(1n, F, b) runs in time polynomial in n+|F |+|b| and that it is definable in S12(LPV). Next,
as an instructive example, we establish the correctness R(1n, F, b) in S12(LPV) by polynomial induction
(PIND) for Πb

1-formulas, assuming that the subroutines appearing in the pseudocode of R(1n, F, b) satisfy
the necessary properties (provably in S12(LPV)).

Lemma 4.2. Let s(n) ≜ n3/2. Then S12(LPV) ⊢ RefR,s.

Proof. We consider the formula φ(N) defined as

∀F ∀n (n = |N | ∧ n ≥ 1 ∧ Fla(F ) ∧ Size(F ) < s(n)) →

(|y0n|ℓ = |y1n|ℓ = n ∧ F (y0n) ̸= ⊕0(y0n) ∧ F (y1n) ̸= ⊕1(y1n)) ,

where as before we use y0n ≜ R(1n, F, 0) and y1n ≜ R(1n, F, 1). Note that φ(N) is a Πb
1-formula. Below,

we argue that
S12(LPV) ⊢ φ(1) and S12(LPV) ⊢ ∀N φ(⌊N/2⌋) → φ(N) .

Then, by polynomial induction for Πb
1-formulas (available in S12(LPV)) and using that φ(0) trivially holds,

it follows that S12(LPV) ⊢ ∀N φ(N). In turn, this yields S12(LPV) ⊢ RefR,s.

Base Case: S12(LPV) ⊢ φ(1) . In this case, for a given formula F and length n, the hypothesis of φ(1) is
satisfied only if n = 1, F is a valid description of a formula, and Size(F ) = 0. Let y01 ≜ R(1, F, 0) and
y11 ≜ R(1, F, 1). We need to prove that

|y01|ℓ = |y11|ℓ = 1 ∧ F (y01) ̸= ⊕0(y01) ∧ F (y11) ̸= ⊕1(y11) .

Since n = 1 and Size(F ) = 0, F evaluates to a constant bF on every input bit. The statement above is
implied by Line 2 in the definition of R(n, F, b).
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(Polynomial) Induction Step: S12(LPV) ⊢ ∀N φ(⌊N/2⌋) → φ(N) . Fix an arbitrary N , let n ≜ |N |, and
assume thatφ(⌊N/2⌋) holds. By the induction hypothesis, for every valid formulaF ′ with Size(F ′) < n′3/2,
where n′ ≜ n− 1, we have

|y0n′ |ℓ = |y1n′ |ℓ = n′ ∧ F ′(y0n′) ̸= ⊕0(y0n′) ∧ F ′(y1n′) ̸= ⊕1(y1n′) , (1)

where y0n′ ≜ R(1n
′
, F ′, 0) and y1n′ ≜ R(1n

′
, F ′, 1).

Now let n ≥ 2, and let F be a valid description of a formula over n-bit inputs with Size(F ) < n3/2. By
the size bound on F , R(1n, F, b) ignores Line 1. If Size(F ) = 0, then similarly to the base case it is trivial
to check that the conclusion of φ(N) holds. Therefore, we assume that Size(F ) ≥ 1 and R(1n, F, b) does
not stop at Line 2.

Consider the following definitions:

1. F̃ ≜ Normalize(1n, F ) (Line 3),

2. ρ ≜ Find-Restriction(1n, F̃ ) (Line 4),

3. F ′ ≜ Apply-Restriction(1n, F̃ , ρ) (Line 5),

4. n′ ≜ n− 1 (Line 5),

5. b′ ≜ b⊕ ci (Line 5), where ρ restricts xi to ci,

6. yb
′

n′ ≜ R(1n
′
, F ′, b′) (Line 6),

7. ybn ≜ yb
′

n′ ∪ yi 7→ ci (Line 6),

8. s ≜ Size(F ), s̃ ≜ Size(F̃ ), and s′ ≜ Size(F ′).

We rely on the provability in S12(LPV) of the following statements about the subroutines of R(1n, F, b) (see
[CKK+24]):

(i) s̃ ≤ s ,

(ii) s′ ≤ s̃ · (1− 1/n)3/2 ,

(iii) ∀x ∈ {0, 1}n F̃ (x) = F (x) ,

(iv) ∀z ∈ {0, 1}ρ−1(⋆) F ′(z) = F̃ (z ∪ xi 7→ ci) .

By Items (i) and (ii) together with the bound s < n3/2,

S12(LPV) ⊢ s′ ≤ s̃ · (1− 1/n)3/2 ≤ s · (1− 1/n)3/2 < n3/2 · (1− 1/n)3/2 = (n− 1)3/2 .

Thus F ′ is a valid formula on n′-bit inputs of size < n′3/2. By the first condition in the induction hypothesis
(Equation (1)) and the definition of each ybn, we have |y0n|ℓ = |y1n|ℓ = n. Using the definitions listed above,
the last two conditions in the induction hypothesis (Equation (1)), and Items (iii) and (iv), we derive in
S12(LPV) the following statements for each b ∈ {0, 1}:

F ′(yb
′

n′) ̸= ⊕b′(yb
′

n′) ,

F (ybn) = F ′(yb
′

n′) ,

F (ybn) ̸= ⊕b′(yb
′

n′) .

Therefore, using basic facts about the function symbols ⊕0 and ⊕1,

⊕b′(yb
′

n′) = ⊕b⊕ci(yb
′

n′) = ci ⊕ (⊕b(yb
′

n′)) = ci ⊕ (⊕b(ybn)⊕ ci) = ⊕b(ybn) .

These statements imply that, for each b ∈ {0, 1}, F (ybn) ̸= ⊕b(ybn). In other words, the conclusion of φ(N)
holds. This completes the proof of the induction step.

As explained above, the provability of RefR,s in S12(LPV) implies its provability in PV1. Since PV1 ⊢
RefR,s → FLB⊕

s , this completes the proof of Theorem 4.1.
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We have seen that a non-trivial formula size lower bound can be established in PV1. More advanced
circuit lower bounds are known to be provable assuming additional axioms extending PV1 (e.g., [Kra95,
Section 15.2] and [MP20]), but their provability in PV1 (or equivalently, in S12(LPV)) is less clear.

Open Problem 4.3. For each d ≥ 1 and ℓ ≥ 1, can PV1 prove that the parity function on n bits cannot be
computed by depth-d circuits of size nℓ?

Open Problem 4.4. For each ℓ ≥ 1, is there a constant k = k(ℓ) such that PV1 proves that every monotone
circuit for the k-clique problem on n-vertex graphs must be of size at least nℓ?

5 Unprovability of Complexity Bounds

The investigation of the unprovability of complexity bounds within theories of bounded arithmetic has
a long and rich history. Much of the early work took place in the nineties, with significant results obtained
by Razborov [Raz95a, Raz95b], Krajı́ček [Kra97], and other researchers. Since then, and in particular over
the last decade, there has been renewed interest and progress in establishing unprovability results (see, e.g.,
[CK07, PS21, CKKO21, LO23, ABM23] and references therein).

In Section 5.1, we consider the unprovability of complexity upper bounds. The unprovability of an
inclusion such as NP ⊆ SIZE[nk] is equivalent to the consistency of NP ⊈ SIZE[nk] with the corresponding
theory. Such a consistency result establishes that, while we cannot confirm the separation is true in the
standard model of natural numbers, we know it holds in a non-standard model of a theory so strong that
complexity theory appears almost indistinguishable from the standard one. We stress that establishing the
consistency of a lower bound is a necessary step towards showing that the lower bound is true. For this
reason, the unprovability of upper bounds can be formally seen as progress towards showing unconditional
complexity lower bounds.

In Section 5.2, we turn our attention to the unprovability of complexity lower bounds. This direction
is partly driven by the desire to formally understand why proving complexity lower bounds is challenging,
and to explore the possibility of a more fundamental underlying reason for this difficulty. Moreover, it
might provide examples of hard sentences for logical theories and of hard propositional tautologies for proof
systems. The investigation of the meta-mathematics of lower bounds has also found unexpected applications
in algorithms and complexity (e.g., [CIKK16]).

Finally, in Section 5.3 we connect the two directions and explain how the unprovability of circuit lower
bounds in PV1 yields the unprovability of P = NP in PV1. The latter can be seen as a weakening of the P
versus NP problem that considers the existence of feasible proofs that P = NP. This further motivates the
investigation of the unprovability of lower bounds.

5.1 Unprovability of Upper Bounds

5.1.1 LEARN-Uniform Circuits and Unprovability

Cook and Krajı́ček [CK07] considered the provability of NP ⊆ SIZE[poly] in bounded arithmetic and
obtained a number of conditional negative results. [KO17], building on techniques from [CK07], showed
that for no integer k ≥ 1 the theory PV1 proves that P ⊆ SIZE[nk]. Note that this is an unconditional
result. Thus, for a natural theory capable of formalizing advanced results from complexity theory, such as
the PCP Theorem, we can unconditionally rule out the provability of P ⊆ SIZE[nk]. A slightly stronger
model-theoretic formulation of the result of [KO17] appears in [BM20].
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[BKO20] obtained results for stronger theories and ruled out the provability of infinitely often inclusions.
In more detail, for an LPV-function symbol h, consider the sentence

UBi.o.
k [h] ≜ ∀1m ∃1n ∃Cn ∀x

(
n ≥ m ∧ |Cn| ≤ nk ∧ (|x| ≤ n→ ψ(n,Cn, x, h))

)
, 10

where ψ is a quantifier-free LPV-formula stating that h(x) ̸= 0 if and only if the evaluation of the circuit
Cn on x (viewed as an n-bit string) is 1. In other words, UBi.o.

k [h] states that the language defined by h
(which is in P) admits circuits of size at most nk on infinitely many input lengths n. [BKO20] showed that
for each k ≥ 1, there is an LPV-function symbol h such that PV1 does not prove UBi.o.

k [h]. Similarly, they
established that S12 ⊬ NP ⊆ i.o.SIZE[nk] and T1

2 ⊬ PNP ⊆ i.o.SIZE[nk].
Building on these results, [CKKO21] introduced a modular framework to establish the unprovability of

circuit upper bounds in bounded arithmetic using a learning-theoretic perspective. Next, we describe how
their approach can be used to show a slightly weaker form of the result from [BKO20] described above. For
an LPV-function symbol h, we consider a sentence UBc,k[h] stating that Lh ∈ SIZE[c · nk], where x ∈ Lh

if and only if h(x) ̸= 0, i.e.,

UBc,k[h] ≜ ∀1n ∃Cn ∀x
(
|Cn| ≤ c · nk ∧ (|x| ≤ n→ (Eval(Cn, x, n) = 1 ↔ h(x) ̸= 0))

)
, (2)

where Eval(Cn, x, n) is an LPV-function that evaluates the circuit Cn on the n-bit string described by x.
Our goal is to show that for every k ≥ 1 there is a function symbol h such that, for no choice of c ≥ 1,
PV1 proves UBc,k[h]. (Note that in all results discussed in this section, we consider Log formalizations, as
explained in Section 4.1.)

Overview of the Approach. Note that UBc,k[h] claims the existence of circuits for Lh, i.e., it states a
non-uniform upper bound. We explore the constructive aspect of PV1 proofs, by extracting computational
information from a PV1-proof that such circuits exist. The argument has a logical component, where we
extract from a proof of UBc,k[h] a “LEARN-uniform” construction of a sequence {Cn}n of circuits for Lh,
and a complexity-theoretic component, where we unconditionally establish that for each k LEARN-uniform
circuits of this form do not exist for some h. Altogether, we get that for some h theory PV1 does not prove
UBc,k[h] (no matter the choice of c).

LEARN-uniform circuits. We will be interested in languages that can be efficiently learned with a bounded
number of equivalence queries, in the following sense. For functions s, q : N → N, we say that a language
L ⊆ {0, 1}∗ is in LEARN-uniformEQ[q] SIZE[s] if there is a polynomial-time algorithm AEQ(Ln)(1n) that
outputs a circuit of size at most s(n) for Ln after making at most q(n) equivalence queries to Ln, where
Ln = L ∩ {0, 1}n. The equivalence query oracle, given the description of an n-bit circuit D of size a most
s(n), replies “yes” if D computes Ln, or provides some counter-example w such that D(w) ̸= Ln(w).

Extracting LEARN-uniform circuits from PV1 proofs. For convenience, write UBc,k[h] =
∀1n ∃Cn ∀x ϕ(1n, Cn, x) in Equation (2), where ϕ(1n, Cn, x) is a quantifier-free formula. Since PV1 is
a universal theory, under the assumption that PV1 ⊢ UBc,k[h], we can apply Theorem 3.2 (KPT Witnessing
Theorem) to obtain the provability in PV1 of the disjunction

∀1n ∀x1 . . . ∀xk
(
ϕ(1n, t1(1

n), x1) ∨ ϕ(1n, t2(1n, x1), x2) ∨ · · · ∨ ϕ(1n, tk(1n, x1, . . . , xk−1), xk)
)
, (3)

10Recall that 1n is simply a convenient notation to refer to a variable n that is set to |N | for some variable N .

15



where t1, . . . , tk are LPV-terms and k = O(1). Most importantly, due to the soundness of PV1, this state-
ment is true over the standard model N. Additionally, the terms in PV1 correspond to polynomial-time
algorithms. Next, we will discuss how to interpret Equation (3) over N as an interactive protocol and how
this perspective leads to a LEARN-uniform construction.

The KPT Witnessing Theorem can be intuitively understood as follows [KPS90]. Consider a search
problem Q(1n), where given the input 1n, we need to find D such that ∀xϕ(1n, D, x). The problem
Q(1n) can be solved using a k-round Student-Teacher protocol. In the first round, the student proposes
D1 = t1(1

n) as a solution to the search problem Q(1n). This solution is either correct, or there exists a
counterexample w1 such that ¬ϕ(1n, t1(1n), w1). The teacher then provides this counterexample value w1,
and the protocol moves to the next round. In each subsequent round 1 ≤ i < k, the student computes
Di = ti(1

n, w1, . . . , wi−1) based on the counterexamples w1, . . . , wi−1 received in the previous rounds.
This Di is either a correct solution for Q(1n), in which case the problem is solved, or there is another coun-
terexample wi provided by the teacher such that ¬ϕ(1n, ti(1n, w1, . . . , wi−1), wi). If the latter is the case,
the protocol continues to the next round i + 1. The theorem guarantees that for every input 1n, the student
will successfully solve the search problem Q(1n) within some round 1 ≤ i ≤ k.

From a PV1 proof of a circuit upper bound for a language Lh, we can derive a Student-Teacher protocol
for the search problem Q(1n) corresponding to Equation (3). In this protocol, the student proposes a candi-
date circuit D, and the teacher provides a counterexample w to D (an input w such that D(w) ̸= Lh(w))
if one exists. (Note that ϕ(1n, D, x) might not be true for other reasons, e.g., if |D| > c · nk, but in such
cases there is no need to invoke the equivalence query oracle and we can proceed in the Student-Teacher
protocol with, say, w = 0n.) The student is guaranteed to succeed after at most k queries, regardless of the
counterexamples provided by the teacher. Finally, for every input n, the student computes according to a
constant number of fixed PV1 terms t1, . . . , tk. Since a PV1 term is merely a composition of a finite number
of PV1 function symbols (polynomial-time algorithms), the student’s computation runs in polynomial time.
Therefore, from the provability in PV1 of a non-uniform circuit upper bound for a language L ∈ P, we can
extract a LEARN-uniform family of circuits for L.

Unconditional lower bound against LEARN-uniform circuits. The argument described above re-
duces the unprovability of upper bounds to a complexity-theoretic question with no reference to logic.
To complete the proof, it is enough to show that for each k there is a language L ∈ P such that
L /∈ LEARN-uniformEQ[O(1)] SIZE[O(nk)]. This unconditional lower bound against LEARN-uniform
circuits is established in [CKKO21] by generalizing a lower bound from [SW14] against P-uniform
circuits, which can be interpreted as LEARN-uniform constructions with q = 0 queries. Roughly speaking,
[CKKO21] shows that one can eliminate each equivalence query using a small amount of non-uniform
advice, and that the base case where no queries are present (as in [SW14]) can be extended to a lower bound
against a bounded amount of advice.

This completes the sketch of the argument. The approach is fairly general and can be adapted to other
theories. The strength of the theory affects the learning model against which one needs to obtain lower
bounds (e.g., by increasing the number of queries or allowing randomized learners).

Open Problem 5.1. Show that S12 does not prove that P ⊆ SIZE[nk].

In order to solve Open Problem 5.1, using the connection from [CKKO21] it is sufficient to show that
P ⊈ LEARN-uniformEQ[q] SIZE[O(nk)] for q = poly(n). In other words, this amounts to understanding
the class of languages that admit circuits that can be produced with a polynomial number of equivalence
queries.
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Open Problem 5.2. Show that T1
2 does not prove that NP ⊆ SIZE[nk].

5.1.2 P = NP and Propositional Proof Complexity

Suppose that P is actually equal to NP. In this scenario, there exists a polynomial-time algorithm g (i.e.,
a PV1 function symbol) that can find a satisfying assignment for any given satisfiable formula. In other
words, if Formula(F, 1n) denotes an LPV-formula that checks if F is a valid description of a formula over n
input bits, and Sat(F, x) is an LPV-formula that checks if x satisfies the formula encoded by F , the sentence

φP=NP[g] ≜ ∀1n ∀F ∀x
(
(Formula(F, 1n) ∧ Sat(F, x)) → Sat(F, g(F ))

)
(4)

is true in the standard model N.

Open Problem 5.3. Show that for no polynomial-time function symbol g theory PV1 proves the sentence
φP=NP[g].

Equivalently, Open Problem 5.3 states that PV1 (and by standard conservation results S12) is consistent
with P ̸= NP. This means that either P ̸= NP, as is commonly assumed, making the conjecture trivially
true, or P = NP, but this cannot be proven using only polynomial-time concepts and reasoning. Therefore,
Open Problem 5.3 represents a formal weakening of the conjecture that P ̸= NP. The statement is known
to follow from the purely combinatorial conjecture that the extended Frege propositional proof system eF
(see Section 3.2) is not polynomially bounded, which is a major open problem in proof complexity.

Theorem 5.4 ([Coo75]). Suppose that there is a sequence {Fn}n≥1 of propositional tautologies of size
polynomial in n that require eF proofs of size nω(1). Then there is no function symbol g such that PV1

proves φP=NP[g].

Proof. Here we only provide a sketch of the proof. More details and extensions of the result can be found
in the textbooks [Kra95, Kra19]. We establish that if PV1 ⊢ φP=NP[g] for some g, then every tautology has
a polynomial size eF proof.

Recall the definitions and results from Section 3.2. For a propositional proof system P (described by an
LPV function symbol), we consider an LPV-sentence stating the soundness of P :

SoundP ≜ ∀1n ∀F ∀π (Formula(F, 1n) ∧ ProofP (F, π)) → ∀x (|x| ≤ n→ Sat(F, x)) ,

where ProofP (F, π) states that π is a valid P -proof of F .
Note that if F is not a tautology then g(¬F ) outputs a satisfying assignment of ¬F , while if F is a

tautology then ¬F admits no satisfying assignment. We consider a proof system Pg defined as follows:
Given a valid description of an n-bit propositional formula F and a candidate proof π̃, Pg accepts π̃ as a
proof of F if and only if

g(¬F ) = π̃ and ¬Sat(¬F, π̃) ,

where ¬F represents the negation of F . Observe that for any tautology F , πF ≜ g(¬F ) is a valid Pg-proof
of F .

Note that PV1 ⊢ SoundPg , which follows from the provability of Equation (4) and the definition of Pg

using g. Now consider the quantifier-free LPV-formula

ψ ≜ ¬Formula(F, 1n) ∨ ¬ProofPg(F, π) ∨ |x| > n ∨ Sat(F, x).

The provability of ∀1n ∀F ∀π ψ in PV1 follows from the provability of SoundPg .
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Using Cook’s translation (Section 3.2), the sequence of propositional formulas ||ψ||m admits eF-proofs
of polynomial size. Moreover, given an actual n-bit propositional formula F of polynomial size and the cor-
responding Pg-proof πF (represented by fixed strings ⟨F ⟩ and ⟨πF ⟩), one can show that there are polynomial
size eF proofs of both ||Formula(⟨F ⟩, 1n)||poly(n) and ||ProofPg(⟨F ⟩, ⟨πF ⟩)||poly(n). (Intuitively, this fol-
lows by an evaluation of the expressions on these fixed inputs.) Since eF is closed under substitution, we
can derive in eF with a polynomial size proof the formula ||Sat(⟨F ⟩, x)||poly(n).

Finally, for every propositional formula F (x) on n-bit inputs, it is possible to efficiently prove in eF the
propositional formula ||Sat(⟨F ⟩, x)||poly(n) → F (x). (This can be established by a slightly more general
structural induction on formulas F using information about || · || and ⟨·⟩.) Overall, since eF is closed under
implication, it follows from these derivations that there is a polynomial size eF proof of F . This completes
the sketch of the proof of the result.

Open Problem 5.3 would also follow from a proof that Buss’s hierarchy of theories Ti
2 does not collapse

[KPT91], another central problem in bounded arithmetic. More precisely, it is enough to obtain the following
separation.

Open Problem 5.5. Show that for some i > j ≥ 1 we have Ti
2 ̸= Tj

2.

It is known that PV1 proves that P = NP if and only if it proves that NP = coNP.11 Consequently, a
super-polynomial lower bound on the length of eF proofs also yields the consistency of NP ̸= coNP with
PV1.

Finally, we remark that the use of witnessing theorems alone (as done in Section 5.1.1) is probably
not sufficient to settle Open Problem 5.3. This is because these theorems typically also hold when we
extend the theory with all true universal statements. Thus an unprovability argument that only employs
the witnessing theorem would establish unconditionally that each sentence φP=NP[g] is false and therefore
P ̸= NP. Some researchers interpret this as evidence that the investigation of propositional proof complexity
might be unavoidable. Another approach to Open Problem 5.3 is discussed in Section 5.3.

5.2 Unprovability of Lower Bounds

5.2.1 Average-Case Circuit Lower Bounds

In this section, we discuss the unprovability of strong average-case lower bounds in PV1. We focus on
an unprovability result from [PS21], stated and proved in a slightly stronger form in [LO23]. The proof is
based on a technique introduced by [Kra11] and further explored in [Pic15a].

We consider an average-case separation of co-nondeterministic circuits against non-deterministic cir-
cuits of subexponential size. In more detail, we investigate the provability of a sentence LB1(s1, s2,m, n0)
stating that, for every input length n ≥ n0, there is a co-nondeterministic circuit C of size ≤ s1(n) such
that, for every nondeterministic circuit D of size ≤ s2(n), we have

Pr
x∼{0,1}n

[
C(x) = D(x)

]
≤ 1− m(n)

2n
.

Let coNSIZE[s(n)] and NSIZE[s(n)] refer to co-nondeterministic circuits and nondeterministic circuits of
size s(n), respectively. More formally, LB1(s1, s2,m, n0) is an LPV-sentence capturing the following lower

11Due to space constraints, we do not elaborate on the formalization of NP = coNP.
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bound statement:

∀n ∈ LogLog with n ≥ n0 ∃C ∈ coNSIZE[s1(n)] ∀D ∈ NSIZE[s2(n)]

∃m = m(n) distinct n-bit strings x1, . . . , xm s.t. Error(C,D, xi) for all i ∈ [m],

where Error(C,D, x) means that the circuits C and D disagree on the input x. This statement can be seen
as an average-case form of the coNP ⊈ NP/poly conjecture if we let s1(n) = nO(1), s2(n) = nω(1), and
m(n) = 2n/n. (Note that we consider in this section a LogLog formalization, according to the notation
explained in Section 4.1.)

Theorem 5.6 ([PS21, LO23]). Let d ≥ 1, δ > 0, and n0 ≥ 1 be arbitrary parameters, and let s1(n) = nd,
s2(n) = 2n

δ
, and m(n) = 2n/n. Then PV1 does not prove the sentence LB1(s1, s2,m, n0).

In the remainder of this section, we provide some intuition about the proof of this result.

Overview of the Argument. Suppose, towards a contradiction, that PV1 ⊢ LB1(s1, s2,m, n0) with param-
eters as above. The central idea of the argument is that establishing a strong complexity lower bound within
bounded arithmetic leads to a corresponding complexity upper bound. These lower and upper bounds con-
tradict each other. Consequently, this contradiction implies the unprovability of the lower bound statement.
In a bit more detail, the argument proceeds as follows:

(i) The provability of the average-case lower bound sentence LB1(s1, s2,m, n0) implies the provability of
a worst-case lower bound for coNSIZE[nd] against NSIZE[2n

δ
]. We formalize the latter by a sentence

LB1
wst(s1, s2, n0).

(ii) Given any proof of LB1
wst(s1, s2, n0) in PV1, we extract a complexity upper bound for an arbi-

trary co-nondeterministic circuit Em(x) over an input x of length m and of size at most poly(m).
More precisely, we show that there is a deterministic circuit Bm of size ≤ 2m

o(1)
such that

Prx∼{0,1}m [Em(x) = Bm(x)] ≥ 1/2 + 2−mo(1)
.

(iii) We invoke an existing hardness amplification result to conclude that, on any large enough input length
n, every co-nondeterministic circuit Cn of size ≤ nd agrees with some nondeterministic circuit Dn of
size ≤ 2n

δ
on more than a 1− 1/n fraction of the inputs.

Since PV1 is a sound theory, i.e., every theorem of PV1 is a true sentence, Item (iii) is in contradiction with
the complexity lower bound stated in LB1(s1, s2,m, n0). Consequently, PV1 does not prove this sentence.

The most interesting step of the argument is the proof of Item (ii). The key point is that the proof of
a lower bound in PV1 must be somewhat constructive, in the sense that it not only shows that every small
circuitD fails to solve the problem but also produces a string w witnessing this fact. Below we give a simple
example of its usefulness, showing a setting where a constructive lower bound yields an upper bound. Note
that the application of a witnessing theorem to a LogLog formalization provides algorithms running in time
poly(2n). The example provided next shows that this is still useful.

Lemma 5.7 ([CLO24a]). Let L ∈ NP. Suppose that there is a uniform algorithm R(1n, D) such that, for
every co-nondeterministic circuit D on n input variables and of size at most nlogn, R(1n, D) runs in time
2O(n) and outputs a string w ∈ {0, 1}n such that D(w) ̸= L(w). Then, for every language L′ ∈ NP and
for every constant ε > 0, we have L′ ∈ DTIME[2n

ε
].
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Proof. Suppose that L ∈ NTIME[nd] for some d ∈ N. Let M ′ be a nondeterministic machine that decides
L′ and runs in time at most nc

′
, where c′ ∈ N. Let ε > 0 be an arbitrary constant. Let γ = γ(d, ε) > 0 be a

small enough constant to be defined later. Finally, let R be the algorithm provided by the hypothesis of the
lemma. We show that the following deterministic algorithm Bγ(x) decides L′ in time O(2n

ε
):

Input: x ∈ {0, 1}n for some n ≥ 1.
1 Compute the description of a co-nondeterministic circuit E′ of size at most n2c

′
that decides the

complement of L′;
// In other words, E′(u) = 1− L′(u) for every string u ∈ {0, 1}n.

2 Produce the description of a co-nondeterministic circuit Dx(y), where y ∈ {0, 1}nγ
, such that

Dx(y) ignores its input y and computes according to E′(x);
// While the length of y is smaller than the length of u, Dx and

E′ share the same nondeterministic input string, and E′ sets u
to be the fixed string x.

3 Compute w = R(1n
γ
, Dx) ∈ {0, 1}nγ

;
4 Determine the bit b = L(w) by a brute force computation, then return b;

Algorithm 2: Algorithm Bγ(x) for deciding language L′.

First, we argue that Bγ decides L′. Since Dx is a co-nondeterministic circuit over inputs of length
m ≜ nγ and has size at most n2c

′
= m2c′/γ ≤ mlogm (for a large enough m), R(1n

γ
, Dx) outputs a string

w ∈ {0, 1}nγ
such that L(w) = 1−Dx(w). Consequently,

b = L(w) = 1−Dx(w) = 1− E′(x) = 1− (1− L′(x)) = L′(x) ,

i.e., the output bit of Bγ(x) is correct.
Next, we argue that Bγ runs in time at most O(2n

ε
). Clearly, Steps 1–2 run in poly(n) time. Moreover,

Step 3 runs in time 2O(nγ) under the assumption on the running time of R(1n
γ
, Dx). This is at most 2n

ε
if

we set γ ≤ ε/2. Finally, since L ∈ NTIME[nd], the brute force computation in Step 4 can be performed in
deterministic time 2O(ℓd) over an input of length ℓ. Since ℓ = nγ = |w| in our case, if γ ≤ ε/2d we get that
Step 4 runs in time at most 2n

ε
. Overall, if we set γ ≜ ε/2d, it follows that Bγ runs in time at most O(2n

ε
).

This completes the proof that L′ ∈ DTIME[2n
ε
].

The proof of Item (ii) is significantly more sophisticated, since one does not get an algorithmR as above
from a PV1 proof of the lower bound sentence LB1(s1, s2,m, n0). The argument combines a witnessing
theorem for sentences with more than four quantifier alternations and an ingenious technique from [Kra11]
that relies on ideas from the theory of computational pseudorandomness.

Open Problem 5.8. Strengthen the unprovability result from Theorem 5.6 in the following directions:

(a) show that it holds in the polynomial size regime, i.e., with s1(n) = na and for some s2(n) = nb;

(b) establish the unprovability of worst-case lower bounds against nondeterministic circuits;

(c) show the unprovability of average-case lower bounds against deterministic circuits;

(d) establish the same result with respect to a stronger theory.

We refer to [LO23, CLO24a, CLO24b] for some related results and partial progress.
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5.2.2 Extended Frege Lower Bounds

This section covers a result on the unprovability of super-polynomial size extended Frege (eF) lower
bounds in PV1 [KP89] (see also [CU93, Bus90]). We refer to Section 3.2 for the necessary background. We
will also need the definitions and results from Section 3.3.

We adapt the presentation from [Kra19]. Consider the theory PV1 and its language LPV. We shall use
the following LPV formulas:

• Sat(x, y): a quantifier-free formula formalizing that y is a satisfying assignment of the Boolean for-
mula x;

• Taut(x) ≜ ∀y ≤ x Sat(x, y);

• ProofP (x, z): a quantifier-free formula formalizing that z is a P -proof of x.

The following lemma is central to the unprovability result.

Lemma 5.9. Let M |= PV1, and assume that ϕ ∈ M is a propositional formula. The following statements
are equivalent:

(i) There is no eF-proof of ϕ in M :

M |= ∀z ¬ProofeF (ϕ, z) .

(ii) There is an extension M ′ ⊇M (also a model of PV1) in which ϕ is falsified:

M ′ |= ∃y Sat(¬ϕ, y) .

The proof of Lemma 5.9 proceeds by compactness and uses that the correctness of the propositional
translation from PV1 to eF (Section 3.2) is also provable in PV1.

Lemma 5.10. Let M be a nonstandard countable model of PV1. Then it has a cofinal extension M ′ ⊇cf M
(also a model of PV1) such that every tautology in M ′ has an eF-proof in M ′.

The proof of Lemma 5.10 iterates Lemma 5.9 while taking cuts to ensure that the limit extension M ′ =⋃
iMi (where M0 = M ) is cofinal in M . Since each Mi |= PV1 and PV1 is universal, we also have

M ′ |= PV1.
We will need the following analogue of Lemma 3.6 for PV1.

Fact 5.11. Let M0 be a nonstandard countable model of PV1. Then there is a (countable) cut M of M0 that
is a (nonstandard) model of PV1 and a length n ∈ M , where n = |a| for some nonstandard a ∈ M , such
that for every b ∈M we have M |= |b| ≤ nk for some standard number k.

The next result is a consequence of the existence of nonstandard countable models, Fact 5.11, and
Lemma 5.10.

Lemma 5.12. There is a model M∗ of PV1 such that the following properties hold:

(i) Any tautology in M∗ has an eF-proof in M∗.

(ii) There is a nonstandard element a ∈ M∗ of length n ≜ |a| such that for any element b ∈ M∗ there is
a standard number k such that M∗ |= |b| ≤ nk.
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Theorem 5.13 (Unprovability of super-polynomial size eF lower bounds in PV1 [KP89]). Consider the
sentence

ΨeF ≜ ∀x ∃ϕ ≥ x [Taut(ϕ) ∧ ∀π (|π| ≤ |ϕ|#|ϕ| → ¬ProofeF (ϕ, π))] .12

The sentence ΨeF is not provable in PV1.

Proof. Suppose PV1 ⊢ ΨeF . Let M∗, a, and n ≜ |a| be as in Lemma 5.12. Since ΨeF holds in M∗, there
is a tautology ϕ ∈M∗ with ϕ ≥ a and consequently |ϕ| ≥ n such that ϕ does not have an eF-proof of size
|ϕ|#|ϕ| in M∗. On the other hand, by the two properties of M∗ given by Lemma 5.12, the formula ϕ has
an eF-proof of size at most nk for some standard number k. Finally, since the element a is nonstandard, we
have nk ≤ n#n ≤ |ϕ|#|ϕ| in M⋆. This contradiction implies that PV1 does not prove ΨeF .

Open Problem 5.14. Show that PV1 cannot prove fixed-polynomial size lower bounds on the length of eF
proofs.

Open Problem 5.15. Establish the unprovability of the sentence ΨeF in theory S12.

5.3 Connection Between Upper Bounds and Lower Bounds

In this section, we explain a result from [BKO20] showing that the unprovability of P = NP (Open
Problem 5.3) is related to the unprovability of circuit lower bounds. For a PV1 function symbol h and a
circuit size parameter k ∈ N, consider the sentence

LBa.e.
k (h) ≜ ¬UBi.o.

k [h] ,

where UBi.o.
k [h] is the sentence defined in Section 5.1.1. The sentence LBa.e.

k (h) states that the language
defined by h is hard on input length n for circuits of size nk whenever n is sufficiently large.

Theorem 5.16 (Unprovability of P = NP in PV1 from the unprovability of lower bounds in PV1 [BKO20]).
If there exists k ∈ N such that for no function symbol h theory PV1 proves the sentence LBa.e.

k (h), then for
no function symbol f theory PV1 proves the sentence φP=NP(f).

Theorem 5.16 shows that if PV1 does not prove nk-size lower bounds for a language in P, then P ̸= NP
is consistent with PV1. Note that the hypothesis of Theorem 5.16 is weaker than the assumption that PV1

does not prove that NP ⊈ SIZE[nk] for some k.

Sketch of the proof of Theorem 5.16. We proceed in the contrapositive. We formalize in PV1 the result that
if P = NP, then for any parameter k, P ⊈ i.o.SIZE[nk] (see, e.g., [Lip94, Theorem 3]). This result
combines the collapse of PH to P with Kannan’s argument [Kan82] that PH can define languages that are
almost-everywhere hard against circuits of fixed-polynomial size. Typically, proving this claim requires
showing the existence of a truth table of size 2n that is hard against circuits of size nk. However, this result
might not be provable in PV1.

We address this issue as follows. From the provability in PV1 that P = NP, it follows that for each
i ≥ 1 theory Ti

2 collapses to PV1 [KPT91]. Recall that the dual weak pigeonhole principle (dWPHP) for
LPV-functions is provable in T2

2. Define a PV1 function symbol g that takes as input a circuit C of size nk

and outputs the lexicographic first nk+1 bits of the truth table computed by C. From dWPHP(g), we now

12Recall from Section 2.1 that x#y ≜ 2|x|·|y|. Consequently, if we let n = |ϕ|, then the bound |π| ≤ |ϕ|#|ϕ| translates to
|π| ≤ n#n, where n#n = 2|n|·|n| is of order nlogn. The proof of Theorem 5.13 works with any reasonable formalization that
refers to a super-polynomial size bound.

22



derive in PV1 that the prefix of some truth table is not computable by circuits of size nk, if n is sufficiently
large. We can implicitly extend this truth table prefix with zeroes and use the resulting truth table to define
a PV1-formula φ(x) with a constant number of bounded quantifiers that defines a language L that is hard
against circuits of size nk, where the hardness is provable in PV1.

Given that the provability in PV1 that P = NP implies the provability in PV1 that PH collapses to P,
it follows that φ(x) is equivalent in PV1 to the language defined by some LPV-function h. In other words,
PV1 ⊢ LBa.e.

k (h), which completes the proof of Theorem 5.16.

[CLO24b] shows an example of a simple lower bound that is not provable in PV1, under a plausible
cryptographic assumption. This indicates that Theorem 5.16 might offer a viable approach towards a solu-
tion to Open Problem 5.3.

6 Additional Recent Developments

The provability of the dual Weak Pigeonhole Principle (dWPHP) for polynomial-time functions is
closely related to the provability of exponential circuit lower bounds for a language in deterministic ex-
ponential time [Jeř07]. [Kra21] showed that dWPHP cannot be proved in PV1 under the assumption that
P ⊆ SIZE[nk] for some constant k. [ILW23] established the same unprovability result assuming sub-
exponentially secure indistinguishability obfuscation and coNP ⊈ i.o.AM.

[ABM23] established the unprovability of NEXP ⊆ SIZE[poly] in the theory of bounded arithmetic V0
2

(not covered in this survey). Interestingly, their approach does not employ a witnessing theorem. It proceeds
instead by simulating a comprehension axiom scheme assuming the provability of the upper bound sentence,
eventually relying on an existing lower bound on the provability of the pigeonhole principle.

[CLO24b] systematically investigates the reverse mathematics of complexity lower bounds. They
demonstrated that various lower bound statements in communication complexity, error-correcting codes,
and for Turing machines are equivalent to well-studied combinatorial principles, such as the weak pigeon-
hole principle for polynomial-time functions and its variants. Consequently, complexity lower bounds can
be regarded as fundamental axioms with significant implications. They use these equivalences to derive
conditional results on the unprovability of simple lower bounds in APC1.

[CKK+24] investigates the provability of the circuit size hierarchy in bounded arithmetic, captured by
a sentence CSH stating that for each n ≥ n0, there is a circuit of size na that does not admit an equivalent
circuit of size nb, where a > b > 1 and n0 are fixed. They showed that CSH is provable in T2

2, while its
provability in T1

2 implies that PNP ⊈ SIZE[n1+ε] for some ε > 0. Thus a better proof complexity upper
bound for the circuit size hierarchy yields new circuit lower bounds.

[CRT24] establishes the unprovability of NP ̸= PSPACE in APC1 (with a LogLog formalization) under
a strong average-case hardness assumption.

[Kra24] offers a comprehensive reference on proof complexity generators, whose investigation is closely
related to dWPHP and its provability in bounded arithmetic. The theory of proof complexity generators
offers tautologies that serve as potential candidates for demonstrating super-polynomial extended Frege
lower bounds and consequently the unprovability of P = NP in PV1.

We have not covered a number of results connected to the meta-mathematics of complexity lower bounds
developed in the context of propositional proof complexity (see, e.g., [Raz15, Kra19, AR23, Kra24] and
references therein). It is worth noting that results on the non-automatability of weak proof systems such
as [AM20, dRGN+21] were made possible thanks to the investigation of the meta-mathematics of proof
complexity.
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Finally, several other recent papers have investigated directions connected to bounded arithmetic and
the meta-mathematics of complexity theory, e.g., [PS22, Kha22, PS23, AKPS24, LLR24]. Due to space
constraints, we are not able to cover all recent developments in this survey.
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[HP93] Petr Hájek and Pavel Pudlák. Metamathematics of first-order arithmetic. Springer-Verlag, 1993.

[ILW23] Rahul Ilango, Jiatu Li, and Ryan Williams. Indistinguishability obfuscation, range avoidance, and
bounded arithmetic. In Symposium on Theory of Computing (STOC), pages 1076–1089. ACM, 2023.
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[Kra19] Jan Krajı́ček. Proof Complexity. Encyclopedia of Mathematics and its Applications. Cambridge Univer-
sity Press, 2019.
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