
Unconditional Lower Bounds in
Complexity Theory

Igor Carboni Oliveira

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2015

c©2015

Igor Carboni Oliveira

All Rights Reserved

ABSTRACT

Unconditional Lower Bounds in
Complexity Theory

Igor Carboni Oliveira

This work investigates the hardness of solving natural computational problems ac-

cording to different complexity measures. Our results and techniques span several areas in

theoretical computer science and discrete mathematics. They have in common the following

aspects: (i) the results are unconditional, i.e., they rely on no unproven hardness assump-

tion from complexity theory; (ii) the corresponding lower bounds are essentially optimal.

Among our contributions, we highlight the following results.

• Constraint Satisfaction Problems and Monotone Complexity. We introduce a natural

formulation of the satisfiability problem as a monotone function, and prove a near-

optimal 2Ω(n/ logn) lower bound on the size of monotone formulas solving k-SAT on n-

variable instances (for a large enough k ∈ N). More generally, we investigate constraint

satisfaction problems according to the geometry of their constraints, i.e., as a function

of the hypergraph describing which variables appear in each constraint. Our results

show in a certain technical sense that the monotone circuit depth complexity of the

satisfiability problem is polynomially related to the tree-width of the corresponding

graphs.

• Interactive Protocols and Communication Complexity. We investigate interactive com-

pression protocols, a hybrid model between computational complexity and communi-

cation complexity. We prove that the communication complexity of the Majority func-

tion on n-bit inputs with respect to Boolean circuits of size s and depth d extended

with modulo p gates is precisely n/ logΘ(d) s, where p is a fixed prime number, and

d ∈ N. Further, we establish a strong round-separation theorem for bounded-depth

circuits, showing that (r+ 1)-round protocols can be substantially more efficient than

r-round protocols, for every r ∈ N.

• Negations in Computational Learning Theory. We study the learnability of circuits

containing a given number of negation gates, a measure that interpolates between

monotone functions, and the class of all functions. Let Ctn be the class of Boolean

functions on n input variables that can be computed by Boolean circuits with at most

t negations. We prove that any algorithm that learns every f ∈ Ctn with membership

queries according to the uniform distribution to accuracy ε has query complexity

2Ω(2t
√
n/ε) (for a large range of these parameters). Moreover, we give an algorithm

that learns Ctn from random examples only, and with a running time that essentially

matches this information-theoretic lower bound.

• Negations in Theory of Cryptography. We investigate the power of negation gates in

cryptography and related areas, and prove that many basic cryptographic primitives

require essentially the maximum number of negations among all Boolean functions.

In other words, cryptography is highly non-monotone. Our results rely on a vari-

ety of techniques, and give near-optimal lower bounds for pseudorandom functions,

error-correcting codes, hardcore predicates, randomness extractors, and small-bias

generators.

• Algorithms versus Circuit Lower Bounds. We strengthen a few connections between

algorithms and circuit lower bounds. We show that the design of faster algorithms

in some widely investigated learning models would imply new unconditional lower

bounds in complexity theory. In addition, we prove that the existence of non-trivial

satisfiability algorithms for certain classes of Boolean circuits of depth d+ 2 leads to

lower bounds for the corresponding class of circuits of depth d. These results show

that either there are no faster algorithms for some computational tasks, or certain

circuit lower bounds hold.

Table of Contents

Bibliographic Note vi

1 Introduction 1

1.1 Complexity Theory . 1

1.2 Different flavors of lower bounds . 3

1.3 The Boolean circuit model . 4

1.4 Main contributions and outline of this thesis 5

2 Preliminaries and Notation 11

I Circuit Lower Bounds 13

3 On the monotone complexity of the satisfiability problem 14

3.1 Background, results, and organization . 14

3.2 A transfer principle for constraint satisfaction problems 26

3.3 Lower bounds for k-SAT and sparse CSPs 30

3.4 Upper bounds via depth-width complexity 36

3.5 An unconditional classification theorem for CSPs 43

3.6 Example: The depth-width of the Cycle . 47

4 Majority is incompressible by AC0[p] circuits 50

4.1 Background, results, and organization . 50

4.2 Preliminaries and notation . 58

4.3 The communication cost of AC0[p]-compression games 63

i

4.4 Multiparty interactive compression . 71

4.5 The connection with circuits augmented with oracle gates 77

4.6 Interactive compression versus computation 81

4.7 An improved round separation theorem for AC0 83

4.8 Open problems and further research directions 90

4.9 Auxiliary results . 91

II Negations in Learning Theory and Cryptography 97

5 Learning circuits with negations 98

5.1 Background, results, and organization . 98

5.2 Structural results . 103

5.3 A learning algorithm for non-monotone circuits 105

5.4 The complexity of learning non-monotone circuits 106

5.5 Auxiliary results . 114

6 The power of negations in Cryptography 119

6.1 Background, results, and organization . 119

6.2 Preliminaries and notation . 125

6.3 Basic results and technical background . 128

6.4 Lower bounds on negation complexity . 131

6.5 Open problems and further research directions 147

6.6 Auxiliary results . 148

III Connections between Algorithms and Circuit Lower Bounds 151

7 Constructing hard functions from learning algorithms 152

7.1 Background, results, and organization . 152

7.2 Preliminaries and notation . 158

7.3 Lower bounds from mistake-bounded and exact learning algorithms 162

7.4 Lower bounds from PAC learning algorithms 168

ii

7.5 Lower bounds from SQ and CSQ learning algorithms 173

7.6 Open problems and further research directions 180

7.7 Auxiliary results . 181

8 Satisfiability algorithms, useful properties, and lower bounds 185

8.1 Background, results, and organization . 185

8.2 Preliminaries and notation . 198

8.3 Lower bounds from non-trivial satisfiability algorithms 201

8.4 Useful properties and circuit lower bounds 207

8.5 Applications and additional connections . 213

8.6 Open problems and further research directions 220

8.7 Auxiliary results . 220

9 Concluding remarks 224

Bibliography 224

iii

Acknowledgments

I would like to thank Tal Malkin, Rocco Servedio, Mihalis Yannakakis, and Clifford

Stein, for supporting my admission as a graduate student in the Theory of Computation

Group. I am grateful to Columbia University for the fantastic environment that allowed me

to carry out my research.

I thank the members of my thesis committee, Andrej Bogdanov, Xi Chen, Tal Malkin,

Rahul Santhanam, and Rocco Servedio, for their time and valuable feedback.

Tal and Rocco, thank you for generously sharing so much time with me during these

five intense years. I am eternally grateful to all you have taught me, for the freedom

that allowed me to investigate the questions that excite me, for the conversations and

enlightening advice, and for your friendship. It was a privilege to have both of you advising

me during this journey as a doctoral student.

I wish to also thank Walter Carnielli, Orlando Lee, and Arnaldo Moura, for guiding me

in my first steps in research with patience and enthusiasm. I thank Cid Carvalho de Souza

for introducing me to computational complexity theory through his lectures on algorithms

and complexity.

Clément, Dimitris, Eva, and Fernando, it was a pleasure to share the office with you.

Xi Chen, it was great to share the fifth floor with you. Thank you for making my days less

lonely in New York.

I would like to express my thanks to Yoshiharu Kohayakawa for hosting me at Uni-

versity of São Paulo, where I was fortunate to overlap with Andrea, Hiê.p, Marcelo, and

Chandu. I thank you all for the very enjoyable time in Brazil.

I also thank Alon Rosen for inviting me for a stay in Israel, and Ilan, Silas, Siyao, and

Tal for their company in beautiful Herzliya during that period.

iv

My special thanks to Rahul Santhanam for hosting me at University of Edinburgh,

during what was a very enjoyable collaboration, and for the innumerable forms of support

since then.

I would like to thank Andrej Bogdanov and Siyao Guo for inviting me for a short but

warm visit to Hong Kong, and for the many walks and discussions throughout the city.

I wish to thank Rahul Santhanam, Jan Kraj́ıcĕk, and Olaf Beyersdorff for inviting me

to the Dagstuhl Workshop “Optimal Algorithms and Proofs,” and Valentine Kabanets and

Ryan Williams for the invitation to the Simons Workshop “Connections Between Algorithm

Design and Complexity Theory.” Many thanks to Ben, Rafael, and Susanna for making

going to workshops and conferences a lot funnier.

I had the luck to work with several researchers while in graduate school. I thank Adam

Klivans, Pravesh Kothari, Bhalchandra Thatte, Marcelo Gauy, Hiê.p Hàn, Siyao Guo, Tal

Malkin, Alon Rosen, Rahul Santhanam, Eric Blais, Clément Canonne, Rocco Servedio, Li-

Yang Tan, and Xi Chen for all I have learned from them during these collaborations. I also

thank Andy Drucker, Ben Rossman, and Sasha Golovnev for stimulating discussions that

influenced the results in this thesis.

Sincere thanks to my friends from Brazil, including Felipe, Allan, Carolina, Campello,

João Tiago, Limão, Digão, and Douglas.

I thank the hospitality of the staff members of Instituto de F́ısica Teórica (UNESP)

and Rotch Library (MIT), where I spent a reasonable amount of time thinking about the

results of this thesis.

Finally, and above all, I thank Carlos, Helena, Iana, and Nayara, for their unconditional

love and support. There are no words to express your importance in my life.

v

Bibliographic Note

Chapter 3 is the result of individual work. A research paper containing the contributions

of this chapter is in preparation.

Chapter 4 is based on the paper “Majority is incompressible by AC0[p] circuits,” which is

joint work with Rahul Santhanam, and will appear in the Proceedings of the 30th Confer-

ence on Computational Complexity (CCC 2015).

Chapter 5 is based on the paper “Learning circuits with few negations,” which is joint work

with Eric Blais, Clément Canonne, Rocco Servedio, and Li-Yang Tan, and will appear in

the Proceedings of the 19th International Workshop on Randomization and Computation

(RANDOM 2015).

Chapter 6 is based on the paper “The power of negations in cryptography,” which is joint

work with Siyao Guo, Tal Malkin, and Alon Rosen, and will appear in the Proceedings of

the 12th Theory of Cryptography Conference (TCC 2015).

Chapter 7 is based on the paper “Constructing hard functions using learning algorithms,”

which is joint work with Adam Klivans and Pravesh Kothari, and appeared in the Proceed-

ings of the 28th Conference on Computational Complexity (CCC 2013).

Chapter 8 is the result of individual work. A preliminary version of the results of this chapter

appeared in the technical report ECCC:TR13-117 entitled “Algorithms versus Circuit lower

bounds.”

vi

Chapter 1. Introduction 1

Chapter 1

Introduction

1.1 Complexity Theory

Complexity Theory is a relatively new discipline situated at the intersection of Theo-

retical Computer Science and Mathematics. Following Razborov [Chapter 8, 169], we can

describe the main problems investigated in the field roughly as follows. Assume that there

is a “computational task” Tn that we want to complete. For instance, Tn may be one of the

following:

• Learn a class of functions Cn (cf. Kearns and Vazirani [117]);

• Compute a Boolean function fn : {0, 1}n → {0, 1} (cf. Jukna [109]);

• Prove a mathematical statement φn (cf. Kraj́ıcek [126]);

• Solve a communication problem πn (cf. Kushilevitz and Nisan [128]); etc.

After fixing the task, we consider a class of structures Pn (“solutions”) that solve Tn.

For example, depending on the task, Pn may be a set of algorithms, Boolean circuits,

propositional proofs, interactive protocols, etc. Given any object O ∈ Pn that solves Tn,

there is an associated value that measures the “complexity” of this solution. Formally, given

Pn, we assume the existence of some natural complexity measure

αn : Pn → N

Chapter 1. Introduction 2

that assigns to each solution its corresponding complexity. For instance, αn could be a

measure of the number of queries of the solution, circuit size, proof length, communication

cost, amount of randomness, etc.

Given a task Tn, a set of admissible solutions Pn, and a complexity measure αn, we

would like to estimate

µ(n)
def
= min
O∈Pn

αn(O).

In other words, µ(n) is the complexity of the best solution for our original task Tn.

It may be very hard to determine µ(n) exactly, or one may want to avoid unnecessary

technical details. For these reasons, we usually consider a sequence T = {Tn}n∈N of tasks,

and investigate the asymptotics of µ(n) as n → ∞, where n is a parameter related to the

size of the input instances.

This is of course a very high-level description of the problems investigated in complexity

theory, since the definitions given above can be used to capture most optimization problems.

What gives the field its distinctive flavor is the class of computational models that are used in

the definition of Pn, and the associated complexity measures αn. Due to its importance, and

in order to present a concrete example, we discuss in the next two paragraphs computational

complexity theory.

A widely investigated model of computation is the Turing Machine, which is one of

several equivalent frameworks that can be used to define algorithms (see e.g. Sipser [175]).

In this case, the task T is simply a sequence of Boolean functions {fn}n∈N that encodes a

computational problem, P is the set of Turing machines that correctly solve this problem,

and αn(M) denotes the maximum time complexity of a Turing machine M on inputs of size

n. (The definitions given above have to be adapted slightly, since this is a uniform model

of computation, i.e., P = Pn for every n.)

The seminal work of Hartmanis and Stearns [94], published fifty years ago, established

that with more resources one can solve more computational problems. There exist therefore

hierarchies of computational problems defined according to natural complexity measures,

such as computational time and space. Similar hierarchies are known to hold for many

other frameworks investigated in complexity theory, such as proof complexity, communi-

cation complexity, and circuit complexity. The existence of such hierarchies implies that

Chapter 1. Introduction 3

understanding the complexity of the computational tasks in these models is a non-trivial

problem.

The most basic questions in complexity theory are determining the complexity of

natural tasks, and understanding the relation between different complexity measures. Since

there are numerous connections between the many subareas of complexity theory, it makes

sense to group them into a single field of investigation.

1.2 Different flavors of lower bounds

We can distinguish research in complexity lower bounds roughly as follows: “condi-

tional” complexity theory, and “unconditional” complexity theory. In a conditional result,

one assumes a particular hypothesis, such as P 6= NP, and tries to explain the hardness

of other computational tasks. A substantial number of results in complexity theory are

conditional, i.e., are based on a hardness assumption. On the other hand, progress on

unconditional results has been much slower, since proving limitations for concrete models

without extra assumptions requires a deeper understanding of the model. Nevertheless,

progress on conditional results can provide the basis for unconditional lower bounds, and

these two research directions complement each other. (We will see an example of this

phenomenon in Chapter 3.)

We focus on unconditional complexity theory in this work. Among unconditional

lower bounds, we would like to highlight two types of results: information-theoretic and

computational lower bounds. While this distinction is not always possible, most results

presented in this work fit nicely under this classification.

In an information-theoretic lower bound a particular task cannot be completed within

certain resources due to an information bottleneck. Put another way, in these lower bounds

the objects solving a given task do not have complete information about their input. In

particular, there may be no efficient solution to the problem in hand simply because any

solution requires the inspection of a large amount of data. For instance, we will investigate

learning algorithms in Chapter 5, where one can prove that in order to learn some classes

of Boolean functions there is a minimum amount of information that needs to be obtained

Chapter 1. Introduction 4

about the unknown function.

In a computational lower bound the objects solving the task have complete information

about the problem under consideration. Consequently, in order to prove that a task of

this form cannot be solved within certain resources, one has to exploit some structural

limitation of the class of objects solving the task. In other words, all required information

is available, but there is a computational bottleneck that prevents the data from being

processed efficiently. We will prove lower bounds of this form in Chapters 3 and 4, for

instance.

Most lower bounds discussed in this thesis concern the inherent complexity of perform-

ing certain computations. In order to study the complexity of computations, we need to fix

a convenient computational model.

1.3 The Boolean circuit model

The Boolean circuit is a central model in computational complexity theory. It has

well-known connections to several other models, including Turing machines, propositional

proof systems, logical theories, and communication protocols (see for instance the textbooks

[109, 117, 126, 128] mentioned above). All results in this thesis are connected to Boolean

circuits.

For convenience of the reader, we review some definitions. A circuit is a very basic

computational model, where a function is computed through a sequence of simple opera-

tions. Given functions f, g : {0, 1}n → {0, 1}, we define new Boolean functions obtained

from them in the natural way via the Boolean operations f(x) ∧ g(x), f(x) ∨ g(x), and

¬f(x). The new function is called the conjunction, disjunction, or negation of the involved

function(s), respectively. A Boolean circuit Cn = (g1, . . . , gn, gn+1, . . . , gs) is a sequence

of functions, where each gi : {0, 1}n → {0, 1} is the projection function gi(x) = xi for

1 ≤ i ≤ n, or is obtained from previous functions via a conjunction, disjunction, or nega-

tion, for n+ 1 ≤ i ≤ s. The Boolean function computed by Cn is gs : {0, 1}n → {0, 1}, the

last function in this sequence.

A circuit Cn can also be viewed as a directed acyclic graph, with input nodes x1, . . . , xn,

Chapter 1. Introduction 5

internal nodes (gates) labeled by ∧, ∨, or ¬, and wires connecting each internal node to

its children. There is a specially designated output gate, and computation is defined in the

natural way. It is easy to see that the two definitions are equivalent. The depth of a circuit

Cn is the length of the longest path from the output gate to an input node, and will be

denoted by depth(Cn). The size of the circuit is measured by its number of internal nodes,

and will be denoted by size(Cn).

We say that a circuit is a formula if every internal node has fan-out 1. In other words,

the output of an internal gate cannot feed multiple gates. Further, a circuit is monotone if

it contains no negation gates. It is convenient sometimes to allow Boolean circuits to have

arbitrary fan-in, i.e., each gate of the circuit can get as input the output of several gates.

This is particularly important when we restrict attention to circuits of small depth, since

otherwise the output gate cannot depend on all input variables.

It is possible to show by a simple probabilistic argument that a random Boolean

function fn : {0, 1}n → {0, 1} almost surely requires fan-in two circuits of size Ω(2n/n) and

depth Ω(n) (Shannon [174]). Put another way, most Boolean functions are hard to compute.

Although there has been an intensive effort to understand the complexity of natural Boolean

functions, we have not yet succeeded in proving that an explicit Boolean function requires

fan-in two circuits of size 10n. Similarly, we have no proof that an explicit function requires

circuits of depth 10 log n. We refer the reader to Jukna [109] for an accurate description of

the strongest known explicit lower bounds against general Boolean circuits.

Although progress on unconditional lower bounds with respect to general circuits has

been almost nonexistent, strong results are known under natural restrictions on Boolean

circuits. Two widely investigated restricted classes of Boolean circuits are bounded-depth

circuits of arbitrary fan-in (see e.g. H̊astad [95, 96]), and monotone circuits of fan-in two

(cf. Razborov [155, 156] and Rossman [161]).

1.4 Main contributions and outline of this thesis

We give a brief description of our contributions in the next subsections. We stress that

all results discussed below are unconditional, i.e., they require no hardness assumption.

Chapter 1. Introduction 6

1.4.1 Part I: Circuit Lower Bounds.

In this part of the thesis, we prove new lower bounds for bounded-depth circuits and

monotone circuits.

Chapter 3: On the monotone complexity of the satisfiability problem. We intro-

duce a natural formulation of the satisfiability problem as a monotone function over
(
n
k

)
·2k

input bits, and prove a near-optimal 2Ω(n/ logn) lower bound on the size of monotone formu-

las computing k-SAT on n-variable instances (for a large enough k ∈ N). The same lower

bound holds when the problem is restricted to instances with a linear number of clauses.

This result relies on a lower bound recently obtained by Göös and Pitassi [87].

More generally, we describe a framework to study the monotone circuit depth complex-

ity of constraint satisfaction problems (CSP) based on the geometry of their constraints, i.e.,

as a function of the hypergraph describing which variables appear in each constraint. We

establish, unconditionally, that the monotone depth complexity of the satisfiability problem

is connected to the tree-width of the corresponding graphs. Roughly speaking, for any graph

G, we consider a related hypergraph H, and prove that a certain satisfiability problem with

geometry H admits shallow monotone circuits if and only if G is reasonably close to a tree.

Our characterization is similar in spirit to a conditional result of Grohe [90] from pa-

rameterized complexity theory, but does not require the CSPs to have unbounded domain

size. To our knowledge, this is the first hardness result of this form that holds with respect

to bounded-size domain CSPs, even among conditional results.

Chapter 4: Majority is incompressible by AC0[p] circuits. We consider C-compression

games, a hybrid model between computational and communication complexity. A C-

compression game for a function f : {0, 1}n → {0, 1} is a two-party communication game,

where the first party Alice knows the entire input x but is restricted to use strategies com-

puted by C-circuits, while the second party Bob initially has no information about the input,

but is computationally unbounded. The parties implement an interactive communication

protocol to decide the value of f(x), and the communication cost of the protocol is the

maximum number of bits sent by Alice as a function of n = |x|.

We show that any AC0
d[p]-compression protocol to compute Majorityn requires commu-

Chapter 1. Introduction 7

nication n/(log n)2d+O(1), where p is prime, and AC0
d[p] denotes polynomial size unbounded

fan-in depth-d Boolean circuits extended with modulo p gates. This bound is essentially

optimal, and settles a question of Chattopadhyay and Santhanam [45]. This result has a

number of consequences, and yields a tight lower bound on the total fan-in of oracle gates

in constant-depth oracle circuits computing Majorityn.

We define multiparty compression games, where Alice interacts in parallel with a poly-

nomial number of players that are not allowed to communicate with each other, and commu-

nication cost is defined as the sum of the lengths of the longest messages sent by Alice during

each round. In this setting, we prove that the randomized r-round AC0[p]-compression cost

of Majorityn is nΘ(1/r). This result implies almost tight lower bounds on the maximum indi-

vidual fan-in of oracle gates in certain restricted bounded-depth oracle circuits computing

Majorityn. Stronger lower bounds for functions in NP would separate NP from NC1.

Finally, we consider the round separation question for two-party AC0-compression

games, and significantly improve known separations between r-round and (r + 1)-round

protocols, for any constant r.

1.4.2 Part II: Negations in Learning Theory and Cryptography.

The results from Chapter 3 show that certain aspects of the complexity of monotone

circuits are well-understood. Extending these results to circuits with arbitrarily many

negations remains a major challenge in complexity theory, also known as the NP versus

NC1 problem.

In this part of the thesis, we investigate non-monotone circuits in Computational

Learning Theory and Theory of Cryptography.

Chapter 5: Learning circuits with negations. In this chapter we study the structure

of Boolean functions in terms of the minimum number of negations in any circuit computing

them, a complexity measure that interpolates between monotone functions and the class

of all functions. We study this generalization of monotonicity from the vantage point of

learning theory, giving near-matching upper and lower bounds on the uniform-distribution

learnability of circuits in terms of the number of negations they contain. Our results indicate

Chapter 1. Introduction 8

a smooth transition from the complexity of learning monotone functions, to the complexity

of learning all Boolean functions.

More precisely, let Ctn be the class of Boolean functions on n input variables that can

be computed by Boolean circuits with at most t negations. We prove that any algorithm

that learns every f ∈ Ctn with membership queries according to the uniform distribution to

accuracy ε has query complexity 2Ω(2t
√
n/ε) (for a large range of these parameters). Further,

we give an algorithm that learns Ctn from random examples only, and with a running time

that essentially matches this lower bound.

Our upper bounds are based on a new structural characterization of negation-limited

circuits that extends a classical result of Markov [132]. Our lower bounds, which employ

Fourier-analytic tools from hardness amplification, give new results even for circuits with

no negations (i.e. monotone functions).

Chapter 6: The power of negations in Cryptography. The study of monotonicity

and negation complexity for Boolean functions has been prevalent in circuit complexity

theory as well as in computational learning theory, but little attention has been given to

it in the cryptographic context. Recently, Goldreich and Izsak [79] initiated a study of

whether cryptographic primitives can be monotone, and showed that one-way functions can

be monotone (assuming they exist), but a pseudorandom generator cannot.

In this chapter, we start by filling in the picture and proving that many other basic

cryptographic primitives cannot be monotone. We then initiate a quantitative study of the

power of negations, asking how many negations are required. We provide several lower

bounds, many of them tight, for various cryptographic primitives and building blocks in-

cluding one-way permutations, pseudorandom functions, small-bias generators, hard-core

predicates, error-correcting codes, and randomness extractors.

Among our results, we show that, unlike one-way functions, one-way permutations

cannot be monotone. Further, we prove that pseudorandom functions require log n−O(1)

negations (which is optimal up to the additive term). Similarly, error-correcting codes

with optimal distance parameters require log n−O(1) negations (again, optimal up to the

additive term). Finally, we prove a general result for monotone functions, showing a lower

bound on the depth of any circuit with t negations on the bottom that computes a monotone

Chapter 1. Introduction 9

function in terms of the monotone circuit depth complexity of the function.

1.4.3 Part III: Connections between Algorithms and Circuit lower bounds.

Chapters 3 and 4 provide strong lower bounds for restricted classes of Boolean circuits.

Unfortunately, it is unclear how to adapt the methods described in these chapters in order

to understand more general circuit classes.

In this part of the thesis, we study an alternative approach to unconditional lower

bounds based on the design of faster algorithms.

Chapter 7: Constructing hard functions from learning algorithms. Fortnow and

Klivans [70] proved the following relationship between efficient learning algorithms and

circuit lower bounds: if a class C ⊆ P/poly of Boolean circuits is exactly learnable with

membership and equivalence queries in polynomial-time, then EXPNP * C. The class EXPNP

was subsequently improved to EXP by Hitchcock and Harkins [92]. In this chapter, we

improve on these results, and obtain the following consequences:

(i) If C is exactly learnable with membership and equivalence queries in polynomial-

time, then DTIME(nω(1)) 6⊆ C. We obtain even stronger consequences if the class C

is learnable in the mistake-bounded model, in which case we prove an average-case

hardness result against C.

(ii) If C is learnable in polynomial time in the PAC model then PSPACE * C, unless

PSPACE ⊆ BPP. Removing this extra assumption from the statement of the theorem

would provide an unconditional proof that PSPACE * BPP.

(iii) If C is efficiently learnable in the Correlational Statistical Query (CSQ) model, we

show that there exists an explicit function f that is average-case hard for circuits in

C. To our knowledge, this result provides stronger average-case hardness guarantees

than those obtained by SQ-dimension arguments (Blum et al. [30]). We also obtain a

non-constructive extension of this result to the stronger Statistical Query (SQ) model.

Our proofs regarding exact and mistake-bounded learning are simple and self-contained,

yield explicit hard functions, and show how to use mistake-bounded learners to “diagonal-

Chapter 1. Introduction 10

ize” over families of polynomial-size circuits. Our consequences for PAC learning lead to

new proofs of Karp-Lipton-style collapse results, and the lower bounds from SQ learning

make use of recent work relating combinatorial discrepancy to the existence of hard-on-

average functions.

Chapter 8: Satisfiability algorithms, useful properties, and lower bounds. We

prove that the existence of non-trivial satisfiability algorithms for certain classes of Boolean

circuits of depth d + 2 leads to NEXP lower bounds for the corresponding class of circuits

of depth d, where an algorithm is non-trivial if it runs in time 2n/nω(1) on polynomial

size circuits over n input variables. Our proof simplifies and generalizes recent theorems

obtained by Williams [198, 199], and extends the applicability of his techniques to certain

classes of Boolean circuits not covered by his original results.

These results are connected to the notion of useful properties introduced in Williams’

subsequent work [201]. Roughly speaking, a property of Boolean functions is useful if it is a

natural property in the sense of Razborov and Rudich [154], but is not necessarily dense. We

revisit Williams’ connection, and show that the usual notion of advice from computational

complexity plays a subtle role in the investigation of useful properties.

Finally, we discuss applications of these ideas to other frameworks connecting algo-

rithms to circuit lower bounds, and introduce meta-connections between different frame-

works of this form.

We state a few open problems in the final part of some chapters. We finish with some

concluding remarks in Chapter 9.

Chapter 2. Preliminaries and Notation 11

Chapter 2

Preliminaries and Notation

We introduce below some basic results and definitions. We defer more specific defini-

tions and technical background to each appropriate chapter. Recall that the Boolean circuit

model was described in Section 1.3. We will revisit this model a few times, as we shift our

attention to different classes of circuits.

Given a positive integer `, we let [`]
def
= {1, . . . , `}. For a Boolean string w, we use |w|

to denote its length, and |w|1 to denote the number of 1s in w.

The following standard concentration bound (cf. Alon and Spencer [13], Appendix A)

will be useful.

Proposition 2.0.1. Let X1, . . . , Xm be independent {0, 1} random variables, where each

Xi is 1 with probability p ∈ [0, 1]. In addition, set X
def
=
∑

iXi, and µ
def
= E[X] = pm. For

any fixed ζ > 0 there exists a constant cζ > 0 independent of m and p such that

Pr[|X − µ| > ζµ] < 2e−cζµ.

A Boolean function f : {0, 1}n → {0, 1} is balanced (or unbiased) if Prx[f(x) = 1] =

1/2, where x is uniformly distributed. The (total) influence (also know as average sensitiv-

ity) of f is defined as

Inf(f)
def
=

n∑
i=1

Infi(f), where Infi(f)
def
= Pr

x∈{0,1}n
[f(x) 6= f(x⊕i)]

and x⊕i denotes x with its i-th coordinate flipped. The quantity Infi(f) is the influence of

Chapter 2. Preliminaries and Notation 12

the i-th variable of f . Moreover, the noise stability of f at rate η ∈ [−1, 1] is

Stabη(f)
def
= 1− 2 Pr[f(x) 6= f(y)] ,

where x is drawn uniformly at random from {0, 1}n, and y is obtained from x by inde-

pendently for each bit having Pr[yi = xi] = (1 + η)/2 (i.e., x and y are η-correlated).

It is more convenient in some situations to work with a closely related measure. We use

NSp(f) to denote the noise sensitivity of f under noise rate p ∈ [0, 1/2], which is defined

as Pr[f(x⊕ y) 6= f(x)], where x is distributed uniformly over {0, 1}n, and y is the p-biased

binomial distribution over {0, 1}n, i.e., each coordinate of y is set to 1 independently with

probability p. We refer to O’Donnell [147] for further information about such complexity

measures.

Recall that a function fn : {0, 1}n → {0, 1} is monotone if fn(x) ≤ fn(y) whenever

x � y, where � denotes the bitwise partial order on {0, 1}n. We use depth+(f) to denote

the minimum depth among all monotone fan-in two Boolean circuits computing f .

We review next the (monotone) Karchmer-Wigderson [114] correspondence between

monotone Boolean circuits and communication protocols (we refer to Kushilevitz and Nisan

[128] for a formal presentation). Let f : {0, 1}m → {0, 1} be a monotone function. Consider

the following communication game between two players. The first player (“Alice”) is given

an input wyes ∈ f−1(1), while the second player (“Bob”) is given wno ∈ f−1(0). The goal of

the players is to agree on a coordinate i ∈ [m] for which wyes(i) = 1 and wno(i) = 0. Since

f is monotone, the set of coordinates with this property is non-empty. Let KW+(f) denote

this communication game, and CCdet(KW+(f)) be the (worst-case) communication cost of

the best (two-party) deterministic protocol that solves KW+(f). The following equivalence

holds.

Proposition 2.0.2. Let f : {0, 1}n → {0, 1} be a monotone function. There exists a mono-

tone fan-in two Boolean circuit Cf of depth d that computes f if, and only if, there exists a

protocol Πf for the (monotone) KW-game of f with communication cost d. In other words,

depth+(f) = CCdet(KW+(f)).

Given a language L ⊆ {0, 1}∗, we let Ln
def
= L ∩ {0, 1}n. We view Ln as a Boolean

function in the natural way.

13

Part I

Circuit Lower Bounds

Chapter 3. On the monotone complexity of the satisfiability problem 14

Chapter 3

On the monotone complexity of

the satisfiability problem

3.1 Background, results, and organization

In this chapter we investigate the monotone circuit depth complexity of constraint

satisfaction problems (CSP). Before describing our contributions, we mention recent devel-

opments that directly relate to our work.

Monotone Circuit Complexity. Recall that a Boolean circuit C is a monotone circuit

if it contains only (fan-in two) AND and OR gates. Monotone circuits compute precisely

the class of monotone functions. We refer the reader to Jukna [109] for an introduction to

Boolean circuits, and to the monograph written by Korshunov [125] for more background

on monotone functions. The depth of a circuit C is the length of its longest path from the

output gate to an input variable. Monotone circuits have been intensively investigated in

circuit complexity. For the importance of this line of research, we refer to Raz and McKenzie

[Section 1.1, 152].

Several unconditional lower bounds are known in monotone circuit complexity. Until

last year, the strongest depth lower bound for an explicit monotone function was the result

obtained by Raz and Wigderson [153] showing that the matching problem over m-vertex

graphs requires monotone circuits of depth Ω(m). Observe that this statement provides a

Chapter 3. On the monotone complexity of the satisfiability problem 15

sequence of Boolean functions over O(n) inputs and with complexity Ω(
√
n), since m-vertex

graphs are represented with
(
m
2

)
input bits. A new lower bound in monotone depth com-

plexity was recently obtained by Göös and Pitassi [87]. They proved that there is a sequence

of functions f = {fn}n∈N in NP that requires monotone circuits of depth Ω(n/ log n). This

result essentially settles the problem of showing the existence of explicit monotone functions

with very large monotone depth complexity.1

Constraint Satisfaction Problems and Parameterized Complexity. A constraint

satisfaction problem φ = (Vars(φ),Const(φ)) consists of a set of variables Vars(φ), and a set of

Boolean constraints Const(φ). Each constraint C ∈ Const(φ) is a function C : [r]VC → {0, 1},

where VC ⊂ Vars(φ) is the set of variables associated to C, and r ∈ N. The set [r] is the

domain of the CSP (when r = 2, we usually identify [2] with {0, 1}). We say that a CSP

φ is satisfiable if there exists an assignment α : Vars(φ) → [r] such that C(α|VC) = 1 for

every C ∈ Const(φ). We will focus here on k-uniform CSPs, i.e., those on which every set

VC contains exactly k elements. In other words, every constraint depends on k variables.

Our results hold in more generality, but assuming uniformity simplifies the presentation

considerably.

It is well-known that checking the satisfiability of general CSPs is NP-hard. Due to

their generality and relevance, both in theory and in practice, there is a vast literature con-

taining theoretical and experimental results on this computational problem. More related

to our work are the results connecting the hardness of solving CSPs to the “geometry”, or

hypergraph, associated to its constraints. Put another way, one considers the incidence re-

lation between constraints (edges) and variables (vertices), without taking into account the

functions defining the constraints. This leads to more specific CSP instances defined over a

class of hypergraphs, and to the investigation of the hardness of the satisfiability problem

on these inputs. This research direction is related to the subfield of complexity theory that

tries to understand the precise parameters of the input that make a computational problem

hard (“Parameterized Complexity”, cf. Flum and Grohe [67] and Downey and Fellows [58]).

1It is not hard to see that any monotone function over n input variables can be computed by monotone

circuits of depth O(n). A simple (non-constructive) counting argument establishes the existence of monotone

functions that require depth Ω(n) even with respect to general (non-monotone) Boolean circuits.

Chapter 3. On the monotone complexity of the satisfiability problem 16

A sequence of works culminating in the beautiful results of Grohe, Schwentick, and

Segoufin [89], Grohe [90], and Marx [133] provides strong evidence that the complexity

of solving these instances in the worst-case is essentially characterized by the tree-width

of these hypergraphs.2 Roughly speaking, the tree-width complexity of a (hyper)graph

measures how similar to a tree is the graph, and satisfaction problems whose underlying

geometry is a tree are known to admit polynomial time algorithms. This concept was

introduced by a few different authors using distinct but equivalent formulations, and is by

now a standard notion in graph theory and algorithm design (cf. Bodlaender [35]).

We remark that the hardness results mentioned above provide conditional lower bounds

based on strong assumptions from parameterized complexity theory, and assume the domain

size of the CSPs to be unbounded. The reader is referred to these references for a precise

formulation of the results.

In this chapter we introduce an explicit connection between monotone circuit complex-

ity and the investigation of constraint satisfaction problems in parameterized complexity.

Among our contributions, we prove an unconditional lower bound in a widely investigated

model of computation showing that the hardness of the satisfiability problem is closely

related to the tree-width of the corresponding graphs.

We start our discussion with a specific circuit lower bound that follows from our

framework, and that may be of independent interest. We then introduce a more general

class of problems, parameterized by a hypergraph H and the domain size r of the CSP

instances. We present general techniques to prove upper bounds and lower bounds on the

monotone parallel complexity of these problems. These results lead to a general theorem

that classifies, for a large class of satisfiability problems, those that admit depth-efficient

monotone circuits. Finally, we discuss consequences of these results in algorithm design.

Remark 1. Our asymptotic statements are taken with respect to n → ∞, while all other

parameters remain fixed. If A is a mathematical structure (such as a graph, a vector,

a finite function, etc.), we will use dAc to denote its representation as an appropriate

2Recall that we are discussing k-uniform CSPs. For the general case of non-uniform hypergraphs, i.e.,

CSP instances on which distinct constraints may depend on a different number of variables, the complexity

of the satisfiability problem is investigated in Marx [134].

Chapter 3. On the monotone complexity of the satisfiability problem 17

string in {0, 1}∗. We use depth+(f) to denote the monotone circuit depth complexity of

a function f : {0, 1}m → {0, 1} with respect to the usual model of fan-in two monotone

circuits. When discussing graphs and hypergraphs, a calligraphic letter such as H always

denote a hypergraph, while normal letters such as G will be used for undirected graphs.

Lower Bounds. We consider the monotone circuit depth complexity of the classic NP-

complete problem k-SAT: given a k-CNF ψ over n input variables, is it satisfiable? More

precisely, we study the complexity of a natural encoding of k-SAT as a monotone Boolean

function, which will be denoted by k-SAT+
n . For convenience, we refer to a clause C of a

CNF ψ by a pair (A, b) consisting of its set of variables A together with a Boolean vector

~b ∈ {0, 1}A that encodes which variables appear negated in C.

Definition 3.1.1. Let k ≥ 2, and H(k)
n = (Vn, En) be the complete k-uniform hypergraph

on n vertices. We consider a Boolean function k-SAT+
n : {0, 1}(

n
k)·2

k → {0, 1} defined as

follows. An instance dψc of k-SAT+
n represents a k-CNF ψ over the set of variables Vn, and

we let k-SAT+
n (dψc) = 1 if and only if ψ is satisfiable. The input variables of this function

are represented by {C
e,~b
| e ∈ En and ~b ∈ {0, 1}e}, where C

e,~b
= 0 if and only if the clause

(e,~b) occurs in ψ.

For example, the input 1(nk)·2
k

represents a trivial instance of the satisfiability problem

in which all clauses are “turned off”, while the input 0(nk)·2
k

is the unsatisfiable instance

that “activates” every clause. Observe that k-SAT+
n is a monotone encoding of the k-SAT

problem using O(nk) input variables. It is possible to show that, for any fixed k, this

function admits fan-in two monotone circuits of depth O(n). We establish the following

near-matching lower bound.

Theorem 3.1.2. There exists k ∈ N for which the following holds:

depth+(k-SAT+
n) = Ω(n/ log n).

Recall that a monotone formula is a monotone Boolean circuit with internal gates

of fan-out one (see Jukna [109] for more details). The size of a formula is defined as the

number of internal gates of the circuit. It is known that monotone formulas of size s can

be converted into monotone formulas of depth O(log s) (Spira [178] and Wegener [197]).

Therefore, we get the following consequence of Theorem 3.1.2.

Chapter 3. On the monotone complexity of the satisfiability problem 18

Corollary 3.1.3. If {Fn}n∈N is a sequence of monotone formulas computing k-SAT+
n , then

size(Fn) = 2Ω(n/ logn).

Theorem 3.1.2 follows from a related stronger result, and we switch now to a more

general treatment of constraint satisfaction problems and monotone circuit complexity. For

convenience, we say that φ = (Vars(φ),Const(φ)) is an (n,m, k, r)-CSP if it is a k-uniform

CSP with domain size r consisting of n variables and m constraints. The canonical compu-

tational problem associated to (n,m, k, r)-CSPs is the following: Given an arbitrary CSP

φ of this form, does it admit a satisfying assignment α?

We formalize here the discussion presented above on the geometry of CSPs. Given a

constraint satisfaction problem φ, there is a natural hypergraph associated to it, defined as

follows.

Definition 3.1.4. Let φ be an (n,m, k, r)-CSP. The geometry of φ is given by

Geom(φ)
def
= {VC ⊂ Vars(φ) | C ∈ Const(φ)}.

In addition, we associate to φ the k-uniform hypergraph Hφ with vertex set V (Hφ)
def
=

Vars(φ) and edge set E(Hφ)
def
= Geom(φ), where |V (Hφ)| = n and |E(Hφ)| = m.

Observe that the geometry of a CSP φ does not depend on its constraints or domain

size. Fix a k-uniform hypergraph H = (V (H), E(H)) on n vertices and m edges, and a

domain size r. We consider a (further) restriction of the satisfiability problem for (n,m, k, r)-

CSPs by focusing on instances with geometry H. This formulation of the satisfiability

problem has a natural encoding as a monotone Boolean function. More precisely, each

constraint can be specified by rk input bits, leading to the following definition.

Definition 3.1.5. Let r ∈ N be a fixed parameter. Given a k-uniform hypergraph H on n

vertices and m edges, we consider a restriction of the (n,m, k, r)-CSP satisfiability problem

to H, encoded as a Boolean function

CSPH,r : {0, 1}L → {0, 1},

where L = {(e, β) | e ∈ E(H) and β ∈ [r]e}. Given an input dφc ∈ {0, 1}L, we let

CSPH,r(dφc)
def
= 1 if and only if there exists an assignment α ∈ [r]V (H) such that, for every

e ∈ E(H), we have dφc(e, α|e) = 1.

Chapter 3. On the monotone complexity of the satisfiability problem 19

Notice that β = α|e is the restriction of the assignment α to the variables in e, and

that the input bits of CSPH,r indexed by (e, ·) encode the constraint over these variables.

In particular, if dφc is an input string, dφc(e, β) = 1 indicates that the partial assignment

β satisfies this constraint. Therefore, CSPH,r(dφc) = 1 if and only if the CSP instance

φ = (Vars(φ),Const(φ)) encoded by dφc is satisfiable.

One can assume an ordering of L, and view CSPH,r as a Boolean function over vari-

ables x1, . . . , xN , where N = mrk. It is easy to see that CSPH,r is a monotone Boolean

function, since if dφ1c � dφ2c over the N -dimensional Boolean hypercube, then any satisfy-

ing assignment for φ1 is also a satisfying assignment for φ2. This is because each constraint

of φ2 can be viewed as a relaxation of the corresponding constraint of φ1.

Our next theorem can be seen as a refinement of the Göös-Pitassi lower bound, and

provides a hard function with a more natural description in the spirit of the lower bound

proved by Raz and Wigderson. (Recall that a hypergraph H is `-regular if every vertex

v ∈ V (H) is contained in exactly ` edges.)

Theorem 3.1.6. There exist k ∈ N and an explicit sequence {Hn}n∈N of 2-regular k-

uniform hypergraphs on nk/2 vertices and n edges such that

depth+(CSPHn,3) = Ω(n/ log n).

Constraint satisfaction problems for which the number of constraints is linear in the

number of variables play a fundamental role in many results and hardness assumptions (see

e.g. Coja-Oghlan [51], Impagliazzo, Paturi, and Zane [103], and Feige [62]). Theorem 3.1.6

provides unconditional evidence of the computational hardness of this class of instances.

Most monotone depth lower bounds are obtained via a connection to communication

complexity discovered by Karchmer and Wigderson [114] and M. Yannakakis (unpublished).

We follow the same strategy here. The proof of Theorem 3.1.6 is based on an extension

of a technique introduced by Raz and McKenzie [152] and further developed by Göös and

Pitassi [Theorem 5, 87]. It allows us to reduce our circuit lower bound to a certain lower

bound in communication complexity involving a related (composed) search problem.

One of our key insights is that it is possible to preserve the geometry of the CSPs

involved in this reduction. This is formalized in the more abstract Theorem 3.1.8, presented

Chapter 3. On the monotone complexity of the satisfiability problem 20

next. We will get back to the overview of the proof of Theorem 3.1.6 after we describe this

new tool.

Definition 3.1.7. Given an (n,m, k, r)-CSP φ = (Vars(φ),Const(φ)), we consider its canon-

ical search problem S(φ), which is the relation S(φ) ⊆ [r]Vars(φ)×Const(φ) defined as follows:

S(φ)
def
= {(α,C) | α ∈ [r]Vars(φ), C ∈ Const(φ), and C(α|VC) = 0}.

If φ is unsatisfiable, then for every α there exists a “solution” C such that (α,C) ∈ S(φ).

Put another way, given an assignment α, one has to provide a clause that is not satisfied

by α.

In general, a search problem is a relation S ⊆ [`]n × Q, where Q is a set of possible

solutions. Given an input α ∈ [`]n, we let S(α)
def
= {q ∈ Q | (α, q) ∈ S} denote the set of

solutions of α in S. All search problems discussed here will be total, i.e., S(α) 6= ∅ for all

α ∈ [`]n.

Given a search problem S ⊆ [`]n×Q, and a function g : X ×Y → [`] over finite sets X

and Y, we consider a communication game between two players, defined as follows. The first

player receives ~x ∈ X n, while the second player gets ~y ∈ Yn. We let α = g(n)(~x, ~y) ∈ [`]n be

the vector with αi
def
= g(xi, yi). The goal of the players is to agree on a solution q ∈ S(α).

We use CCdet(S ◦ g(n)) to denote the two-party deterministic communication complexity

of this (composed) search problem in the standard communication complexity model (cf.

Kushilevitz and Nisan [128]).

As mentioned above, we obtain the following refinement of a technique employed by

Raz and McKenzie [152] and Göös and Pitassi [87].

Theorem 3.1.8. Let H = (V,E) be a k-uniform hypergraph, where k ≥ 2 and |V | = n,

and let g : X × Y → [`], where r
def
= min{|X |, |Y|} ≥ 2 and ` ≥ 2. Then,

depth+(CSPH,r) ≥ max
dφc∈CSP−1

H,`(0)
CCdet

(
S(φ) ◦ g(n)

)
. (3.1)

Roughly speaking, this result says that in order to lower bound the depth complexity of

solving constraint satisfaction problems with geometryH, we can investigate communication

games associated to fixed unsatisfiable CSPs over the same geometry. Observe that during

Chapter 3. On the monotone complexity of the satisfiability problem 21

this reduction the domain size changes from r to ` (we will apply this result with a function

g for which r > `).

We are now in position to discuss the remaining ideas employed in the proof of Theorem

3.1.6, which follows the argument used by Göös and Pitassi [87], while controlling the

hypergraphs constructed during the different stages of the proof.

Huynh and Nordström [99] discovered a method to lower bound CCdet
(
S(φ) ◦ g(n)

?

)
based on a complexity measure of the search problem S(φ) called critical block sensitivity.3

Their approach works with a specific function g? : [3] × {0, 1}3 → {0, 1} whose definition

will not be important in our proof. Since we are concerned with a class of search problems

defined with respect to a fixed hypergraph H, i.e., we can consider any dφc ∈ CSP−1
H,2(0)

in Theorem 3.1.8, it will be more convenient to describe their method in connection with

our results. For this, we define a new complexity measure for hypergraphs based on their

notion of sensitivity for Boolean relations.

Let S ⊆ {0, 1}[n]×Q be a total search problem, and f ⊆ S be a total function. In other

words, f : {0, 1}[n] → Q, and for every α ∈ {0, 1}[n], it is the case that f(α) ∈ S(α). We use

Tot(S) to denote the set of total functions f ⊆ S. The block sensitivity of f at α will be

denoted by bs(f, α). More precisely, this is the maximum number k of disjoint sets of input

variables B1, . . . , Bk ⊆ [n] such that f(α) 6= f(αBi) for every i ∈ [k], where αBi denotes the

string αBi ∈ {0, 1}[n] obtained by flipping the value of every bit indexed by Bi. An input

α ∈ {0, 1}[n] is said to be critical if |S(α)| = 1. We use Crit(S) to denote the set of critical

inputs α ∈ S. The critical block sensitivity of a total search problem S ⊆ {0, 1}[n] × Q is

given by

bscrit(S)
def
= min

f∈Tot(S)
max

α∈Crit(S)
bs(f, α).

Observe that the critical block sensitivity of a relation is a more or less natural extension

of the notion of block sensitivity from Boolean functions, modulo the restriction to critical

inputs (check Buhrman and de Wolf [42] for more on Boolean function complexity measures).

Huynh and Nordström proved among their results that, for any total search problem

3An alternative proof of their result with slightly different parameters can be found in the work of Göös

and Pitassi [87]. Using the corresponding theorem from [87] would only change a few constants in our

statements.

Chapter 3. On the monotone complexity of the satisfiability problem 22

S as above, we have

CCdet
(
S ◦ g(n)

?

)
= Ω(bscrit(S)). (3.2)

This lower bound and Theorem 3.1.8 motivate the following definition.

Definition 3.1.9. Let H be a hypergraph. The (CSP critical block) sensitivity of H is

given by

sens(H)
def
= max
dφc∈CSP−1

H,2(0)
bscrit(S(φ)).

In other words, the sensitivity of a hypergraph H depends on structural properties of

unsatisfiable CSPs with domain size 2 and geometry H.

We can now combine the communication lower bound of Huynh and Nordström [99]

based on critical block sensitivity and Theorem 3.1.8 into the following result, which follows

immediately from Equations (3.1) and (3.2), and the fact that g? : [3]× {0, 1}3 → {0, 1}.

Corollary 3.1.10. Let H be a k-uniform hypergraph, where k ≥ 2. Then,

depth+(CSPH,3) ≥ Ω(sens(H)). (3.3)

Observe that the right-hand side of inequality (3.3) has no reference to circuit complex-

ity or communication complexity. In other words, we have the following “transfer principle”

for the monotone circuit depth complexity of constraint satisfaction problems:

“The monotone depth complexity of CSPH,3 can be lower bounded by

structural properties of Boolean-valued unsatisfiable CSPs with geometry H.”

The proof of Theorem 3.1.6 follows from an application of this principle to a certain

sequence of hypergraphs constructed from expander graphs in connection with ideas from

proof complexity. This is an adaptation of the proof of [Theorem 3, 87], and we describe

the details in Section 3.3.

Upper Bounds. It is a well-known phenomenon in algorithm design that several optimiza-

tion problems that are hard for arbitrary graphs become easy when the inputs are restricted

to special classes of graphs, such as acyclic graphs. It is natural therefore to search for a dis-

tance measure between a general graph and the class of acyclic graphs, and to try to adapt

Chapter 3. On the monotone complexity of the satisfiability problem 23

algorithms for acyclic graphs to work with more general instances. A powerful realization

of this idea appears in the study of the tree-width of graphs and hypergraphs, together with

the design of efficient algorithms for hypergraphs of moderate tree-width complexity (see

e.g. Gottlob, Greco, and Scarcello [Chapter 1, 37]).

Our main contribution in this direction is formulating a connection between this tech-

nique and monotone circuit depth complexity. Given a hypergraph H = (V (H), E(H)), we

consider a certain tree-width-based measure that is related to the monotone circuit depth

complexity of the satisfiability problem for instances with geometry H. For the reader

familiar with the usual notion of tree-width of a hypergraph, we consider the tree decom-

position of H that minimizes the product between the width of the decomposition, and the

depth of the tree. We call this measure the depth-width complexity of H, and denote this

quantity by depth-width(H). A precise formulation is deferred to Section 3.4 (Definition

3.4.8), since this is a somewhat technical concept. It follows from a result of Bodlaender

[34] that depth-width and tree-width are related by a logarithmic factor (see Section 3.5 for

more details).

The next result shows that depth-width is closely connected to the monotone parallel

complexity of constraint satisfaction problems.

Theorem 3.1.11. Let r, k ∈ N, and let {Hn}n∈N be a sequence of connected k-uniform

hypergraphs with |V (Hn)| = n. Then,

depth+(CSPHn,r) = Or,k(depth-width(Hn)).

Theorem 3.1.11 is proved using dynamic programming over the best tree decomposition

of H. In order to implement this strategy, we need to make sure that all steps can be

done using monotone circuits. Furthermore, these steps must be implemented efficiently in

parallel. The depth-width complexity of the hypergraph guarantees that this is possible,

allowing us to compute CSPH,r via shallow monotone circuits. Since we have not defined

depth-width, we defer further details about the proof of Theorem 3.1.11 to the body of the

text.

Theorem 3.1.11 provides a general technique to prove upper bounds on the monotone

circuit depth complexity of satisfiability problems. For instance, a straightforward appli-

Chapter 3. On the monotone complexity of the satisfiability problem 24

cation of this result, together with an upper bound on the depth-width complexity of the

Cycle (Appendix 3.6), leads to the following corollary.

Corollary 3.1.12. Let Cn be the cycle on n vertices. Then, for any r ∈ N,

depth+(CSPCn,r) = Θ(log n).

An unconditional classification theorem for CSPs. We say that a computational

problem admits depth-efficient algorithms if it can be solved by a sequence of circuits of

poly-logarithmic depth in the size of the input. One of the main technical contributions

of this chapter is the proof of a classification theorem that describes, for a large class of

satisfiability problems, those that admit depth-efficient monotone circuits.

Given an undirected k-regular graph G, we obtain a k-uniform hypergraph H from G

as follows. The edges of G become vertices of H, and each hyperedge of H corresponds to

the set of edges connecting a vertex v ∈ V (G) to all its neighbors in G. We say that H

is the Tseitin hypergraph of G, and write H = Tseitin(G). A precise definition and more

intuition for this construction can be found in Section 3.3. Using the machinery described

above, we establish the following general result.

Theorem 3.1.13. There exists a fixed constant c > 0 for which the following holds. If

{Gn}n∈N is a sequence of undirected graphs, where each Gn is a k-regular connected graph

on n vertices, then

Ω(tree-width(Gn)c) ≤ depth+
(
CSPTseitin(Gn),3

)
≤ Ok(tree-width(Gn) · log n).

Theorem 3.1.13 shows in a certain technical sense that monotone depth complexity

and tree-width are polynomially related complexity measures.

Corollary 3.1.14. Let {Gn}n∈N be a sequence of undirected graphs, where each Gn is a

k-regular connected graph on n vertices, and k ∈ N. Then,

depth+
(
CSPTseitin(Gn),3

)
≤ (log n)O(1) ⇐⇒ tree-width(Gn) ≤ (log n)O(1).

In other words, CSPTseitin(G),3 admits depth-efficient monotone algorithms if and only

if G is reasonably close to a tree. This is similar to a result of Grohe [90] from parameterized

Chapter 3. On the monotone complexity of the satisfiability problem 25

complexity that provides a characterization of the classes of constraint satisfaction problems

that can be solved by polynomial time algorithms. Observe, however, that Theorem 3.1.13

gives an unconditional lower bound. Intuitively, Grohe’s result relies on a hardness assump-

tion from parameterized complexity that is implied by the Exponential Time Hypothesis

(Impagliazzo and Paturi [100]). Since Corollary 3.1.3 can be seen as establishing a weaker

form of this conjecture for monotone formulas, it is reasonable that we should be able to

prove a result similar to Theorem 3.1.13 using the techniques described above.

Nevertheless, this is only a high-level abstraction. Formally, the upper bound follows

from a lemma that bounds the tree-width of Tseitin(G) by a function of the tree-width of

G, combined with the tight connection between tree-width and depth-width, and an appli-

cation of Theorem 3.1.11. On the other hand, the lower bound relies mainly on Corollary

3.1.10, the techniques used to establish Theorem 3.1.6, and an improvement of the Grid-

Minor Theorem obtained by Chekuri and Chuzhoy [48]. Interestingly, there are similarities

between our approach, which gives an unconditional circuit lower bound, and Grohe’s con-

ditional proof.

Discussion and Further Remarks. Our main conceptual contribution is the introduction

of a general framework to investigate the monotone complexity of satisfiability problems.

In particular, our results establish the existence of natural computational problems with

Ω(n/ log n) monotone depth complexity. It would be interesting to close the gap between

this lower bound and the trivial O(n) upper bound.

From a technical perspective, this chapter provides methods that can be used to prove

lower bounds (Theorem 3.1.8) and upper bounds (Theorem 3.1.11) on the monotone circuit

depth complexity of constraints satisfaction problems based on their hypergraphs. These

techniques are strong enough to imply a classification result that describes the approximate

complexity of a general class of CSP instances (Theorem 3.1.13). To our knowledge, this

is the first hardness result of this form for CSPs of bounded-size domain (even among

conditional lower bounds).

Our work shows that general constraint satisfaction problems cannot be solved ef-

ficiently in parallel using techniques that yield “monotone algorithms” (Theorem 3.1.6).

Chapter 3. On the monotone complexity of the satisfiability problem 26

This includes a large body of work in parameterized complexity that relies on treewidth-

based decompositions. The same lower bound holds for satisfaction problems over sparse

hypergraphs, i.e., instances with a linear number of constraints.

From an algorithmic perspective, this implies that if one hopes to construct a parallel

algorithm for satisfiability with super-logarithmic savings over the trivial O(n) depth upper

bound, some non-monotone computation must be employed. While monotone circuits can

be substantially weaker than non-monotone circuits when computing monotone functions

(see e.g. Tardos [183], Ajtai and Gurevich [7], Hofmeister [97]), it is unclear to us whether a

similar phenomenon happens with respect to the parallel complexity of satisfiability prob-

lems.

We believe that our ideas will lead to other unconditional lower bounds for monotone

circuits. In particular, it would be interesting to establish a tighter and more general char-

acterization of the hardness of constraint satisfaction problems based on their hypergraphs,

in analogy to the results of Marx [133].

Organization of the Chapter. The proof of Theorem 3.1.8 appears in Section 3.2. We

derive Theorems 3.1.2 and 3.1.6 from this result and other techniques in Section 3.3. The

definition of the depth-width complexity of a hypergraph and the proof of Theorem 3.1.11

are presented in Section 3.4. In Section 3.5, we provide the proof of Theorem 3.1.13. Finally,

Section 3.6 describes a low complexity depth-width tree decomposition.

3.2 A transfer principle for constraint satisfaction problems

In this section we prove Theorem 3.1.8. This completes the proof of Corollary 3.1.10,

which will be used in Section 3.3 to derive our lower bounds. First, we describe the minterms

of CSPH,r.
4 While this is not strictly necessary for the proof of Theorem 3.1.8, it sheds

light into the structure of the Boolean function CSPH,r, and familiarizes the reader with

our notation.

4Recall that x ∈ {0, 1}m is a minterm of a monotone Boolean function g : {0, 1}m → {0, 1} provided that

g(x) = 1 and, whenever y � x with y 6= x, we have g(y) = 0.

Chapter 3. On the monotone complexity of the satisfiability problem 27

Lemma 3.2.1. Let H = (V,E) be a k-uniform hypergraph, and N = |E(H)| · rk. Then

dφc ∈ {0, 1}N is a minterm of CSPH,r if and only if

(i) φ = (Vars(φ),Const(φ)) is satisfiable; and

(ii) For every constraint C ∈ Const(φ), where C : [r]Vars(C) → {0, 1}, we have |C−1(1)| =

1.

Proof. Clearly, if conditions (i) and (ii) are satisfied, we have CSPH,r(dφc) = 1. Further, if

dψc ≺ dφc (strictly) under these conditions, then some constraint of ψ admits no (partial)

satisfying assignment. In particular, CSPH,r(dψc) = 0, and it follows that dφc is a minterm.

On the other hand, for any minterm dφc, there exists an assignment α : V (H) → [r]

such that φ(α) = 1, given that dφc is a 1-input of CSPH,r. In addition, it must be the case

that for every constraint C ∈ Const(φ), |C−1(1)| = 1, since otherwise dφc would not be a

minterm under our encoding of φ by dφc.

We say that a hypergraph H = (V,E) is covered by its edges if
⋃
e∈E(H) e = V (H).

Lemma 3.2.2. Let H = (V,E) be a k-uniform hypergraph that is covered by its edges, and

N = |E(H)| · rk. Consider the following sets of minterms and assignments, respectively:

M def
= {dφc ∈ {0, 1}N | dφc is a minterm of CSPH,r },

A def
= {α | α : V (H)→ [r] }.

There exists a (canonical) bijection ζ : M→A.

Proof. It follows from Lemma 3.2.1 and the fact that H is covered by its edges that every

minterm dφc of CSPH,r has a unique satisfying assignement αφ. On the other hand, using

once again that H is covered by its edges, every assignment α : V (H) → [r] gives rise to a

unique constraint satisfaction problem φα with |C−1(1)| = 1 for every C ∈ Const(φα) that

is satisfied by α. The map ζ is then obtained by setting ζ(dφc) = αφ. It is clear that ζ is a

bijection between the sets M and A.

Lemma 3.2.2 shows that there is a natural correspondence between the minterms of

CSPH,r and r-valued assignments for the variables in V (H) (assuming that H is covered by

Chapter 3. On the monotone complexity of the satisfiability problem 28

its edges). Since the set Mg of minterms of a monotone Boolean function g gives rise to a

monotone DNF with |Mg| terms that computes g, it is easy to see that

depth+(CSPH,r) = O
(

log r|V (H)|) = O
(
|V (H)| · log r

)
,

as one would expect.

The minterms of CSPH,r play a crucial role in the proof of Theorem 3.1.8, stated again

for convenience of the reader.

Theorem. Let H = (V,E) be a k-uniform hypergraph, where k ≥ 2 and |V | = n, and let

g : X × Y → [`], where r
def
= min{|X |, |Y|} ≥ 2 and ` ≥ 2. Then,

depth+(CSPH,r) ≥ max
dφc∈CSP−1

H,`(0)
CCdet

(
S(φ) ◦ g(n)

)
.

Proof. Let D be a monotone Boolean circuit of depth d computing CSPH,r. Using the

Karchmer-Wigderson connection (Proposition 2.0.2), it is possible to solve the correspond-

ing communication game KW+(CSPH,r) by a protocol Π with communication cost d. We

use Π to solve the (composed) search problem S(φ) ◦ g(n), where φ is an arbitrary `-valued

unsatisfiable constraint satisfaction problem with geometry H and variable set V , i.e.,

dφc ∈ CSP−1
H,`(0). This is sufficient to establish Theorem 3.1.8. We remark that the unsat-

isfiability of φ is necessary to guarantee that in the reduction the players produce 1-inputs

and 0-inputs, respectively, for the monotone Karchmer-Wigderson game of CSPH,r. More

details follow.

Fix an unsatisfiable φ, as described above. Recall that in the communication game

S(φ) ◦ g(n) Alice is given x ∈ XVars(φ), Bob is given y ∈ YVars(φ), α
def
= g(n)(x, y) ∈ [`]Vars(φ),

and the players must agree on a constraint C ∈ Const(φ) such that C(α|Vars(C)) = 0. Assume

without loss of generality that r = |X |, and let π : X → [r] be a fixed bijection between

these sets. Roughly speaking, we identify X with [r] during the remaining of the proof.5

For convenience, we assume that all CSP instances discussed below are over the same set

of input variables V = Vars(φ). The domain of each CSP is not necessarily the same.

5Whenever we apply π or π−1 to a vector, it means that we are applying the corresponding permutation

to each coordinate of the vector.

Chapter 3. On the monotone complexity of the satisfiability problem 29

Given x, Alice produces a positive instance dψxc of CSPH,r as follows. Consider a

constraint C ∈ Const(ψx), where C : [r]Vars(C) → {0, 1}, and let β ∈ [r]Vars(C) be an input

to C, i.e., β : Vars(C) → [r]. Alice sets C(β) = 1 in dψxc if and only if β agrees with her

input x ∈ X V under π, that is, if for every variable w ∈ Vars(C), π(x(w)) = β(w). This

completes the definition of ψx. Observe that dψxc is a minterm of CSPH,r (according to

Lemma 3.2.1) that is satisfied by λ
def
= π(x). Further, by construction, ψx and φ have the

same geometry H (actually, ψx depends only on H and not on φ).

Given y, Bob produces a negative instance dψyc of CSPH,r, defined as follows. Consider

a constraint C ∈ Const(ψy), and let β be as above. Bob sets C(β) = 1 in dψyc if and only

if γ
def
= g(d)

(
π−1(β), y|Vars(C)

)
∈ [`]Vars(C) is a partial assignment to the variables in V that

satisfies the corresponding constraint C ′ of φ defined over Vars(C) (observe that by definition

φ and ψy have the same geometry H). This completes the definition of ψy. We claim that

CSPH,r(dψyc) = 0, i.e., ψy is unsatisfiable. Assume otherwise that some λ ∈ [r]V satisfies

ψy, and let γ
def
= g(n)(π−1(λ), y) ∈ [`]V . Then, using the definition of ψy, every constraint

C ′ of φ is satisfied by γ. This contradicts our initial assumption that φ is unsatisfiable.

The previous reduction uses no communication. The parties now run protocol Π over

inputs dψxc and dψyc, respectively, and obtain a coordinate i ∈ [N] such that dψxci = 1 and

dψyci = 0, where N = |H(E)|·rd is the number of input bits of the Boolean function CSPH,r.

By definition, i is a coordinate associated to a fixed constraint C, corresponding to an edge

of H. We claim that the corresponding constraint C of φ is violated by α = g(n)(x, y). This,

however, follows from the fact that i ∈ [N] is mapped to a fixed β ∈ [r]Vars(C), and from the

corresponding definitions of C(β) in ψx and ψy, respectively, as functions of x, y, and φ. To

sum up, Alice and Bob are able to solve the search problem S(φ)◦ g(n) with communication

cost d, which completes the proof.

Observe that Theorem 3.1.8 allows us to prove lower bounds against r-valued CSPs,

where r depends on g. Observe that r = 3 in the statement of Corollary 3.1.10. We will see

in Section 3.3 that such results can be translated into depth lower bounds for Boolean-valued

CSPs as well, such as the one given by Theorem 3.1.2.

Chapter 3. On the monotone complexity of the satisfiability problem 30

3.3 Lower bounds for k-SAT and sparse CSPs

In this section we present the proofs of Theorems 3.1.2 and 3.1.6. As explained before,

we rely on Corollary 3.1.10, which reduces our circuit lower bounds to the study of structural

properties of hypergraphs and their associated (unsatisfiable) CSPs. First, we give the

argument for Theorem 3.1.6. Then we explain how to derive Theorem 3.1.2 from this

circuit lower bound via a sequence of monotone reductions.

Given a graph or hypergraph H = (V,E) and a vertex v ∈ V , we let

NH(v)
def
= {u ∈ V | ∃e ∈ E such that {v, u} ⊆ e} \ {v}

be the set of neighbors of v in H (excluding v). Further, it will be convenient for our proof

to let

degH(v)
def
= |{e ∈ E | v ∈ e}|

be the number of edges of H containing v, i.e., the degree of v in H.

Recall that we identify the domain set [2] = {1, 2} of instances of CSPH,2 with the

set {0, 1}. The next two definitions show how to define a Boolean CSP from an undirected

graph and a coloring of its vertices.

Definition 3.3.1. Let G = (VG, EG) be an undirected graph. The Tseitin hypergraph of

G, denoted by Tseitin(G), is the hypergraph H = (VH, EH) defined as follows:

VH
def
= {ve | e = {u,w} is an edge of G} and EH

def
= {eu | u ∈ VG and eu = ↓(NG(u))},

where ↓(NG(u))
def
= {v{u,w} | w ∈ NG(u)}.

Put another way, the edges of G become vertices of the hypergraph, and the hyperedges

are defined based on the neighborhood sets of G. For the reader familiar with graph theory

terminology, the Gaifman graph of the hypergraph Tseitin(G) is simply the line graph of G.

Definition 3.3.2. Let G = (VG, EG) be an undirected graph, and χ : VG → {0, 1} be a

coloring of VG. Further, let H = (VH, EH) be the Tseitin hypergraph of G. We use φχG =

(Vars(φχG),Const(φχG)) to denote the following instance of CSPH,2: for each ev ∈ EH, where

v ∈ VG, the corresponding constraint

Cev(β)
def
= 1 ⇐⇒

∑
w∈ev

β(w) = χ(v) (mod 2),

Chapter 3. On the monotone complexity of the satisfiability problem 31

where β ∈ {0, 1}ev .

In the language of the original graph G, this constraint satisfaction problem asks for

the existence of a Boolean assignment to the edges of G that respects the parity constraint

on each vertex of G. A simple parity argument gives the following result (check [Section

4.1, 86] for more details).

Fact 3.3.3. For a connected graph G, φχG is unsatisfiable if and only if |χ−1(1)| is odd. In

other words, if this is the case then dφχGc ∈ CSP−1
H,2(0), where H = Tseitin(G).

The next lemma contains the observation that the Tseiting hypergraph is uniform and

2-regular if the original undirected graph is regular.

Lemma 3.3.4. Let G = (VG, EG) be a k-regular undirected graph, and H = Tseitin(G),

where H = (VH, EH). Then H is a k-uniform hypergraph, and for every ve ∈ VH, degH(ve) =

2.

Proof. It is easy to see thatH is k-uniform. The remaining claim is also clear from Definition

3.3.1, since every vertex ve ∈ VH comes from some edge e ∈ EG with e = {u,w}, and the

only edges in EH containing ve are eu = ↓(NG(u)) and ew = ↓(NG(w)).

We will apply Corollary 3.1.10 to a (Tseitin) hypergraph H constructed from an (ex-

plicit) expander graph G. The reason is that there is a connectivity parameter of undirected

graphs called routing number that can be used to lower bound the critical block sensitivity

of the related search problem.

More precisely, for an undirected graph G = (V,E), we say that G is k-routable if

there exists a set T ⊆ V of size 2k such that for any set of k disjoint pairs of nodes of T ,

there are k edge-disjoint paths in G that connect such pairs. In addition, we let routing(G)

(the routing number of G) be the largest k such that G is k-routable.

Proposition 3.3.5 (Göös and Pitassi [87]). Let G = (V,E) be a connected graph, χ : V →

{0, 1} be a function for which |χ−1(1)| is odd, and φχG be the corresponding (unsatisfiable)

instance of CSPH,2, where H = Tseitin(G). Then,

bscrit(S(φχG)) ≥ routing(G).

Chapter 3. On the monotone complexity of the satisfiability problem 32

The next proposition guarantees the existence of sparse regular graphs with large

routing number.

Proposition 3.3.6 (Frieze [74]). There exists k ∈ N and an explicit sequence {Gn}n∈N of

connected k-regular graphs on n vertices for which

routing(Gn) = Ω(n/ log n).

These results allow us to prove the following central lemma.

Lemma 3.3.7. There exists k ∈ N and an explicit sequence {Hn}n∈N of k-uniform 2-regular

hypergraphs on nk/2 vertices and n edges such that

sens(Hn) = Ω(n/ log n).

Proof. Let {Gn}n∈N be the sequence of graphs given by Proposition 3.3.6, where Gn =

(VGn , EGn). Let {Hn}n∈N be the corresponding sequence of Tseitin hypergraphs, where

Hn = Tseitin(Gn). Observe that each Hn has nk/2 vertices and n edges. Further, Lemma

3.3.4 guarantees that each Hn is k-uniform and 2-regular. Now fix some sequence of func-

tions χn : VGn → {0, 1}, where |χ−1
n (1)| is odd. Fact 3.3.3 implies that each CSP φχnGn is

unsatisfiable. Put another way, dφχnGnc ∈ CSP−1
Hn,2(0). Further, Proposition 3.3.5 implies

that

bscrit(S(φχnGn)) ≥ routing(Gn) = Ω(n/ log n). (3.4)

Finally, using the definition of sensitivity of a hypergraph (Definition 3.1.9) and inequality

(3.4), we get that sens(Hn) = Ω(n/ log n), which completes the proof.

We are now in position to prove Theorem 3.1.6, stated again below.

Theorem. There exist k ∈ N and an explicit sequence {Hn}n∈N of 2-regular k-uniform

hypergraphs on nk/2 vertices and n edges such that

depth+(CSPHn,3) = Ω(n/ log n).

Proof. The result is immediate from Corollary 3.1.10 and Lemma 3.3.7.

Chapter 3. On the monotone complexity of the satisfiability problem 33

We proceed with the proof of Theorem 3.1.2. As mentioned before, this result is

obtained via a sequence of monotone reductions. Our first lemma shows that k-SAT+
n is

closely related to our more general instances of the satisfiability problem.

Lemma 3.3.8. For k ≥ 2, let H(k)
n be the complete k-uniform hypergraph on n vertices.

Then,

depth+(k-SAT+
n) = depth+

(
CSPH(k)

n ,2

)
.

Proof. We observe that these satisfiability problems correspond to the same Boolean func-

tion under a permutation of the input variables. The argument is easier to understand

via an example of the correspondence between constraints from CSPH(2)
n ,2

and clauses in

2-SAT+
n . Consider a constraint Cφ{x1,x2} of an instance dφc of CSPH(2)

n ,2
, as shown in Figure

3.1.

x1 x2 Cφ{x1,x2}(x1, x2)

0 0 1

0 1 0

1 0 1

1 1 0

Figure 3.1: The truth-table of a Boolean-valued constraint Cφ{x1,x2} represented by the 2-CNF (x1∨¬x2)∧

(¬x1 ∨ ¬x2).

The canonical 2-CNF representation of the Boolean function over two input variables

that computes this constraint is given by (x1∨¬x2)∧ (¬x1∨¬x2). Crucially, the monotone

encoding of this 2-CNF according to our definition of 2-SAT+
n is given by C{1,2},(0,0) = 1,

C{1,2},(0,1) = 0, C{1,2},(1,0) = 1, and C{1,2},(1,1) = 0. In general, the reduction between these

two satisfiability problems relies on this bijection involving contraints and clauses. In other

words, every block of input variables coming from a constraint in CSPH(k)
n ,2

is mapped to

the corresponding 2k clauses in k-SAT+
n , and vice-versa. The only thing to observe is that

this map can be done monotonically.

More formally, for each constraint Ce with e ∈ H(k)
n , where Ce : [2]e → {0, 1}, and each

β ∈ [2]e, we associate the input variable in the block of variables Ce indexed by β with

Chapter 3. On the monotone complexity of the satisfiability problem 34

the input variable C(e,β′) of k-SAT+
n , where β′(v)

def
= β(v)− 1 for every v ∈ e, i.e., β′ is the

{0, 1}-version of β ∈ [2]e. This is clearly a bijection between the input variables of each

problem. In addition, using the canonical k-CNF computing each constraint as shown in

the example, and the definition of this map, it is not hard to see that the original CSP

instance is satisfiable if and only if the resulting k-CNF is satisfiable. Finally, the reduction

is monotone, which completes the proof.

The next lemma formalizes the intuitive fact that if H1 ⊆ H2, then the satisfiability

problem for instances with geometry H1 cannot be harder than the same problem for H2.

Lemma 3.3.9. Let k ≥ 2 be a fixed integer, and consider k-uniform hypergraphs H1 =

(V1, E1) and H2 = (V2, E2) with V1 ⊆ V2 and E1 ⊆ E2. Then, for every integer r ≥ 2,

depth+(CSPH2,r) ≥ depth+(CSPH1,r)

Proof. It is easy to see that an input dφ1c of CSPH1,r can be projected to a correspond-

ing input dφ2c of CSPH2,r such that φ1 is satisfiable if and only if φ2 is satisfiable. The

reduction may need to set to 1 some input variables of CSPH2,r that do not correspond to

any constraint coming from the geometry H1. However, given a monotone circuit D for

CSPH2,r, these constants 1 can be used to simplify D accordingly, providing a monotone

circuit for CSPH1,r of at most the same depth.

A similar argument yields the following result, which states that a decrease on the

domain size cannot increase monotone circuit depth complexity.

Lemma 3.3.10. For any uniform hypergraph H and positive integers r > r′ ≥ 2, we have

depth+(CSPH,r) ≥ depth+(CSPH,r′).

Finally, we have a lemma that allows us to reduce the domain size of the CSP instances

without sacrificing the monotone complexity of the problem, at the cost of producing a

slightly more complex geometry.

Lemma 3.3.11. Let H = (V,E) be a k-uniform hypergraph with n = |V | and m = |E|.

Assume that r = 2d, where d ∈ N, and let n′ = dn, m′ = m, and k′ = dk. Consider the

Chapter 3. On the monotone complexity of the satisfiability problem 35

k′-uniform hypergraph H′ = (V ′, E′) on n′ vertices and m′ edges defined as follows.

V ′
def
= {v′i | v ∈ V and i ∈ [d]}, and

E′
def
= {e′ | ∃e ∈ E such that e′ =

⋃
v∈e
{v′1, . . . , v′k} }

Then depth+(CSPH′,2) ≥ depth+(CSPH,r).

Proof. We observe the existence of a monotone projection from CSPH,r to CSPH′,2. Given

an instance dφc of the former, this projection produces an input dφ′c of the latter such that

φ is satisfiable ⇐⇒ φ′ is satisfiable. (3.5)

Consider a block of input variables Ce of CSPH,r, for some e ∈ E. More precisely, we

view Cφe : [r]e → {0, 1} as a fixed function (for a given φ), and Ce as the set of Boolean

variables encoding this function. Let β ∈ [r]e be the index of an input variable in Ce. In

order to describe φ′, we map this variable to a corresponding variable of Ce′ , where e′ ∈ E′ is

the edge of H′ obtained from e. It is sufficient to describe the index β′ ∈ [2]e
′

corresponding

to β, and to prove that condition (3.5) is true.

We sketch the construction next. Each variable v ∈ Vars(φ) = V is mapped to the set

of variables {v′1, . . . , v′d} ⊆ Vars(φ′) = V ′, and each individual assignment a ∈ [r] = [2d] is

mapped in a one-to-one manner to a fixed assignment (b1, . . . , bd) ∈ [2]d. This induces a

natural map between the truth-table of Cφe and the truth-table of Cφ
′

e′ . Further, there is a

bijection between the satisfying assignments α ∈ [r]V of φ and the satisfying assignments

α′ ∈ [2]V
′

of φ′. In particular, condition (3.5) holds. Finally, observe that φ′ is constructed

using a monotone projection, as each β is mapped to a corresponding β′, which completes

the proof.

Observe that Lemma 3.3.11 reduces the size of the domain of the instances at the cost

of increasing the arity of the contraints. Notice that N = m · rk = m′ · 2k′ = N ′, and

therefore CSPH,r : {0, 1}N → {0, 1} and CSPH′,2 : {0, 1}N ′ → {0, 1} are monotone functions

on the same number of input bits.

We have all ingredients to give the proof of Theorem 3.1.2.

Chapter 3. On the monotone complexity of the satisfiability problem 36

Theorem. There exists k ∈ N for which the following holds:

depth+(k-SAT+
n) = Ω(n/ log n).

Proof. The result follows from Theorem 3.1.6 and the reductions formalized in Lemmas

3.3.8, 3.3.9, 3.3.10, and 3.3.11. More precisely, let {H?n}n∈N be the sequence of k?-uniform

hypergraphs on nk?/2 vertices granted by Theorem 3.1.6. Then,

Ω(n/ log n)
Theorem 3.1.6

= depth+
(
CSPH?n,3

)
Lemma 3.3.10

≤ depth+
(
CSPH?n,4

)
Lemma 3.3.11

≤ depth+
(
CSPHn,2

)
Lemma 3.3.9
≤ depth+

(
CSPH(k)

n ,2

)
Lemma 3.3.8

= depth+
(
k-SAT+

nk?

)
,

where Hn is obtained from H?n using Lemma 3.3.11, k = 2k?, and H(k)
n is the complete

k-uniform hypergraph on nk? vertices. The theorem follows since we have k? = O(1).

3.4 Upper bounds via depth-width complexity

This section is dedicated to the proof of Theorem 3.1.11. We view a constraint

C : [r]Vars(C) → {0, 1} as a family of assignments C ⊆ [r]Vars(C). We will use dCc to de-

note the Boolean vector in {0, 1}r|Vars(C)|
that encodes this family. For convenience, given

β : Vars(C)→ [r], we address the bit position in dCc corresponding to β by dCcβ. In other

words, C(β) = 1 if and only if dCcβ = 1.

Definition 3.4.1. Given two families of assignments A1 ⊆ [r]V and A2 ⊆ [r]U , we let the

(relational) join of A1 and A2, denoted by A1 1 A2, be the family of assignments B ⊆ [r]V ∪U

defined by

B = {β : V ∪ U → [r] | β|V ∈ A1 and β|U ∈ A2}.

Observe that the join operation is associative and commutative.

Fact 3.4.2. Given constraints C1 : [r]V → {0, 1} and C2 : [r]U → {0, 1}, the set of assign-

ments mapping V ∪ U to [r] satisfying both C1 and C2 is precisely C1 1 C2.

Chapter 3. On the monotone complexity of the satisfiability problem 37

It follows from Fact 3.4.2 that a CSP φ = (Vars(φ),Const(φ)) is satisfiable if and only

if

1C∈Const(φ) C 6= ∅. (3.6)

Lemma 3.4.3. Given constraints C1 : [r]Vars(C1) → {0, 1} and C2 : [r]Vars(C2) → {0, 1},

there exists a (multi-output) monotone fan-in two Boolean circuit of depth 1 that computes

dC1 1 C2c from dC1c and dC2c.

Proof. For convenience, let V
def
= Vars(C1) and U

def
= Vars(C2), and β : V ∪ U → [r] be an

index to an output wire of the Boolean circuit. Then, according to Definition 3.4.1,

dC1 1 C2cβ = dC1cβ|V ∧ dC2cβ|U .

In other words, every bit of dC1 1 C2c is computed from dC1c and dC2c by a monotone

fan-in two depth 1 circuit.

Observe that Lemma 3.4.3 together with Equation 3.6 can be used to construct a

monotone circuit that checks whether a CSP instance from a fixed geometry is satisfiable.

This construction, however, is quite inefficient, as the number of output bits of the final

join operation can be exponential. In particular, a disjunction over these many bits will

have linear depth in the number of input variables of the CSP. We need to introduce other

ideas in order to design a more efficient monotone circuit for this task.

Definition 3.4.4. Given a family of assignments A ⊆ [r]V and a set U ⊆ V , we let the

projection of A to U , denoted by πU (A), be the family of assignments B ⊆ [r]U defined by

B = {β : U → [r] | ∃α ∈ A such that α|U = β}.

Fact 3.4.5. Given constraints C1 : [r]V → {0, 1} and C2 : [r]U → {0, 1}, the set of assign-

ments mapping W
def
= V ∩ U to [r] that can be extended to an assignment satisfying both

C1 and C2 is precisely πW (C1 1 C2).

Lemma 3.4.6. Given a constraint C : [r]V → {0, 1} and a set U ⊆ V , there exists a (multi-

output) monotone fan-in two Boolean circuit of depth d = O(|V \U | · log r) that computes

dπU (C)c from dCc.

Chapter 3. On the monotone complexity of the satisfiability problem 38

Proof. Let β : U → [r] be an index to an output wire of the Boolean circuit. Then, according

to Definition 3.4.4,

dπU (C)cβ =
∨

α∈[r]V

α|U=β

dCcα.

In other words, every bit of dπU (C)c is computed from dCc by a monotone fan-in two circuit

of depth O(log r|V \U |) = O(|V \U | · log r).

By combining these observations and the corresponding constructions, we obtain the

following result.

Proposition 3.4.7. Let U and V be fixed sets, and r ∈ N. Given constraints C1 : [r]V →

{0, 1} and C2 : [r]U → {0, 1}, the set of assignments from W
def
= V ∩ U to [r] that can be

extended to an assignment that satisfies both C1 and C2 can be computed by a (multi-output)

fan-in two monotone Boolean circuit D of depth

d = O
(
|(V ∪ U)\W | · log r

)
.

In other words, for any input pair (dC1c, dC2c) ∈ {0, 1}r
|V |+r|U|, we have

D(dC1c, dC2c) = dπW (C1 1 C2)c ∈ {0, 1}r|W | .

In order to solve CSPH,r more efficiently, we will perform joins and projections in a

carefully chosen order, and involving more general constraints. We will need a few additional

definitions (cf. Flum and Grohe [Section 11.1, 67]).

We will be concerned with trees T = (T, F) that are rooted, directed, and binary.

In other words, every node t ∈ T has at most two immediate successors, and the set of

such successors will be denoted by S(t). A leaf t ∈ T satisfies S(t) = ∅. For convenience,

when manipulating trees and graphs simultaneously, we use T for the set of nodes of the

three, and F for its set of arcs, i.e., we reserve vertices and edges for undirected graphs and

hypergraphs. Given t ∈ T , we use Tt to denote the subtree of T rooted at t, i.e., Tt is the

set of nodes reachable from t (including t), and Ft the corresponding set of arcs. A subset

of nodes S ⊆ T is connected if these vertices are connected in the underlying undirected

tree.

Chapter 3. On the monotone complexity of the satisfiability problem 39

Given a tree T = (T, F), the depth (also known as rank) of a node t ∈ T is defined

inductively as follows. If t is a leaf in T , then depth(t)
def
= 0. Otherwise, depth(t)

def
=

1+maxt′∈S(t) depth(t′). The depth of T , denoted by depth(T), is the depth of its root node,

or equivalently, the length of the longest (directed) path in T (as measured by its number

of arcs).

For a hypergraph H = (VH, EH), we let its Gaifman graph be the undirected graph

G = (V,E) with vertex set V = VH and edge set E = {{u, v} | ∃e ∈ EH for which u, v ∈ e}.

In other words, the (hyper)edges of H become cliques in G. We say that H is connected if

Gaifman(H) is connected.

Observe that CSPH,r is easier for disconnected hypergraphs H. In this case, one

can simply solve the satisfiability problem corresponding to each connected component of

Gaifman(H), since no constraint involves variables from different components. For this

reason, we focus on connected hypergraphs from now on.

Definition 3.4.8. A tree decomposition of a connected hypergraph H = (V,E) is a pair

(T , {Bt}t∈T), where T = (T,A) is a tree, {Bt}t∈T is a family of subsets of V , and the

following holds:

(i) For every v ∈ V , the set B−1(v)
def
= {t ∈ T | v ∈ Bt} is nonempty and connected in

T .

(ii) For every (hyper)edge e ∈ E, there exists a node t ∈ T such that e ⊆ Bt.

The width of a tree decomposition DH = (T , {Bt}t∈T) is defined as

width(DH)
def
= max

t∈T
|Bt| − 1,

and its depth is defined as

depth(DH)
def
= depth(T).

We say that a hypergraph H admits a (d,w)-depth-width decomposition if H admits a tree

decomposition DH such that depth(DH) ≤ d and width(DH) ≤ w. The family of all tree

decompositions of a hypergraph H will be denoted by

D(H)
def
= {D | D = (T , {Bt}t∈T) is a tree decomposition of H}.

Chapter 3. On the monotone complexity of the satisfiability problem 40

The tree-width of a hypergraph is given by

tree-width(H)
def
= min
D∈D(H)

width(D).

Finally, we define the depth-width of a hypergraph H by

depth-width(H)
def
= min
D∈D(H)

depth(D) · width(D).

We have included an example of a tree decomposition in Section 3.6. Notice that we

defined depth-width directly for hypergraphs, as they constitute our main objects of study

in connection with CSPs. Equivalently, one can define depth-width for graphs (2-uniform

hypergraphs), and consider the Gaifman graph of a hypergraph (see e.g. Flum and Grohe

[Proposition 11.27, 67]).

The proof of Theorem 3.1.11 requires a few additional definitions. Given a tree de-

composition DH = (T , {Bt}t∈T) of a hypergraph H, we say that each set Bt is a bag of the

decomposition. For a subset U ⊆ T , we let

B(U)
def
=
⋃
t∈U

Bt.

Given a tree T = (T, F), we say that a node u ∈ T is a descendant of a node v ∈ T ,

written u � v, if there is a directed path from v to u in T . Equivalently, u is contained in

the subtree Tv rooted at v. The correctness of our monotone circuit relies on the following

simple but fundamental property of tree decompositions.

Lemma 3.4.9. Let DH = (T , {Bt}t∈T) be a tree decomposition of a connected hypergraph

H = (V,E), where T = (T, F), and consider a node v ∈ T with set of successors S(v) =

{u1, u2}. Let Tu1 = (Tu1 , Fu1) and Tu2 = (Tu2 , Fu2) be the corresponding subtrees rooted at

u1 and u2, respectively. Then,

B(Tu1) ∩B(Tu2) ⊆ B(v).

Proof. Let w ∈ BTu1
∩BTu2

. Then there exist v1 ∈ Tu1 and v2 ∈ Tu2 such that w ∈ Bv1 and

w ∈ Bv2 . Since T is a tree, there exists a unique path from v1 to v2 in the undirected graph

of T . In particular, this path must pass through v. From the first property of Definition

3.4.8, we must have w ∈ Bv. Therefore, BTu1
∩BTu2

⊆ Bv, which completes the proof.

Chapter 3. On the monotone complexity of the satisfiability problem 41

We are ready to give the proof of Theorem 3.1.11, stated again below.

Theorem. Let r, k ∈ N, and let {Hn}n∈N be a sequence of connected k-uniform hypergraphs

with |V (Hn)| = n. Then,

depth+(CSPHn,r) = Or,k(depth-width(Hn)).

Proof. Let D = (T , {Bt}t∈T) be a tree decomposition of H = (V,E) with depth-width(D) =

depth-width(H), where T = (T, F). In addition, let w
def
= width(D)+1 and d

def
= depth(D)+1.

We will rely on the structure of T in order to construct a monotone circuit M computing

CSPH,r. The core of the construction consists of d stages. During the i-th stage, we handle

all nodes of T with depth strictly less than i, for 1 ≤ i ≤ d. We use then the output of

stage d in order to compute CSPH,r(dφc), where dφc ∈ {0, 1}|E(Hn)|·rk is the input string.6

Recall than an input dφe encodes a CSPH,r instance φ = (Vars(φ),Const(φ)), where

Vars(φ) = V and Const(φ) = {Cφe : [r]e → {0, 1} | e ∈ E}. For convenience, we will address

the corresponding block of input variables by Ce, and view it as a family of assignments as

given by Definitions 3.4.1 and 3.4.4. After the i-th stage of the construction of M , we will

have the following invariant:

(?) For every v ∈ T with depth(v) < i, there exists a set Gv = {gvβ}β∈[r]Bv of

at most rw gates in the circuit M such that gvβ evaluates to 1 on an input dφc

if and only if β can be extended to a partial assignment α ∈ [r]B(Tv) satisfying

every constraint Cφe with e ⊆ Bu for some u ∈ Tv.
First, let’s see how to complete the description of our monotone circuit M assuming

that (?) holds for every i, and prove its correctness. Let t ∈ T be the root of T . We claim

that

φ is satisfiable ⇐⇒
∨

β∈[r]Bt

gtβ(dφc) = 1. (3.7)

If φ is satisfiable, let α ∈ [r]V be a satisfying assignment for φ. Then, since β
def
= α|Bt ∈

[r]Bt can be extended to a satisfying assignment, it follows from (?) that gtβ(dφc) = 1.

Consequently, the RHS of (3.7) evaluates to 1. On the other hand, if there exists β ∈ [r]Bt

6The reader should not confuse the parameter d related to the depth of the tree decomposition with the

final depth of the circuit M , which will be larger than d.

Chapter 3. On the monotone complexity of the satisfiability problem 42

for which gtβ(dφc) = 1, then using (?) again we get that β can be extended to a partial

assignment α ∈ [r]B(Tt) that satisfies every constraint Cφe with e ⊆ Bu for some u ∈ Tv.

However, B(Tt) = B(T) = V by property (ii) of Definition 3.4.8 and the assumption that

H is connected. Furthermore, α satisfies every constraint of φ, since by the same property

(ii) for any e ∈ E there exists u ∈ T for which e ⊆ Bu. In other words, φ is satisfiable,

which proves our claim.

During the rest of the proof, we will also view each block of gates Gv as a family of

assignments in the sense of Definition 3.4.1. We will present the proof of the hardest case

of the induction step. The rest of the argument follows using similar ideas. Assume that

(?) holds for every node u ∈ T with depth(u) < i. We prove the induction step for all v ∈ T

of depth i by constructing (in parallel) appropriate gate families Gv = {gvβ}β∈[r]Bv . The

most interesting case of the induction step happens when |S(v)| = 2, i.e., v has successors

u1, u2 ∈ T . Observe that depth(u1) < i and depth(u2) < i, thus we can apply the induction

hypothesis to these nodes. We claim that in order to satisfy (?) it is enough to set

Gv
def
= πBv

((
[r]Bv 1

(
1e∈E,e⊆Bv Ce

)︸ ︷︷ ︸
C1

)
1
(
1u∈S(v) Gu︸ ︷︷ ︸

C2

))
, (3.8)

where Ce is the block of input variables of the circuit corresponding to the constraint

associated to hyperedge e. For convenience, let C1
def
= [r]Bv 1

(
1e∈E,e⊆Bv Ce

)
and C2

def
=

1u∈S(v) Gu. Observe that, for any fixed input dφc, Cφ1 ⊆ [r]Bv and Cφ2 ⊆ [r]Bu1∪Bu2 .

In order to prove our claim, fix β ∈ [r]Bv . First, assume that β can be extended to a

partial assignment α ∈ [r]B(Tv) satisfying every constraint Cφe with e ⊆ Bu for some u ∈ Tv.

Then α|e ∈ Cφe for each e ⊆ Bv, which implies that α|Bv ∈ Cφ1 . In addition, it follows

from the definition of α and the induction hypothesis that, under dφc, we have α|Bu ∈ G
φ
u,

for each u ∈ S(v). But then α|Bv∪Bu1∪Bu2
∈ Cφ1 1 Cφ2 , and since α extends β, we get

β = α|Bv ∈ πBv(C
φ
1 1 Cφ2). Therefore, Gφv (β) = 1, which completes one direction of the

argument.

Now assume that, for a fixed input dφc, we have Gφv (β) = 1. We need to show how to

extend β to a partial assignment α ∈ [r]B(Tv) satisfying the condition in (?). First, notice

that β already satisfies every constraint Cφe with e ⊆ Bv according to our definition in

Equation (3.8). Further, using (3.8) once again and the induction hypothesis, there exist

Chapter 3. On the monotone complexity of the satisfiability problem 43

β1 ∈ [r]Bu1 and β2 ∈ [r]Bu2 that agree with β over Bu1 ∩Bv and Bu2 ∩Bv, respectively, and

that can be extended to partial assignments α1 ∈ [r]B(Tu1) and α2 ∈ [r]B(Tu2) satisfying the

condition in (?) with respect to Tu1 and Tu2 , respectively. It follows then from Lemma 3.4.9

that α
def
= β ∪ α1 ∪ α2 ∈ [r]B(Tv) is a well-defined function which satisfies every constraint

Cφe with e ⊆ Bu for some u ∈ Tv. This completes the proof of our claim.

It remains to argue that M can be implemented without negations, and to upper bound

the depth of this circuit. First, the final step of the computation as defined in Equation (3.7)

can be performed by fan-in two monotone circuits of depth O(w · log r). During each core

stage i ∈ [d], we implement in parallel each block of gates Gv as described in Equation (3.8),

for all v for which depth(v) = i− 1. The computation of each Gv relies on the computation

of the corresponding functions C1 and C2. Let’s consider the depth increase during the

i-stage. According to Lemma 3.4.3, we can compute each output bit of C2 in monotone

depth 1. Similarly, using a balanced binary tree and Lemma 3.4.3, we can compute each

output bit of C1 by fan-in two monotone circuits of depth O(log
(
w
k

)
) = O(k · logw). Given

the computations of C1 and C2, each gate in Gv can now be computed via Proposition 3.4.7

in monotone depth O(w · log r). Since there are d stages, the monotone depth of M can be

upper bounded by:

depth+(M) = O(d · (k · logw + w · log r))

= Or,k(d · w)

= Or,k(depth(D) · width(D))

= Or,k(depth-width(H)),

which completes the proof of our result.

3.5 An unconditional classification theorem for CSPs

This section contains the proof of Theorem 3.1.13. It relies on several techniques intro-

duced in earlier sections, together with a few additional results. We start with the following

connection between the tree-width of a hypergraph H, and its depth-width complexity.

Chapter 3. On the monotone complexity of the satisfiability problem 44

Proposition 3.5.1 (Bodlaender [34]). Let {Hn}n∈N be a sequence of k-uniform hyper-

graphs, where each Hn has n vertices, and k ∈ N. Then,

tree-width(Hn) ≤ depth-width(Hn) ≤ O(log n · tree-width(Hn)).

Proof. This result follows from [Proposition 11.27, 67], which relates the tree-width of a

hypergraph H to the tree-width of its Gaifman graph G, and [Theorem 4.2, 34], which

shows that if G is a graph on n vertices that admits a tree-decomposition of width `, then

it also admits a balanced decomposition of width O(`) and depth O(log n).

The next lemma shows that if a constant-degree graph is not too far from a tree, then

its Tseitin hypergraph satisfies the same property.

Lemma 3.5.2. Let G = (VG, EG) be a k-regular undirected graph on n vertices, and H =

Tseitin(G). Then,

tree-width(H) ≤ Ok(tree-width(G)).

Proof. Let DG = (TG, {Bt}t∈TG) be a tree decomposition of G of width w, where TG =

(TG, FG). Let H = Tseitin(G), and recall that:

VH
def
= {ve | e = {u,w} is an edge of G} and EH

def
= {eu | u ∈ VG and eu = ↓(NG(u))},

where ↓(NG(u))
def
= {v{u,w} | w ∈ NG(u)}. We construct a decompositionDH = (TH, {Bt}t∈TH)

of H as follows, where TH = (TH, FH). First, we let TH be isomorphic to TG. For conve-

nience, for every tG ∈ TG, we use tH to denote the corresponding node of TH. The crucial

distinction occurs in the definition of the bags of DH. For every tH ∈ TH, we let

BtH
def
=

⋃
u∈BtG

{ve | w ∈ V (G) and e = {u,w} ∈ E(G)}. (3.9)

Since G is k-regular,

width(DH) ≤ max
tH∈TH

|BtH | ≤ max
tH∈TH

k · |BtG | ≤ k · (w + 1) ≤ Ok(w).

We argue next that this is indeed a tree decomposition of H. First, since every vertex

of G is in at least one bag of DG, we get from Equation (3.9) that every hyperedge of H

is contained in some bag of DH. Similarly, every vertex ve of H is in some bag of DH,

Chapter 3. On the monotone complexity of the satisfiability problem 45

and the set B−1
DH(ve) is nonempty. Finally, fix a vertex ve ∈ VH, where e = {u,w} is an

edge of G. Consider again the set B−1
DH(ve) ⊆ TH, and recall that this set contains a node

tH ∈ TH if and only if ve ∈ BtH . We need to prove that TH[B−1
DH(ve)] is connected, or more

precisely, that the underlying undirected tree is connected. Since ve corresponds to the edge

e = {u,w} in G, it is not hard to see that, according to our definition in Equation (3.9),

tH ∈ B−1
DH(ve) ⊆ TH ⇐⇒ tG ∈ B−1

DG(u) ∪B−1
DG(w) ⊆ TG. (3.10)

Since DG is a decomposition of G, we know that both TG[B−1
DG(u)] and TG[B−1

DG(w)] are con-

nected subgraphs of TG. Therefore, the corresponding sets of nodes of TH are also connected,

since TH ∼= TG by definition. Finally, using again the definition of tree decomposition, there

exists a node tG ∈ TG such that e = {u,w} ⊆ BtG in DG, as e is an edge of G. But then

B−1
DG(u) ∩ B−1

DG(w) is nonempty, TG[B−1
DG(u) ∪ B−1

DG(w)] is connected, and from Equation

(3.10) and the isomorphism between the trees, TH[B−1
DH(ve)] must be connected.

Recall that an undirected graph H is called a minor of a graph G if an isomorphic

copy of H can be obtained from G by deleting edges and vertices and by contracting edges.

An equivalent definition is that there exists a function ζ : V (H) → P(V (G)) \ ∅ that maps

vertices of H to non-empty subsets of V (G) for which the following holds:

(i) For every v ∈ V (H), G[ζ(v)] is connected;

(ii) For distinct vertices u, v ∈ V (H), we have ζ(u) ∩ ζ(v) = ∅;

(iii) If {u, v} ∈ E(H), then there exists an edge connecting a vertex in ζ(u) to a vertex in

ζ(v).

If this is the case, we say that ζ is an embedding of H in G.

Recall that an undirected graph H on `1 ·`2 vertices is an `1×`2-grid if H is isomorphic

to the graph Cartesian product of P`1 and P`2 , where P` denotes the path on ` vertices.

The next lemma formalizes the intuitive fact that graphs containing a large grid as a minor

have good routing properties.

Lemma 3.5.3. There exists a real-valued constant δ > 0 for which the following holds. Let

G be an undirected graph, and suppose that G contains an ` × `-grid as a minor. Then

routing(G) ≥ `δ.

Chapter 3. On the monotone complexity of the satisfiability problem 46

Proof. Let H be an ` × `-grid, and ζ be an embedding of H in G. It is possible to show

that H contains a set of vertices WH ⊆ V (H) of size 2d`δe, where δ > 0 is independent of

`, for which the following holds: for any set of d`δe disjoint pairs of vertices in WH , there

exist vertex-disjoint paths in H that connect these pairs of vertices. This can be seen by

considering vertices on a horizontal line that are sufficiently spaced, and some canonical

way of constructing vertex-disjoint paths between the vertices (a closely related problem is

investigated by Cutler and Shiloach [53] and Aggarwal et al. [5]).

Now for each v ∈WH , let v′ ∈ V (G) be a representative for v in ζ(v), and WG ⊆ V (G)

be the corresponding set of vertices in G. Then, since ζ is an embedding of H in G, it

follows that for any set of disjoint pairs of vertices in WG, there exist edge-disjoint paths in

G that connect these pairs of vertices.7 In other words, routing(G) ≥ `δ.

Finally, we will need the following strengthening of the Grid-Minor Theorem (Robert-

son and Seymour [159]).

Proposition 3.5.4 (Chekuri-Chuzhoy [48]). There exists a real-valued constant δ > 0 for

which the following holds. If G is an undirected graph with tree-width t, then G contains an

`× `-grid as a minor, where ` ≥ tδ.

We are ready to give the proof of Theorem 3.1.13, stated again below.

Theorem. There exists a fixed constant c > 0 for which the following holds. If {Gn}n∈N is

a sequence of undirected graphs, where each Gn is a k-regular connected graph on n vertices,

then

Ω(tree-width(Gn)c) ≤ depth+
(
CSPTseitin(Gn),3

)
≤ Ok(tree-width(Gn) · log n).

Proof. Let {Hn}n∈N be the sequence of k-uniform Tseitin hypergraphs associated to {Gn}n∈N,

i.e., each Hn
def
= Tseitin(Gn). Assume for convenience that each Gn has tree-width γ(n),

where γ : N→ N.

7Note that it is not clear whether edge-disjoint paths in the grid can be kept edge-disjoint when we embed

the grid in another graph G (consider, for instance, an internal vertex of the grid that becomes an edge in

G). This is the reason why we start with vertex-disjoint paths.

Chapter 3. On the monotone complexity of the satisfiability problem 47

We start with the upper bound. We know from Lemma 3.5.2 that each Hn has tree-

width Ok(γ(n)). As a consequence, we get from Proposition 3.5.1 that each Hn has depth-

width Ok(γ(n) · log n). The upper bound now follows immediately from Theorem 3.1.11.

For the lower bound, it follows from Proposition 3.5.4 that each Gn contains an

`(n) × `(n)-grid as a minor, where `(n) ≥ γ(n)δ, and δ > 0 is a fixed constant. Con-

sequently, Lemma 3.5.3 implies that Gn has routing number at least γ(n)c, for a fixed

constant c > 0. Now fix a coloring function χn : V (Gn) → {0, 1} that forces the CSP φχnGn

to be unsatisfiable. Recall that this is possible according to Fact 3.3.3. Moreover, each

CSP φχnGn has geometry Hn. Using Proposition 3.3.5 and the definition of sensitivity for

hypergraphs (Definition 3.1.9), it follows that sens(Hn) ≥ γ(n)c. The lower bound follows

immediately from Corollary 3.1.10, which completes the proof.

3.6 Example: The depth-width of the Cycle

We say that an undirected graph Gn = (Vn, En) is the cycle on n vertices if Vn =

{v1, . . . , vn} and En = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {v1, vn}}. The path graph on n

vertices is obtained from this graph by deleting the edge {v1, vn}. We describe next an

essentially optimal tree decomposition of Cn with respect to depth-width complexity.

Proposition 3.6.1. If Cn denotes the cycle on n vertices, then

depth-width(Cn) = Θ(log n).

Proof. For the lower bound, observe that Theorem 3.1.11 implies that

depth-width(Cn) = Ω(depth+(CSPCn,2)). (3.11)

Since CSPCn,2 is a Boolean function that depends on all of its 4n input variables, and we

consider fan-in two circuits, it must be the case that depth+(CSPCn,2) = Ω(logn). This fact

and inequality (3.11) establish the lower bound.

We now describe an explicit tree decomposition for Cn. Disregarding constant factors,

it is enough to obtain a tree decomposition DPn = (T , {Bt}t∈T) for the path graph Pn =

(Vn, En), where T = (T,A) (simply add v1 and vn to each bag Bt of DPn in order to

Chapter 3. On the monotone complexity of the satisfiability problem 48

obtain a decomposition for Cn). For simplicity, assume that n = 2` + 1, and recall that

Vn = {v1, . . . , vn}. The general case can be handled by an easy extension of the construction

described below.

We let T be a complete (rooted, directed) binary tree with ` layers. The leaves of T

correspond to nodes t1, . . . , t2` . The remaining nodes of T are named arbitrarily. First, let

Bti
def
= {vi, vi+1}. Observe that, except for v1 and vn, each vertex of Pn occurs in exactly two

leaves of T . In order to define the bag Bw of a non-leaf node w ∈ T , consider the following

process. For every vertex vi ∈ Vn different from v1 and vn, consider the path P ′ ⊆ A that

connects the two leaves containing vi, and add vi to the bag Bw of each non-leaf node w ∈ T

that occurs in P ′.8 This completes the description of DPn .

We argue next that DPn is a tree-decomposition of Pn. First, observe that, by con-

struction, the second condition in the definition of tree decomposition (Definition 3.4.8) is

satisfied. In addition, the first condition is satisfied as well, based on our construction for

the bags of the non-leaf nodes of T , and the definition of the bag of each leaf node.

Finally, we show that depth-width(DPn) = O(log n). Indeed, we have depth(T) = ` =

O(log n), and in order to complete the argument we prove that width(DPn) ≤ 3. This can

be seen as follows. First, for every leaf node ti ∈ T , we have |Bti | = 2. On the other hand,

let w ∈ T be a non-leaf node of T , and consider the complete subtrees Tleft, Tright ⊆ T to

the left and to the right of the parent node w. Let uleft− and uleft+ be the leaves ti and tj in

Tleft with the smallest and largest indexes i and j, respectively. We use uright− and uright+ for

the analogue nodes in Tright. Finally, consider the bag of each such node,

Buleft−
= {vk, vk+1}, Buleft+

= {vk′ , vk′+1}, Buright−
= {vk′+1, vk′+2}, and B

uright+
= {vk′′ , vk′′+1},

where k < k′ < k′′ are appropriate indexes. We claim that there are at most 3 paths

passing through w according to the definition of the bags of DPn . First, there is the path

connecting uleft+ to uright− , since vk′+1 ∈ Buleft+
∩ B

uright−
. There may be a path connecting uleft−

to the immediate leaf to the left of uleft− , since the corresponding bags will both contain vk

(the vacuous case occurs when vk = v1). Similarly, there may be a path leaving uright+ that

ends at its immediate successor leaf. The other paths used during the definition of the bags

8Recall that in a tree every pair of distinct vertices is connected by a unique path.

Chapter 3. On the monotone complexity of the satisfiability problem 49

of the tree decomposition are either internal to Tleft or Tright, or do not enter the subtree

of T rooted at w. Since at most 3 paths pass trough w, its bag has size at most 3, which

completes the proof.

Chapter 4. Majority is incompressible by AC0[p] circuits 50

Chapter 4

Majority is incompressible by

AC0[p] circuits

4.1 Background, results, and organization

Computational complexity theory investigates the complexity of solving explicit prob-

lems in various computational models. While fairly strong lower bounds are known for

restricted models such as constant-depth circuits (Ajtai [8], Furst, Saxe, and Sipser [75],

Yao [205], and H̊astad [95]) and monotone circuits (Razborov [155], Andreev [16], and Alon

and Boppana [12]), our understanding of general Boolean circuits is still very limited. For

example, our current state of knowledge does not rule out that every function in NTIME(2n)

is computed by Boolean circuits of linear size.

Several barriers have been identified to proving lower bounds for general Boolean

circuits, such as relativization (Baker, Gill, and Solovay [24]), algebrization (Aaronson and

Wigderson [2]), and the “natural proofs” barrier (Razborov and Rudich [154]). Most known

lower bound techniques for restricted models are “naturalizable”, and it is believed that

substantially different methods will be required in order to prove strong lower bounds for

unrestricted models.

In spite of this, the techniques used to prove lower bounds for weaker models are still

interesting, and an improved understanding of these techniques can have substantial bene-

fits. First, there is a developing theory of connections between unconditional lower bounds

Chapter 4. Majority is incompressible by AC0[p] circuits 51

and algorithmic results, which involves satisfiability algorithms, learning algorithms, truth-

table generation, among other models (cf. Williams [202], Oliveira [148], and Santhanam

[168]). In particular, such connections provide new insights and results in both areas, and

a better understanding of restricted classes of circuits can lead to improved algorithms (cf.

Williams [203]). Second, strong enough lower bounds for weaker models imply lower bounds

for more general models (Valiant [190, 192], see Viola [195] for a modern exposition). In a

similar vein, we mention the surprising results from Allender and Koucký [10] showing that,

in some cases, weak circuit size lower bounds of the form n1+ε yield much stronger results.

Furthermore, even if known proof techniques individually naturalize, it is possible they

could be used as ingredients of a more sophisticated approach which is more powerful. A

recent striking example of this is the use by Williams [204] of structural characterizations

of ACC0 circuits, together with various complexity tools such as completeness for problems

on succinctly represented inputs, diagonalization, and the easy witness method, in order to

separate NEXP from ACC0. Given the paucity of techniques in the area of complexity lower

bounds, it makes sense to try to properly understand the techniques we do have.

We focus in this chapter on C-compression games (Chattopadhyay and Santhanam

[45]), where C is some class of Boolean circuits. A C-compression game is a 2-player (inter-

active) communication game where the first player Alice is computationally bounded (by

being restricted to play strategies in C) and has access to the entire input x ∈ {0, 1}n,

while the second player Bob is computationally unbounded and initially has no information

about the input. Alice and Bob communicate to compute f(x) for a fixed Boolean function

f : {0, 1}n → {0, 1}, and the question is how many bits of communication sent by Alice are

required. Note that if f is computable by C, then 1 bit of communication suffices, as Alice

can compute f(x) by herself, and send the answer to Bob. Thus, if we are interested in

unconditional lower bounds on the communication cost for an explicit function, we must

study circuit classes C where lower bounds are already known for explicit functions, such

as constant-depth circuits, and their extension with modulo p gates.

Compression games hybridize between communication complexity and computational

complexity as follows. In the traditional two-party communication complexity model, Alice

and Bob are symmetric – they each know half of the input, and communicate to compute

Chapter 4. Majority is incompressible by AC0[p] circuits 52

a given function on the whole input. Neither party is computationally bounded. Thus

they are equally constrained (or unconstrained) informationally as well as computationally.

In the compression game setting, an asymmetry appears. Alice now has an informational

advantage over Bob – she begins with knowledge of the whole input, while Bob has no

knowledge about the input at all. However, this informational advantage is offset by a

computational constraint – Alice can only use strategies computable from C. Thus studying

compression games can be thought of as studying the tradeoff between information and

computation. Typically, when studying the question of lower bounds against C, we are

merely interested in whether a function f is computable in C or not. Now, we are concerned

instead by how much information can be obtained about f(x) using merely circuits from

C, or conversely, how much assistance a C-bounded party requires from an unbounded one

in order to compute f(x). In other terms, we would like to obtain a refined quantitative

picture of solvability by C-circuits, rather than a purely qualitative one.

Communication complexity has long been an important tool in the complexity theo-

rist’s toolkit. In particular, several lower bound techniques such as the crossing sequence

method, the Nečiporuk method [143] and the Khrapchenko method [119] can be interpreted

as uses of communication complexity (cf. Kushilevitz and Nisan [128]). Often, when a com-

putational model is relatively weak, lower bound techniques exploit some sort of information

bottleneck in the model, which is how communication complexity enters the picture. By

studying compression games, where the model explicitly incorporates both communication

and computation, we hope to better understand the interplay between communication com-

plexity techniques and computational complexity techniques.

We explore in this chapter the power of the polynomial approximation method (Razborov

[157], Smolensky [177]) and the random restriction method (cf. Furst, Saxe, and Sipser [75]

and H̊astad [95]) in the context of interactive compression games. We use these techniques

and the compression framework to prove significant generalizations of known lower bounds

for constant-depth circuits.

Compression games have been considered before, both to prove unconditional and con-

ditional lower bounds. The pioneering work of Dubrov and Ishai [60] showed that Parityn

requires AC0-compression cost n1−ε (for any fixed ε > 0, and large enough n) when there

Chapter 4. Majority is incompressible by AC0[p] circuits 53

is only one round of communication between Alice and Bob. Dubrov and Ishai were moti-

vated by questions about the randomness complexity of sampling, and their work has later

found applications in leakage-resilient cryptography (Faust et al. [61]). Chattopadyay and

Santhanam [45] strengthened the Dubrov-Ishai lower bound to n/poly(log n), and showed

that the lower bound holds for multi-round games where Alice is allowed to use a ran-

domized strategy. Their main technique was a generic connection between correlation and

multi-round compression. As strong correlation lower bounds are not known for AC0[p]

circuits (see e.g. Srinivasan [179]), their technique does not yield strong lower bounds for

multi-round AC0[p]-compression games, which constitute the main topic of this chapter.

The investigation of single-round compression (also known as instance compression)

has found connections to other topics in areas such as cryptography (Harnik and Naor

[93]), parameterized complexity (cf. Bodlaender et al. [33]), probabilistic checkable proofs

(Fortnow and Santhanam [71]), and structural complexity (Buhrman and Hitchcock [43]),

and has received considerable attention recently (see e.g. Drucker [59] and Dell [57]). There

has also been a long line of work on proving lower bounds for SIZE(poly(n))-compression

games under complexity-theoretic assumptions (cf. Dell and van Melkebeek [56]), but papers

along this line use very different ideas, and hence are tangential to our work.

For a circuit class C, we use Cd to denote the restriction of C to polynomial size

circuits of depth d. For instance, AC0
d refers to polynomial size depth-d circuits. Recall

that Majorityn : {0, 1}n → {0, 1} is the function that is 1 on an input x if and only if∑
i∈[n] xi ≥ n/2. Further, we let MODnq : {0, 1}n → {0, 1} be the function that is 1 if and

only if q divides
∑

i∈[n] xi.

The proof that Majorityn /∈ AC0
d[p] for d(n) = o(log n/ log log n) (Razborov [157],

Smolensky [177]) remains one of the strongest lower bounds for an explicit function. There

are no known explicit lower bounds for polynomial size circuits of depth d = ω(log n/ log log n),

nor for constant depth circuits with arbitrary (composite) modulo gates.

In the framework of compression games, the Razborov-Smolensky lower bound is equiv-

alent to the claim that in any AC0[p] game for Majority, there must be non-trivial communi-

cation between Alice and Bob. More recently, Chattopadhyay and Santhanam [45] proved

that in any randomized single-round AC0
d[p]-compression protocol for this function, Al-

Chapter 4. Majority is incompressible by AC0[p] circuits 54

ice must communicate
√
n/(log n)O(d) bits. However, their technique does not extend to

multiple-round compression games. Before this work, the only known technique to prove

unconditional lower bounds for games with an arbitrary number of rounds used a con-

nection between compressibility and correlation. The lack of strong correlation bounds for

low-degree Fp polynomials computing explicit Boolean functions prevents us from using this

connection to get AC0[p]-compression lower bounds (see Srinivasan [179] for more details).

In this work, we bypass this difficulty through a new application of the polynomial

approximation method, obtaining the following result.

Theorem 4.1.1. Let p be a prime number. There exists a constant c ∈ N such that, for

any d ∈ N, and every n ∈ N sufficiently large, the following holds.

(i) Any AC0
d[p]-compression game for Majorityn (with any number of rounds) has commu-

nication cost at least n/(log n)2d+c.

(ii) There exists a single-round AC0
d-compression game for Majorityn with communication

cost at most n/(log n)d−c.

The argument for the lower bound part of this result proceeds roughly as follows.

First, we show via a reduction in the interactive compression framework that a protocol

for Majorityn can be used to compress other symmetric functions, such as MODnq . In other

words, it is enough to prove a strong communication lower bound for MODnq in order to

establish the lower bound in Theorem 4.1.1. We then employ a general technique that allows

us to transform an interactive protocol for a Boolean function f into an exponentially large

circuit computing f , following an approach introduced in Chattopadhyay and Santhanam

[45]. We have thus reduced the original problem involving computation and communication

to a certain circuit lower bound for MODq.

A crucial ingredient in our proof is a new exponential lower bound for a certain class

of bounded-depth circuits extended with modulo p gates computing the MODq function.

Although obtaining circuit lower bounds for depth d circuits beyond size roughly 2n
1/(d−1)

is a major open problem in circuit complexity (see e.g. Viola [195]), we show that, under a

certain semantic constraint on the AC0
d[p] circuit, MODnq requires circuits of size 2n/(logn)O(d)

.

More specifically, we consider circuits consisting of a disjunction of exponentially many

Chapter 4. Majority is incompressible by AC0[p] circuits 55

polynomial size circuits, for which the following holds: whenever the top gate evaluates to

true, precisely one subcircuit evaluates to true.

The proof of this circuit lower bound relies on the application of the polynomial ap-

proximation method in the exponentially small error regime, as opposed to the original

proofs of Razborov and Smolensky, which are optimized with constant error. In particular,

this approach allows us to prove a stronger lower bound that avoids the correlation barrier

mentioned before. In order to implement this idea, we rely on a recent strengthening of

their method introduced by Kopparty and Srinivasan [123], and on an extension of the

degree lower bounds of Razborov and Smolensky to very small error. We believe that this

new circuit lower bound may be of independent interest, and that semantic restrictions will

find more applications in circuit complexity. Altogether, these results give the lower bound

in Theorem 4.1.1.

Theorem 4.1.1 implies a new result for AC0[p] circuits extended with arbitrary oracle

gates, which we state next.

Corollary 4.1.2. Let p ≥ 2 be prime, and d ∈ N. There exists a constant c ∈ N such that,

for every sufficiently large n, the following holds. If Majorityn is computed by polynomial-

size AC0
d[p] circuits with arbitrary oracle gates, then the total fan-in of the oracle gates is at

least n/(log n)2d+c.

Another interesting consequence of Theorem 4.1.1 is that it provides information about

the structure of polynomial size circuits with modulo p gates computing Majorityn. More

precisely, it implies that in any layered circuit, at least bn/(log n)2k+cc gates must be present

in the k-th layer, which is essentially optimal.

Observe that Theorem 4.1.1 holds for deterministic compression games. For random-

ized protocols, in which Alice can employ a probabilistic strategy, we use our techniques to

prove the following strengthening over previous results.

Theorem 4.1.3. Let p and q be distinct primes. There exists a constant c ∈ N such that,

for any d ∈ N, and n ∈ N sufficiently large, every randomized AC0
d[p]-compression game for

MODnq with any number of rounds and error at most 1/3 has communication cost at least
√
n/(log n)d+c.

Chapter 4. Majority is incompressible by AC0[p] circuits 56

We stress that Theorems 4.1.1 and 4.1.3 hold both for Majority and MODq, whenever p

and q are distinct primes. Determining the correct communication cost for probabilistic and

average-case games for these functions remains an interesting open problem. (We discuss

these models in more detail in Section 4.2.)

We also consider a model of multiparty compression games. In this framework, Alice

is allowed to interact during each round with k additional parties, and the communication

cost of the round is defined to be the length of the longest message sent by Alice to one of

the parties. Further, the cost of the protocol on a given input is defined as the sum of the

costs of the individual rounds. We stress that the extra parties are not allowed to interact

with each other during the execution of the protocol.

This is a natural communication framework, motivated by the question of lower bounds

for oracle circuits. Lower bounds in this model with a bounded number of rounds imply

lower bounds on the maximum individual fan-in of oracle gates in oracle circuits with a

bounded number of such layers.

We prove the following bounds on the randomized multiparty AC0[p]-compression cost

of Majority.

Theorem 4.1.4. Let p ∈ N be a fixed prime. For every k, r, d ∈ N, the following holds.

(i) There exists a deterministic n1/r-party r-round AC0[p]-compression game for Majorityn

with cost Õ(n1/r).

(ii) Every randomized nk-party r-round AC0
d[p]-compression game for Majorityn has cost

Ω̃(n1/2r).

The proof of Theorem 4.1.4 also employs the polynomial approximation method, al-

though the argument is different in this case. Observe that this result says that the com-

munication cost of Majorityn in the randomized multiparty framework is nΘ(1/r) for r-round

protocols. In other words, allowing Alice to interact with more parties for more time reduces

communication considerably (under the definition of communication cost for multiparty

games).

We obtain a consequence of Theorem 4.1.4 for oracle circuits where there are a bounded

number r of such layers, i.e., there are no more than r oracle gates on any input-output

Chapter 4. Majority is incompressible by AC0[p] circuits 57

path in the circuit.

Corollary 4.1.5. Let p ≥ 2 be prime, and r, d ∈ N. If Majorityn is computed by an AC0
d[p]

circuit of polynomial size with arbitrary oracle gates that contains at most r layers of such

gates, then there is some oracle gate with fan-in at least Ω̃(n1/2r).

In fact, lower bounds for multiparty games are connected to the NP versus NC1 ques-

tion. It is possible to show that every Boolean function in NC1/poly admits poly(n)-party

r-round AC0-compression games with cost nO(1/r). Thus, proving a lower bound of nΩ(1)

on the cost of poly(n)-party AC0-compression games with ω(1) rounds for a function in NP

would separate NP from NC1/poly. We conjecture that such a lower bound holds for the

Clique function. Note that it is already known that strong enough lower bounds on the size of

constant-depth circuits for NP functions implies a separation between NP and NC1 (cf. Vi-

ola [195]). The novelty here is that sufficiently strong results about polynomial-size constant

depth circuits imply similar separations. Essentially, the computation of logarithmic-depth

circuits can be factored into constant-depth and low-communication components, and our

multiparty communication game models precisely this mixture of notions.

There is an interesting contrast in the statement of Theorem 4.1.1: while the lower

bound holds for protocols with any number of rounds, the upper bound is given by a single-

round protocol. It is natural to wonder whether in the compression setting interaction

allows Alice to solve more computational problems. We provide a natural example of the

power of interaction in our framework in Section 4.6, where we observe that, while the inner

product function cannot be computed by polynomial size MAJ ◦MAJ circuits (Hajnal et al.

[91]), there exists an efficient two-party (MAJ ◦MAJ)-compression game for this function.

In a similar direction, a quantitative study of the power of interaction in two-party

compression games was initiated by Chattopadhyay and Santhanam [45] (with respect to

AC0-compression games). They obtained a quadratic gap in communication when one

considers r and (r − 1)-round protocols for a specific Boolean function. We obtain the

following strengthening of their round separation theorem.

Theorem 4.1.6. Let r ≥ 2 and ε > 0 be fixed parameters. There is an explicit family of

functions f = {fn}n∈N with the following properties:

Chapter 4. Majority is incompressible by AC0[p] circuits 58

(i) There exists an AC0
2(n)-bounded protocol Πn for fn with r rounds and cost c(n) ≤ nε,

for every n ≥ nf , where nf is a fixed constant that depends on f .

(ii) Any AC0(poly(n))-bounded protocol Π for f with r − 1 rounds has cost c(n) ≥ n1−ε,

for every n ≥ nΠ, where nΠ is a fixed constant that depends on Π.

Our hard function is based on a pointer jumping problem with a grid structure, while

Chattopadhyay and Santhanam uses a tree structure. Similar constructions have been used

in other works in communication complexity in the information theoretic setting (Papadim-

itriou and Sipser [150], and subsequent works), but our analysis needs to take into account

computational considerations as well.

The proof of Theorem 4.1.6 relies on a careful application of the random restric-

tion method, coupled with a round elimination strategy. Observe that the upper bound

is achieved by protocols where Alice’s strategy can be implemented by linear-size DNFs,

while the communication lower bound holds for polynomial size circuits.

Organization of the Chapter. We define interactive compression games and introduce

notation in the next section. In Section 4.3, we give the proof of our main result, deferring

the discussion of some auxiliary results to the Appendix. Multiparty compression games

are discussed in Section 4.4, followed by applications of our communication lower bounds

to circuits with oracle gates in Section 4.5. A natural example for which interactive com-

pression can be easier than computation is presented in Section 4.6. The round separation

theorem for AC0 games is proved in Section 4.7. Finally, we mention a few open problems

and research directions in Section 4.8.

4.2 Preliminaries and notation

The results of this chapter are essentially self-contained, but some familiarity with ba-

sic notions from complexity theory and communication complexity can be helpful. A good

introduction to these areas can be found in [19] and [128], respectively.

Basic definitions. We use Majorityn to denote the Boolean function over n variables

Chapter 4. Majority is incompressible by AC0[p] circuits 59

that is 1 if and only if
∑

i xi ≥ n/2. For a prime p, we let MODnp be the Boolean func-

tion over n variables that is 1 if and only if p divides
∑

i xi. We let Parityn
def
= ¬MODn2 .

A function h : {0, 1}n → {0, 1} is symmetric if there exists a function φ : [n] → {0, 1}

such that h(x) = φ(
∑

i xi), for every x ∈ {0, 1}n. Clearly, Majorityn and MODnp are sym-

metric functions. We say that a Boolean function f ε-approximates a Boolean function

g over a distribution D if Prx∼D[f(x) 6= g(x)] ≤ ε. An ε-error probabilistic polynomial

Q(x1, . . . , xn) ∈ Fp[x1, . . . , xn] for a Boolean function f : {0, 1}n → {0, 1} is a distribution

E over polynomials such that, for every x ∈ {0, 1}n, PrQ∼E [f(x) 6= Q(x)] ≤ ε. The degree

of a probabilistic polynomial is the maximum degree over the polynomials on which E is

supported. We say that functions f : {0, 1}n → {0, 1} and g : {0, 1}n → {0, 1} are disjoint if

f−1(1)∩g−1(1) = ∅. We will use p and q throughout this chapter to denote prime numbers,

unless noted otherwise.

Languages and circuit classes. We will use C to denote a circuit class, such as AC0

and AC0[p]. Unless stated otherwise, assume that any circuit class discussed in this chap-

ter contains AND, OR, and NOT gates of unbounded fan-in. Our results hold with more

general circuit classes, but we stick with this definition for simplicity. The size of a circuit

corresponds to the total number of gates in the circuit. We use Cd(s(n)) to denote the same

class restricted to circuits of depth d and size O(s(n)). For instance, we abuse notation and

write AC0
d[p](poly(n)) to denote the set of languages decided by polynomial size circuits of

depth at most d consisting of unbounded fan-in AND, OR, NOT and MODp gates, for a

fixed prime p ∈ N. As a convention, if we write C without a depth and size specialization,

assume that it consists of constant depth polynomial size circuits with gates from C. As

usual, we will identify C both as a set of languages, and as a class of circuits, depending on

the context. Furthermore, if C is a fixed circuit, we may also use C to refer to the Boolean

function computed by this circuit. The correct meaning will always be clear in both cases.

Deterministic compression games. Given a circuit class C and a language L, we define

a communication game between two players Alice and Bob. The goal is to decide whether

a given string x ∈ {0, 1}n belongs to L. We describe this game informally as follows. Alice

knows x, but her computational power is limited to functions computed by circuits from C.

Chapter 4. Majority is incompressible by AC0[p] circuits 60

On the other hand, Bob can perform arbitrary computations, but has no information about

x during the beginning of the game. The players exchange messages during the execution

of the protocol, and at the end should be able to decide whether x ∈ L. The goal is to

compute the initial function correctly while minimizing the total number of bits sent by

Alice during the game.

Formally, a C-bounded protocol Πn = 〈C(1), . . . , C(r), f (1), . . . , f (r−1), En〉 with r =

r(n) rounds consists of a sequence of C-circuits for Alice, a strategy for Bob, given by

functions f (1), . . . , f (r−1), and a set of accepting transcripts En. We associate to every

protocol Πn its signature signature(Πn) = (n, s1, t1, . . . , tr−1, sr), which is the sequence

corresponding to the input size n = |x| and the length of the messages exchanged by Alice

and Bob during the execution of the protocol. For convenience, let s =
∑

i∈[r] si, and

t =
∑

i∈[r−1] ti. We always have En ⊆ {0, 1}t+s. In addition, we let rounds(Πn)
def
= r. For

every i ∈ [r],

C(i) : {0, 1}n+
∑
j<i(sj+tj) → {0, 1}si ,

and for every i ∈ [r − 1],

f (i) : {0, 1}
∑
j≤i sj → {0, 1}ti .

In other words, before the beginning of the i-th round, Alice has sent messages a(i), . . . , a(i−1)

of size s1, . . . , si−1, respectively, and Bob has replied with messages b(1), . . . , b(i−1) of size

t1, . . . , ti−1, respectively. Continuing the interaction, the next message sent by Alice is

given by a(i) def
= C(i)(x, a(1), b(1), . . . , a(i−1), b(i−1)). On the other hand, since Bob has

unlimited computational power, its message during the i-th round is given simply by

b(i)
def
= f (i)(a(1), . . . , a(i)). The transcript of Πn on x ∈ {0, 1}n is the sequence of mes-

sages exchanged by Alice and Bob during the execution of the protocol on x, and will be

denoted by transcriptΠn(x)
def
= 〈a(1), b(1), . . . , a(r)〉 ∈ {0, 1}s+t. We say that Πn solves the

compression game of a function hn : {0, 1}n → {0, 1} if

h(x) = 1 ⇐⇒ transcriptΠn(x) ∈ En.

Finally, we let cost(Πn)
def
= s. We stress that the length of the messages sent by Bob does

not contribute to the cost of the protocol, and we assume for convenience that the length

of these messages are limited by the size of the circuits in C. Observe that a single-round

Chapter 4. Majority is incompressible by AC0[p] circuits 61

game consists of a protocol Πn with signature(Πn) = (n, s1). Put another way, Alice sends

a single message a(1) ∈ {0, 1}s1 , and a decision is made.

Given a language L and a circuit class C, we say that a sequence of C-bounded protocols

Π = {Πn}n∈N solves the compression game of L with cost c(n) and r(n) rounds if, for every

n, Πn solves the compression game of Ln, and in addition satisfies cost(Πn) ≤ c(n) and

rounds(Πn) ≤ r(n).

Observe that if L ∈ C then Alice can compute L(x) by herself, and there is a trivial

protocol of cost c(n) = 1 for L. On the other hand, for every language L there exists a

protocol solving its compression game with cost c(n) ≤ n, since Alice can simply send her

whole input to Bob.

Probabilistic and average-case compression games. The definition presented be-

fore captures deterministic games computing a function correctly on every input x. Our

framework can be extended naturally to probabilistic and average-case games.

First, in a probabilistic C-compression game, Alice is allowed to use randomness when

computing her next message, while Bob’s strategy remains deterministic. Formally, each

circuit C(i) has an additional input of uniformly distributed bits, and different circuits have

access to independent bits. Clearly, on any x ∈ {0, 1}n, TranscriptΠn(x) is now a random

variable distributed over {0, 1}s+t. The other definitions remain the same. We say that Πn

solves the compression game of a function hn : {0, 1}n → {0, 1} with error probability at

most γ(n) ∈ [0, 1] if, for every x ∈ {0, 1}n,

hn(x) = 1 =⇒ Pr
Πn

[TranscriptΠn(x) ∈ En] ≥ 1− γ(n), and if

hn(x) = 0 =⇒ Pr
Πn

[TranscriptΠn(x) ∈ En] ≤ γ(n).

On the other hand, in a average-case C-compression game, we have deterministic games

as defined before, but allow a small error during the computation of hn with respect to the

uniform distribution over {0, 1}n. More precisely, we say that a deterministic protocol Πn

solves the compression game of hn with error at most γ(n) ∈ [0, 1] if

Pr
x∼{0,1}n

[hn(x) = 1⇐⇒ transcriptΠn(x) ∈ En] ≥ 1− γ(n).

These definitions are extended to languages in the natural way. Since in this work all circuit

Chapter 4. Majority is incompressible by AC0[p] circuits 62

classes are non-uniform, any probabilistic protocol for a language L with error at most γ(n)

can be converted into an average-case protocol with error at most γ(n) (simply by fixing

the randomness of Alice in order to minimize the error probability over {0, 1}n).

Interacting with several Bobs. We discuss here a more general family of multi-party

compression games that allow Alice to interact with multiple Bobs during a single round

of the game. The different Bobs are not allowed to communicate with each other, only

with Alice. The definition of round complexity for such games is slightly different than

for standard 2-party compression games. The reason is as follows. For 2-party games,

we can assume that the game concludes with a message to Bob, as Bob is all-powerful

and can determine the result of the protocol from the final message. In the case of multi-

party games, this assumption isn’t well motivated, as no individual Bob might have access

to all the information about the protocol. It makes more sense to say the game for a

Boolean function h concludes with Alice computing whether h(x) = 1, where x is her input.

Thus, a 1-round game will consist of Alice sending messages to the various Bobs, the Bobs

responding, and finally Alice computing the answer. This naturally extends to a definition

of r-round games.

We will also measure the cost of a protocol somewhat differently. We will again count

only the communication from Alice to Bob, but the cost of a protocol will not be the sum

of the lengths of all messages sent by Alice. Instead, we will define the cost of a round

to be the maximum length of a message sent by Alice to some Bob, and then the cost of

the protocol to be the sum of the costs over all rounds. This definition of protocol cost is

motivated by the connection of our model with lower bounds on oracle circuits, which we

elaborate later. A formal definition is presented below.

Let C be a circuit class, and k = k(n), r = r(n) be arbitrary functions. A C-bounded

(k + 1)-party protocol

Π[k]
n = 〈D(1,1), . . . , D(1,k);D(2,1), . . . , D(2,k); . . . ;D(r+1,1),

g(1,1), . . . , g(r,1); g(1,2), . . . , g(r,2); . . . ; g(1,k), . . . , g(r,k)〉

with r rounds consists of a sequence of C-circuits for Alice, and strategies for each Bobi, given

by g(1,i) . . . g(r,i). We associate to every k-party protocol Π
[k]
n its signature signature(Π

[k]
n) =

Chapter 4. Majority is incompressible by AC0[p] circuits 63

(n, s1, t1, . . . sr, tr), where for each j ∈ [r], i ∈ [k], sj is the maximum length of a message

sent by Alice to any Bobi during the j-th round, and tj is the maximum length of a message

sent by any Bobi to Alice during the j-th round. For every i ∈ [r], j ∈ [k], D(i,j) maps the

sequence of the input x, all messages sent to Alice before the i-th round and all of Alice’s

messages before the i-th round to Alice’s message in the j-th round to Bobj . D
(r+1,1) maps

the sequence of x and all messages sent during the protocol to a single bit. For every

i ∈ [r], j ∈ [k], g(i,j) maps the sequence of all Alice’s messages to Bobj from the first to

the i-th round to Bobj ’s message to Alice in the i-th round. We say that Π
[k]
n solves the

compression game for a function hn on n bits if D(r+1,1) outputs 1 on x if and only if

hn(x) = 1.

Finally, we let cost(Π
[k]
n)

def
= s, where s =

∑
i∈[r] si. We assume for convenience that

the number of parties is always limited by the size of the circuits used by Alice. These

definitions extend to languages, probabilistic games, and average-case games in the natural

way.

4.3 The communication cost of AC0[p]-compression games

We start with a construction of single-round compression games for an arbitrary sym-

metric function.

Lemma 4.3.1. Let f : {0, 1}n → {0, 1} be an arbitrary symmetric function. Then, for every

1 ≤ d(n) ≤ log n/ log logn, the function f admits a single-round AC0
d(poly(n))-compression

game with communication

cd(n) = O

(
(d− 1)! · n ·

(
log logn

log n

)d−1
)
.

In particular, for every fixed integer d ≥ 1, we have cd(n) = O
(
n/(log n)(d−1)−o(1)

)
.

Proof. Let f be a symmetric function that receives as input an n-bit string x ∈ {0, 1}[n].

We sketch the construction of depth-d circuits for the corresponding compression games.

Observe that any integer n ∈ N can be represented with at most dlog(n + 1)e bits. For

simplicity, we will approximate these values by log n. This will be compensated by the use

of asymptotic notation in the final bounds.

Chapter 4. Majority is incompressible by AC0[p] circuits 64

Observe that for d = 1 the result is obvious, since Alice can simply send x to Bob.

For every d ≥ 2, we design an AC0
d(poly(n)) circuit that, on a given input x, outputs md

def
=

(d−2)! ·n · (log log n)d−2/(log n)d−1 binary strings a1
d, . . . , a

md
d of size sd

def
= (d−1) · log log n,

which together encode the number of 1’s in x. More precisely, |x|1 =
∑md

i=1 dec(a
i
d), where

dec(a) denotes the integer encoded by the binary string a. Therefore, it is enough that Alice

communicates in a single-round at most md · sd bits to Bob, which is then able to compute

the original value f(x). This last step relies on the assumption that f is a symmetric

function.

First, we give a depth-2 circuit with these properties. Partition the n input bits into

m2 = n/ log n blocks of size t = log n. In other words, let [n] = B1∪̇ . . . ∪̇Bm2 , where

|Bi| = t. For each block Bi, there exists CNFs φi1, . . . , φ
i
log logn of size O(n) that compute

the string ai2 ∈ {0, 1}log logn = {0, 1}s2 corresponding to the number of 1’s in xBi ∈ {0, 1}Bi

(the projection of x to Bi). A small formula of this form exists because the number of input

bits is log n. Together with the previous discussion, this completes the proof for d = 2.

Now fix an arbitrary d > 2. We will construct the corresponding AC0
d circuit by

induction. It will be clear from the description that its final size is a polynomial whose

leading exponent does not depend on d. Assume that there is a depth d− 1 circuit C that

outputs md−1 strings a1
d−1, . . . , a

md−1

d−1 , as described before, on any given input x ∈ {0, 1}n.

Assume also that its top gates are AND gates. This is without loss of generality, given the

argument we use below.

Recall that aid−1 ∈ {0, 1}sd−1 . We partition these strings into md sets, each containing

t
def
= md−1/md = log n/((d − 2) · log log n) ≥ 1 strings, given our upper bound on d. More

precisely, we have [md−1] = T1∪̇ . . . ∪̇Tmd , where |Ti| = t. For convenience, let Ai = {ajd−1 |

j ∈ Ti}. For any ajd−1, we have dec(ajd−1) ≤ 2sd−1 = (log n)d−2. Consequently,

∑
j∈Ai

dec(ajd−1) ≤ |Ai| · (log n)d−2 = t · (log n)d−2 ≤ (log n)d−1.

In particular, this sum can be represented with sd = (d−1) · log log n bits. Observe that the

strings in Ai have, together, t · sd−1 = log n bits. Therefore, there exists DNFs ψi1, . . . , ψ
i
sd

of size O(n) that compute the sum of the strings in Ai, which we represent as a string

aid ∈ {0, 1}sd . Since this is the case for every i ∈ [md], we obtain circuits ψi ◦ C computing

Chapter 4. Majority is incompressible by AC0[p] circuits 65

each string aid. Finally, notice that the top three layers of ψij ◦ C can be collapsed into a

depth-2 circuit, which gives us an AC0
d circuit for the same function. This completes the

proof of Lemma 4.3.1.

Notice that this upper bound comes from a very restricted class of compression games,

as there is no continuing interaction with Bob. A simpler and more efficient construction

can be obtained for the MODq functions, as for them there is no need to keep track of the

exact number of 1s in the original input.

As observed by [45], any compression game for Majority2n can be used to solve the

compression game for Parityn, with some overhead. In general, the same argument provides

the following connection, which implies that in order to prove lower bounds for Majority, it

is sufficient to get lower bounds for MODq.

Proposition 4.3.2. Let h : {0, 1}n → {0, 1} be an arbitrary symmetric function, C be a

circuit class, and d ≥ 1. Assume that the Cd(poly(n))-compression game for Majorityn can

be solved with cost c(n) in r(n) rounds. Then the Cd+O(1)(poly(n))-compression game for h

can be solved with cost ch(n) = O(c(2n) · log n) in rh(n) = O(r(2n) · log n) rounds.

Proof. Let ΠMaj
2n be a protocol for Majority2n. We sketch the construction of a protocol Πh

n

for h. The idea is to run ΠMaj
2n about log n times in order to obtain the hamming weight |x|1

of x ∈ {0, 1}n, the input given to Alice in the compression game for h.

In order to achieve this, Alice runs ΠMaj
2n on appropriate inputs of the form y =

x1k0n−k ∈ {0, 1}2n, where a different k is used during each stage of Πh
n. Here a stage

is simply a complete execution of ΠMaj
2n , and Alice performs a binary search with at most

O(log n) stages to obtain |x|1. Although we have defined protocols with an implicit set E

of accepting transcripts, observe that with an extra round we can ensure that Bob sends

the correct output Majority2n(y) to Alice.

Finally, it is enough to verify that each string y can be computed by constant-depth

polynomial size circuits. However, since there are no more than O(log n) stages, and since

Bob sends one bit at each stage, each string y is a function of at most O(log n) bits, and

can certainly be computed by depth-two polynomial size circuits.

Chapter 4. Majority is incompressible by AC0[p] circuits 66

For our main theorem, we will need the following result, whose proof is discussed in

more detail in Section 4.9.

Proposition 4.3.3 ([157, 177], folklore). Let p, q ≥ 2 be distinct primes. There exist

fixed constants ζ > 0 and n0 ∈ N for which the following holds. For every n ≥ n0 and

ε(n) ∈ [2−n, 1/10q], any polynomial P ∈ Fp[x1, . . . , xn] that ε-approximates the MODnq

function with respect to the uniform distribution has degree at least ζ ·
√
n · log(1/ε).

Interestingly, our argument relies on a crucial way on the approximation of Boolean

circuits by polynomials with exponentially small error. For convenience of the reader, we

include the proof of the next result in Section 4.9.

Proposition 4.3.4 ([157, 177, 123]). Let p be a fixed prime. There exists a constant

α = α(p) ∈ N such that, for every δ ∈ (0, 1/2) and d(n) ≥ 1, any AC0
d[p](s(n)) circuit C

admits a δ-error probabilistic polynomial Q(x1, . . . , xn) ∈ Fp[x1, . . . , xn] of degree at most

(α · log s)d−1 · log(1/δ). In particular, it follows that for any distribution D over {0, 1}n, C is

δ-approximated with respect to D by a polynomial of degree at most (α · log s)d−1 · log(1/δ).

The next proposition is a minor extension of a result implicit in [45]. It allows us to

transform an interactive compression protocol for a function into a certain Boolean circuit

that computes the same function.

Proposition 4.3.5. Let c : N → N be a function such that c(n) ≤ n, s : N → N be a

function with s(n) = Ω(n), γ : N → [0, 1/2), L be a language, and C be a circuit class. If

there exists an average-case Cd(poly(n))-compression game for L with cost c(n) and error

probability γ(n) with respect to the uniform distribution over {0, 1}n, then there exist circuits

C1, . . . , CT from Cd+O(1)(poly(n)), where T ≤ 2c(n), such that

Pr
x∼{0,1}n

[L(x) 6=
∨
i∈[T]

Ci(x)] ≤ γ(n).

Furthermore, these circuits are disjoint: C−1
i (1) ∩ C−1

j (1) = ∅ for every pair i, j ∈ [T] with

i 6= j.

Proof. Let Πn = 〈C(1), . . . , C(r), f (1), . . . , f (r−1), En〉 be an average-case protocol for Ln with

r(n) rounds and error probability γ(n). Observe that Πn solves the C-compression game of

Chapter 4. Majority is incompressible by AC0[p] circuits 67

some function hn : {0, 1}n → {0, 1}, and that hn is γ(n)-close to Ln. Recall that Πn has a

signature signature(Πn) = (n, s1, t1, . . . , tr−1, sr). For convenience, let t
def
=
∑

i∈[r−1] ti, and

s
def
= c(n) =

∑
i∈[r] si.

Given a string w ∈ {0, 1}s+t, we write w = (w(A,1), w(B,1), . . . , w(B,r−1), w(A,r)) as a

concatenation of strings whose sizes respect the signature of Πn. In other words, |w(A,i)| = si

and |w(B,j)| = ti, for all i ∈ [r] and j ∈ [r−1]. We say that w is Alice-consistent on an input

x if, for every i ∈ [r], w(A,i) = C(i)(x,w(A,1), w(B,1), . . . , w(B,i−1)). On the other hand, we say

that w is Bob-consistent if, for every j ∈ [r−1], w(B,j) = f (j)(w(A,1), . . . , w(A,j−1)). Observe

that whether a string w is Bob-consistent or not does not depend on x. Let Bn ⊆ {0, 1}t+s

denote the set of Bob-consistent strings. For convenience, set Wn
def
= En ∩Bn.

We claim that h(x) = 1 if and only if there exists a string w ∈ Wn that is Alice-

consistent on x. One direction is clear, since if h(x) = 1 then transcriptΠn(x) ∈ En, and this

string is both Bob-consistent and Alice-consistent on x. On the other hand, assume there

exists w ∈ {0, 1}s+t that is Bob-consistent and Alice-consistent on x. An easy induction

on the number of rounds of the protocol shows that w = transcriptΠn(x). Furthermore, if

w ∈Wn then w ∈ En, and it must be the case that h(x) = 1, since Πn is a protocol for hn.

Observe that this argument also shows that if h(x) = 1 then there is a unique w ∈Wn that

serves as a certificate for x.

Notice that there are at most 2c(n) Bob-consistent strings. This is because for every

string wA = (w(A,1), w(A,2), . . . , w(A,r)) ∈ {0, 1}s, there exists a unique completion of wA by

a string w ∈ {0, 1}s+t that is Bob-consistent. In particular, |Wn| ≤ 2c(n).

For every fixed w ∈Wn, we claim that there exists a circuit Cw(x) from Cd+O(1)(poly(n))

that checks if w is Alice-consistent on x. Recall that for every i ∈ [r], C(i) is a circuit from

Cd(poly(n)). Therefore, we can check in parallel whether

w(A,i) = C(i)(w(A,1), w(B,1), . . . , w(B,i−1)),

for all i ∈ [r], using just a constant number of additional layers, since we assume throughout

that C has unbounded fan-in AND and OR gates. which proves the claim. It follows that

h(x) =
∨

w∈Wn

Cw(x),

Chapter 4. Majority is incompressible by AC0[p] circuits 68

for every x ∈ {0, 1}n. In addition, Cw1 and Cw2 are disjoint whenever w1 6= w2, since

exactly one w ∈ Wn is Alice-consistent on x. Finally, recall that hn is γ(n)-close to Ln,

which completes the proof of Proposition 4.3.5.

Proposition 4.3.5 implies that in order to prove communication lower bounds for inter-

active compression games, it is enough to prove circuit lower bounds of a particular form.

We obtain the following result.

Lemma 4.3.6. Let p and q be distinct primes, γ : N → (0, 1) be an arbitrary function,

k ∈ N, and d = d(n) ∈ N. Assume that

Pr
x∼{0,1}n

[MODnq (x) 6=
∨

i∈[T (n)]

Ci(x)] ≤ γ(n),

where each Ci is computed by an AC0
d[p](n

k) circuit, and Ci and Cj are disjoint whenever

i 6= j. Then, the following holds.

(i) log T (n) ≥
√
n/(log n)d+O(1) if γ(n) ≤ 1/20q;

(ii) log T (n) ≥ n/(log n)2d+O(1) in the case of an exact compression game (i.e., γ = 0).

Proof. We employ the polynomial approximation method, i.e., we show that if MODnq admits

a circuit of this form, then it can be approximated by a polynomial Q whose degree is upper

bounded by a function depending on T . We then invoke Proposition 4.3.3 in order to obtain

a lower bound on T . More details follow.

First, Proposition 4.3.4 guarantees that for any δ > 0, each circuit Ci can be δ-

approximated under the uniform distribution by a polynomial Qi ∈ Fp[x1, . . . , xn] of degree

at most (` · log n)d · log(1/δ), where ` is a fixed positive constant. We let δ
def
= ε/T , where

ε = ε(n) will be set conveniently later in the proof. Now let

Q(x)
def
=
∑
i∈[T]

Qi(x).

We claim that Q ∈ Fp[x1, . . . , xn] is a polynomial that (ε + γ)-approximates MODnq under

the uniform distribution. Clearly,

Pr
x∼{0,1}n

[MODnq (x) 6= Q(x)] ≤ Pr
[
MODnq (x) 6=

∨
i∈[T (n)]

Ci(x)
]

+ Pr
[∨
i∈[T (n)]

Ci(x) 6= Q(x)
]

≤ γ +
(

1− Pr
[∨
i∈[T (n)]

Ci(x) = Q(x)
])
.

Chapter 4. Majority is incompressible by AC0[p] circuits 69

For each i ∈ [T], let Si
def
= {x ∈ {0, 1}n | Qi(x) 6= Ci(x)} be the set of bad inputs for Qi,

and set S
def
=
⋃
i∈[T] Si. In order to complete the proof of our claim, we argue next that for

every y /∈ S, Q(y) =
∨
i∈[T (n)]Ci(y).

First, if
∨
i∈[T (n)]Ci(y) = 0, then Qi(y) = 0 for every i ∈ [T], and we get Q(y) = 0. On

the other hand, if
∨
i∈[T (n)]Ci(y) = 1, using the disjointness assumption for the family of

circuits, it follows that there is exactly one circuit with Ci(y) = 1. Since y /∈ S, we get that

Qi(y) = 1, while Qj(y) = 0 for every j 6= i. Consequently, we have Q(y) = 1. (Observe that

the extra assumption over the family of circuits is crucial for this case, since the original

circuits produce Boolean values, while Q is an Fp-polynomial.) Overall, it follows that

Pr[
∨
i∈[T (n)]Ci(x) = Q(x)] ≥ (2n−|S|) ·2−n ≥ 1−T · δ = 1− ε, which establishes our initial

claim.

Therefore, for every ε(n) > 0, there exists a polynomial Q ∈ Fp[x1, . . . , xn] that (ε+γ)-

approximates the MODnq function over the uniform distribution, where

deg(Q) ≤ ((` · log n)d · log(1/δ)) ≤ (` · log n)d · (log T + log(1/ε)). (4.1)

On the other hand, we obtain from Proposition 4.3.3 that for every ε(n) ∈ [2−n, 1/10q], and

every large enough n,

ζ ·
√
n · log(1/(ε+ γ)) ≤ deg(Q). (4.2)

Our result follows by combining Equations 4.1 and 4.2. Observe that we are free to

set ε(n) in order to maximize our lower bound on T , depending on the value of γ. If

0 < γ ≤ 1/20q, the first case of Lemma 4.3.6 follows if we let ε = 1/20q. On the other

hand, when γ = 0, we get that

log T (n) ≥
ζ ·
√
n · log(1/ε)− log(1/ε) · (` · log n)d

(` · log n)d
,

and the second case of Lemma 4.3.6 now follows by setting ε = exp(−Θ(n/ log2d n)).

We are now ready to prove an essentially optimal communication lower bound for

AC0
d[p]-compression games for Majority.

Theorem 4.3.7. Let p be a prime number. There exists a constant c ∈ N such that, for

any d ∈ N, and every n ∈ N sufficiently large, the following holds.

Chapter 4. Majority is incompressible by AC0[p] circuits 70

(i) Any AC0
d[p]-compression game for Majorityn (with any number of rounds) has commu-

nication cost at least n/(log n)2d+c.

(ii) There exists a single-round AC0
d-compression game for Majorityn with communication

cost at most n/(log n)d−c.

Proof. The lower bound follows immediately from Proposition 4.3.2, Proposition 4.3.5, and

Lemma 4.3.6 (ii). The upper bound is given by Lemma 4.3.1.

For randomized compression games, we are able to generalize the lower bound for

single-round protocols obtained by Chattopadhyay and Santhanam [45] to protocols with

any number of rounds.

Theorem 4.3.8. Let p and q be distinct primes. There exists a constant c ∈ N such that,

for any d ∈ N, and n ∈ N sufficiently large, every randomized AC0
d[p]-compression game for

MODnq with any number of rounds and error at most 1/3 has communication cost at least
√
n/(log n)d+c.

Proof. If there exists a randomized compression protocol with these properties, we can

boost its success probability to 1− 1/20q on every input by repeating it a constant number

of times, and applying a majority vote. Observe that the communication increases by a

constant factor only, and that the majority vote can be computed efficiently, as it is over

a constant number of bits. Since any randomized protocol with this success probability

provides an average-case protocol that is correct on at least a (1 − 1/20q)-fraction of the

inputs under the uniform distribution, the result follows from Proposition 4.3.5 and Lemma

4.3.6 (i).

We stress that the results in Theorems 4.3.7 and 4.3.8 hold both for Majority and

MODq, but we restricted each statement to a particular function for simplicity. In order to

see this, first notice that the proof of Theorem 4.3.7 includes the argument for MODq. On

the other hand, in order to extend Theorem 4.3.8 to Majority, we can employ a reduction

through Proposition 4.3.2. A subtle point is that for probabilistic protocols one has to make

sure that the final error probability after the reduction is bounded. However, this can be

Chapter 4. Majority is incompressible by AC0[p] circuits 71

achieved during the proof by boosting the correctness probability of the initial protocol for

Majority via repetition.

The proof of Theorem 4.3.7 can be generalized to an essentially optimal bound for

AC0
d[p](s(n))-compression games computing MODnq . The argument implies that this function

has communication cost n/(log s)Θ(d). Observe that the original circuit size lower bounds

obtained by Razborov [157] and Smolensky [177] follows from the analysis of communication

protocols for Majority and MODq with constant communication cost. Interestingly, the

polynomial method interpolates between essentially optimal communication lower bounds

and circuit size lower bounds when applied with exponentially small error and constant

error, respectively.

4.4 Multiparty interactive compression

The communication cost of k-party AC0[p]-compression games. We will prove in

this section that Majorityn requires Ω̃(n1/2r) communication in the (k + 1)-party r-round

AC0[p]-compression game, for any k = poly(n). Put another way, although Alice is allowed

to send roughly n1/2r bits to each individual Bob, even if n100 such parties are present, she

will not be able to combine their answers in order to compute Majorityn.

We start with the following upper bound, which can be seen as the corresponding

analogue of Lemma 4.3.1.

Lemma 4.4.1. Let f : {0, 1}n → {0, 1} be an arbitrary symmetric function, and p be any

prime. For any r ∈ N, f admits an (dn1/re+ 1)-party r-round AC0-compression game with

cost O(rn1/r log(n)).

Proof. We set up some notation first. Given n and r, let Tn,r be the complete dn1/re-ary

tree of depth r. We assume the leaves of Tn,r to be ordered from left to right. Given an

input x of length n, label the leaves of Tn,r with bits of x in the natural way: the leftmost

leaf is labelled with the first bit of x, the second to leftmost with the second bit, etc. Note

that some leaves may remain unlabelled in this process.

Let Vd be the set of nodes at depth d in this tree, where 0 ≤ d ≤ r. The protocol

will proceed with Alice iteratively labelling nodes in the tree with numbers in [n], each

Chapter 4. Majority is incompressible by AC0[p] circuits 72

node being labelled with the sum of all the leaves in the subtree rooted at the node. Any

unlabelled leaf is assumed to have label 0. After round i, where 0 ≤ i ≤ r, all nodes at

depth r − i or greater will be labelled. Once the root is labelled, Alice can compute f(x)

by herself, as f(x) is purely a function of the label at the root (which is the weight of the

input x), and any function of O(log n) bits can be computed in AC0
2.

We assume inductively that after round i, all nodes at depth r− i or greater have been

labelled. The base case i = 0 clearly holds, as Alice can label the leaves herself. Assume

that the inductive hypothesis holds after round i, where 0 ≤ i < r. We show it holds

after round i+ 1. In round i+ 1, Alice arbitrarily associates a unique Bob with each node

v ∈ Vr−i−1. This can be done as long as the number of parties is greater than dn1/re, as

assumed. We denote the Bob associated with v by Bob(v). For each v, Alice sends to

Bob(v) the sequence of labels of the children of v. Note that by the inductive assumption,

the children of v have already been labelled. For each v, Bob(v) responds with the sum of

all the integer labels sent by Alice to Bob(v) in the (i+ 1)-th round.

This is clearly a correct protocol. In any one round, Alice sends at most dn1/re·dlog(n+

1)e bits to any Bob, as the number of children of any node in the tree is at most dn1/re,

and each labelled node has a label in [n]. Thus, the cost of the protocol is O(rn1/r log n),

as claimed.

Our lower bound is also based on algebraic arguments, but it employs a slightly different

approach to that in the previous section. In particular, it does not rely on Proposition 4.3.5.

We will need the following result.

Proposition 4.4.2 ([157]). Let p be a fixed prime, and P (x1, . . . , xn) ∈ Fp[x1, . . . , xn] be a

degree-` polynomial. Then,

Pr
x∼{0,1}n

[Majorityn(x) = P (x)] ≤ 1/2 +O(`/
√
n).

The next lemma allows us to construct low-degree probabilistic polynomials from mul-

tiparty compression games.

Lemma 4.4.3. Let Φ
[k]
n be a randomized (k+1)-party r-round AC0

d[p](poly(n))-compression

protocol with signature (n, s1, t1, . . . , sr, tr) computing a Boolean function h : {0, 1}n →

Chapter 4. Majority is incompressible by AC0[p] circuits 73

{0, 1} with error γ, where si ≤ n for each i ∈ [r], and r ∈ N. Then, for every δ > 0, h ad-

mits a (γ+ δ)-error probabilistic polynomial over Fp with degree O
(
(
∑

i∈[r] si)
r · ((log n)d+r ·

(log 1/δ))r+1
)
.

Proof. We start with a proof of the lemma for r = 1 and deterministic protocols that are

always correct, then observe that the same proof can be generalized to randomized r-round

protocols.

Suppose Φ
[k]
n is a (k + 1)-party 1-round AC0

d[p](poly(n))-compression protocol with

signature (n, s1, t1) for a Boolean function h on inputs x of n bits. For each i ∈ [k], let

ai1 . . . a
i
ni be the message bits sent by Alice to Bobi in the first round, and let bi1 . . . b

i
mi be

Bobi’s response. Let a be the bit output by Alice at the conclusion of the protocol. By the

definition of signature, we have that for each i ∈ [k], ni ≤ s1 and mi ≤ t1. We also have

that a = 1 if and only if h(x) = 1.

Each of the message bits sent by Alice in the first round is a function of x, and since

Alice is AC0
d[p](poly(n))-bounded, we can use Proposition 4.3.4 to obtain ε-error probabilistic

polynomials P ij ∈ Fp[x1, . . . , xn], where i ∈ [k], j ∈ [ni], for each of these message bits. The

degree of each polynomial is at most d1 = O((log n)d−1 · log 1/ε), where ε > 0 is a parameter

to be determined later. Since each message bit of each Bobi is a function of the message

bits sent by Alice to Bobi, we can express each bit bij of Bobi as an exact polynomial Qij in

the message bits of Alice. Notice that each such polynomial has degree at most s1. Now,

again by Proposition 4.3.4, there is an ε-error probabilistic polynomial P of degree at most

d2 = O((log n)d−1 · log 1/ε) for a as a function of x, the message bits sent by Alice in the

first round, and the message bits sent by each Bob in the first round.

If we set ε = δ/(s1 · k + 1), by using the union bound, we have that

P ′
def
= P (x, P 1

1 (x), . . . , P knk(x), Q1
1(P 1

1 (x), . . . , P 1
n1

(x)), . . . , Qkmk(P k1 (x), . . . , P knk(x)))

is a δ-error probabilistic polynomial for h as a function of x. The degree of P ′ is at most

d1 · s1 · d2 = O(s1 · ((log n)d · log 1/δ)2), where we have used that log 1/ε = O(log n · log 1/δ)

due to the upper bound on s1 and k ≤ poly(n). This completes the proof for (deterministic)

single-round protocols.

The proof for deterministic protocols with r ≥ 2 rounds is by induction on the number

Chapter 4. Majority is incompressible by AC0[p] circuits 74

of rounds. Let Φ
[k]
n be a (k + 1)-party r-round AC0

d[p](poly(n))-compression protocol with

signature (n, s1, t1, . . . , sr, tr) for a Boolean function h. Observe that during the last round

of the protocol, each Bob` receives a message containing at most s
def
=
∑

i∈[r] si bits (recall

that Bob` has access to the messages he received from Alice in previous rounds, and to

no other message). We can view each bit a`j of each such message as a Boolean function

computed by a (k + 1)-party (r − 1)-round protocol, where ` ∈ [k], and j ≤ s. It follows

from the induction hypothesis that there is a probabilistic polynomial P `j ∈ Fp[z1, . . . , zs′]

for an appropriate s′ ≤ s of degree at most

d1 ≤ O
(
sr−1 · ((log n)d+(r−1) · (log 1/ε))r

)
that ε-approximates a`j , where ε > 0 will be set conveniently later in the proof.1 Further,

during the last round of the protocol, each bit b`j sent by Bob` can be computed exactly by

a (deterministic) polynomial Q`j of degree at most s. Finally, the last bit output by Alice

during the execution of Φ
[k]
n is computed by an AC0

d[p] circuit over polynomially many input

bits. According to Proposition 4.3.4, it can be ε-approximated by a probabilistic polynomial

P ∈ Fp[y1, . . . , ypoly(n)] of degree d2 ≤ O((log n)d−1 · log 1/ε).

We now compose these polynomials appropriately, similarly to the base case, in order

to obtain a probabilistic polynomial P ′ ∈ Fp[x1, . . . , xn] that approximates the original

Boolean function h compressed by Φ
[k]
n . If we set ε

def
= δ/(sk + 1) = δ/poly(n), we get via

an union bound that P ′ is a probabilistic polynomial that δ-approximates h. Finally, the

degree of P ′ is upper bounded by

d1 · s · d2 ≤ O
(
sr−1 · ((log n)d+(r−1) · (log 1/ε))r · s · (log n)d−1 · log 1/ε

)
≤ O

(
sr · ((log n)d+r · (log 1/δ))r · (log n)d · log 1/δ

)
≤ O

(
(Σi∈[r]si)

r · ((log n)d+r · (log 1/δ))r+1
)
,

which completes the induction step.

It remains to handle the case of randomized protocols. Observe that for every fixed

setting of the randomness of Alice, we obtain a multiparty compression protocol computing

1Our abuse of the asymptotic notation in this inductive proof is harmless, as we are proving the result

for a fixed number of rounds only.

Chapter 4. Majority is incompressible by AC0[p] circuits 75

some Boolean function hr. We can apply the procedure described above to get a probabilistic

polynomial Pr ∈ Fp[x1, . . . , xn] that agrees with hr on every input x ∈ {0, 1}n except with

probability δ. Since over the choice of r we know that h(x) = hr(x) except with probability

γ, we can obtain from the family of distributions Pr a single distribution over polynomials

of the same degree that agrees with h on every input x except with probability γ+ δ, which

completes the proof.

We now have all ingredients to prove the main result of this section.

Theorem 4.4.4. Let p ∈ N be a fixed prime. For every k, r, d ∈ N, the following holds.

(i) There exists a deterministic n1/r-party r-round AC0[p]-compression game for Majorityn

with cost O(n1/r · log n).

(ii) Every randomized nk-party r-round AC0
d[p]-compression game for Majorityn has cost

Ω
(
n1/2r/(log n)2(d+r)

)
.

Proof. The upper bound follows from Lemma 4.4.1. For the lower bound, assume Π
[k]
n has

signature (n, s1, t1, . . . , sr, tr) and satisfies the assumption of the theorem. Since Π
[k]
n is a

randomized protocol, we can reduce its error probability to 1/20 by running it in parallel

and computing a majority vote during the last round. Observe that the depth of the circuits

used by Alice increases by at most 1 if this computation is performed by an appropriate

DNF or CNF. Setting δ = 1/20 in Lemma 4.4.3 and fixing the randomness, we can obtain

an average-case (deterministic) polynomial for Majorityn of the stated degree and error

1/10 with respect to the uniform distribution. Now applying Proposition 4.4.2 and using

1/δ = O(1), we get that

(s1 + s2 + . . .+ sr)
r · (log n)(d+r)(r+1) ≥ Ω(

√
n),

which completes the proof of the lower bound, since cost(Π
[k]
n) =

∑
i∈[r] si and r ≥ 1.

As opposed to the statement of Theorem 4.3.7, we have not tried to optimize the

logarithmic factors here, since there is still a polynomial gap in the bounds as a function of

r.2

2For instance, in the proof of Lemma 4.4.1, it is possible to break the information passed to each Bob

Chapter 4. Majority is incompressible by AC0[p] circuits 76

Corollary 4.4.5. For any r, `, d ∈ N, the randomized n`-party r-round AC0
d[p]-compression

cost of Majorityn is nΘ(1/r).

In addition, observe that Theorem 4.4.4 implies a round separation result for multiparty

AC0[p]-compression games. In particular, we get the following consequence for single-round

AC0[p] protocols versus protocols with more rounds.

Corollary 4.4.6. For every ε > 0 and ` ∈ N, there exists r ∈ N with r = O(1/ε) for

which the following holds, whenever n is sufficiently large. There exists an explicit function

fn : {0, 1}n → {0, 1} such that : fn admits no randomized n`-party single-round AC0[p]-

compression games with cost n1/2−ε, but it admits deterministic nε-party r-round AC0[p]-

compression games of cost nε.

Randomized versus deterministic games. Note that for two-party games we were able

to obtain almost linear lower bounds for deterministic protocols (Theorem 4.3.7), while for

probabilistic and average-case protocols we encountered a barrier at c(n) ≈
√
n (Theorems

4.3.8 and 4.4.4). We are not aware of explicit lower bounds of the form n1/2+ε for a fixed

ε > 0 for randomized two-party AC0[p] games. It is natural to wonder if we can improve

Theorem 4.4.4 in the case of deterministic k-party games.

We prove next that this is unlikely without the introduction of new ideas to handle

probabilistic protocols. More precisely, we observe that k-party protocols can be derandom-

ized without increasing communication cost. The proof relies on the definition of cost for

such protocols as the length of the longest message sent by Alice to any particular Bob, and

on the fact that we are dealing with non-uniform protocols/circuits. The argument is based

on parallel repetition and composition of k-party protocols with an approximate majority

function. We provide the details next.

We say that a Boolean function hn : {0, 1}n → {0, 1} is an (`1, `2)-approximate majority

if hn(x) = 0 on every x with |x|1 ≤ `1, and hn(x) = 1 on every x with |x|1 ≥ `2.

Proposition 4.4.7 ([6]). There exists a family h = {hn}n∈N of Boolean functions in

AC0
3(poly(n)) for which every hn is an (0.49n, 0.51n)-approximate majority.

into multiple blocks as done in the proof of Lemma 4.3.1, and save an extra (log n)Θ(d) factor during each

round by allowing Alice to make partial progress towards the computation of Majority.

Chapter 4. Majority is incompressible by AC0[p] circuits 77

Theorem 4.4.8. Let C be a circuit class, d ≥ 1, and f = {fn}n∈N be a family of Boolean

functions, where fn : {0, 1}n → {0, 1}. Suppose f admits a k-party probabilistic Cd(poly(n))-

compression game with cost c(n) and error γ(n) ≤ 1/3, where k = O(poly(n)). Then f

admits a k′-party deterministic Cd+O(1)(poly(n))-compression game with the same cost c(n)

and k′ = O(poly(n)).

Proof. By assumption, f has a k-party probabilistic Cd(poly(n))-compression protocol Π

with cost c(n) and error γ(n) ≤ 1/3, where k = O(poly(n)). We define a new probabilistic

protocol for f with the same cost but with k′
def
= `n · k parties and with error γ′(n) < 2−n,

where ` > 0 is a constant which we determine later. We then use Adleman’s trick to fix the

random bits used by Alice, thus making the protocol deterministic.

The new probabilistic protocol Π′ for f simply simulates `n copies of the protocol

Π in parallel. Namely, we interpret the Bobs to be partitioned into `n sets, each of size

k, and Alice independently executes the protocol in parallel for each set of Bobs. Note

that by our definition of cost, the cost for each round of Π′ is the same as the cost for

each round of Π. In the final step of the protocol, Π′ applies the Approximate Majority

function h`n to the answers of Π for the `n parallel executions. Using Proposition 4.4.7,

Alice can be implemented to work in Cd+O(1)(poly(n)). It follows by a standard application

of Proposition 2.0.1 that if we set ` to be a large enough constant, the error probability of

the new protocol Π′ is strictly less than 2−n.

Now, there must exist some setting of the random bits of Alice that yields the correct

answer for every x ∈ {0, 1}n, simply by using the union bound. By fixing the random bits

of Alice accordingly, we derive a deterministic protocol with cost c(n), which completes the

proof.

4.5 The connection with circuits augmented with oracle gates

In this section we observe that lower bounds on interactive compressibility are closely

connected to lower bounds against oracle circuits with arbitrary oracles. We first show such

a connection for 2-party compression games, and then for multiparty compression games.

In order to formalize these connections, we need to define classes of oracle circuits

Chapter 4. Majority is incompressible by AC0[p] circuits 78

corresponding to classes of Boolean circuits. Such a definition is especially non-obvious for

bounded-depth circuit classes – should we consider oracle gates when counting the depth

or not? We use a very generous notion of oracle circuits. We say that an oracle circuit

C belongs to the oracle analogue of a Boolean circuit class C if every maximal subcircuit

of C without oracle gates belongs to C. Put another way, every subcircuit induced by a

connected subgraph of the acyclic graph encoding C that does not contain an oracle gate

is a circuit from C. The generosity of this notion only makes the lower bounds we derive

from the connections below stronger.

For the sake of convenience, we abuse notation and occasionally use C to refer both to

a Boolean circuit class and its oracle analogue.

Proposition 4.5.1. Let C be a circuit class. Let C be an oracle circuit over n variables

from C(poly(n)) with oracle gates fi : {0, 1}si → {0, 1}ti, where i ∈ [r], for some r = r(n). In

addition, let s = s1+. . .+sr be the total fan-in of these oracle gates, and h : {0, 1}n → {0, 1}

be the Boolean function computed by C. Then h admits a C(poly(n))-compression game with

communication cost c(n) ≤ s+ 1 consisting of at most r + 1 rounds.

Proof. We describe a protocol for the compression game for h in which Alice sends at most

s+ 1 bits to Bob, and where each of Alice’s messages is computable by a small circuit from

C.

First Alice topologically sorts the circuit C with respect to oracle gates, namely she

constructs a graph G whose nodes are the oracle gates of the circuit, and there is an edge

from a node u to a node v if and only if there is a path from the oracle gate represented by

u to the oracle gate represented by v in the digraph C. The graph G is a DAG, and hence

its vertices can be topologically sorted. Let g1, g2 . . . gr be the topological ordering of the

oracle gates. Alice proceeds inductively as follows. In round i, where i ∈ [r], she computes

all inputs to the gate gi using her input x and previous messages sent by Bob. She then

sends the values of these input bits to Bob, who in turn computes the value of the gate gi

applied to these bits, and sends her the answer. Note that g1 has no predecessors which are

oracle gates, and therefore Alice can compute all the inputs to g1 herself using circuits from

C (which are sub-circuits of C) applied to the input x. Gate gi only has gates g1 . . . gi−1 as

predecessors, and by the definition of the protocol, Alice has already received the values of

Chapter 4. Majority is incompressible by AC0[p] circuits 79

these gates from Bob in previous rounds, hence she can calculate values of inputs to gi from

x and previous messages using circuits from C. In round r+ 1, Alice computes the value of

the circuit C on x and sends it to Bob, thus completing the protocol.

The total number of bits sent by Alice to Bob is the total fan-in of the oracle gates

plus one, i.e., s+ 1, and there are r + 1 rounds in the protocol.

Note that Proposition 4.5.1 only gives useful information when the total fan-in of oracle

gates is sub-linear. We’d like to also show lower bounds on oracle gates where the total

fan-in is not bounded in this way. This is where multiparty compression games, and the

modified notion of protocol cost for such games, come in useful.

We need some more terminology for oracle circuits. An oracle circuit C has r layers

if the oracle gates can be partitioned into r sets such that no two gates within any set are

connected by a path in C. Equivalently, there are at most r oracle gates on any path from

an input of C to the output.

Proposition 4.5.2. Let D be an oracle circuit over n variables from C(poly(n)) augmented

with r layers of oracle gates, where for each i ∈ [r], si is the maximum fan-in of a gate

in the i-th layer, and where there are at most k gates in each layer. Let s =
∑

i∈[r] si. In

addition, let h : {0, 1}n → {0, 1} be the Boolean function computed by D. Then h admits a

(k+1)-party C(poly(n))-compression game with r rounds and communication cost c(n) ≤ s.

Proof. Alice orders the layers of oracle gates topologically, so that there are no paths from

gates in layer i to gates in layer j for i > j. The protocol proceeds with Alice inductively

computing all input bis to oracle gates in the i-th layer, where i ∈ [r], and then delegating

the computations of gates in the i-th layer to the Bobs, a different Bob for each oracle gate.

Since there are at most k gates in each such layer, she can successfully assign a different

Bob to each oracle gate in any specific layer. Alice can compute all inputs to an oracle

gate in the first layer by herself, as all of these can be computed by circuits in C(poly(n)).

In the i-th round, where i ∈ [r], Alice chooses a different Bob for each oracle gate in layer

i, and sends to the corresponding Bob the values of the inputs to the corresponding gate.

She can compute these values using circuits in C, as the output bits of all oracle gates in

layer i − 1 or below are already known to her by the definition of the protocol. The Bob

Chapter 4. Majority is incompressible by AC0[p] circuits 80

corresponding to a gate responds with the output values of that gate. After the r-th round,

Alice computes the output value of the circuit C, and outputs it.

Notice that Alice sends at most si bits to any individual Bob in round i by our as-

sumption on the fan-in of oracle gates in C. Thus the cost of the protocol is s. It is clear

that the protocol operates in r rounds.

Observe that Propositions 4.5.1 and 4.5.2, together with Theorems 4.3.7 and 4.4.4,

imply strong limitations on the progress that AC0[p] circuits can make towards the goal

of computing the Majority function. In particular, a circuit of this form extended with

arbitrary oracle gates can only compute Majorityn if it delegates essentially all the work to

these extra gates. We can formalize this claim as follows.

Corollary 4.5.3. Let p ≥ 2 be prime, and d ∈ N. There exists a constant c ∈ N such that,

for every sufficiently large n, the following holds. If Majorityn is computed by AC0
d[p] circuits

of polynomial size with arbitrary oracle gates, then the total fan-in of the oracle gates is at

least n/(log n)2d+c.

Proof. This result follows immediately from Proposition 4.5.1 and Theorem 4.3.7. The fan-

in lower bound is independent of the number of oracle gates, as Theorem 4.3.7 holds for

protocols with any number of rounds.

This result has an interesting consequence on the structure of AC0[p] circuits computing

Majority. More precisely, Corollary 4.5.3 implies that in any layered circuit computing

Majorityn, at least bn/(log n)O(k)c gates must be present at the k-th layer of the circuit (in

order to see this, transform the circuit into an equivalent circuit with a single oracle gate

at the top after the first k layers). On the other hand, the construction in Lemma 4.3.1

shows that this bound is not far from optimal. A similar consequence holds for polynomial

size circuits computing the MODq function.

Using Proposition 4.5.2 and Theorem 4.4.4, we derive lower bounds on the maximum

fan-in of oracle gates in oracle circuits with a bounded number of such layers computing

Majority. The number of oracle gates is now allowed to be polynomially large.

Chapter 4. Majority is incompressible by AC0[p] circuits 81

Corollary 4.5.4. Let p ≥ 2 be prime, and r, d ∈ N. If Majorityn is computed by an AC0
d[p]

circuit of polynomial size with arbitrary oracle gates that contains at most r layers of such

gates, then there is some oracle gate with fan-in at least n1/2r/polylog(n).

Proposition 4.5.2 suggests an approach to the NP vs. NC1/poly problem. The key

observation is that for any r, every Boolean function in NC1/poly has oracle circuits of

polynomial size with r layers, where the maximum fan-in of any oracle gate is nO(1/r).

Proposition 4.5.5. Let f = {fn}n∈N be a family of Boolean functions in NC1/poly, and

r ∈ N. Then f has AC0 oracle circuits of polynomial size with r layers, where the maximum

fan-in of any oracle gate is nO(1/r).

Proof. Let {Cn}n∈N be a sequence of circuits for f , where each Cn has size at most nk and

depth at most c log n, for fixed constants k and c. We define oracle circuits Dn as follows.

Divide Cn into r equally spaced layers of gates, with the distance between any two layers

being at most (c/r) log n. Replace each node at a layer boundary by an oracle gate whose

inputs are its predecessors on the previous layer boundary. Note that any oracle gate has

at most nc/r inputs, since the circuit has bounded fan-in. There are clearly a polynomially

bounded number of oracle gates. Also, the circuit is an AC0 circuit, since it consists purely

of inputs and oracle gates.

Applying Proposition 4.5.2 yields the following corollary.

Corollary 4.5.6. Let r be any positive integer. Every function in NC1/poly admits poly(n)-

party AC0(poly(n))-compression games with r rounds and cost nO(1/r).

Thus a stronger lower bound than in Corollary 4.5.4 for an explicit function in NP would

imply a separation of NP and NC1/poly. We conjecture that Clique is such a function.

4.6 Interactive compression versus computation

The results of this chapter and in [45] show that two important techniques in circuit

complexity, namely, random restrictions and approximation by low-degree polynomials, can

be used to prove strong incompressibility lower bounds. It is natural to wonder if other

Chapter 4. Majority is incompressible by AC0[p] circuits 82

important lower bounds in complexity theory can be extended in a similar way. A related

problem is whether compression can be easier than exact computation. Our next result

sheds more light into these questions.

Let IPn : {0, 1}n × {0, 1}n → {0, 1} be the Inner Product function. In other words, for

x, y ∈ {0, 1}n, IPn(x, y)
def
=
∑

i∈[n] xi · yi (mod 2). It is known that IPn /∈ THR ◦MAJ, i.e.,

this function cannot be computed by polynomial size circuits consisting of a bottom layer

of linear threshold functions with polynomial weights, connected to a top gate computed

by an arbitrary linear threshold function ([69, 68]).3

We observe below that IPn admits a (MAJ ◦MAJ)-compression game with communi-

cation cost O(log n). In other words, there is a natural Boolean function that cannot be

computed by certain circuits, but whose computation becomes feasible if Alice is allowed

to interact with a more powerful party.

Proposition 4.6.1. Let IP = {IPn}n∈N be the family of Inner Product functions. There

exists a (MAJ ◦MAJ)-compression game for IP with communication cost c(n) = O(log n).

Proof. The protocol consists of O(log n) rounds, where in each round Alice sends a single

bit, and Bob replies with a string v ∈ {0, 1}n. After the last round, Bob knows the sum∑
i∈[n] xi · yi, and therefore the transcript reveals the value IPn(x, y). More details follow.

Alice’s circuits are of the form C(x, y, v). In the first layer of the circuit, C computes

zi
def
= xi ∧ yi, for every i ∈ [n]. In the second layer, C outputs sign(

∑
i∈[n] zi − vi). Put

another way, Alice uses the same circuit in every round, and we assume that the first bit

sent by Alice during the first round is discarded. Bob does all the work, and simulates a

binary search by sending to Alice an appropriate string v during each round. For instance,

Bob sends v = 0n/21n/2 during the first round, and the next bit computed by Alice reveals

if
∑

i∈[n] xi · yi is at least n/2. After each round, Bob sends a string corresponding to the

next step of the binary search, and so on. Clearly, after O(log n) rounds, Bob knows the

value
∑

i∈[n] xi · yi. Finally, observe that Alice communicates O(log n) bits, and that her

circuits are of the form MAJ ◦MAJ.

3Recall that a function f : {0, 1}n → {0, 1} is a linear threshold function if there exist weights w1, . . . , wn ∈

Z and a threshold θ ∈ Z such that f(x) = sign(
∑
i∈[n] wi · xi − θ).

Chapter 4. Majority is incompressible by AC0[p] circuits 83

4.7 An improved round separation theorem for AC0

Recall that Chattopadhyay and Santhanam [45] proved that there are Boolean func-

tions on n variables that admit AC0-bounded protocols with r rounds and cost O(n1/r), but

for which any correct AC0-bounded (r − 1)-round protocol has cost Ω(n2/r−o(1)). We use a

different construction and refine their techniques, obtaining the following result.

Theorem 4.7.1. Let r ≥ 2 and ε > 0 be fixed parameters. There is an explicit family of

functions f = {fn}n∈N with the following properties:

(i) There exists an AC0
2(n)-bounded protocol Πn for fn with r rounds and cost c(n) ≤ nε,

for every n ≥ nf , where nf is a fixed constant that depends on f .

(ii) Any AC0(poly(n))-bounded protocol Π for f with r − 1 rounds has cost c(n) ≥ n1−ε,

for every n ≥ nΠ, where nΠ is a fixed constant that depends on Π.

We will need some additional definitions and notation in order to establish this result.

For any n ∈ N, let gn : {0, 1}n → {0, 1} be the parity function on n variables, and g =

{gn}n∈N. Let m, `, and r be positive integers. Set n = n(m, `, r)
def
= m+ ` · r ·m. We define

a function fm,`,r : {0, 1}n → {0, 1} that will be used to prove round separation results for

AC0-compression games. For convenience, let k
def
= log ` and v

def
= m/ log `. The definition

of fm,`,r depends on g and a given function h : {0, 1}k → [`], which we assume to be some

fixed one-to-one function.

Given any string z ∈ {0, 1}n, we write z = (x, y(·,1), . . . , y(·,r)), where x ∈ {0, 1}m, and

y(·,j) = (y(1,j), . . . , y(`,j)), where j ∈ [r], and y(i,j) ∈ {0, 1}m, for every i ∈ [`]. In addition,

for any string w ∈ {0, 1}m, we write w = (w(1), . . . , w(k)), where each w(u) ∈ {0, 1}v, for

u ∈ [k]. For convenience, instead of writing y(i,j)(u), we may also use y(i,j,u).

The function fm,`,r is defined by induction on r. It is simply a pointer jumping function,

where h is applied to certain bits computed from the current string (initially x) using

k = log ` independent applications of gv. After jumping from the initial x to a new string

x′, which will be one of the y’s in y(·,1), we recurse. After r steps, some string y from y(·,r)

will be reached. The output of fm,`,r is then set to be gm(y).

Chapter 4. Majority is incompressible by AC0[p] circuits 84

Formally, when r = 1, for any z ∈ {0, 1}n,

fm,`,1(z)
def
= gm(y(i,1)), where i = h(gv(x

(1)), . . . , gv(x
(k))).

Now let r ≥ 2 be arbitrary. Then, for any z ∈ {0, 1}n,

fm,`,r(z)
def
= fm,`,r−1(z′),

where z′ = (x′, y(·,2), . . . , y(·,r)), x′ = y(i,1), and i = h(gv(x
(1)), . . . , gv(x

(k))).

This completes the definition of fm,`,r.

Lemma 4.7.2 (Upper Bound). For any m, `, r ≥ 1, the function fm,`,r admits an AC0
2(m·`)-

compression game with r + 1 rounds and communication cost c(n) = (r + 1) ·m.

Proof. During each round j, Alice sends her current string x′ ∈ {0, 1}m to Bob, which

replies with ` strings v(i) ∈ {0, 1}m satisfying the following property: v(i) = 1m if the next

round of the game is played on y(i,j+1), and v(i) = 0m otherwise. Observe that the next

message that Alice has to send is simply the m-bit string given by∨
i∈[`]

(
v(i) ∧ y(i,j+1)

)
.

The cost and round complexity of this protocol is clear.

We now proceed with the proof that in any AC0-bounded protocol for fm,`,r with r

rounds, Alice has to communicate roughly ` · m bits, for an appropriate choice of ` that

we would like to make as large as possible. The argument is based on random restrictions,

which allow us to simplify the AC0 circuits used by Alice considerably, while still maintaining

the resulting function sufficiently hard for compression games. At a high level, we apply a

round elimination technique, combined with a strong lower bound for fm,`,1. More details

follow.

From now on we will also view fn,`,r as a function fm,`,r : {0, 1}[n] → {0, 1}, where

each input z for fm,`,r can also be interpreted as a function z : [n] → {0, 1}. This will give

us more flexibility when manipulating restrictions. A restriction ρ ∈ {0, 1, ∗}[n] is simply a

function ρ : [n]→ {0, 1, ∗}. Given a restriction ρ and a function f : {0, 1}[n] → {0, 1}, we let

fρ : {0, 1}ρ−1(∗) → {0, 1} be the following function. For every z− ∈ {0, 1}ρ−1(∗),

fρ(z−)
def
= f(z),

Chapter 4. Majority is incompressible by AC0[p] circuits 85

where z ∈ {0, 1}[n] is the function with z|ρ−1({∗}) = z− and z|ρ−1({0,1}) = ρ|ρ−1({0,1}).

Let N
def
= [n]. Recall that we write z ∈ {0, 1}n as z = (x, y(1,1), . . . , y(`,r)). Similarly,

we let S(i,j,u) ⊆ N index the variables corresponding to y(i,j,u), for i ∈ [`], j ∈ [r] and u ∈ [k].

We define S(i,j) def
=
⋃
u S

(i,j,u). Further, we use M ⊆ N to index the variables corresponding

to x, and M (1), . . . ,M (k) for the corresponding variables x(1), . . . , x(k). Let ΓN be the set

of all restrictions with domain N , i.e., ΓN
def
= {0, 1, ∗}N . Given ρ1, ρ2 ∈ ΓN , we say that ρ2

extends ρ1 if ρ−1
2 (∗) ⊆ ρ−1

1 (∗) and ρ2|ρ−1
1 ({0,1}) = ρ1|ρ−1

1 ({0,1}).

Our round separation theorem will be derived from lower bounds on a class of functions

φs,d,` : N× N× R+ → N, defined as follows:

φs,d,`
(
m, r, δ

) def
= min

σ∈ΓN,δ
min

Π∈Protσs,d,r
cost(Π),

where:4

(i) ΓN,δ ⊆ ΓN is the set of all restrictions σ for which the following holds: there exists sets

Dj ⊆ [`] with j ∈ [r] such that |Dj | ≤ δ · `, and σ−1({0, 1}) =
⋃
j∈[r]

(⋃
i∈Dj S

(i,j)
)

,

(ii) Protσs,d,r is the set of all AC0
d(s)-bounded r-round protocols Π solving the compression

game of fσm,`,r.

The parameters m, r, and δ will vary during our inductive proof, while s, d, and ` remain

fixed (observe that this is reflected in our notation for φ). The proof of Theorem 4.7.1 relies

on the following lemmas, whose proof we present later in this section.

Lemma 4.7.3 (Lower Bound: Base case). Let s = nc1, d ∈ N, ` = mc2, δ ∈ (0, 1/10), and

r = 1, where c1 and c2 are fixed positive integers. Then, for every fixed β ∈ (0, 1/10) and

m sufficiently large,

φs,d,`
(
m, 1, δ

)
≥ ` ·m1−β.

Lemma 4.7.4 (Lower Bound: Induction step). Let s = nc1, d ∈ N, ` = mc2, δ ∈ (0, 1/10),

and r ≥ 2, where c1 and c2 are fixed positive integers. Then, for every fixed β ∈ (0, 1/10)

and m sufficiently large,

φs,d,`
(
m, r, δ

)
≥ min

{
` ·m1−β , φs,d,`

(
m1−β, r − 1, δ + β

)}
.

4For the sake of this proof, we consider circuits of size at most s (exactly), instead of O(s).

Chapter 4. Majority is incompressible by AC0[p] circuits 86

These lemmas imply the following result.

Proposition 4.7.5. For every fixed r ≥ 1, c ∈ N, and ζ > 0, for m sufficiently large, we

have

φpoly(n),O(1),mc
(
m, r, 1/(100r)

)
≥ ` ·m1−ζ .

Proof. The result follows easily from Lemmas 4.7.3 and 4.7.4 using that r is constant and

that we can take β and δ sufficiently small.

Finally, it is not hard to derive the main lower bound of this section from these results.

Proof of Theorem 4.7.1. Given any r ≥ 2 and ε > 0, it is enough to consider an appropriate

family of functions fm,`,r−1, where c = c(ε) is sufficiently large, and set ` = mc. The result

then follows from Lemma 4.7.2 and Proposition 4.7.5.

We proceed now with the proof of the lemmas. We will need the notion of a random

restriction. Let p ∈ [0, 1] be a real number. We let ΓpN denote the distribution over

restrictions ρ ∈ ΓN generated by independently fixing each ρ(i) (where i ∈ N) as follows:

Pr[ρ(i) = ∗] = p, Pr[ρ(i) = 1] = (1− p)/2, Pr[ρ(i) = 0] = (1− p)/2.

Given a Boolean function fn : {0, 1}n → {0, 1} over n variables, we let DTdepth(f) be

the smallest decision tree depth among all decision trees computing fn. The next statement

is independent of the number of inputs of f .

Lemma 4.7.6 (Switching Lemma [95]). Let f be a Boolean function that can be written

as a conjunction or disjunction of any number of depth-t decision trees. Then, for every

p ∈ [0, 1] and r ∈ N,

Pr
ρ∼Γp

[DTdepth(fρ) > r] ≤ (5pt)r.

The next result is a standard consequence of Lemma 4.7.6 (cf. Gopalan and Servedio

[88]).

Proposition 4.7.7. Let f be a Boolean function computed by an AC0 circuit of size M and

depth d. For every t ∈ N, if p ≤ 1/(10t)d then

Pr
ρ∼Γp

[DTdepth(fρ) > t] ≤M · 2−t.

Chapter 4. Majority is incompressible by AC0[p] circuits 87

Given a function C : {0, 1}[n] → {0, 1}, we let live(C) ⊆ [n] denote the set of input

variables of C with influence greater than zero. It will be more convenient for us to rely on

the following straightforward consequence of Lemma 4.7.6 and Proposition 4.7.7.

Lemma 4.7.8. Let C1, . . . , Cs1 : {0, 1}n1 → {0, 1} be functions computed by depth-d AC0

circuits of size at most nc11 , where d, c1 ∈ N and s1 = m1−γ · `, and these parameters satisfy

m, ` ∈ N, γ ∈ (0, 1/5), ` = mc2, where c2 ∈ N, and n1 = Θ(m · `). Then, for p = m−γ/2,

there exists a constant c3 such that, as m→∞,

Pr
ρ∼Γp

[n1]

[∣∣∣ ⋃
i∈[s1]

live (Cρi)
∣∣∣ ≤ c3 · (m1−γ · `)

]
→ 1.

Proof. Let p = p1 ·p2, where p1 = p2 = m−γ/4. Observe that sampling a restriction ρ ∼ Γp[n1]

is equivalent to first sampling some ρ1 ∼ Γp1

[n1], followed by a restriction ρ2 ∼ Γp2

W , where

W
def
= [n1] \ ρ−1

1 ({0, 1}), and finally setting ρ = ρ2 ◦ ρ1, where the composition operation

is defined in the natural way. Let c = c1 + 10, and t = c · log n1. Furthermore, we let

r = d8(1 + c2)/γe, and c3 = 2r. Then,

Pr
ρ∼Γp

[n1]

[∣∣∣ ⋃
i∈[s1]

live (Cρi)
∣∣∣ > c3 · (m1−γ · `)

]
≤ Pr

ρ
def
= ρ2◦ρ1

[
∃i ∈ [s1] s.t. |live(Cρi)| > 2r

]
≤ Pr

ρ1,ρ2

[
∃i ∈ [s1] s.t. DTdepth(Cρi) > r

]
In order to conclude the proof, it is enough to show that for every j ∈ [s1] and sufficiently

large m, Prρ1,ρ2 [DTdepth(Cρj) > r] ≤ (1/n1)2. However, by our choice of parameters (and

with room to spare), this follows from an application of Proposition 4.7.7 with ρ1 and t,

followed by an application of Lemma 4.7.6 with ρ2 and r (notice that these statements are

true with respect to any input size).

We are now ready to prove Lemmas 4.7.3 and 4.7.4.

Proof of Lemma 4.7.3. Let σ : [n]→ {0, 1, ∗} be a restriction in ΓN,δ, where n = m+ ` ·m

and N = [n], as usual. Let N1
def
= N \ σ−1({0, 1}), and set n1

def
= |N1|. Observe that

n1 ≥ (1 − δ) · ` · m = Θ(m · `). In addition, let Π = (C(1), g(1), E) be a single-round

protocol for fσm,`,1, where C(1) = (C1, . . . , Cs1), and these are AC0 circuits of depth d and

size s = nc1 ≤ n2c1
1 (for large enough m) that compute the message in {0, 1}s1 that Alice

Chapter 4. Majority is incompressible by AC0[p] circuits 88

sends to Bob. By definition, for each i ∈ [s1], Ci : {0, 1}n1 → {0, 1}. We prove that if

s1 < ` ·m1−β, then there exists an input z ∈ {0, 1}n1 for which Π(z) 6= fσm,`,1(z).

Let D1 ⊆ [`] be the set identifying the variables y fixed by σ (according to our definition

of ΓN,δ). For any z ∈ {0, 1}N1 , we write z = (x, y(i1,1), . . . , y(ik,1)), where [`] \ D1 =

{i1, . . . , ik}, k ≥ (1− δ) · `, and x ∈ {0, 1}m. Recall that we use sets S(i1,1), . . . , S(ik,1) and

M to address the elements of [N1] corresponding to these input positions.

Now consider a random restriction ρ ∼ ΓpN1
, where p = m−β/2. Applying Lemma

4.7.8 with γ = β and Proposition 2.0.1, it follows that, for every large enough m, with high

probability:

(i) C(1),ρ depends on at most O(m1−β · `) variables.

(ii) For every j ∈ [log `], it is the case that ρ−1(∗) ∩M (j) 6= ∅.

(iii) |ρ−1(∗)∩ (S(i1,1) ∪ . . .∪S(ik,1))| ≥ 1
2 ·

(1−δ)·m·`
mβ/2

= Ω(m1−β/2 · `). In particular, from (i)

we get that there exists i ∈ [`] \D1 for which S(i,1) ∩
(
ρ−1(∗) \ live(C(1),ρ)

)
6= ∅.

Overall, it follows that there exists a restriction ρ ∈ ΓN with ρ = ρ ◦ σ, for an

appropriate choice of ρ ∈ ΓN1 , such that ρ fixes the message sent by Alice, but does not fix

the value of fρm,`,1. In particular, there exists a z ∈ {0, 1}n1 that agrees with ρ for which

Π(z) 6= fσm,`,1(z), which completes the proof.

The proof of Lemma 4.7.4 is not much harder than the argument used in the base case,

but it has a few technicalities that need to be handled.

Proof of Lemma 4.7.4. Let σ ∈ ΓN,δ and Π ∈ Protσs,d,r be a pair realizing φs,d,`(m, r, δ). In

other words, Π solves the compression game of fσm,`,r, and cost(Π) = φs,d,`(m, r, δ). Assume

that Π = (C(1), . . . , C(r), g(1), . . . , g(r−1), E), and signature(Π) = (n1, s1, t1, . . . , tr−1, sr),

where n = m+m · ` · r, N = [n], N1 = N \ σ−1({0, 1}), and n1 = |N1|. For convenience, let

C(1) = (C1, . . . , Cs1), where each Ci is a depth-d AC0 circuit of size at most nc1 ≤ n2c1
1 (for

large m), since n1 ≥ (1− δ) · n.

Notice that if cost(Π) ≥ `·m1−β then the statement of Lemma 4.7.4 is true. Otherwise,

from cost(Π) < ` ·m1−β we get that s1 < ` ·m1−β, which allows us to proceed as in the

Chapter 4. Majority is incompressible by AC0[p] circuits 89

proof of Lemma 4.7.3. Let p = m−β/2, and set γ = β. It follows from Lemma 4.7.8 that,

with high probability,

∣∣live(C(1),ρ)
∣∣ = O(m1−β · `). (4.3)

Let Dj for j ∈ [r] be the sets identifying the variables y fixed by σ. By assumption,

|Dj | ≤ δ · ` for every j ∈ [r]. From now on, whenever we consider a set S(i,j), we implicitly

assume that j ∈ [r] and i ∈ [`] \ Dj . This time we will also be concerned about how the

action of ρ affects the more specific sets S(i,j,u), where u ∈ [log `]. Observe that, with high

probability (Proposition 2.0.1), for every (i, j, u), we have:

∣∣S(i,j,u) ∩ ρ−1(∗)
∣∣ ≥ 1

2
· m

log `
· p =

1

2
· m

1−β/2

c2 logm
≥ m1−(3/4)β, (4.4)

for any sufficiently large m. We say that a set S(i,j) is bad with respect to C(1),ρ if |S(i,j) ∩

live(C(1),ρ)| ≥ 1
2 ·m

1−(3/4)β. Otherwise, the set is said to be good. It follows from Equation

4.3 that

Number of bad sets S(i,j) ≤ O(m1−β · `)
(1/2) ·m1−(3/4)β

=
2`

mβ/4
= o(`), (4.5)

as m → ∞. In particular, since r = O(1) and β is a fixed constant, with high probability,

for every j ∈ [r] there are at most β ·` sets S(i,j) that are bad with respect to C(1),ρ. Finally,

with high probability over ρ, we also get that, for every j ∈ [log `],

∣∣M (j) ∩ ρ−1(∗)
∣∣ > 0.

It follows using the probabilistic method that there exists a fixed restriction ρ1 ∈ ΓN1

satisfying all these properties. Let ρ2 = ρ1 ◦ σ be the restriction obtained by combining ρ1

and σ in the obvious way. Observe that ρ2 : N → {0, 1, ∗}. Fix arbitrarily all ∗-variables in

ρ2 corresponding to bad sets S(i,j). On every good set S(i,j), fix all ∗-variables intersecting

live(C(1),ρ1), and also fix additional variables in each set S(i,j,u) so that the new restriction

ρ3 satisfies |ρ−1
3 (∗) ∩ S(i,j,u)| = m1−β, for every appropriate triple (i, j, u). This is possible

for any large enough m, since these sets are good. Further, we assume that the number of

variables corresponding to each S(i,j,u) that are set to 1 is even, in order not to invert the

parity inside each block, which will be important later in the proof. Let fρ3

m,`,r : {0, 1}ρ
−1
3 (∗) →

{0, 1} be the resulting function.

Chapter 4. Majority is incompressible by AC0[p] circuits 90

Given an input z̃ ∈ {0, 1}ρ
−1
3 (∗), write z̃ = (x̃, {ỹ(i,j)}), and let z = (x, {y(i,j)}) ∈ {0, 1}n

be the completion of z̃ that agrees with ρ3, where this notion is defined in the natural way.

Observe that h(x) still depends on x̃. Now we set all remaining ∗-variables in M in a way

that, for the new restriction σ : [N] → {0, 1, ∗}, we have h(σ(M)) pointing to a pair (i, 1)

corresponding to a good set S(i,1). This is possible due to the properties of ρ1. Observe

that C(1),σ computes a constant function (i.e., Alice’s message a(1) has been fixed). Let

b(1) ∈ {0, 1}t1 be the answer provided by Bob, which is also fixed.

Now let Π = (C
(1)
, . . . , C

(r−1)
, g(1), . . . , g(r−2), E) be a new protocol obtained by setting

each C
(i)

to be C(i+1) with its input corresponding to the first message sent by Bob fixed to

b(1), and g(i) = g(i+1), for every appropriate i. If we also rename the input variables in fσm,`,r

and in the functions and circuits from Π, truncating irrelevant variables appropriately (recall

the definition of the original function as a pointer jumping function), we obtain a restriction

σ′ : {0, 1}N ′ → {0, 1}, where n′ = |N ′| = m′ +m′ · ` · r′, m′ = m1−β, r′ = r − 1, σ′ ∈ ΓN ′,δ′ ,

δ′ = δ + β, and the resulting protocol Π′ ∈ Protσ
′
s,d,r′ . Crucially, Π′ is a protocol solving

the compression game of fσ
′

m′,`,r′ in r′ rounds, which implies that cost(Π) ≥ cost(Π′) ≥

φs,d,`(m
′, r′, δ′) = φs,d,`(m

1−β, r − 1, δ + β), completing the proof of Lemma 4.7.4.

4.8 Open problems and further research directions

Our results and techniques raise a number of interesting questions, which we discuss

more carefully below.

The power of interaction in two-party AC0[p]-compression games. Observe that

the approach to obtain communication lower bounds for AC0[p] games employed in the

proof of Theorem 4.1.1 is insensitive to the number of rounds of the protocol. On the other

hand, our round separation result (Theorem 4.1.6) holds with respect to AC0 circuits only.

Consequently, a natural question is whether a strong round separation theorem is true for

AC0[p] games. We conjecture that this is the case, and that a hard function can be obtained

via a similar construction that uses MODq instead of parity.

Randomized AC0[p]-compression games. While we have obtained essentially optimal

Chapter 4. Majority is incompressible by AC0[p] circuits 91

lower bounds for deterministic two-party AC0[p]-compression games, the situation is less

clear with respect to randomized protocols. Modulo logarithmic factors, there is a quadratic

gap between our upper and lower bounds for MODq and Majority (Theorem 4.1.3). On the

other hand, it is known that the communication cost of these games is n/ logΘ(d) n for ran-

domized AC0
d-compression games (Chattopadhyay and Santhanam [45]). We are unable to

obtain better lower bounds here because our approach does not seem to tolerate the initial

error probability from the protocol, as it relies on the low error regime of the polynomial

approximation method.

Extending circuit lower bounds to incompressibility results. The results presented

in this chapter and in [45] show that recent extensions of the random restriction method

and the polynomial approximation method can provide optimal incompressibility results.

However, our construction from Section 4.6 implies that not every technique can be ex-

tended in this sense. Which other techniques and results from circuit complexity can be

strengthened to compressibility lower bounds?

Understanding the structure of Boolean circuits. Our results shed more light into

the computation of Boolean functions such as MODq using AC0[p] circuits, as we are able to

obtain information about each layer of the circuit. Similar developments appear for instance

in Tarui [184], Rudich and Berman [163], and Borodin [38]. We believe that results of this

form can provide important insights in algorithms and computational complexity, and it

would be very interesting to see further advances in this direction.

4.9 Auxiliary results

The degree lower bound in the low-error regime. In this section we describe the proof

of the degree lower bound for Fp-polynomials approximating MODq in the low error regime.

Recall that we use MODnq to denote the MODq function over n input variables, and that

a polynomial Q ∈ Fp[x1, . . . , xn] ε(n)-approximates a Boolean function f : {0, 1}n → {0, 1}

under the uniform distribution if

Pr
x∼{0,1}n

[Q(x) = f(x)] ≥ 1− ε(n),

Chapter 4. Majority is incompressible by AC0[p] circuits 92

where x is viewed as an element of Fnp or {0, 1}n, depending on the context.

Proposition 4.9.1 ([157, 177], folklore). Let p, q ≥ 2 be distinct primes. There exist

fixed constants δ > 0 and n0 ∈ N for which the following holds. For every n ≥ n0 and

ε(n) ∈ [2−n, 1/10q], any polynomial P ∈ Fp[x1, . . . , xn] that ε-approximates the MODnq

function with respect to the uniform distribution has degree at least δ ·
√
n · log(1/ε).

The proofs that appear in the literature are concerned with large values of ε, and our

goal here is to discuss the extension of the degree lower bound to very small ε, as stated in

Proposition 4.9.1. For this reason, we will focus on the case where q = 2 and p > 2, which

is slightly simpler. We start with the following lemma.

Lemma 4.9.2. For a prime p > 2, let P ∈ Fp[x1, . . . , xn] be a degree-d polynomial that

ε(n)-approximates MODn2 over the uniform distribution. Then there exists a polynomial

Q ∈ Fp[y1, . . . , yn] of degree at most d and a set S ⊆ {−1, 1}n ⊆ Fnp with |S| ≥ (1 − ε)2n

such that

∀y ∈ S, Q(y) =
n∏
i=1

yi.

Proof. Let T ⊆ {0, 1}n ⊆ Fnp be a set of size at least (1− ε)2n such that

∀x ∈ T, P (x) = MODn2 (x).

Consider the map γ : {−1, 1} → {0, 1} computed by the Fp-polynomial γ(y)
def
= (1− y)2−1.

Observe that γ(−1) = 1 and γ(1) = 0. Let Q(y1, . . . , yn) be a polynomial in Fp[y1, . . . , yn]

with Q(y)
def
= 2P (γ(y1), . . . , γ(yn))− 1, and let

S
def
= {y ∈ {−1, 1}n | (y1, . . . , yn) = (γ−1(x1), . . . , γ−1(xn)), where x ∈ T}.

Then, using the definition of P , Q, S, T , and γ, it is not hard to see that

∀y ∈ S, Q(y) =

n∏
i=1

yi.

Finally, observe that |S| = |T | and deg(Q) ≤ deg(P), which completes the proof of the

lemma.

The next lemma shows that polynomials with this property can be very useful when

computing functions defined over S ⊂ Fnp .

Chapter 4. Majority is incompressible by AC0[p] circuits 93

Lemma 4.9.3. Let F be a finite field, and a, b ∈ F be distinct non-zero elements. Assume

that Q ∈ F[x1, . . . , xn] is a degree-d polynomial, and S ⊆ {a, b}n is a set such that

∀x ∈ S, Q(x) =

n∏
i=1

xi.

Then, for every function f : S → F, there is a polynomial Qf ∈ F[x1, . . . , xn] with degree at

most (n+ d)/2 such that

∀x ∈ S, Qf (x) = f(x).

Proof. Fix a function f : S → F, and let Pf be a multilinear polynomial such that, for all

x ∈ S, Pf (x) = f(x). For instance, since a and b are distinct elements of F, we can take

Pf (x)
def
=
∑
x∈S

f(x) ·

(∏
i:xi=a

(b− xi)(b− a)−1

) ∏
i:xi=b

(a− xi)(a− b)−1

 .

Now consider any monomial M(x)
def
=
∏
i∈I xi, where I ⊆ [n]. Since a and b are non-zero,

for any y ∈ S ⊆ {a, b}n, we have

∏
i∈I

yi =

∏
i∈[n]

yi

(∏
i/∈I

y−1
i

)

= Q(y) ·

(∏
i/∈I

a−1(b− yi)(b− a)−1 + b−1(a− yi)(a− b)−1

)
,

where Q is the polynomial granted by the statement of the lemma. Therefore, each mono-

mial in Pf defined over a subset I ⊆ [n] can be replaced by a monomial of degree at most

min(|I|, d + n − |I|) ≤ (n + d)/2, in the sense that the new polynomial is still correct on

every input in S. Consequently, there exists a polynomial Qf for f with degree at most

(n+ d)/2, as claimed by the lemma.

In other words, if d is small, there exist polynomials of degree much smaller than n for

all functions with domain S and codomain F. This is impossible for large sets S, via a simple

counting argument. In order to formalize this argument and obtain good parameters, we

rely on a certain lower bound for the binomial distribution. The next lemma follows from

more general results presented in Feller [65]. We follow closely the exposition in Matoušek

and Vondrák [135].

Chapter 4. Majority is incompressible by AC0[p] circuits 94

Lemma 4.9.4. For an even integer n ∈ N, consider independent random variables X1, . . . , Xn,

where each Xi attains values 0 and 1, each with probability 1/2. Let X
def
=
∑

i∈[n]Xi. Then,

for any integer t ∈ [0, n/8],

Pr
[
X ≥ n

2
+ t
]
≥ 1

15
· e−16t2/n.

Proof. For convenience, let n = 2m. Then,

Pr[X ≥ m+ t] = 2−2m
m∑
j=t

(
2m

m+ j

)

≥ 2−2m
2t−1∑
j=t

(
2m

m+ j

)

= 2−2m
2t−1∑
j=t

(
2m

m

)
m

m+ j
· m− 1

m+ j − 1
. . .

m− j + 1

m+ 1

≥ 1

2
√
m

2t−1∑
j=t

j∏
i=1

(
1− j

m+ i

)
(since

(
2m

m

)
≥ 22m/(2

√
m))

≥ t

2
√
m

(
1− 2t

m

)2t

≥ t

2
√
m
· e−8t2/m (since 1− x ≥ e−2x for 0 ≤ x ≤ 1/2).

The lemma now follows depending on the value of t. Observe that if t ≥ 1
4

√
m then

the last expression is lower bounded by 1
8e
−16t2/n. On the other hand, for 0 ≤ t < 1

4

√
m,

we get that Pr[X ≥ m + t] ≥ Pr[X ≥ m + 1
4

√
m] ≥ 1

8e
−1/2 ≥ 1

15 , which completes the

proof.

Finally, we combine these lemmas in order to prove Proposition 4.9.1 for primes q = 2

and p > 2.

Proof. Let P ∈ Fp[x1, . . . , xn] be a degree-d polynomial that ε(n)-approximates the MODn2

function over the uniform distribution. Assume without loss of generality that n is even,

since otherwise we can obtain a polynomial Q ∈ Fp[x1, . . . , xn+1] with degree at most 2d that

ε(n)-approximates MODn+1
2 with respect to {0, 1}n+1 (i.e., apply P to the first n variables,

then compose with the appropriate function over two input variables).

Chapter 4. Majority is incompressible by AC0[p] circuits 95

It follows from Lemmas 4.9.2 and 4.9.3 that there exists a set S ⊆ {−1, 1}n ⊆ Fnp of

size (1 − ε)2n such that, for every function f : S → Fp, there exists a polynomial Qf ∈

Fp[x1, . . . , xn] of degree at most d′
def
= (n+ d)/2 that agrees with f over S.

Let F be the set of such functions. Clearly, |F| = |Fp||S|. On the other hand, since

S ⊆ {−1, 1}n, we can assume that each polynomial Qf is multilinear. The number of such

polynomials with degree at most d′ is upper bounded by |Fp|M , where M
def
=
∑d′

i=0

(
n
i

)
.

Therefore, |Fp||S| ≤ |F| ≤ |Fp|M , and we get that

(n+d)/2∑
i=0

(
n

i

)
≥ (1− ε) · 2n. (4.6)

We use this inequality to lower bound d in terms of n and ε. First, Equation 4.6 can be

rewritten as

2−n ·
∑

i>(n+d)/2

(
n

i

)
≤ ε. (4.7)

On the other hand, it follows from Lemma 4.9.4 that, for any d ∈ [0, n/8],

1

15
· exp

(
−16

n
·
(
d

2
+ 1

)2
)
≤ Pr

[
X >

n

2
+
d

2

]
= 2−n ·

∑
i>(n+d)/2

(
n

i

)
. (4.8)

Therefore, we obtain from Equations 4.7 and 4.8 that d = Ω(
√
n · log(1/ε)) for any ε(n) ∈

[2−n, 1/20], which completes the proof.

Improved approximation of AC0[p] circuits by polynomials. For convenience of the

reader, we describe in this section how to approximate Boolean circuits by bounded-degree

polynomials in the low-error regime. We assume the following classic result, obtained in

slightly different forms by Razborov [157] and Smolensky [177].

Proposition 4.9.5 ([157], [177]). Let p be a fixed prime. There exists a constant β =

β(p) ∈ N such that, for every d = d(n) ≥ 1 and s = s(n) ≥ 1, any AC0
d[p](s(n)) circuit

admits an 1/(6s)-error probabilistic polynomial Q(x1, . . . , xn) ∈ Fp[x1, . . . , xn] of degree at

most (β · log max{s, 2})d.

We are now ready to describe the proof of the degree upper bound obtained by Kop-

party and Srinivasan [123], which allows us to obtain better bounds when the error is

sufficiently small.

Chapter 4. Majority is incompressible by AC0[p] circuits 96

Proposition 4.9.6 ([123]). Let p be a fixed prime. There exists a constant α = α(p) ∈

N such that, for every δ ∈ (0, 1/2) and d(n) ≥ 2, any AC0
d[p](s(n)) circuit C admits

a δ-error probabilistic polynomial Q(x1, . . . , xn) ∈ Fp[x1, . . . , xn] of degree at most (α ·

log s)d−1 · log(1/δ). In particular, it follows that for any distribution D over {0, 1}n, C is

δ-approximated with respect to D by a polynomial of degree at most (α · log s)d−1 · log(1/δ).

Proof. Let C be an AC0[p] circuit of size s and depth d ≥ 2. Further, let g be the top

gate of C, and assume that this gate is fed by t ≤ s input wires y1, . . . , yt, where each

yj = gj(x1, . . . , xn). Observe that the corresponding Boolean function over inputs x1, . . . , xn

at each gate gj is computed by a circuit of size at most s and depth at most d − 1, while

g = g(y1, . . . , yt) is computed by a circuit of size one. Let ε
def
= 1/(6s). Then, Proposi-

tion 4.9.5 guarantees the existence of probabilistic polynomials Qj(x1, . . . , xn) which com-

pute the corresponding functions gj with error at most ε, where deg(Qj) ≤ (β · log s)d−1.

Similarly, since g is computed by a single gate, there exists a probabilistic polynomial

Qg(y1, . . . , yt) that computes g with error at most 1/6, where deg(Qg) ≤ β. By composing

these polynomials and applying a union bound, it follows that there exists a probabilistic

polynomial P(~x)
def
= Qg(Q1(~x), . . . ,Qt(~x)) with deg(P) ≤ (γ · log s)d−1 that computes C

with error at most 1/3, where γ = γ(p) is a fixed constant. Further, by raising this polyno-

mial to p−1 and applying Fermat’s little theorem, we can assume without loss of generality

that its output is always Boolean. Since d ≥ 2, the degree becomes at most (γ′ · log s)d−1,

where γ′ ≤ p · γ.

Now let k = c · log(1/δ), for a sufficiently large constant c. Consider the probabilistic

polynomial M(~x)
def
= M(P1(~x), . . . ,Pk(~x)), where M is a degree k polynomial that computes

Majorityk exactly, and each Pi is an independent copy of P. It follows from Proposition

2.0.1 that M is a probabilistic polynomial of degree at most (α · log s)d−1 · log(1/δ) that

computes C with error at most δ, where α = α(γ′, c) = α(p) is an appropriate constant.

97

Part II

Negations in Learning Theory and

Cryptography

Chapter 5. Learning circuits with negations 98

Chapter 5

Learning circuits with negations

5.1 Background, results, and organization

Recall that a monotone Boolean function f : {0, 1}n → {0, 1} is one that satisfies

f(x) ≤ f(y) whenever x � y, where � denotes the bitwise partial order on {0, 1}n. The

structural and combinatorial properties of monotone Boolean functions have been inten-

sively studied for many decades, see e.g. [125] for an in-depth survey. Many famous results

in circuit complexity deal with monotone functions, including celebrated lower bounds on

monotone circuit size and monotone formula size (see e.g. [153, 156] and numerous subse-

quent works).

Monotone functions are also of considerable interest in computational learning theory,

in particular with respect to the model of learning under the uniform distribution. In an

influential paper, Bshouty and Tamon [40] showed that any monotone Boolean function

f : {0, 1}n → {0, 1} can be learned from uniform random examples to error ε in time

nO(
√
n/ε). They also gave a lower bound, showing that no algorithm running in time 2cn

for any c < 1 can learn arbitrary monotone functions to accuracy ε = 1/(
√
n log n). (Many

other works in learning theory such as [17, 116, 31, 14, 172, 144, 145] deal with learning

monotone functions from a range of different perspectives and learning models, but we

limit our focus in this chapter to learning to high accuracy with respect to the uniform

distribution.)

Chapter 5. Learning circuits with negations 99

5.1.1 Beyond monotonicity: inversion complexity and alternations

Given the importance of monotone functions in complexity theory and learning theory,

it is natural to consider various generalizations of monotonicity. One such generalization

arises from the simple observation that monotone Boolean functions are precisely the func-

tions computed by monotone Boolean circuits, i.e. circuits which have only AND and OR

gates but no negations. Given this, an obvious generalization of monotonicity is obtained

by considering functions computed by Boolean circuits that have a small number of nega-

tion gates. The inversion complexity of f : {0, 1}n → {0, 1}, denoted I(f), is defined to be

the minimum number of negation gates in any AND/OR/NOT circuit (with access to con-

stant inputs 0/1) that computes f . We write Cnt to denote the class of n-variable Boolean

functions f : {0, 1}n → {0, 1} that have I(f) ≤ t.

Another generalization of monotonicity is obtained by starting from an alternate char-

acterization of monotone Boolean functions. A function f : {0, 1}n → {0, 1} is monotone

if and only if the value of f “flips” from 0 to 1 at most once as the input x ascends any

chain in {0, 1}n from 0n to 1n. (Recall that a chain of length ` is an increasing sequence

(x1, . . . , x`) of vectors in {0, 1}n, i.e. for every j ∈ {1, . . . , `− 1} we have xj ≺ xj+1.) Thus,

it is natural to consider a generalization of monotonicity that allows more than one such

“flip” to occur. We make this precise with the following notation and terminology: given a

Boolean function f : {0, 1}n → {0, 1} and a chain X = (x1, . . . , x`), a position j ∈ [`− 1] is

said to be alternating with respect to f if f(xj) 6= f(xj+1). We write A(f,X) ⊆ [` − 1] to

denote the set of alternating positions in X with respect to f , and we let a(f,X) = |A(f,X)|

denote its size. We write a(f) to denote the maximum of a(f,X) taken over all chains X

in {0, 1}n, and we say that f : {0, 1}n → {0, 1} is k-alternating if a(f) ≤ k.

A celebrated result of A. A. Markov [132] gives a tight quantitative connection between

the inversion and alternation complexities defined above:

Markov’s Theorem. Let f : {0, 1}n → {0, 1} be a function which is not identically 0.

Then (i) if f(0n) = 0, then I(f) = dlog(a(f) + 1)e − 1; and (ii) if f(0n) = 1, then

I(f) = dlog(a(f) + 2)e − 1.

This robustness motivates the study of circuits which contain few negation gates, and

Chapter 5. Learning circuits with negations 100

indeed such circuits have been studied in complexity theory. For instance, Amano and

Maruoka [15] have given bounds on the computational power of such circuits, showing

that circuits for the clique function which contain fewer than 1
6 log log n many negation

gates must have superpolynomial size. More recently, Rossman [162] proved that there

exists an explicit monotone function that cannot be computed by fan-in two circuits of

logarithmic depth containing less than
(

1
2 − ε

)
log n negations. Other works have studied

the effect of limiting the number of negation gates in formulas [138], bounded-depth circuits

[165, 181], and non-deterministic circuits [139]. In the present work, we study circuits with

few negations from the vantage point of computational learning theory, giving both positive

and negative results.

5.1.2 Our results

We begin by studying the structural properties of functions that are computed or

approximated by circuits with few negation gates. In Section 5.2 we establish the following

extension of Markov’s theorem:

Theorem 5.1.1. Let f be a k-alternating Boolean function. Then f(x) = h(m1(x), . . . ,mk(x)),

where each mi(x) is monotone and h is either the parity function or its negation. Con-

versely, any function of this form is k-alternating.

Theorem 5.1.1 along with Markov’s theorem yields the following characterization of

Cnt :

Corollary 5.1.2. Every f ∈ Cnt can be expressed as f = h(m1, . . . ,mT) where h is either

PART or its negation, each mi : {0, 1}n → {0, 1} is monotone, and T = O(2t).

A well-known consequence of Markov’s theorem is that every Boolean function is ex-

actly computed by a circuit which has only log n negation gates, and as we shall see an

easy argument shows that every Boolean function is 0.01-approximated by a circuit with

1
2 log n+O(1) negations. In Section 5.2 we note that no significant savings are possible over

this upper bound:

Theorem 5.1.3. For almost every function f : {0, 1}n → {0, 1}, any Boolean circuit C that

0.01-approximates f must contain 1
2 log n−O(1) negations.

Chapter 5. Learning circuits with negations 101

We then turn to our main topic of investigation, the uniform-distribution learnability of

circuits with few negations. We use our new extension of Markov’s theorem, Theorem 5.1.1,

to obtain a generalization of the Fourier-based uniform-distribution learning algorithm of

Bshouty and Tamon [40] for monotone circuits:

Theorem 5.1.4. There is a uniform-distribution learning algorithm which learns any un-

known f ∈ Cnt from random examples to error ε in time nO(2t
√
n/ε).

We observe that many natural functions are indeed computed by circuits with few

negations. As an example, consider the property of undirected graphs that is satisfied by

an n-vertex graph G if and only if G contains a triangle but does not contain a cycle of

size log n. Clearly, this property is non-monotone. However, it is easy to see that it can be

represented by a Boolean function f : {0, 1}(
n
2) → {0, 1} that is computed by a circuit with

a single negation. Our positive result implies that learning such properties does not take

much more time than learning monotone properties.1

Theorem 5.1.4 immediately leads to the following question: can an even faster learning

algorithm be given for circuits with t negations, or is the running time of Theorem 5.1.4

essentially the best possible? Interestingly, prior to our work a matching lower bound for

Theorem 5.1.4 was not known even for the special case of monotone functions (corresponding

to t = 0). As mentioned earlier, Bshouty and Tamon proved that to achieve accuracy

ε = 1/(
√
n log n) any learning algorithm needs time ω(2cn) for any c < 1 (see Fact 5.4.11 for

a slight sharpening of this statement). For larger values of ε, though, the strongest previous

lower bound was due to Blum, Burch and Langford [31]. Their Theorem 10 implies that

any membership-query algorithm that learns monotone functions to error ε < 1
2−c (for any

c > 0) must run in time 2Ω(
√
n) (in fact, must make at least this many membership queries).

However, this lower bound does not differentiate between the number of membership queries

required to learn to high accuracy versus “moderate” accuracy – say, ε = 1/n1/10 versus

ε = 1/10. Thus the following question was unanswered prior to the current work: what is

1In contrast to the robustness we show in the learning setting, there are natural computational problems

whose complexity changes drastically with the addition of a single negation gate. For instance, checking if a

monotone circuit is non-constant is trivial. Nevertheless, it is possible to prove that the same computational

problem for circuits with a single negation gate admits polynomial time algorithms if and only if P = NP.

Chapter 5. Learning circuits with negations 102

the best lower bound that can be given, both as a function of n and ε, on the complexity

of learning monotone functions to accuracy ε?

We give a fairly complete answer to this question, providing a lower bound as a function

of n, ε and t on the complexity of learning circuits with t negations. Our lower bound

essentially matches the upper bound of Theorem 5.1.4, and is thus simultaneously essentially

optimal in all three parameters n, ε and t for a wide range of settings of ε and t. Our lower

bound result is the following:

Theorem 5.1.5. For any t ≤ 1
28 log n and any ε ∈ [1/n1/12, 1/2−c], c > 0, any membership-

query algorithm that learns any unknown function f ∈ Cnt to error ε must make 2Ω(2t
√
n/ε)

membership queries.

We note that while our algorithm uses only uniform random examples, our lower

bound holds even for the stronger model in which the learning algorithm is allowed to make

arbitrary membership queries on points of its choosing.

Theorem 5.1.5 is proved using tools from the study of hardness amplification. The proof

involves a few steps. We start with a strong lower bound for the task of learning to high

accuracy the class of balanced monotone Boolean functions (reminiscent of the lower bound

obtained by Bshouty and Tamon). Then we combine hardness amplification techniques

and results on the noise sensitivity of monotone functions in order to get stronger and

more general lower bounds for learning monotone Boolean functions to moderate accuracy.

Finally, we use hardness amplification once more to lift this result into a lower bound for

learning circuits with few negations to moderate accuracy. An ingredient employed in this

last stage is to use a k-alternating combining function which “behaves like” the parity

function on (roughly) k2 variables; this is crucial in order for us to obtain our essentially

optimal final lower bound of 2Ω(2t
√
n/ε) for circuits with t negations. These results are

discussed in more detail in Section 5.4.

Chapter 5. Learning circuits with negations 103

5.2 Structural results

5.2.1 An extension of Markov’s theorem

We begin with the proof of our new extension of Markov’s theorem. For anyA ⊆ {0, 1}n

let 1[A] : {0, 1}n → {0, 1} be the characteristic function of A. For f : {0, 1}n → {0, 1} and

x ∈ {0, 1}n, we write af (x) to denote

af (x)
def
= max{a(f,X) : X is a chain that starts at x},

and note that a(f) = maxx∈{0,1}n{af (x)} = af (0n). For 0 ≤ ` ≤ a(f) let us write Sf`

to denote Sf`
def
= {x ∈ {0, 1}n : af (x) = `}, and let T f`

def
= Sf0 ∪ · · · ∪ S

f
` . We note that

Sf1 , . . . , S
f
a(f) partition the set of all inputs: Sfi ∩S

f
j = ∅ for all i 6= j, and T fa(f) = Sf1 ∪ · · · ∪

Sfa(f) = {0, 1}n.

We will need the following simple observation:

Observation 5.2.1. Fix any f and any x ∈ {0, 1}n. If x ∈ Sf` and y � x then y ∈ Sf`′ for

some `′ ≤ `. Furthermore, if f(y) 6= f(x) then `′ < `.

We prove Theorem 5.1.1 next, restated below.

Theorem. Fix f : {0, 1}n → {0, 1} and let k
def
= a(f). Then f = h

(
1
[
T f0
]
, . . . ,1

[
T fk−1

])
,

where

(i) the functions 1
[
T f`
]

are monotone for all 0 ≤ ` ≤ k,

(ii) h : {0, 1}k → {0, 1} is PARk if f(0n) = 0 and ¬PARk if f(0n) = 1,

and PARk(x) = x1 ⊕ · · · ⊕ xk is the parity function on k variables. Conversely, given

monotone Boolean functions m1, . . . ,mk, any Boolean function of the form h(m1, . . . ,mk)

is k-alternating.

Proof. Claim (i) follows immediately from Observation 5.2.1 above. The proof of (ii) is by

induction on k. In the base case k = 0, we have that f is a constant function and the claim

is immediate.

For the inductive step, suppose that the claim holds for all functions f ′ that have

a(f ′) ≤ k − 1. We define f ′ : {0, 1}n → {0, 1} as f ′ = f ⊕ 1
[
Sfk
]
. Observation 5.2.1

Chapter 5. Learning circuits with negations 104

implies that Sf
′

` = Sf` for all 0 ≤ ` ≤ k − 2 and Sf
′

k−1 = Sfk−1 ∪ S
f
k , and in particular,

a(f) = k − 1. Therefore we may apply the inductive hypothesis to f ′ and express it as

f ′ = h′
(
1
[
T f
′

0

]
, . . . ,1

[
T f
′

k−2

])
. Since T f

′

` = T f` for 0 ≤ ` ≤ k− 2, we may use this along with

the fact that 1
[
Sfk
]

= ¬1
[
T fk−1

]
to get:

f = f ′⊕1
[
Sfk
]

= h′
(
1
[
T f
′

0

]
, . . . ,1

[
T f
′

k−2

])
⊕¬1

[
T fk−1

]
= h′

(
1
[
T f0
]
, . . . ,1

[
T fk−2

])
⊕¬1

[
T fk−1

]
and the inductive hypothesis holds (note that 0n ∈ Sfk).

The converse is easily verified by observing that any chain in {0, 1}n can induce at

most k + 1 possible vectors of values for (m1, . . . ,mk) because of their monotonicity.

Theorem 5.1.1 along with Markov’s theorem immediately yield Corollary 5.1.2:

Corollary. Every f ∈ Cnt can be expressed as f = h(m1, . . . ,mT) where h is either PART

or its negation, each mi : {0, 1}n → {0, 1} is monotone, and T = O(2t).

5.2.2 Approximation

As noted earlier, Markov’s theorem implies that every n-variable Boolean function can

be exactly computed by a circuit with (essentially) log n negations (since a(f) ≤ n for all

f). If we set a less ambitious goal of approximating Boolean functions (say, having a circuit

correctly compute f on a 1 − ε fraction of all 2n inputs), can significantly fewer negations

suffice?

We first observe that every Boolean function f is ε-close (with respect to the uniform

distribution) to a function f ′ that has a(f ′) ≤ O(
√
n log 1/ε). The function f ′ is obtained

from f simply by setting f ′(x) = 0 for all inputs x that have Hamming weight outside

of [n/2 − O(
√
n log 1/ε), n/2 + O(

√
n log 1/ε)]; a standard Chernoff bound implies that f

and f ′ disagree on at most ε2n inputs. Markov’s theorem then implies that the inversion

complexity I(f ′) is at most 1
2(log n + log log 1

ε) + O(1). Thus, every Boolean function can

be approximated to high accuracy by a circuit with only 1
2 log n+O(1) negations.

We now show that this upper bound is essentially optimal: for almost every Boolean

function, any 0.01-approximating circuit must contain at least 1
2 log n−O(1) negations. To

prove this, recall the definition of total influence of a Boolean function, presented in Chapter

Chapter 5. Learning circuits with negations 105

2. The total influence of f is easily seen to equal αn, where α ∈ [0, 1] is the fraction of all

edges e = (x, x′) in the Boolean hypercube that are bichromatic, i.e. have f(x) 6= f(x′). In

Section 5.5 we prove the following lemma:

Lemma 5.2.2. Suppose f : {0, 1}n → {0, 1} is such that Inf[f] = Ω(n). Then a(f) =

Ω(
√
n).

It is easy to show that a random function has influence n
2 (1 − o(1)) with probability

1 − 2−n. Given this, Claim 5.2.2, together with the elementary fact that if f ′ is ε-close to

f then | Inf(f ′)− Inf(f)| ≤ 2εn, directly yields Theorem 5.1.3:

Theorem. With probability 1 − 2−n, any 0.01-approximator f ′ for a random function f

must have inversion complexity I(f ′) ≥ 1
2 log n−O(1).

Remark 2. The results in this section (together with simple information-theoretic argu-

ments showing that random functions are hard to learn) imply that one cannot expect to

have a learning algorithm (even to constant accuracy) for the class Cn1
2

logn+O(1)
of circuits

with 1
2 log n+O(1) negations in time significantly better than 2n. As we shall see in Section

5.3, for any fixed δ > 0 it is possible to learn Cn
(1

2
−δ) logn

to accuracy 1−ε in time 2Õ(n1−δ)/ε.

5.3 A learning algorithm for non-monotone circuits

We sketch the learning algorithm and analysis of Bshouty and Tamon [40]. Using the

results from Section 5.2, our Theorem 5.1.4 will follow easily from their approach. Our

starting point is the simple observation that functions with good “Fourier concentration”

can be learned to high accuracy under the uniform distribution simply by estimating all of

the low-degree Fourier coefficients. This fact, established by Linial, Mansour and Nisan, is

often referred to as the “Low-Degree Algorithm:”

Theorem 5.3.1 (Low-Degree Algorithm ([129])). Let C be a class of Boolean functions

such that for ε > 0 and τ = τ(ε, n), ∑
|S|>τ

f̂(S)2 ≤ ε

for any f ∈ C. Then C can be learned from uniform random examples in time poly(nτ , 1/ε).

Chapter 5. Learning circuits with negations 106

Using the fact that every monotone function f : {0, 1}n → {0, 1} has total influence

Inf(f) ≤
√
n, and the well-known Fourier expression Inf(f) =

∑
S f̂(S) · |S|2 for total

influence, a simple application of Markov’s inequality let Bshouty and Tamon show that

every monotone function f has ∑
|S|>
√
n/ε

f̂(S)2 ≤ ε.

Together with Theorem 5.3.1, this gives their learning result for monotone functions.

Armed with Corollary 5.1.2, it is straightforward to extend this to the class Cnt . Corol-

lary 5.1.2 and a union bound immediately give that every f ∈ Cnt has Inf(f) ≤ O(2t)
√
n, so

the Fourier expression for influence and Markov’s inequality give that

∑
|S|>O(2t)

√
n/ε

f̂(S)2 ≤ ε

for f ∈ Cnt . Theorem 5.1.4 follows immediately using the Low-Degree Algorithm.

An immediate question is whether this upper bound on the complexity of learning Cnt
is optimal; we give an affirmative answer in the next section.

5.4 The complexity of learning non-monotone circuits

As noted in the introduction, we prove information-theoretic lower bounds against

learning algorithms that make a limited number of membership queries. We start by es-

tablishing a new lower bound on the number of membership queries that are required to

learn monotone functions to high accuracy, and then build on this to provide a lower bound

for learning Cnt . Our query lower bounds are essentially tight, matching the upper bounds

(which hold for learning from uniform random examples) up to logarithmic factors in the

exponent.

We first state the results; the proofs are deferred to Subsection 5.4.1. We say that a

Boolean function f is balanced if Prx[f(x) = 0] = Prx[f(x) = 1] = 1/2.

Theorem 5.4.1. There exists a class H of balanced n-variable monotone Boolean functions

such that for any ε ∈ [1
n1/6 , 1/2− c], c > 0, learning Hn to accuracy 1− ε requires 2Ω(

√
n/ε)

membership queries.

Chapter 5. Learning circuits with negations 107

This immediately implies the following corollary, which essentially closes the gap in

our understanding of the hardness of learning monotone functions:

Corollary 5.4.2. For any ε = Ω
(
1/n1/6

)
bounded away from 1/2, learning n-variable

monotone functions to accuracy 1− ε requires 2Θ̃(
√
n)/ε queries.

Using this class H as a building block, we obtain the following hardness of learning

result for the class of k-alternating functions:

Theorem 5.4.3. For any function k : N→ N, there exists a class H(k) of balanced k = k(n)-

alternating n-variable Boolean functions such that, for any n sufficiently large and ε > 0

such that (i) 2 ≤ k < n1/14, and (ii) k7/3/n1/6 ≤ ε ≤ 1
2 − c, learning H(k) to accuracy 1− ε

requires 2Ω(k
√
n/ε) membership queries.

We note that the tradeoff between the ranges of k and ε that is captured by condition

(ii) above seems to be inherent to our approach and not a mere artifact of the analysis; see

Remark 4.

This theorem immediately yields the following results:

Corollary 5.4.4. Learning the class of k-alternating functions to accuracy 1 − ε in the

uniform-distribution membership-query model requires 2Ω(k
√
n/ε) membership queries, for

any k = O
(
n1/28

)
and ε ∈ [1/n1/12, 1

2 − c].

Corollary 5.4.5. For t ≤ 1
28 log n, learning Cnt to accuracy 1− ε requires 2Ω(2t

√
n/ε) mem-

bership queries, for any ε ∈ [27t/3/n1/6, 1
2 − c].

5.4.1 Proofs

We require the following standard notion of composition for two functions f and g:

Definition 5.4.6 (Composition). For f : {0, 1}m → {0, 1} and g : {0, 1}r → {0, 1}, we

denote by g ⊗ f the Boolean function on n = mr inputs defined by

(g ⊗ f)(x)
def
= g(f, . . . , f︸ ︷︷ ︸

r

)(x) = g(f(x1, . . . , xm), . . . , f(x(r−1)m+1, . . . , xrm))

Chapter 5. Learning circuits with negations 108

Similarly, for any g : {0, 1}r → {0, 1} and Fm a class of Boolean functions on m variables,

we let

g ⊗Fm = { g ⊗ f : f ∈ Fm }

and g ⊗F = {g ⊗Fm}m≥1.

Overview of the arguments. Our approach is based on hardness amplification. In order

to get our lower bound against learning k-alternating functions, we (a) start from a lower

bound ruling out very high-accuracy learning of monotone functions; (b) use a suitable

monotone combining function to get an XOR-like hardness amplification, yielding a lower

bound for learning (a subclass of) monotone functions to moderate accuracy; (c) repeat

this approach on this subclass with a different (now k-alternating) combining function to

obtain our final lower bound, for learning k-alternating functions to moderate accuracy.high-accuracy

monotone


(a)

⊗
-like−−−−−−−−→

monotone

moderate accuracy

monotone


(b)

⊗
-like−−−−−−−−→

k-alternating

moderate accuracy

k-alternating


(c)

(5.1)

In more detail, in both steps (b) and (c) the idea is to take as base functions the hard

class from the previous step (respectively “monotone hard to learn to high accuracy”, and

“monotone hard to learn to moderate accuracy”), and compose them with a very noise-

sensitive function in order to amplify hardness. Care must be taken to ensure that the

combining function satisfies several necessary constraints (being monotone for (b) and k-

alternating for (c), and being as sensitive as possible to the correct regime of noise in each

case).

Useful tools. We begin by recalling a few notions and results that play a crucial role in

our approach.

Definition 5.4.7 (Bias and expected bias). The bias of a Boolean function h : {0, 1}n →

{0, 1} is the quantity bias(h)
def
= max(Pr[h = 1] ,Pr[h = 0]), while the expected bias of

h at δ is defined as ExpBiasδ(h)
def
= Eρ[bias(hρ)], where ρ is a random restriction on k

coordinates where each coordinate is independently left free with probability δ and set to 0

or 1 with same probability (1− δ)/2.

Chapter 5. Learning circuits with negations 109

Fact 5.4.8 (Proposition 4.0.11 from [146]). For δ ∈ [0, 1/2] and f : {0, 1}n → {0, 1}, we

have
1

2
+

1

2
Stab1−2δ(f) ≤ ExpBias2δ(f) ≤ 1

2
+

1

2

√
Stab1−2δ(f).

Building on Talagrand’s probabilistic construction [182] of a class of functions that are

sensitive to very small noise, Mossel and O’Donnell [140] gave the following noise stability

upper bound. (We state below a slightly generalized version of their Theorem 3, which

follows from their proof with some minor changes; see Subsection 5.5.2 for details of these

changes.)

Theorem 5.4.9 (Theorem 3 of [140]). There exists an absolute constant K and an infinite

family of balanced monotone functions gr : {0, 1}r → {0, 1} such that Stab1−τ/
√
r(gr) ≤

1−Kτ holds for all sufficiently large r, as long as τ ∈ [16/
√
r, 1].

Applying Fact 5.4.8, it follows that for the Mossell-O’Donnell function gr on r inputs

and any τ as above, we have

1

2
≤ ExpBiasγ(gr) ≤

1

2
+

1

2

√
1−Kτ ≤ 1− K

4
τ, (5.2)

for γ
def
= τ√

r
.

We will use the above upper bound on expected bias together with the following key

tool from [63], which gives a hardness amplification result for uniform distribution learning.

This result builds on the original hardness amplification ideas of O’Donnell [146]. We

note that the original theorem statement from [63] deals with the running time of learning

algorithms, but inspection of the proof shows that the theorem also applies to the number

of membership queries that the learning algorithms perform.

Theorem 5.4.10 (Theorem 12 of [63]). Fix g : {0, 1}r → {0, 1}, and let F be a class of m-

variable Boolean functions such that for every f ∈ F , bias(f) ≤ 1
2 + ε

8r . Let A be a uniform

distribution membership query algorithm that learns g ⊗ F to accuracy ExpBiasγ(g) + ε

using T (m, r, 1/ε, 1/γ) queries. Then there exists a uniform-distribution membership query

algorithm B that learns F to accuracy 1 − γ using O(T · poly(m, r, 1/ε, 1/γ)) membership

queries.

Chapter 5. Learning circuits with negations 110

Hardness of learning monotone functions to high accuracy. At the bottom level,

corresponding to step (a) in (5.1), our approach relies on the following simple claim which

states that monotone functions are hard to learn to very high accuracy. (We view this claim

as essentially folklore; as noted in the introduction, it slightly sharpens a lower bound given

in [40]. A proof is given for completeness in Subsection 5.5.3.)

Claim 5.4.11 (A slice of hardness). There exists a class of balanced monotone Boolean

functions G = {Gm}m∈N and a universal constant C such that, for any constants 0 < α ≤

1/10, learning Gm to error 0 < ε ≤ α/
√
m requires at least 2Cm membership queries.

We now prove Theorem 5.4.1, i.e. we establish a stronger lower bound (in terms of the

range of accuracy it applies to) against learning the class of monotone functions. We do

this by amplifying the hardness result of Fact 5.4.11 by composing the “mildly hard” class

of functions G with a monotone function g — the Mossel-O’Donnell function of Theorem

5.4.9 — that is very sensitive to small noise (intuitively, the noise rate here is comparable

to the error rate from Fact 5.4.11).

Proof of Theorem 5.4.1. We will show that there exists an absolute constant α > 0 such

that for any n sufficiently large and τ ∈ [1
n1/6 , 1/2−c], there exist m = m(n), r = r(n) (both

of which are ωn(1)) such that learning the class of (balanced) functions Hn = gr ⊗ Gm on

n = mr variables to accuracy 1− τ requires at least 2α
√
n/τ membership queries.

By contradiction, suppose we have an algorithm A which, for all m, r, τ as above, learns

the class Hn to accuracy 1− τ using T = TA(n, τ) < 2α
√
n/τ membership queries. We show

that this implies that for infinitely many values of m, one can learn Gm to error ε = .1/
√
m

with 2o(m) membership queries, in contradiction to Fact 5.4.11.

Fix any n large enough and τ ∈ [1
n1/6 , .1], and choose m, r satisfying mr = n and

5
K ·

τ√
r

= .1√
m
, where K is the constant from Theorem 5.4.9. Note that this implies m =

K
50 ·

√
n
τ ∈ [Θ(n1/2),Θ(n2/3)] so indeed both m and r are ωn(1). Intuitively, the value .1√

m
is

the error we want to achieve to get a contradiction, while the value 5
K ·

τ√
r

is the error we

can get from Theorem 5.4.10. Note that we indeed can use the Mossel-O’Donnell function

from Theorem 5.4.9, which requires τ > 16√
r

– for our choice of r, this is equivalent to

τ >
(

16
√
K√

50

)2/3
1

n1/6 . Finally, set ε
def
= .1/

√
m.

Chapter 5. Learning circuits with negations 111

We apply Theorem 5.4.10 with g
def
= gr, γ = (5/K)τ/

√
r and ε = τ/4. Note that all

functions in Gm are balanced, and thus trivially satisfy the condition that bias(f) ≤ ε
8r , and

recall that 1−γ is the accuracy the theorem guarantees against the original class Gm. With

these parameters we have

ExpBiasγ(g) + ε ≤
Eq.(5.2)

1− K

4

5τ

K
+
τ

4
= 1− τ ≤ accuracy(A).

Theorem 5.4.10 gives that there exists a learning algorithm B learning Gm to accuracy

1 − γ ≥ 1 − ε with TB = O(T · poly(m, r, 1/τ, 1/γ)) = O(T · poly(n, 1/τ)) membership

queries, that is, TB = TA(n, τ) · poly(n, 1/τ) < 2α
√
n/τ+o(

√
n/τ) many queries. However, we

have 2(α+o(1))
√
n/τ = 2(α+o(1))m·

√
n

τm < 2Cm, where the inequality comes from observing that
√
n

τm = 50
K (so that it suffices to pick α satisfying 50α/K < C). This contradicts Fact 5.4.11,

and completes the proof of the theorem.

Remark 3 (Improving this result). Proposition 1 of [140] gives a lower bound on the best

noise stability that can be achieved by any monotone function. If this lower bound were

in fact tight — that is, there exists a family of monotone functions {fr} such that for all

γ ∈ [−1, 1], Stab1−γ(fr) = (1 − γ)(
√

2/π+o(1))
√
r — then the above lower bound could be

extended to an (almost) optimal range of τ , i.e. τ ∈ [Φ(n)/
√
n, 1

2 − c] for Φ any fixed

super-constant function.

From the hardness of learning monotone functions to the hardness of learning k-

alternating functions. We now establish the hardness of learning k-alternating functions.

Hereafter we denote by H = {gr ⊗ Gm}m,r the class of “hard” monotone functions from

Theorem 5.4.1. Since gr is balanced and every f ∈ Gm has bias zero, it is easy to see that

H is a class of balanced functions.

We begin by recalling the following useful fact about the noise stability of functions

that are close to PAR:

Fact 5.4.12 (e.g., from the proof of Theorem 9 in [28]). Let r ≥ 1. If f is a Boolean

function on r variables which η-approximates PARr, then for all δ ∈ [0, 1],

Stab1−2δ(f) ≤ (1− 2η)2(1− 2δ)r + 4η(1− η). (5.3)

Chapter 5. Learning circuits with negations 112

We use the above fact to define a function that is tailored to our needs: that is, a

k-alternating function that is very sensitive to noise and is defined on roughly k2 inputs.

Without the last condition, one could just use PARk, but in our context this would only let

us obtain a
√
k (rather than a k) in the exponent of the lower bound, because of the loss

in the reduction. To see why, observe that by using a combining function on k variables

instead of k2, the number of variables of the combined function gk ⊗ Gm would be only

n = km. However, to get a contradiction with the hardness of monotone functions we shall

need k
√
n/ε �

√
m/τ , where τ ≈ ε/k, as the hardness amplification lemma requires the

error to scale down with the number of combined functions.

Definition 5.4.13. For any odd2 r ≥ k ≥ 1, let PAR′k,r be the symmetric Boolean function

on r inputs defined as follows: for all x ∈ {0, 1}r,

PAR′k,r(x) =


0 if |x| ≤ r−k

2

1 if |x| ≥ r+k
2

PARr(x) otherwise.

In particular, PAR′k,r is k-alternating, and agrees with PARr on the k + 1 middle layers

of the hypercube. By an additive Chernoff bound, one can show that PAR′k,r is η-close to

PARr, for η = e−k
2/2r.

Proof of Theorem 5.4.3. H(k)
n will be defined as the class PAR′k,r ⊗Hm for some r and m

such that n = mr (see below). It is easy to check that functions in H(k)
n are balanced

and k-alternating. We show below that for n sufficiently large, 2 ≤ k < n1/14 and ε ∈

[(1/300)(k14/n)1/6, 1
2 − c], learning H(k)

n to accuracy 1 − ε requires 2Ω(k
√
n/ε) membership

queries.

By contradiction, suppose we have an algorithm A learning for all n, k, ε as above

the class of k-alternating functions to accuracy 1− ε using TA(n, k, ε) < 2β
k
√
n
ε membership

2The above definition can be straightforwardly extended to r ≥ k ≥ 1 not necessarily odd, resulting in

a similar k-alternating perfectly balanced function PAR′k,r that agrees with PARr on k+O(1) middle layers

of the cube and is 0 below and 1 above those layers. For the sake of simplicity we leave out the detailed

description of the other cases.

Chapter 5. Learning circuits with negations 113

queries, where β > 0 is a universal constant to be determined during the analysis. We claim

that this implies that for infinitely many values of m, one can learn Hm to some range of

accuracies with a number of membership queries contradicting the lower bound of Theorem

5.4.1.

Fix any n large enough, k and ε as above (which in particular impose k = O
(
n1/14

)
).

The constraints we impose on m, r and τ are the following:

mr = n; ExpBiasτ (PAR′k,r) + ε ≤ 1− ε; m = ωn(1); τ ≥ 1

m1/6
; (5.4)

βk

√
n

ε
< α

√
m

τ
, (5.5)

where the constraints in (5.4) are for us to apply the previous theorems and lemmas, while

(5.5) is needed to ultimately derive a contradiction.

One can show that by taking r
def
=
⌊

k2

2 ln 5

⌋
≥ 1 and τ

def
= 100ε

r , the second constraint

of (5.4) is satisfied, as then Stab1−τ (PAR′k,r) ≤ 1 − 8ε (for the derivation, see Subsection

5.5.4). Then, with the first constraint of (5.4), we get (omitting for simplicity the floors)

m
def
= nτ

100ε = (2 ln 5) n
k2 , so as long as k = o(

√
n), the third constraint of (5.4) is met as well.

With these settings, the final constraint of (5.4) can be rewritten as ε ≥ 1
100

(
r7

n

)1/6
=

1
100(2 ln 5)7/6

(
k14

n

)1/6
. As (2 ln 5)7/6 > 3, it is sufficient to have ε ≥ 1

300

(
k14

n

)1/6
, which

holds because of the lower bound on ε.

It only remains to check that Constraint (5.5) holds:

k

√
n

ε
= 100k

√
n

τr
= 100

k√
r

√
m

τ
≤

(
100

√
2 ln 5

1− 2 ln 5/k2

) √
m

τ
≤ 300

√
2 ln 5 ·

√
m

τ
,

where the first inequality holds because as 1
r ≤

1
k2

2 ln 5
−1

and the second holds because k ≥ 2.

So for the right choice of β = Ω(1), e.g. β = α/600, βk
√
n
ε < α

√
m
τ , and (5.5) is satisfied.

It now suffices to apply Theorem 5.4.10 to PAR′k,r ⊗Hm, with parameters γ = τ and

ε, on algorithm A, which has accuracy acc(A) ≥ 1 − τ ≥ ExpBiasγ(PAR′k,r) + ε. Since the

functions of H are unbiased, it follows that there exists an algorithm B learning Hm to

accuracy 1− τ , with τ > 1/2m1/6, making only

TB(m, τ) = O(TA(n, k, ε)poly(n, k, 1/ε)) = 2βk
√
n
ε

(1+o(1)) < 2α
√
m
τ

membership queries, which contradicts the lower bound of Theorem 5.4.1.

Chapter 5. Learning circuits with negations 114

Remark 4 (On the relation between ε and k). The tradeoff in the ranges for k and ε appear

to be inherent to this approach. Namely, it comes essentially from Constraint (5.4), itself

deriving from the hypotheses of Theorem 5.4.1. However, even getting an optimal range in

the latter would still require τ = Ω(1/
√
m), which along with r ≈ k2 and τ ≈ ε/r impose

k = O
(
n1/6

)
and ε = Ω

(
k3/
√
n
)
.

5.5 Auxiliary results

5.5.1 Proof of Claim 5.2.2

Suppose Inf[f] ≥ αn for some α ∈ (0, 1]: this means that at least an α fraction of all

edges are bichromatic. Define the weight level k (denotedWk) to be the set of all edges going

from a vertex of Hamming weight k to a vertex of Hamming weight k + 1 (in particular,

|Wk| = (n− k)
(
n
k

)
), and consider weight levels n/2− a

√
n, . . . , n/2 + a

√
n−1 (the “middle

levels”) for a
def
=
√

(1/2) ln(8/α). (We suppose without loss of generality that n/2− a
√
n is

a whole number.) Now, the fraction of all edges which do not lie in these middle levels is

at most

1

n2n−1
· 2

n
2
−a
√
n−1∑

j=0

|Wk| ≤
2n

n2n−1

n
2
−a
√
n−1∑

j=0

(
n

k

)
≤ 4

2n

n
2
−a
√
n−1∑

j=1

(
n

k

)
≤ 4e−2a2

=
α

2
.

So no matter how many of these edges are bichromatic, it must still be the case that at

least an α/2 fraction of all edges in the “middle levels” are bichromatic.

Since the ratio
|Wn/2|

|Wn/2−a
√
n|

=

n
2

(
n
n/2

)(
n
2 + a

√
n
) (

n
n/2−a

√
n

)
converges monotonically from below (when n goes to infinity) to C

def
= e2a2

, any two weight

levels amongst the middle ones have roughly the same number of edges, up to a multiplica-

tive factor C. Setting p = α/6C and q = α/6, this implies that at least a p fraction of the

weight levels in the middle levels have at least a q fraction of their edges being bichromatic.

Indeed, otherwise we would have, letting bk denote the number of bichromatic edges in

Chapter 5. Learning circuits with negations 115

weight layer k,

α

2
·

n
2

+a
√
n−1∑

k=n
2
−a
√
n

|Wk|

︸ ︷︷ ︸
total

≤

n
2

+a
√
n−1∑

k=n
2
−a
√
n

bk

≤
∑

k∈[n
2
−a
√
n,n

2
+a
√
n−1]

bk>q|Wk|

|Wk|+
∑

k∈[n
2
a
√
n,n

2
+a
√
n−1]

bk≤q|Wk|

q · |Wk|

≤ p · 2a
√
n · |Wn/2|+ q ·

n
2

+a
√
n−1∑

k=n
2
−a
√
n

|Wk|

≤ p · C ·

n
2

+a
√
n−1∑

k=n
2
−a
√
n

|Wk|+ q ·

n
2

+a
√
n−1∑

k=n
2
−a
√
n

|Wk|.

Thus α
2 · total ≤ p · C · total + q · total, which gives α

2 ≤
α

6C · C + α
6 = α

3 , a contradiction.

Let S be this collection of at least 2a
√
np weight levels (from the middle ones) that

each have at least a q fraction of edges being bichromatic, and write pi to denote the fraction

of bichromatic edges in Wi, so that for each i ∈ S it holds that pi ≥ q. Consider a random

chain from 0n to 1n. The marginal distribution according to which an edge is drawn from

any given fixed weight level i is uniform on Wi, so by linearity, the expected number of

bichromatic edges in a random chain is at least
∑

i∈S pi ≥ 2a
√
npq = Ω(

√
n), and hence

some chain must have that many bichromatic edges.

5.5.2 Derivation of Theorem 5.4.9 using Theorem 3 of [140]

The original theorem is stated for τ = 1, with the upper bound being 1 − Ω(1).

However, the proof of [140] goes through for our purposes until the very end, where they

set ε
def
= 1√

r
and need to show that

e−2
(

1− (1− ε+ 2
√
ε/r)

√
r
)

= Ω(1).

More precisely, the proof goes overall as follows: for some realization of the Talagrand

function on r variables gr, we want (for some absolute constant K) that

1−Kτ ≥ Stab1− τ√
r
(gr) = 1− 2 Pr

[
gr ◦N1− τ√

r
(x) 6= gr(x)

]
.

Chapter 5. Learning circuits with negations 116

That is, one needs to show Pr
[
gr ◦N1− τ√

r
(x) 6= gr(x)

]
≥ K

2 τ ; and in turn, it is sufficient

to prove that for g a random Talagrand function on r variables,

Eg

[
Pr
[
g ◦N1− τ√

r
(x) 6= g(x)

]]
≥ K

2
τ.

This is where we slightly adapt the [140] proof. Where they set a parameter ε to be equal

to 1/
√
r and analyze Eg[Pr[g ◦N1−2ε(x) 6= g(x)]], we set for our purposes ε

def
= τ

2
√
r
. The

rest of the argument goes through until the very end, where it only remains to show that

ae−2
(

1− (1− ε+ 2
√
ε/r)

√
r
)
≥ K

2
τ (5.6)

(a being a small constant resulting from the various conditionings in their proof), or equiv-

alently, that (1− ε+ 2
√
ε/r)

√
r ≤ 1− e2K

2a τ . But the left-hand side can be rewritten as

(1− ε+ 2
√
ε/r)

√
r = e

√
r ln(1−ε+2

√
ε/r) = e

√
r ln(1−τ/2

√
r+
√

2τ/r3/4)

= e

√
r ln

(
1− τ

2
√
r

(
1− 2

√
2√

r1/2τ

))

≤ e
−
√
r· τ

2
√
r

(
1− 2

√
2√

r1/2τ

)
(as τ

2
√
r

(
1− 2

√
2√

r1/2τ

)
< 1)

= e
− τ

2

(
1− 2

√
2√

r1/2τ

)
≤ e−

τ
2

(1− 1√
2

)
(as τ > 16√

r
)

≤ e−
τ
7 ≤ 1− τ

8
≤ 1− e2K

2a
τ.

(first as τ < 1, then for a suitable choice of K)

5.5.3 Proof of Fact 5.4.11

We give the proof for m even; by standard techniques, it extends easily to the odd

case. For any m ∈ 2N, define Cm as the class of functions f generated as follows: let

R = { x ∈ {0, 1}m : |x| = m/2 }, and partition R in |R|/2 pairs of elements (x`, x̄`). For

all x ∈ {0, 1}m,

f(x) =



0 if |x| < m/2

r` if x ∈ R and x = x`

1− r` if x ∈ R and x = x̄`

1 if |x| > m/2

Chapter 5. Learning circuits with negations 117

where the |R|/2 bits r` are chosen independently and uniformly at random. Clearly, f is

balanced, and we have

|R| =
(
m

m/2

)
∼

m→∞

√
2

π
· 2m√

m

def
= γ2m.

Suppose we have a learning algorithm A for Cm making q < 2Cm membership queries.

Fix 0 < α ≤ 1, and ε = α/
√
m; to achieve error at most ε overall, A must in particular

achieve error at most ε
γ =

√
π
2α on R. But after making q queries, there are still at least

t = γ2m/2 − 2Cm > 0.99|R| points in R (for m big enough) A has not queried, and hence

with values chosen uniformly at random; on each of these points, A is wrong with probability

exactly half, and in particular

Pr

[
error ≤ ε

γ

]
< Pr[error ≤ 2α]

= Pr

[
t∑
i=1

Xi ≤ 2α|R|

]

≤ Pr

[
t∑
i=1

Xi ≤
200

99
αt

]

≤ e−
(1− 400

99 α)2t

2

= o(1),

with an additive Chernoff bound. This means that with high probability over the choice of

the target concept, A will fail to learn it to accuracy 1− ε.

5.5.4 Derivation of the bound Stab1−τ (PAR
′
k,r) ≤ 1− 8ε

By setting r as stated we get that r ≤ k2/ ln(1/ε) and the distance between PAR′k,r

and PARr becomes η = e−k
2/2r ≤ 1/5. Since we aim at having ExpBiasτ (PAR′k,r) ≤ 1− 2ε,

it is sufficient to have
√

Stab1−τ (PAR′k,r) ≤ 1 − 4ε; which would in turn be implied by

Stab1−τ (PAR′k,r) ≤ 1− 8ε.

By Fact 5.4.12, it is sufficient to show that (1−2η)2(1− τ)r + 4η(1−η) ≤ 1−8ε. Note

Chapter 5. Learning circuits with negations 118

that, since ε < 1/100, and by our choice of τ ,

(1− 2η)2(1− τ)r + 4η(1− η) ≤ (1− 2η)2

1 + 100ε
+ 4η(1− η)

≤ (1− 2η)2(1− 50ε) + 4η(1− η)

≤ (1− 4η + 4η2)(1− 50ε) + 4η(1− η)

= 1− 4η − 50ε+ 200ηε+ 4η2 − 200εη2 + 4η − 4η2

= 1− 50ε+ 200εη(1− η) ≤ 1− 50ε+ 32ε = 1− 18ε

≤ 1− 8ε.

Chapter 6. The power of negations in Cryptography 119

Chapter 6

The power of negations in

Cryptography

6.1 Background, results, and organization

Why do block ciphers like AES (Advanced Encryption Standard) have so many XOR

gates dispersed throughout the levels of its circuit? Can we build a universal hard-core bit

alternative to the Goldreich and Levin one [80] that only applies a small (say, constant)

number of XORs? Why does the Goldreich, Goldwasser, and Micali [82] construction of

a pseudorandom function (PRF) from a pseudorandom generator (PRG) heavily rely on

selection functions, and calls the PRG many times? Could there be a monotone construction

of a PRF from a PRG?

These are a few of the many fascinating questions related to the negation complexity of

cryptographic primitives. The negation complexity of a boolean function f : {0, 1}n → {0, 1}

is the minimum number of negation gates in any fan-in two circuit with AND, OR, and

NOT gates computing f . Note that negation gates are equivalent to XOR gates (of fan-in

2), in the sense that any circuit with t negation gates can be transformed into an equivalent

circuit with t XOR gates, and vice-versa.1 A function is monotone if and only if its negation

complexity is 0.

1¬x is equivalent to x⊕ 1, while x⊕ y is equivalent to ¬(x ∧ y) ∧ (x ∨ y).

Chapter 6. The power of negations in Cryptography 120

In this chapter, we initiate the investigation of the negation complexity of crypto-

graphic primitives. We take first steps in this study, providing some surprising results, as

well as pointing to some basic, intriguing problems that are still open.

This direction fits within the larger program of studying how simple basic crypto-

graphic primitives can be, according to various complexity measures such as required as-

sumptions, minimal circuit size, depth, etc (see, e.g., [18]). Exploring such questions helps

gaining a deeper theoretical understanding of fundamental primitives and the relationships

among them, and may provide the basis for understanding and addressing practical consid-

erations as well.

While the study of monotone classes of functions and negation complexity has been

prevalent in circuit complexity ([97, 15, 183, 181, 180, 26, 25, 139, 138], to name a few) and

computational learning theory (see e.g. [29, 31, 40, 145, 54]), little attention has been given

to it in the cryptographic context.

Recently, Goldreich and Izsak [79] have initiated a study of “cryptography in the

monotone world”, asking whether basic cryptographic primitives may be monotone. They

focus on one-way functions (OWF) and pseudorandom generators, and show an inherent gap

between the two by proving: (1) if any OWF exist, then there exist OWFs with polynomial-

size monotone circuits, but (2) no monotone function can be a PRG. Quoting from their

paper: these two results indicate that in the “monotone world” there is a fundamental gap be-

tween one-way functions and pseudorandom generators; thus, the “hardness-vs-randomness”

paradigm fails in the monotone setting. This raises the following natural question:

Can other cryptographic primitives be computed by polynomial-size monotone

circuits?

We consider this question for several primitives and building blocks, showing negative

answers for all of them. This may suggest the interpretation (or conjecture) that in the

“monotone world”, there is no cryptography except for one-way functions. We then initiate

a quantitative study (where our main contributions lie), putting forward the question:

How many negations are required (for poly-size circuits) to compute fundamental

cryptographic building blocks?

Chapter 6. The power of negations in Cryptography 121

Markov [132] proved that the negation complexity of any function h : {0, 1}n → {0, 1}m

is at most dlog(n+1)e, and Fischer [66] proved that this transformation can be made efficient

(see Jukna [Chapter 10, 109] for a modern exposition). In light of these results, is it the

case that all natural cryptographic primitives other than OWFs require Ω(log n) negations,

or are there primitives that can be computed with, say, a constant number of negations?

We state our results informally below. Since our lower bounds hold for well-known

primitives, we postpone their definitions to Section 6.2.

Our Results. Our contributions alongside previously known results are summarized in

Figure 6.1, together with the main idea in each proof (the definition of these primitives can

be found in Section 6.2). We explain and discuss some interesting aspects of these results

below, deferring complete details to the body of the chapter.

Primitive Lower Bound Upper Bound Ref. Proof Techniques

OWF - (monotone) [79] Embedding into middle slice.

OWP non-monotone log n+O(1) - Combinatorial and analytic proofs.

PRG non-monotone log n+O(1) [79] AND of one or two output bits.

SBG non-monotone ω(1) - Extension of [79]; Parity of Tribes.

WPRF non-monotone (1
2 +o(1)) log n [31] Weak-learner for mon. functions.

PRF log n − O(1) log n+O(1) - Alternating chains in the cube.

ECC log n − O(1) log n+O(1) - Extension of [44].

HCB (1
2
−o(1)) log n (1

2 +o(1)) log n - Low influence and [78].

EXT Ω(log n) log n+O(1) - Low noise-sensitivity and [36].

Figure 6.1: Summary of the negation complexity of basic cryptographic primitives and building

blocks. Boldface results correspond to new bounds obtained in this work. The log n + O(1) up-

per bound is Markov’s bound [132] for any Boolean function. Error-correcting codes (ECC) and

extractors (EXT) refer to constructions with appropriate distance and extraction parameters.

Cryptography is Non-Monotone. As mentioned above, [79] proved that if OWFs exist,

then they can be monotone, while PRGs cannot. We fill in the picture by considering

several other cryptographic primitives, and observing that none of them can be monotone

Chapter 6. The power of negations in Cryptography 122

(see Figure 6.1).

A result of particular interest is the lower bound showing that one-way permutations

(OWP) cannot be monotone. We obtain this result by proving that any monotone permuta-

tion f on n variables must satisfy f(x1, . . . , xn) =
(
xπ(1), . . . , xπ(n)

)
, for some permutation

π : [n] → [n] (finding π and inverting f can then be done by evaluating f on n inputs).2

This is surprising in light of the [79] construction for OWFs. In particular, our result can

be seen as a separation between OWFs and OWPs in the monotone world.

We provide two proofs of our result. The first is based on analytical methods, and was

inspired by an approach used by Goldreich and Izsak [79]. The second is more elementary,

and relies on a self-contained combinatorial argument.

Highly Non-Monotone Primitives. We show that many central cryptographic primi-

tives are highly non-monotone. Some of our lower bounds demonstrate necessity of log n−

O(1) negations, which is tight in light of Markov’s log n + O(1) upper bound [132]. For

some of the primitives we give less tight Ω(log n) lower bounds.

Pseudorandom Functions (PRF). We show that PRFs can only be computed by

circuits containing at least log n−O(1) negations (which is optimal up to the additive

term). We prove this by exhibiting an adversary that distinguishes any function that

can be implemented with fewer negations gates from a random function. Our result

actually implies that for any PRF family {F (w, ·)}, for almost all seeds w, F (w, ·) can

only be computed by circuits with at least log n−O(1) negations.3

The distinguisher we construct asks for the values of the function on a fixed chain

from 0n to 1n and accept if the alternating number of this chain is large. We note

that the distinguisher suceeds for any function that has an implementation with fewer

negations than the lower bound, regardless of the specific implementation the PRF

designer had in mind. This can be considered as another statistical test to run on

2In order to avoid confusion, observe that by assumption f permutes n-bit strings, while π is permuting

the indexes of the input variables.

3That is, if we consider the circuit computing the PRF family F (·, ·) as a single function (with the seed

as one of the inputs), then this circuit must have at least logarithmically many negation gates.

Chapter 6. The power of negations in Cryptography 123

proposed candidate PRF implementations.

Error-Correcting Codes (ECC). As shown by Buresh-Oppenheim, Kabanets and San-

thanam [44], if an ECC has a monotone encoding function then one can find two

codewords that are very close. This implies that there is no monotone ECC with

good distance parameters.

We extend this result to show that, given a circuit with t negation gates computing the

encoding function, we can find two codewords whose Hamming distance is O(2t ·m/n)

(for codes going from n bits to m bits). Consequently, this gives a log n−O(1) lower

bound on the negation complexity of ECC with optimal distance parameters.

Hard-core Bits (HCB). Recall that a Boolean function h : {0, 1}n → {0, 1} is a hard-

core predicate for a function f : {0, 1}n → {0, 1} if, given f(x), it is hard to compute

h(x). We show that general hard-core bit predicates must be highly non-monotone.

More specifically, there exists a family of one-way functions fn for which any hard-core

predicate requires Ω(log n) negations (assuming one-way functions exist).

Our result follows via the analysis of the influence of circuits with few negations, and

a corresponding lower bound on hard-core bits due to Goldmann and Russell [78].

(Strong) Extractors (EXT). A strong extractor produces almost uniform bits from

weak sources of randomness, even when the truly random seed used for extraction is

revealed. We prove that any extractor function Ext : {0, 1}n×{0, 1}s → {0, 1}100 that

works for (n, n1/2−ε)-sources requires circuits with Ω(log n) negations (see Section 6.2

for definitions).

This proof relies on the analysis of the noise sensitivity of circuits containing nega-

tions, together with a technique from Bogdanov and Guo [36].

Non-Trivial Upper Bound for Small-Bias Generators. The above lower bounds may

suggest the possibility that, with the exception of OWFs, all cryptographic building blocks

require Ω(log n) negations. We show one example of a primitive – small-bias generator

(SBG) – that can be constructed with significantly fewer negations, namely, with any super-

constant number of negations (for example, log∗(n) such gates).

Chapter 6. The power of negations in Cryptography 124

A SBG can be thought of as a weaker version of a PRG, where the output fools linear

distinguishers (i.e., it looks random to any distinguisher that can only apply a linear test).

Thus, any PRG is also a SBG, but not vice-versa. We construct our SBG with few negations

by outputting the input and an additional bit consisting of a parity of independent copies

of the Tribes function.

Since SBGs are not quite a cryptographic primitive (these can be constructed uncon-

ditionally, and are not secure against polynomial adversaries), one may still conjecture that

all “true” cryptographic primitives with the exception of OWFs require Ω(log n) negations.

We do not know whether this is the case, and it would be interesting to determine whether

other primitives not covered in this chapter can be monotone.

Lower Bounds for Boolean Circuits with Bottom Negations. In addition to study-

ing specific primitives, we investigate general structural properties of circuits with negations.

We prove a theorem showing that for monotone functions, the depth of any circuit with

negations at the bottom (input) level only is lower bounded by the monotone depth com-

plexity of the function minus the number of negations in the circuit. This is connected to a

result obtained by Koroth and Sarma [124], who proved a multiplicative rather than additive

lower bound, but in a more general setting which assumes that every Boolean function com-

puted at an internal gate of the circuit can be computed by some circuit with few negations

(see their paper for more details). We consider the usual definition of Boolean circuits with

negations at the bottom layer, which allows us to prove a stronger trade-off. Our proof is

inspired by ideas from [124], and relies on a circular application of the Karchmer-Wigderson

connection between boolean circuits and communication protocols.

This result suggests that negations at the bottom layer are less powerful and easier to

study. In Section 6.6 we describe some techniques (following results of Blais et al. [29]) that

allow one to decompose arbitrary computations into monotone and non-monotone compo-

nents, and provide further evidence that negations at the bottom are less powerful (see also

the discussion in Section 6.5).

Organization of the Chapter. We provide the definitions for most of the primitives

mentioned in this chapter in Section 6.2. Basic results used later in our proofs are presented

Chapter 6. The power of negations in Cryptography 125

in Section 6.3, with some proofs deferred to Section 6.6. Our main results appear in Section

6.4. Finally, Section 6.5 discusses some open problems motivated by our work.

6.2 Preliminaries and notation

In this section, we set up notation and define relevant concepts. We refer the reader to

the textbooks [109], [19], [83], and [128] for more background in circuit complexity, compu-

tational complexity, theory of cryptography, and communication complexity, respectively.

6.2.1 Basic notation

Unless explicitly stated, we assume that the underlying probability distribution in our

equations is the uniform distribution over the appropriate set. Further, we let U` denote

the uniform distribution over {0, 1}`. We use log x to denote a logarithm in base 2, and lnx

to refer to the natural base.

For convenience of the reader, we review of a few relevant definitions from Chapter

5. Given strings x, y ∈ {0, 1}n, we write x � y if xi ≤ yi for every i ∈ [n]. A chain

X = (x1, . . . , xt) is a monotone sequence of strings over {0, 1}n, i.e., xi � xi+1 for every

i ∈ [1, t − 1]. We say that a chain X = (x1, x2, . . . , xt) is k-alternating with respect to a

function f : {0, 1}n → {0, 1} if there exist indexes i0 < i1 < . . . < ik such that f(xij) 6=

f(xij+1), for every j ∈ [0, k − 1]. If this is true for every pair of consecutive elements

of the chain, we say that the chain is proper (with respect to f). We let a(f,X) be the

size of the largest set of indexes satisfying this condition. The alternating complexity of

a Boolean function f is given by a(f)
def
= maxX a(f,X), where X is a chain over {0, 1}n.

A function f : {0, 1}n → {0, 1} is monotone if f(x) ≤ f(y) whenever x � y. A function

g : {0, 1}n → {0, 1}m is monotone if every output bit of g is a monotone Boolean function.

Moreover, we say that a Boolean function f : {0, 1}n → {0, 1} is anti-monotone if f is the

negation of a monotone Boolean function.

Chapter 6. The power of negations in Cryptography 126

6.2.2 Boolean circuits and negation gates

Every Boolean circuit mentioned in this chapter consists of AND, OR and NOT gates,

where the first two types of gates have fan-in two. Recall that a Boolean function f : {0, 1}n →

{0, 1} is monotone if and only if it is computed by a circuit with AND and OR gates only.

For convenience, the size of a circuit C will be measured by its number of AND and

OR gates, and will be denoted by size(C). The depth of a circuit C, denoted by depth(C),

is the largest number of AND and OR gates in any path from the output gate to an input

variable. The depth of a Boolean function f is the minimum depth of a Boolean circuit

computing f . Similarly, the depth of a monotone function f , denoted by depth+(f), is the

minimum depth among all monotone circuits computing f . We will also consider multi-

output Boolean circuits that compute Boolean functions f : {0, 1}n → {0, 1}m. We stress

that whenever we say that a function of this form is computed by a circuit with t negations,

it means that there exists a single circuit (with multiple output gates) containing at most

t negations computing f .

We say that a circuit contains negation gates at the bottom layer only if any NOT

gate in the circuit gets as input an input variable xi, for some i ∈ [n]. We will also say that

circuits of this form are DeMorgan circuits. Put another way, a circuit C(x) of size s with

t negations at the bottom layer can be written as D(x, (x ⊕ β)), where D is a monotone

circuit of size s, β ∈ {0, 1}n with |β|1 = t encodes the variables that appear negated in C,

and x⊕ β ∈ {0, 1}n is the string obtained via the bit-wise XOR operation. This notation is

borrowed from Koroth and Sarma [124], which refers to β as the orientation vector.

6.2.3 Pseudorandom functions and weak pseudorandom functions

Let Fn be the set of all Boolean functions on n variables, and F : {0, 1}m × {0, 1}n →

{0, 1}. We say that F is an (s, ε)-secure pseudorandom function (PRF) if, for every (non-

uniform) algorithm A that can be implemented by a circuit of size at most s,∣∣∣ Pr
w∼{0,1}m

[
AF (w,·) = 1

]
− Pr
f∼Fn

[
Af = 1

] ∣∣∣ ≤ ε,
where Ah denotes the execution of A with oracle access to a Boolean function h : {0, 1}n →

{0, 1} (circuits with access to oracle gates are defined in the natural way).

Chapter 6. The power of negations in Cryptography 127

A weak pseudorandom function (WPRF) is defined similarly, except that the distin-

guisher only has access to random examples of the form (x, F (w, x)), where x is uniformly

distributed over {0, 1}n. In particular, any (s, ε)-secure pseudorandom function is an (s, ε)-

secure weak pseudorandom function, while the other direction is not necessarily true.

6.2.4 Pseudorandom generators and small-bias generators

A function G : {0, 1}n → {0, 1}m is an (s, ε)-secure pseudorandom generator (PRG)

with stretch `
def
= m− n if for every circuit C(z1, . . . , zm) of size s,∣∣∣ Pr

x∼Un
[C(G(x)) = 1]− Pr

y∼Um
[C(y) = 1]

∣∣∣ ≤ ε.
We say that a function g : {0, 1}n → {0, 1}m is an ε-secure small-bias generator (SBG)

with stretch ` = m− n if, for every nonempty set S ⊆ [m],∣∣∣ Pr
x∼Un, y=g(x)

[∑
i∈S

yi ≡ 1 (mod 2)
]
− 1

2

∣∣∣ ≤ ε.
Observe that small-bias generators can be seen as weaker pseudorandom generators that

are required to be secure against linear distinguishers only. We refer the reader to Naor and

Naor [141] for more information about the constructions and applications of such generators.

6.2.5 One-way functions, one-way permutations, and hard-core bits

We say that a function f : {0, 1}n → {0, 1}m is an (s, ε)-secure one-way function

(OWF) if for every circuit C of size at most s,

Pr
x∼Un, y=f(x)

[C(y) ∈ f−1(y)] ≤ ε.

If m = n, we say that f is length-preserving. If in addition f is a one-to-one mapping, we

say that f is an (s, ε)-secure one-way permutation (OWP).

We say that a function h : {0, 1}n → {0, 1} is an (s, ε)-secure hard-core bit for a

function f : {0, 1}n → {0, 1}m if, for every circuit C of size s,∣∣∣ Pr
x∼Un

[C(f(x)) = h(x)]− 1

2

∣∣∣ ≤ ε.

Chapter 6. The power of negations in Cryptography 128

6.2.6 Extractors and error-correcting codes

The min-entropy of a random variable X, denoted by H∞(X), is the largest real

number k such that Pr[X = x] ≤ 2−k for every x in the range of X. A distribution X over

{0, 1}n with H∞(X) ≥ k is said to be an (n, k)-source. Given random variables X and Y

with range {0, 1}m, we let

δ(X,Y)
def
= max

S⊆{0,1}m

∣∣Pr[X ∈ S]− Pr[Y ∈ S]
∣∣

denote their statistical distance. We say that X and Y are ε-close if δ(X,Y) ≤ ε.

We say that a function Ext : {0, 1}n × {0, 1}s → {0, 1}m is a (strong) (k, ε)-extractor

(EXT) if, for any (n, k)-source X, the distributions Us+m and (Us,Ext(X,Us)) are ε-close.4

Given strings y1, y2 ∈ {0, 1}m, we let

∆(y1, y2)
def
=
|{i ∈ [m] | y1

i 6= y2
i }|

m

be their relative Hamming distance. Given a function E : {0, 1}n → {0, 1}m, we say that

E has relative distance γ if for every distinct pair of inputs x1, x2 ∈ {0, 1}n, we have

∆(E(x1), E(x2)) ≥ γ. As a convention, we will refer to a function of this form as an error-

correcting code (ECC) whenever we are interested in the distance between its output strings

(also known as “codewords”).

6.3 Basic results and technical background

6.3.1 Markov’s upper bound

The following result was obtained by Markov [132].

Proposition 6.3.1 (Markov [132]). Let f : {0, 1}n → {0, 1}m be an arbitrary function.

Then f is computed by a (multi-output) Boolean circuit containing at most dlog(n + 1)e

negations.

This result implies that many of our lower bounds are tight up to an additive term in-

dependent of n. Some of our proofs also rely on the following relation between negation

complexity and alternation.

4Two occurrences of the same random variable in an expression refer to the same copy of the variable.

Chapter 6. The power of negations in Cryptography 129

Proposition 6.3.2 (Markov [132]). Let f : {0, 1}n → {0, 1} be a Boolean function computed

by a circuit with at most t negations. Then a(f) = O(2t).

6.3.2 The flow of negation gates

It is useful in some situations to decompose the computation of a function into mono-

tone and non-monotone components. This idea has been applied successfully in Chapter 5

to obtain almost optimal bounds on the learnability of functions computed with few nega-

tion gates. A useful structural result employed there (Corollary 5.1.2), restated below as a

lemma for convenience of the reader, is the following.

Lemma 6.3.3 (Blais et al. [29]). Let f : {0, 1}n → {0, 1} be a Boolean function computed by

a circuit C with at most t negations. Then f can be written as f(x) = h(g1(x), . . . , gT (x)),

where each function gi is monotone, T = O(2t), and h is either the parity function, or its

negation.

A drawback of this statement is that the computational complexity of each gi is not

related to the size of C. Roughly speaking, the proof of this result uses a circuit for f in order

to gain structural information about f , and then rely on a non-constructive argument. We

observe that, by relaxing the assumption on h, we can prove the following effective version

of Lemma 6.3.3.5

Lemma 6.3.4. Let f : {0, 1}n → {0, 1} be a Boolean function computed by a circuit C of

size s containing t negation gates. Then f can be written as f(x) = h(g1(x), . . . , gT (x)),

where each function gi is computed by a monotone circuit of size at most s, T = 2t+1 − 1,

and h : {0, 1}T → {0, 1} is computed by a circuit of size at most 5T .

We state below a more explicit version of Lemma 6.3.4 for circuits with a single negation

gate and several output bits. The proof of this result follows from the same argument used

to derive Lemma 6.3.4.

Lemma 6.3.5. Let f : {0, 1}n → {0, 1}u be computed by a circuit of size s containing

a single negation gate. Assume that the j-th output bit of f is computed by the func-

tion fj : {0, 1}n → {0, 1}. Then, there exist monotone functions m : {0, 1}n → {0, 1} and

5This result was obtained during a discussion with Clement Canonne, Li-Yang Tan, and Rocco Servedio.

Chapter 6. The power of negations in Cryptography 130

mj,` : {0, 1}n → {0, 1}, where j ∈ [u] and ` ∈ {0, 1}, which are computed by monotone

circuits of size at most s, and a function h : {0, 1}3 → {0, 1}, such that:

(i) For every j ∈ [u], fj(x) = h(m(x),mj,0(x),mj,1(x)).

(ii) For every j ∈ [u] and x ∈ {0, 1}n, mj,0(x) ≤ mj,1(x).

(iii) The function h is defined as h(z, y1, y0)
def
= yz.

From a programming perspective, Lemma 6.3.5 shows that a single negation gate in

a Boolean circuit can be interpreted as an if-then-else statement involving monotone

functions. Conversely, the selection procedure computed by h can be implemented with a

single negation.

For convenience of the reader, we sketch the proof of these results in Section 6.6, where

we also discuss the expressiveness of negations at arbitrary locations compared to negations

at the bottom layer of a circuit. Lemmas 6.3.3 and 6.3.4 can be used interchangeably in

our proofs.

6.3.3 Useful inequalities

Some of our proofs rely on the following results for Boolean functions.

Proposition 6.3.6 (Fortuin, Kasteleyn, and Ginibre [73]). If g : {0, 1}n → {0, 1} and

f : {0, 1}n → {0, 1} are monotone Boolean functions, then

Pr
x

[f(x) = 1 ∧ g(x) = 1] ≥ Pr
x

[f(x) = 1] · Pr
x

[g(x) = 1].

The same inequality holds for anti-monotone functions. In particular, for monotone func-

tions f, g : {0, 1}n → {0, 1}, following inequality holds:

Pr
x

[f(x) = 0 ∧ g(x) = 0] ≥ Pr
x

[f(x) = 0] · Pr
x

[g(x) = 0].

A stronger version of this inequality that will be used in some of our proofs is presented

below.

Chapter 6. The power of negations in Cryptography 131

Proposition 6.3.7 (Talagrand [182]). For any pair of monotone Boolean functions f, g : {0, 1}n →

{0, 1}, it holds that

Pr
x

[f(x) = 1 ∧ g(x) = 1] ≥ Pr
x

[f(x) = 1] · Pr
x

[g(x) = 1] + ψ
(∑
i∈[n]

Infi(f) · Infi(g)
)
,

where ψ(x)
def
= c · x/ log (e/x), and c > 0 is a fixed constant independent of n.

Proposition 6.3.8 (Kahn, Kalai, and Linial [113]). Let f : {0, 1}n → {0, 1} be a balanced

Boolean function. Then there exists an index i ∈ [n] such that Infi(f) = Ω
(

logn
n

)
.

6.4 Lower bounds on negation complexity

6.4.1 One-way functions versus one-way permutations

Goldreich and Izsak [79] proved that if one-way functions exist, then there are mono-

tone one-way functions. We show below that this is not true for one-way permutations. In

other words, one-way permutations are inherently non-monotone. This lower bound follows

easily via the following structural result for monotone permutations.

Proposition 6.4.1. Let f : {0, 1}n → {0, 1}n be a one-to-one function. If f is monotone,

then there exists a permutation π : [n] → [n] such that, for every x ∈ {0, 1}n, f(x) =

xπ(1) . . . xπ(n). In particular, there exists a (uniform) polynomial size circuit that inverts f

on every input y = f(x).

Proof. Let fi : {0, 1}n → {0, 1} be the Boolean function corresponding to the i-th output

bit of f . Since f is monotone, each function fi is monotone. Consider now functions f` and

fk, where ` 6= k. By Talagrand’s inequality (Proposition 6.3.7),

Pr
x

[f`(x) = 1∧fk(x) = 1] ≥ Pr
x

[f`(x) = 1] ·Pr
x

[fk(x) = 1]+ψ
(∑
i∈[n]

Infi(f`) ·Infi(fk)
)
. (6.1)

Since f is a permutation, Prx[f`(x) = 1∧fk(x) = 1] = 1/4 and Prx[f`(x) = 1] = Prx[fk(x) =

1] = 1/2. Consequently, it follows from Equation 6.1 and the definition of ψ that

∑
i∈[n]

Infi(f`) · Infi(fk) = 0.

Chapter 6. The power of negations in Cryptography 132

In other words, f` and fk depend on a disjoint set of input variables. Since this is true

for every pair ` and k with ` 6= k, and every output bit of f is non-constant, there exists

a permutation π : [n] → [n] such that, for every i, j ∈ [n], if Infi(fj) > 0 then i = π(j).

Moreover, as f is monotone and one-to-one, we must have fj(x) = xπ(j), for every j ∈ [n].

The corresponding permutation can be easily recovered from f by evaluating this function

on every indicator string ei ∈ {0, 1}n, where eij = 1 if and only if i = j. This completes the

proof of our result.

We remark that a simple extension of this proof allows us to rule out monotone one-

way functions f : {0, 1}n → {0, 1}n−k where each pre-image set f−1(x) has size exactly 2k

(i.e., regular OWFs).

Proposition 6.4.1 implies that any circuit computing a one-way permutation contains

at least one negation gate. It is not clear how to extend its proof to obtain a stronger

lower bound on the negation complexity of one-way permutations, as Talagrand’s inequality

holds for monotone functions only. Although we leave open the problem of obtaining better

lower bounds, we give next an alternative proof of Proposition 6.4.1 that does not rely on

Talagrand’s result.

Proof. Let Sk
def
= {x ∈ {0, 1}n | |x|1 = k}, where k ∈ [0, n]. In other words, Sk is simply the

k-th slice of the n-dimensional Boolean hypercube. Initially, we prove the following claim:

For every set Sk, f(Sk) = Sk. In other words, f induces a permutation over each set of

inputs Sk. We then use this result to establish Proposition 6.4.1.

First, observe that f(0n) = 0n. Otherwise, there exists an input x 6= 0n such that

f(x) = 0n. Since 0n � x and f is monotone, we get that f(0n) � f(x), which contradicts

the injectivity of f . This establishes the claim for S0. The general case follows by induction

on k. Assume the result holds for any k′ < k, and consider an arbitrary y ∈ Sk. Since f

is one-to-one, there exists x ∈ S` such that f(x) = y, where ` ≥ k. If ` 6= k, there exists

x′ ≺ x such that x′ ∈ Sk. Let y′
def
= f(x′). Using that f is monotone and x′ ≺ x, we get that

y′ � y. Since f is one-to-one, y′ ≺ y, thus y′ ∈ Sk′ for some k′ < k. This is in contradiction

with our induction hypothesis and the injectivity of f , since f(Sk′) = Sk′ , x
′ ∈ Sk, and

y′ = f(x′) ∈ Sk′ . This completes the induction hypothesis, and the proof of our claim.

Chapter 6. The power of negations in Cryptography 133

Now let π : [n]→ [n] be the permutation such that f−1(ei) = eπ(i), where ej ∈ {0, 1}n

is the input with 1 at the j-th coordinate only. Clearly, for every x ∈ S0 ∪ S1, f(x) =

xπ(1) . . . , xπ(n). On the other hand, for every x ∈ Sk with k > 1, it follows from the

monotonicity of f that ∨
i :xi=1

f(ei) � f(x),

where the disjunction is done coordinate-wise. Finally, it follows from our previous claim

that we must also have f(x) ∈ S|x|1 . Therefore,

∨
i :xi=1

f(ei) = f(x).

Consequently, for every x ∈ {0, 1}n, it follows that f(x) = xπ(1) . . . xπ(n), which completes

the proof.

6.4.2 Pseudorandom generators and small-bias generators

In contrast to the situation for one-way functions, Goldreich and Izsak [79] presented an

elegant proof that pseudorandom generators cannot be monotone. More specifically, their

result shows that the output distribution of a monotone function G : {0, 1}n → {0, 1}n+1

can be distinguished from random either by the projection of one of its output bits, or via

the conjunction of two output bits.

Recall from Section 6.2 that small-bias generators can be seen as restricted pseudo-

random generators that are only required to be secure against linear tests. We prove next

that the techniques from [79] can be used to show that there are no (1/nω(1))-secure mono-

tone small-bias generators with 1 bit of stretch. We observe later in this section that such

generators can be constructed with any super-constant number of negation gates.

Proposition 6.4.2. For any monotone function G : {0, 1}n → {0, 1}n+1, there exists a

(non-uniform) linear test D : {0, 1}n+1 → {0, 1} such that∣∣∣ Pr
x∼Un

[D(G(x)) = 1]− 1

2

∣∣∣ = Ω

(
1

n2

)
.

Proof. The proof follows closely the argument in [79], combined with an appropriate appli-

cation of the FKG inequality (Proposition 6.3.6). Let Gi : {0, 1}n → {0, 1} be the Boolean

Chapter 6. The power of negations in Cryptography 134

function corresponding to the i-th output bit of G, where i ∈ [n+ 1]. Observe that if there

exists i such that ∣∣∣ Pr
x∼Un

[Gi(x) = 1]− 1

2

∣∣∣ = Ω

(
1

n2

)
,

then there is a trivial linear distinguisher for G.

Assume therefore that, for every i ∈ [n + 1], Gi is almost balanced. In particu-

lar, each function Gi is δ(n)-close under the uniform distribution to an unbiased function

G̃i : {0, 1}n+1 → {0, 1}, where δ(n) = o((log n)/n). It follows from Proposition 6.3.8 that

each function G̃i has an influential variable. More precisely, there exists γ : [n + 1] → [n]

such that

Infγ(i)(G̃i) = Ω

(
log n

n

)
,

for every i ∈ [n + 1]. As each Gi is δ(n)-close to G̃i, it follows that Infγ(i)(Gi) = Ω
(

logn
n

)
as well.

By the pigeonhole principle, there exist distinct indexes i and j such that γ(i) = γ(j).

It follows from Proposition 6.3.7 that

Pr
x

[Gi(x) = 1 ∧Gj(x) = 1] ≥ Pr
x

[Gi(x) = 1] · Pr
x

[Gj(x) = 1] + ψ
(∑
k∈[n]

Infk(Gi) · Infk(Gk)
)

≥ Pr
x

[Gi(x) = 1] · Pr
x

[Gj(x) = 1] + Ω
(
ψ
(log2 n

n2

))
≥ Pr

x
[Gi(x) = 1] · Pr

x
[Gj(x) = 1] + Ω

(log n

n2

)
.

On the other hand, Proposition 6.3.6 implies that

Pr
x

[Gi(x) = 0 ∧Gj(x) = 0] ≥ Pr
x

[Gi(x) = 0] · Pr
x

[Gj(x) = 0].

Combining both inequalities, and using the assumption that each output bit of G is almost

Chapter 6. The power of negations in Cryptography 135

balanced, we get that:

Pr
x

[Gi(x) +Gj(x) = 0] = Pr
x

[Gi(x) = 1 ∧Gj(x) = 1] + Pr
x

[Gi(x) = 0 ∧Gj(x) = 0]

≥ Pr
x

[Gi(x) = 1] · Pr
x

[Gj(x) = 1]

+ Pr
x

[Gi(x) = 0] · Pr
x

[Gj(x) = 0] + Ω
(log n

n2

)
≥ 1

2
−O

(
1

n2

)
+ Ω

(log n

n2

)
=

1

2
+ Ω

(log n

n2

)
.

Therefore, the linear function D(y)
def
= yi + yj can distinguish the output of G from random

with the desired advantage, which completes the proof.

In contrast, we show next that there are small-bias generators with super-polynomial

security that can be computed with any super-constant number of negations. Let

Tribess,t : {0, 1}s·t → {0, 1}

be the (monotone) Boolean function defined by

Tribess,t(x1, . . . , xs·t) =

s−1∨
i=0

t∧
j=1

xi·t+j .

Further, we use Tribesm : {0, 1}m → {0, 1} to denote the function Tribess,t, where s is the

largest integer such that 1− (1− 2−t)s ≤ 1/2, and t = m/s (i.e., we try to make Tribes as

balanced as possible as a function over m variables).

Proposition 6.4.3. Let f : {0, 1}n → {0, 1} be defined as f(x)
def
= ⊕ki=1Tribesn/k(x

(i)),

where x(i) denotes the i-th block of x with length n/k. Let 1 ≤ k(n) ≤ n/ log n, and

G : {0, 1}n → {0, 1}n+1 be defined by G(x)
def
= (x, f(x)), Then, there exists a constant C > 0

such that, for any linear function D : {0, 1}n+1 → {0, 1},∣∣∣ Pr
x∼Un

[D(G(x)) = 1]− 1

2

∣∣∣ ≤ (C · (k/n) · log(n/k))k .

In particular, when k = ω(1), we can get a small-bias generator with negligible error

that can be computed with roughly log k negations (via Proposition 6.3.1). Interestingly, for

k = 2 we obtain an SBG computed with a single negation and security Θ̃(n−2), essentially

matching the lower bound for monotone SBGs given by Proposition 6.4.2.

Chapter 6. The power of negations in Cryptography 136

Proof. We assume the reader is familiar with basic concepts from analysis of Boolean func-

tions (cf. O’Donnell [147]). Suppose that D(y)
def
=
∑

i∈S yi (mod 2), where S ⊆ [n + 1] is

nonempty. If n + 1 /∈ S, using that the first n output bits of G are uniformly distributed

over {0, 1}n, we get that |Prx[D(G(x)) = 1]− 1/2 | = 0. Assume therefore that n+ 1 ∈ S,

and let S′
def
= S\{n+ 1}. Then,∣∣∣ Pr
x∼Un

[
D(G(x)) = 1

]
− 1

2

∣∣∣∣ =
∣∣∣ Pr
x∼Un

[
f(x) +

∑
i∈S′

xi ≡ 1 (mod 2)
]
− 1

2

∣∣∣
=

∣∣∣ Pr
x∼Un

[∑
i∈S′

xi 6≡ f(x) (mod 2)
]
− 1

2

∣∣∣
def
= p.

Let f− : {−1, 1}n → {−1, 1} be the corresponding version of f where we map 0 to 1,

and 1 to −1, as usual. Observe that, under this correspondence,∑
i∈S′

xi 6≡ f(x) (mod 2) ⇐⇒ χS′(x) · f−(x) = −1.

Therefore,

p =
∣∣∣(1

2
− 1

2
· Ex∼{−1,1}n

[
χS′(x) · f−(x)

])
− 1

2

∣∣∣
=

∣∣∣(1

2
− 1

2
· f̂−(S′)

)
− 1

2

∣∣∣
=

1

2
· |f̂−(S′)|.

In other words, in order to upper bound the distinguishing probability p, it is enough

to upper bound |f̂−(S′)|, where S′ ⊆ [n]. Using f−(x) =
∏
i∈[k] Tribes

−
n/k(x

(i)) and that x(i)

and x(j) are disjoint for i 6= j, it follows that f̂−(S′) is a product of Fourier coefficients of

the corresponding Tribes functions. It is known that

max
T⊆[m]

∣∣T̂ribes−m(T)
∣∣ = O

(
logm

m

)
as m→∞ (see e.g. O’Donnell [147]). Consequently, since we have m = n/k, we get that

p =
1

2
· |f̂−(S′)| ≤ 1

2
· max
T⊆[n/k]

∣∣ ̂Tribes−n/k(T)
∣∣k ≤ (C · (k/n) · log(n/k))k ,

for an appropriate constant C.

It is possible to use other monotone functions for the construction in Proposition 6.4.3,

but our analysis provides better parameters with Tribes.

Chapter 6. The power of negations in Cryptography 137

6.4.3 Pseudorandom functions

In this section we prove that a pseudorandon function is a highly non-monotone cryp-

tographic primitive. For simplicity, we will not state the most general version of our result.

We discuss some extensions after its proof.

Proposition 6.4.4. If F : {0, 1}m × {0, 1}n → {0, 1} is a (poly(n), 1/3)-secure pseudoran-

dom function, then any Boolean circuit computing F contains at least log n−O(1) negation

gates.

Proof. Consider the following algorithm Dh that has membership access to an arbitrary

function h : {0, 1}n → {0, 1}, and computes as follows. Let X def
= (e0, e1, . . . , en) be the chain

over {0, 1}n with ei
def
= 1i0n−i. After querying h on each input e0, . . . , en and computing

a(h,X), D accepts h if and only if a(h,X) ≥ n/4. This completes the description of D.

Clearly, this algorithm can be implemented in polynomial time.

Observe that if f ∼ Fn is a random Boolean function over n variables, then Ef [a(f,X)] =

n/2. In addition, it follows from a standard application of Proposition 2.0.1 that |a(f,X)−

n/2| ≤ n/4 with probability exponentially close to 1. Therefore, under our assumption that

F is a (poly(n), 1/3)-secure pseudorandom function,

1

3
≥

∣∣∣ Pr
w∼{0,1}n

[DF (w,·) = 1]− Pr
f∼Fn

[Df = 1]
∣∣∣

≥
∣∣∣ Pr
w∼{0,1}n

[DF (w,·) = 1]− (1− o(1))
∣∣∣,

which implies in particular that Pr[DF (w,·) = 1] ≥ 2/3 − o(1). Therefore, there must exist

some seed w∗ for which the resulting function Fw∗
def
= F (w∗, ·) over n-bit inputs satisfies

a(Fw∗ ,X) ≥ n/4. It follows from Proposition 6.3.2 that if C is a circuit with t negations

computing Fw∗ , then

n/4 ≤ a(Fw∗ ,X) ≤ a(Fw∗) ≤ c · 2t,

where c is a fixed positive constant. Consequently, t ≥ log n−O(1). Finally, it is clear that

any circuit for F also requires log n−O(1) negations, which completes the proof.

Note that we can replace 1/3 with any constant in [0, 1). The proof of Proposition

6.4.4 also implies that if F is a sufficiently secure pseudorandom function, then for most

Chapter 6. The power of negations in Cryptography 138

choices of the seed w ∈ {0, 1}m, the resulting function F (w, ·) over n input variables requires

log n− O(1) negations. Further, observe that our distinguisher is quite simple, and makes

n+ 1 non-adaptive queries.

The same proof does not work for weak pseudorandom functions. In this case, most

random examples obtained from the oracle are concentrated around the middle layer of the

hypercube, and one cannot construct a chain. We remark, however, that weak pseudoran-

dom functions cannot be monotone, as there are weak learning algorithms for the class of

monotone functions (cf. Blum, Burch, and Langford [31]). We discuss the problem of ob-

taining better lower bounds for WPRFs in Section 6.5. (The upper bound on the negation

complexity of WPRFs follows via standard techniques, see Section 6.4.5 and Blais et al.

[29].)

6.4.4 Error-correcting codes

In this section, we show that circuits with few negations cannot compute error-correcting

codes with good parameters. The proof generalizes the argument given by Buresh-Oppenheim,

Kabanets and Santhanam [44] in the case of monotone error-correcting codes.

Proposition 6.4.5. Let E : {0, 1}n → {0, 1}m be an error-correcting code with relative

distance γ > 0. If C is a circuit with t negations that computes E, then t ≥ log n −

log(1/γ)− 1.

Proof. Assume that E : {0, 1}n → {0, 1}m is computed by a (multi-output) circuit C0 with

t negation gates, and let x1, . . . , xn be its input variables. For convenience, we write C0
i to

denote the Boolean function computed by the i-th output gate of C0. We proceed as in the

proof of Lemma 6.3.4. More precisely, we remove one negation gate during each step, but

here we also inspect the behavior of the error-correcting code on a particular set of inputs

of interest. Let X def
= (e0, e1, . . . , en) be the chain over {0, 1}n with ei

def
= 1i0n−i.

It follows from an easy generalization of Lemma 6.3.5 that there exist Boolean functions

f : {0, 1}n → {0, 1}, h : {0, 1}3 → {0, 1}, and gi,b : {0, 1}n → {0, 1}, where i ∈ [m] and

b ∈ {0, 1}, for which the following holds.

• f is monotone;

Chapter 6. The power of negations in Cryptography 139

• h is the addressing function h(a, d0, d1)
def
= da;

• for every x ∈ {0, 1}n and i ∈ [m],

E(x)i = h(f(x), gi,0(x), gi,1(x)).

• there exist (multi-output) circuits C1,0 and C1,1 over input variables x1, . . . , xn such

that, for every i ∈ [m] and b ∈ {0, 1},

C1,b(x)i = gi,b(x).

• each circuit C1,b contains at most t− 1 negations.

Since e0 ≺ e1 ≺ . . . ≺ en and f is monotone, there exists k ∈ [0, n] such that f(e`) = 0

if and only if ` < k. By the pigeonhole principle, f is constant on a (continuous) subchain

X 1 ⊆ X of size at least (n+ 1)/2, and there exists a constant b ∈ {0, 1} such that

E(ei) = g1,b(e
i) . . . gm,b(e

i),

whenever ei ∈ X 1. Consequently, there exists a (multi-output) circuit C1 computed with

at most t− 1 negations that agrees with E on every ei ∈ X 1.

Observe that this argument can be applied once again with respect to X 1 and C1.

Therefore, it is not hard to see that there must exist a chain X t ⊆ X of size w ≥ (n+ 1)/2t

and a monotone (multi-output) circuit Ct such that

Ct(ei) = E(ei),

for every ei ∈ X t.

Assume that X t = (ej , ej+1, . . . , ej+w−1), and let Y def
= (yj , . . . , yj+w−1), where yi

def
=

E(ei). Since Ct is monotone and X t is a chain over {0, 1}n, we get that Y is a chain over

{0, 1}m. By the pigeonhole principle, there exists an index k ∈ [j + 1, j + w − 1] for which

yj−1 � yj and |yj |1− |yj−1|1 ≤ (m+ 1)/w. Now using that E computes an error-correcting

code of relative distance at least γ, it follows that

γ ≤ ∆(yj , yj−1) ≤ m+ 1

w
· 1

m
≤ 2t

n+ 1
· m+ 1

m
,

which completes the proof of our result.

Chapter 6. The power of negations in Cryptography 140

It is possible to show via a simple probabilistic construction that there is a sequence

of error-correcting codes En : {0, 1}n → {0, 1}O(n) with relative distance, say, γ = 0.01 (see

e.g. MacWilliams and Sloane [131]). Proposition 6.4.5 implies that computing such codes

requires at least log n− O(1) negation gates, which is optimal up to the additive term via

Markov’s upper bound (Proposition 6.3.1).

6.4.5 Hard-core bits

We prove in this section that general hard-core predicates must be highly non-monotone.

This result follows from a lower bound on the average-sensitivity of such functions due to

Goldmann and Russell [78], together with structural results about monotone Boolean func-

tions and Lemma 6.3.3. Roughly speaking, our result says that there are one-way functions

that do not admit hardcore predicates computed with less than (1/2) · log n negations (as-

suming that one-way functions exist).

Proposition 6.4.6. Assume that there exists a family f = {fn}n∈N of (poly(n), n−ω(1))-

secure one-way functions, where each fn : {0, 1}n → {0, 1}n. Then, for every ε > 0, there

exists a family gε = {gn}n∈N of (length-preserving) (poly(n), n−ω(1))-secure one-way func-

tions for which the following holds. If h = {hn}n∈N is a (poly(n), n−ω(1))-secure hard-core

bit for gε, then for every n sufficiently large, any Boolean circuit computing hn contains at

least (1/2− ε) log n negations.

Proof. It follows from the main result of Goldmann and Russell [78] that under the existence

of one-way functions, there exists a one-way function family gδ = {gn}n∈N that only admits

hard-core bit predicates with total influence Ω(n1−δ). Our result follows easily once we

observe that the influence of Boolean functions computed with t negations is O(2t ·
√
n).6

First, if f : {0, 1}n → {0, 1} is a monotone Boolean function, then Inf(f) = O(
√
n) (see

e.g. O’Donnell [147]). On the other hand, it follows from Lemma 6.3.3 that any Boolean

function h : {0, 1}n → {0, 1} computed by a circuit with t negation gates can be written as

h(x) = P (m1(x), . . . ,mT (x)), where T = O(2t), each function mi is monotone, and P is

6This result is from Blais et al. [29], and we include its short argument here for completeness.

Chapter 6. The power of negations in Cryptography 141

either the parity function or its negation. Therefore, using the definition of influence,

Inf(h) = Inf(P (m1, . . . ,mT)) ≤
∑
i∈[T]

Inf(mi) ≤ T ·O(
√
n) = O(2t ·

√
n),

which completes the proof.

This result is almost optimal, as any function f : {0, 1}n → {0, 1} can be (1/nω(1))-

approximated by a Boolean function computed with (1/2+o(1)) log n negations (check Blais

et al. [29] for more details). More precisely, if h is a hard-core bit for f , its approximator

h̃ is also hard-core for f , as the inputs f(x) given to the distinguisher are produced with

x ∼ Un.

6.4.6 Randomness extractors

In this section, we show in Proposition 6.4.8 that strong (n0.5−ε, 1/2)-extractors can

only be computed by circuits with Ω(log n) negation gates, for any constant 0 < ε ≤ 1/2.

We proceed as follows. First, we argue that such extractors must have high noise sensitivity.

The proof of this result employs a technique from Bogdanov and Guo [36]. We then upper

bound the noise sensitivity of circuits with few negations. Together, these claims provide a

trade-off between the parameters of the extractor, and the minimum number of negations

in any circuit computing the extractor.

For convenience, we view the extractor Ext : {0, 1}n × {0, 1}s → {0, 1}m as a family of

functions

HExt
def
= {hw : {0, 1}n → {0, 1}m | hw = Ext(·, w), where w ∈ {0, 1}s},

i.e., the family of functions obtained from the extractor by fixing its seed. Similarly, every

such family can be viewed as a strong extractor in the natural way.

Lemma 6.4.7. Let 0 ≤ p ≤ 1/2, 0 ≤ γ ≤ 1/4, and H ⊆ {h | h : {0, 1}n → {0, 1}m} be a

family of functions. Assume that NSp(hi) ≤ γ for every function hi : {0, 1}n → {0, 1} that

computes the i-th output bit of some function in H, where i ∈ [m]. Then there exists a

distribution D over {0, 1}n with min-entropy H∞(D) = n · log(1
1−p) such that the statistical

distance between (H,H(D)) and (H,Um) is at least (1− 2
√
γ − 2−0.1m)(1− 2

√
γ).

Chapter 6. The power of negations in Cryptography 142

Proof. For a fixed y ∈ {0, 1}n, let Dy denote a random variable distributed according to

y ⊕X, where X is the p-biased binomial distribution over {0, 1}n. Since p ≤ 1/2, observe

that the min-entropy of Dy is precisely

H∞(Dy) = − log max
z∈{0,1}n

Pr[y ⊕X = z] = − log Pr[y ⊕ X = y]

= − log (1− p)n = n · log

(
1

1− p

)
.

We will need the following result.

Claim. For any fixed h ∈ H,

Ey∼{0,1}n [δ(h(Dy),Um)] ≥ (1− 2
√
γ − 2−0.1m)(1− 2

√
γ). (6.2)

We use this claim to complete the demonstration of Lemma 6.4.7, then return to its

proof. Observe that, for any fixed y ∈ {0, 1}n,

δ((H,H(Dy)), (H,Um)) = Eh∼H[δ(h(Dy),Um)]. (6.3)

It follows from Equation 6.3 that

Ey∼{0,1}n [δ((H,H(Dy)), (H,Um))] = Ey∼{0,1}n [Eh∼H[δ(h(Dy),Um)]]

= Eh[Ey[δ(h(Dy),Um)]]

(Using Equation 6.2) ≥ Eh[(1− 2
√
γ − 2−0.1m)(1− 2

√
γ)]

= (1− 2
√
γ − 2−0.1m)(1− 2

√
γ).

In particular, there exists y ∈ {0, 1}n such that

δ((H,H(Dy)), (H,Um)) ≥ (1− 2
√
γ − 2−0.1m)(1− 2

√
γ),

which completes the proof of Lemma 6.4.7.

We proceed now to the proof of our initial claim. Fix a function h ∈ H. By the

definition of noise sensitivity and our assumption on H, for every function hi : {0, 1}n →

{0, 1} obtained from a function h ∈ H as the projection of the i-th output bit, we have

Pr
y

[hi(Dy) 6= hi(y)] = Pr
y

[hi(y ⊕X) 6= hi(y)] ≤ γ.

Chapter 6. The power of negations in Cryptography 143

Using the linearity of expectation, we obtain

Ey[∆(h(Dy), h(y))] ≤ γ.

By Markov’s inequality,

Pr
y

[∆(h(Dy), h(y)) ≤ 1/4] ≥ 1− 4γ.

Using an averaging argument, with probability at least 1 −
√

4γ over the choice of y, we

have that

Pr[∆(h(Dy), h(y)) ≤ 1/4] ≥ 1−
√

4γ. (6.4)

For any fixed y, consider the following statistical test,

Ty
def
= {z ∈ {0, 1}m | ∆(z, h(y)) ≤ 1/4}.

The probability that Um ∈ Ty can be upper bounded via a standard inequality by

Pr
z∼Um

[z ∈ Ty] ≤
2m·H2(1/4)

2m
≤ 2−0.1m, (6.5)

where H2 : [0, 1]→ [0, 1] is the binary entropy function, and we use the fact that H2(1/4) ≤

0.9. Combining Equations 6.4 and 6.5, we get

Pr
y

[
(Pr
X

[h(Dy) ∈ Ty]− Pr
z∼Um

[z ∈ Ty]) ≥ 1−
√

4γ − 2−0.1m
]
≥ 1−

√
4γ,

which implies that

Pr
y

[δ(h(Dy),Um) ≥ 1− 2
√
γ − 2−0.1m] ≥ 1− 2

√
γ.

Finally, since δ(·) is non-negative and γ ≤ 1/4, it follows that

Ey[δ(h(Dy),Um)] ≥ (1− 2
√
γ − 2−0.1m)(1− 2

√
γ),

which completes the proof of the claim.

We are now ready to prove a lower bound on the negation complexity of strong ex-

tractors.

Chapter 6. The power of negations in Cryptography 144

Proposition 6.4.8. Let 0 < α < 1/2 be a constant, and m(n) ≥ 100. Further, suppose

that H ⊆ {h | h : {0, 1}n → {0, 1}m} is a family of functions such that each output bit

hi : {0, 1}n → {0, 1} of a function h ∈ H is computed by a circuit with t negations. Then,

if H is an (n
1
2
−α, 1/2)-extractor,

t ≥ α log n−O(1).

Proof. It is known that for any monotone function g : {0, 1}n → {0, 1} and p(n) ∈ (0, 1/2),

NSp(g) = O(
√
n · p) (see e.g. O’Donnell [147]). Using an argument similar to the one

employed in the proof of Proposition 6.4.6, it follows from Lemma 6.3.3 that if f : {0, 1}n →

{0, 1} is a Boolean function computed by a circuit with t negations, then

NSp(f) ≤ C1 · 2t
√
n · p def

= γ,

where C1 > 0 is a fixed constant. In other words, this upper bound on the noise sensitivity

and our assumption on H allow us to apply Lemma 6.4.7 with an appropriate choice of

parameters, which we describe next.

We choose a 0 ≤ p ≤ 1
2 such that n · log 1

(1−p) = n
1
2
−α. Observe that we can take p ≤

C2n
− 1

2
−α, for an appropriate constant C2 > 0. Let C3 be a sufficiently large constant such

that C1C22−C3 < 1/64, and suppose that t < α log n− C3. For this setting of parameters,

we obtain

γ = C1 · 2t ·
√
n · p <

1

64
.

By Lemma 6.4.7, there exists a distribution D of min-entropy H∞(D) = n log 1
1−p = n

1
2
−α

for which

δ((H,H(D)), (H,Um)) ≥ (1− 2
√
γ − 2−0.1m)(1− 2

√
γ)

> (
3

4
− 2−0.1m) · 3

4
≥ 1

2
,

which contradicts our assumption that H is an (n
1
2
−α, 1/2)-extractor. Therefore,

t ≥ α log n− C3 = α log n−O(1),

as desired.

Chapter 6. The power of negations in Cryptography 145

Observe that Proposition 6.4.8 provides an almost tight lower bound on the number of

negations for extractors with rather weak parameters: in order to extract from reasonable

sources only 100 bits that are not ridiculously far from uniform, the corresponding circuits

need Ω(log n) negations.

6.4.7 Negations at the bottom layer and circuit lower bounds

In this section we investigate the power of a restricted number of negations at the

bottom layer. As discussed in Section 6.4.7, our proof relies on an idea from Koroth and

Sarma [124]. Our main contribution is the following general proposition.

Proposition 6.4.9. Let f : {0, 1}n → {0, 1} be a monotone Boolean function, and C be a

circuit computing f with negation gates at the bottom layer only. Then,

depth(C) + negations(C) ≥ depth+(f).

Proof. Let d
def
= depth(C), and t

def
= negations(C). The idea is to use C, a non-monotone

circuit for f , to solve the corresponding monotone Karchmer-Wigderson game of f with

communication at most d + t. It follows from Proposition 2.0.2 that depth+(f) ≤ d + t,

which completes the proof. More details follow.

Recall that in the monotone Karchmer-Wigderson game for f , Alice is given a string

x ∈ f−1(1), Bob is given y ∈ f−1(0), and their goal is to agree on a coordinate i such that

xi = 1 and yi = 0. Let T ⊂ [n] be the set of variables that occur negated in C, where

|T | = t. Given a string x ∈ {0, 1}n, we write xT to denote the substring of x obtained by

concatenating the bits indexed by T . During the first round of the protocol, Alice sends xT

to Bob. If among these coordinates there is an index i ∈ T for which xi = 1 and yi = 0, the

protocol terminates with a correct solution. Otherwise, Bob defines a new input y′ ∈ {0, 1}n

for him as follows: y′j
def
= xj if j ∈ T , otherwise y′j

def
= yj . For convenience, Alice sets x′

def
= x.

It is not hard to see that if there was no good index i ∈ T , then f(x′) = 1 and f(y′) = 0.

Clearly, 1 = f(x) = f(x′), since x = x′. On the other hand, if there is no good index i, y′ is

obtained from y simply by flipping some bits of y from 1 to 0. In other words, y′ � y, and

the monotonicity of f implies that f(y′) ≤ f(y) = 0.

Chapter 6. The power of negations in Cryptography 146

Crucially, the players now have inputs x′, y′ ∈ {0, 1}n that agree on every bit indexed

by T . Therefore, without any communication, they are able to simplify the original circuit

C in order to obtain a monotone circuit C̃ with input variables indexed by [n]\T . Let

x̃
def
= x′[n]\T and ỹ

def
= y′[n]\T be the corresponding projections of x′ and y′. Clearly, C̃(x̃) =

C(x′) = f(x′) = 1, and C̃(ỹ) = C(y′) = f(y′) = 0. Furthermore, C̃ computes some

monotone function f̃ : {0, 1}[n]\T → {0, 1}.

Alice and Bob simulate together the standard Karchmer-Wigderson protocol Π granted

by Proposition 2.0.2, and obtain an index j ∈ [n]\T for which x̃j = 1 and ỹj = 0. Ob-

serve that this stage can be executed with communication cost depth(C̃) ≤ depth(C) = d.

However, since x agrees with x̃ on every bit indexed by [n]\T , and similarly for y and ỹ, it

follows that xj = 1 and yj = 0. Put another way, Alice and Bob have solved the monotone

Karchmer-Wigderson game for f with communication at most t + d, which completes the

proof of our result.

An interesting aspect of this proof is that it relies on both directions of the Karchmer-

Wigderson connection. Proposition 6.4.9 and previous work on monotone depth lower

bounds provide a trade-off between circuit depth and negation complexity for DeMorgan

circuits solving the clique problem.

Proposition 6.4.10 (Raz and Wigderson [153]). Let k-Clique : {0, 1}(
n
2) → {0, 1} be the

Boolean function that is 1 if and only if the input graph G contains a clique of size k. If

C is a monotone circuit that computes k-Clique for k = n/2, then depth(C) ≥ γ · n, where

γ > 0 is a fixed constant.

Corollary 6.4.11. There exists a fixed constant γ > 0 for which the following holds. If

δ + ε ≤ γ, then any DeMorgan circuit of depth δn solving the (n/2)-Clique problem on

n-vertex graphs contains at least εn negation gates.

This result indicates that negation gates at the bottom layer are much easier to handle

from the point of view of complexity theory than negations located at arbitrary positions

of the circuit (see also Proposition 6.6.2 in Section 6.6).

Chapter 6. The power of negations in Cryptography 147

6.5 Open problems and further research directions

While our results provide some strong bounds, they also leave open surprisingly basic

questions.

For example, it seems reasonable, in light of our results, to think that most cryp-

tographic primitives require Ω(log n) negations. Nevertheless, for a basic primitive like a

pseudorandom generator (that cannot be monotone), we leave open the following question:

Is there a pseudorandom generator computed with a single negation gate? We stress that

our question refers to a single circuit with multiple output bits computing the PRG. If one

can use different circuits for distinct output bits, then the work of Applebaum, Ishai, and

Kushilevitz [18] provides strong evidence that there are PRGs computed with a constant

number of negations.

Having negation gates at the bottom level may be easier to study, and with some work

we can show (in results omitted from this thesis) that no function with large enough stretch

computed with a single negation at the bottom layer can be a small-bias generator (and

thus not a pseudorandom generator either).

Another important open problem relates to the negation complexity of WPRF (weak

pseudorandom functions, cf. Akavia et al. [9]), or, viewed from the learning perspective,

weak-learning functions computed with a single negation. While for strong PRFs, even

non-adaptive ones, we have obtained an Ω(log n) lower bound, as far as we know, there may

exist WPRFs computed by circuits with a single negation gate. Again, when restricting

ourselves to negations at the bottom, we can prove some partial results (it is not hard to

prove that a function computed by a circuit with a constant number of negations at the

bottom layer cannot be a WPRF).

Finally, we have not imposed additional restrictions on the structure of Boolean func-

tions computing cryptographic primitives. For instance, due to efficiency concerns, it is de-

sirable that such circuits have depth as small as possible, without compromising the security

of the underlying primitive. It is known that Markov’s upper bound of O(log n) negations

fails under restrictions of this form (cf. Santha and Wilson [165]; see also Hofmeister [97]).

In particular, this situation sheds some light into why practical implementations have far

more negations (or XORs) when compared to the theoretical lower bounds described in our

Chapter 6. The power of negations in Cryptography 148

work. Here we have not investigated this phenomenon, and it would be interesting to see if

more specific results can be obtained in the cryptographic context.

6.6 Auxiliary results

In this section we discuss how to move negations in a Boolean circuit in order to explore

different aspects of these gates.

6.6.1 Moving negations to the top of the circuit

Recall the following structural result about negation gates, mentioned in Section 6.3.

Lemma (Blais et al. [29]). Let f : {0, 1}n → {0, 1} be a Boolean function computed by a

circuit C with at most t negations. Then f can be written as f(x) = h(g1(x), . . . , gT (x)),

where each function gi is monotone, T = O(2t), and h is either the parity function, or its

negation.

By relaxing the assumption on h, we can prove the following effective version of Lemma

6.3.3.

Lemma. Let f : {0, 1}n → {0, 1} be a Boolean function computed by a circuit C of size s

containing t negation gates, where t ≥ 0. Then f can be written as f(x) = h(g1(x), . . . , gT (x)),

where each function gi is computed by a monotone circuit of size at most s, T = 2t+1 − 1,

and h : {0, 1}T → {0, 1} is computed by a circuit of size at most 5T .

Proof. The proof is by induction on t. The base case t = 0 is trivial. Now let t ≥ 1,

and assume the statement holds for any function computed by circuits with at most t′ < t

negations. Let f : {0, 1}n → {0, 1} be a Boolean function computed by a circuit C of

size s that contains t negations. Let x1, . . . xn, f1, . . . , fs be the functions computed at

each internal node of C, and df1e, . . . , dfse be the corresponding gates, i.e., each dfie ∈

{AND,OR,NOT}. Furthermore, assume that this sequence is a topological sort of the

nodes of the circuit, in the sense that the inputs of each gate dfie are fi1(x) and fi2(x),

with i1, i2 < i. Let i∗ ∈ [s] be the index of the first NOT gate in C according to this

sequence.

Chapter 6. The power of negations in Cryptography 149

Consider a new circuit C ′ over n+1 variables x1, . . . , xn, y, where C ′ computes exactly

as C, except that the output value of fi∗ is replaced by the new input y. By construction,

C ′ is a circuit of size at most s containing t′
def
= t − 1 negations, and it computes some

Boolean function f ′ : {0, 1}n+1 → {0, 1}. Applying the induction hypothesis, we get that

f ′(~x, y) = h′(g′1(~x, y), . . . , g′T ′(~x, y)), (6.6)

where each g′i is computed by a monotone circuit of size at most s, T ′ ≤ 2t
′+1 − 1, and

h′ : {0, 1}T ′ → {0, 1} admits a circuit of size 5T ′. In addition, notice that

f(~x) =


f ′(~x, 1) if fi∗(~x) = 1,

f ′(~x, 0) otherwise.

(6.7)

Let fi be the input wire of dfi∗e. Since dfi∗e = NOT, we obtain using Equation 6.7 that

f(~x) = h̃(fi(~x), f ′(~x, 0), f ′(~x, 1)), (6.8)

where h̃(z, y1, y0)
def
= yz is a function over three input bits that is computed by a circuit of

size at most 5. Furthermore, combining Equations 6.6 and 6.8, it follows that

f(~x) = h̃(fi(~x), h′(g′1(~x, 0), . . . , g′T ′(~x, 0)), h′(g′1(~x, 1), . . . , g′T ′(~x, 1)))

= h(fi(~x), g′1,0(~x), . . . , g′T ′,0(~x), g′1,1(~x), . . . , g′T ′,1(~x)),

where g′j,b(~x)
def
= g′j(~x, b), for j ∈ [T ′] and b ∈ {0, 1}, and h : {0, 1}2T ′+1 → {0, 1} is the

function obtained by setting

h(v0, v1, . . . , vT ′ , vT ′+1, . . . , v2T ′)
def
= h̃(v0, h

′(v1, . . . , vT ′), h(vT ′+1, . . . , v2T ′)).

Using our assumption on i∗, it follows that fi is computed by a monotone circuit of size s.

It is also clear that each g′j,b admits a monotone circuit of size s. Further, observe that

2T ′ + 1 ≤ 2(2t
′+1 − 1) + 1 = 2(2t − 1) + 1 = 2t+1 − 1

def
= T.

Finally, using the induction hypothesis and the upper bound on the circuit size of h̃, we get

that h is computed by a circuit of size at most

5 + 5T ′ + 5T ′ = 5(2T ′ + 1) = 5T,

which completes the proof of Lemma 6.3.4.

Chapter 6. The power of negations in Cryptography 150

It is possible to show that the upper bound on T in the statement of Lemma 6.7 is

essentially optimal. This follows from the connection between the number of negation gates

in a Boolean circuit for a function f and the alternation complexity of f , as discovered by

Markov [132] (see e.g. Blais et al. [29] for further details).

6.6.2 Moving negations to the bottom of the circuit

We recall the following basic fact about negations.

Fact 6.6.1. Let C be a Boolean circuit of size s containing a negation gate at depth d ≥ 1.

Then C can be transformed into an equivalent circuit C ′ of size s without this negation gate

that contains at most 2d−1 additional negations at the bottom layer.

Proof. The result is immediate from the application of DeMorgan rules for Boolean con-

nectives.

We observe below that this result is optimal. Put another way, a negation gate at an

arbitrary location can be more powerful than a linear number of negations at the bottom

layer.

Proposition 6.6.2. There exists an explicit Boolean function f : {0, 1}n → {0, 1} that

admits a linear size circuit C containing a single negation gate, but for which any equivalent

circuit C ′ with negation gates at the bottom layer only requires n negations.

Proof. Let f(x) = 1 if and only if x = 0n. Clearly, f can be computed by a circuit with

a single negation, since this function is the negation of a monotone function. The lower

bound follows using an argument from [124]. Assume that f(x) = D(x, (x⊕ β)), where D

is a monotone circuit. We need to prove that βi = 1 for every i ∈ [n]. Consider inputs

z
def
= 0n and ei

def
= 0i−110n−i. By definition, f(z) = 1 and f(ei) = 0, thus D(0n, 0n ⊕ β) =

D(0n, β) = 1 and D(ei, ei ⊕ β) = D(ei, β
⊕i) = 0. If βi = 0, then (0n, β) ≺ (ei, β

⊕i), and

since D is monotone, we get D(0n, β) ≤ D(ei, β
⊕i). However, this is in contradiction with

the value of f on z and ei, which implies that βi = 1.

151

Part III

Connections between Algorithms

and Circuit Lower Bounds

Chapter 7. Constructing hard functions from learning algorithms 152

Chapter 7

Constructing hard functions from

learning algorithms

7.1 Background, results, and organization

Understanding the computational complexity of learning circuit classes continues to

be an important area of study in theoretical computer science. For example, recent work of

Gentry and Halevi [77] makes use of results on the complexity of learning depth-3 arithmetic

circuits [121] to construct improved homomorphic encryption schemes. More generally,

the relationship between the complexity of learning circuits and cryptography has been

extensively studied over the last twenty years (e.g., [193] and [116]).

Less is known regarding the relationship between learning circuit classes and proving

circuit lower bounds. Historically, circuit lower bounds for a class C typically precede the

design of a learning algorithm for C. Some intuition for this fact is that circuit lower bounds

usually reveal important structural properties of these circuit classes, allowing them to be

learned in some non-trivial way.

Fortnow and Klivans [70] were the first to codify this intuition and prove formally

that efficient learning algorithms (in a variety of models) for a circuit class C yield circuit

lower bounds against C. Their result reduces the task of proving circuit lower bounds

to the task of designing efficient learning algorithms. They showed, for example, that

a polynomial-time PAC learning algorithm for C separates BPEXP from C. Additionally

Chapter 7. Constructing hard functions from learning algorithms 153

they proved that a subexponential time exact learning algorithm separates EXPNP from C

(this was subsequently improved to EXP by Hitchcock and Harkins [92] using techniques

from resource bounded measure). Their proof uses a variety of classic complexity-theoretic

results such as Toda’s theorem, the complexity of the Permanent, collapse theorems (EXP ⊆

P/poly⇒ EXP = MA [23]), and hierarchy theorems.

In this chapter we prove that it is possible to derive stronger circuit lower bounds from

learning algorithms. Our results significantly improve and expand on the above initial work

by Fortnow and Klivans. In many cases our proofs are simple, self-contained, and do not

use machinery from computational complexity. We obtain these consequences in a variety

of well-known learning models: PAC, online (mistake-bounded), exact, and statistical query

learning. We begin by outlining our main results and contrasting them with previous work.

7.1.1 Improved separations for Online and Exact Learning

Our first set of results deals with learning algorithms in the online (mistake-bounded)

model of learning and Angluin’s model of exact learning with membership and equivalence

queries. Recall that in the mistake-bounded model of learning, a function c from some class

C is fixed, and a learner is sequentially presented with an arbitrary sequence of examples.

After receiving example xi, the learner must output its prediction for c(xi). We say that a

learner succeeds with mistake bound m if for any (possibly infinite) sequence of examples,

the learner makes at most m mistakes. The time-complexity T (n, s) of the learner is the

amount of time taken when presented with an example of length n and when c has size at

most s. We prove the following theorem relating mistake-bounded learning to circuit lower

bounds:

Theorem 7.1.1. Let Cs be a non-uniform class of circuits where each c ∈ Cs has size at

most s (according to some fixed representation). If Cs is learnable in the mistake-bounded

model in time T = T (n, s) and mistake bound M = M(n, s) < 2n, then there exists an

explicit function f computable in DTIME(M · T) such that f 6∈ Cs.

Our proof actually shows that f is Ω(1/M)-far from every c ∈ C. For the class of

polynomial-size circuits, the above theorem yields new circuit lower bounds as long as the

Chapter 7. Constructing hard functions from learning algorithms 154

learning algorithm has non-trivial run-time and mistake bound. If the learning algorithm

is efficient (polynomial run-time and mistake bound) we obtain the following corollary:

Corollary 7.1.2. Let C be any class of polynomial-size circuits (e.g., AC0,TC0,P/poly). If

C is efficiently learnable in the mistake-bounded model then DTIME(nω(1)) 6⊆ C.

With more work, we prove analogous results for Angluin’s model of exact learning with

membership and equivalence queries. In this model the learner is required to exactly learn

the target function c, and is allowed to query the value c(x) on any input x (membership

query). The learning algorithm can also check if a proposed hypothesis h is equivalent to

c (equivalence query). If this is not the case, it is presented with a counterexample w for

which h(w) 6= c(w). It is not hard to see that learnability in the mistake-bounded model

implies learnability in Angluin’s model.

Previous work due to Fortnow and Klivans [70] and also Hitchcock and Harkins [92]

proved, under a learning assumption, the existence of a hard function for polynomial-size

circuits in EXPNP and EXP, respectively. In contrast, our proof yields an explicit function

that is computable in any superpolynomial time class. Since we are able to explicitly

construct hard functions in lower (uniform) deterministic time complexity classes (recall

that our learning algorithms are assumed to be deterministic), we can prove that efficient

learning algorithms imply a full derandomization of BPP:

Corollary 7.1.3. Let C be the class of linear-size circuits. If C is efficiently exactly learnable

(or learnable in the mistake-bounded model) then P = BPP.

Our results for mistake-bounded and exact learning use the learning algorithms them-

selves in non-standard ways to construct hard functions. For example, in a typical learning

scenario, the learning algorithm receives examples all of which are labelled according to

some fixed function c ∈ C. In our setting, we will run our mistake-bounded or exact learn-

ing algorithms in stages, using different functions to provide labels for the examples in each

stage. More specifically, we will continually label new examples according to the nega-

tion of the learning algorithm’s current hypothesis. At first glance, it would seem that no

guarantees can be made about a learning algorithm that is not given examples labelled

according to a fixed function. Still, we are able to use the learning algorithm to “fool” all

Chapter 7. Constructing hard functions from learning algorithms 155

potential functions that it might have to learn. At a high level, we consider this a sort of

diagonalization over all elements of C. We give more details on this procedure in Section

7.3.

In contrast, the work of Fortnow and Klivans is considerably more complicated, re-

quiring non-trivial collapse arguments, hierarchy theorems, Toda’s theorem, and various

well-known properties of the Permanent function in order to obtain their conclusion. Hitch-

cock and Harkins used betting games and ideas from resource bounded measure to obtain

their improvement. As can be seen in Section 7.3, our proof is simple, self-contained, and

yields a much finer separation. We note that the same proof was discovered independently

by Impagliazzo and Kabanets [112].

7.1.2 Hard functions in PSPACE

The previous set of results showed that deterministic learning algorithms in the exact or

mistake-bounded model imply hard functions computable in subexponential-time uniform

complexity classes. We also investigate the possibility of constructing hard functions in

PSPACE, given the existence of non-trivial randomized learning algorithms. We prove that

unless PSPACE lies in randomized sub-exponential time, non-trivial learning algorithms in

the PAC model imply the existence of hard functions in PSPACE. Actually, this is true

even if the PAC learning algorithm is allowed membership queries and only works under

the uniform distribution:

Theorem 7.1.4. Let C be any circuit class and suppose that there exists a randomized

algorithm that PAC learns C under the uniform distribution using membership queries in

time O(T (n, size(c))), where c ∈ C is the unknown concept. Then, for any function s : N→

N, at least one of the following conditions hold:

(i) There are languages in PSPACE not computed by circuits from C of size s; or

(ii) PSPACE ⊆ BPTIME(T (n, s)).

In contrast, Fortnow and Klivans proved that for any circuit class C ⊆ P/poly, if

C is PAC learnable under the uniform distribution by a polynomial-time algorithm with

membership queries then BPEXP * C. Theorem 7.1.4 extends their work in the following

Chapter 7. Constructing hard functions from learning algorithms 156

directions: (i) we obtain interesting consequences for PSPACE instead of BPEXP; (ii) it is

possible to derive new results for PSPACE even in the case that the learning algorithm does

not run in polynomial time; (iii) C does not need to be contained in P/poly, which means

that this result can (under the learning assumptions) be used to obtain super-polynomial

lower bounds. In Section 7.4, we explain how Fortnow and Klivans’s original result can be

derived from Theorem 7.1.4.

Note that the second condition in the conclusion of this theorem does not depend on

the original circuit class that appears in the hypothesis. While this seems odd at first, we

give a simple proof that removing this “or” condition from the conclusion of the theorem

would give us an unconditional proof that PSPACE * BPP. In other words, proving strong

theorems of the form “learning implies circuit lower bounds” yields important uniform

separations.

Theorem 7.1.4 also explains the difficulty of designing non-trivial PAC learning algo-

rithms for the class of polynomial-size depth-two threshold functions, also known as TC0
2.

This is one of the smallest circuit classes for which there are no known non-trivial circuit

lower bounds. In particular, it could be the case that any language in BPEXP is in TC0
2.

Our result shows that the existence of a non-trivial PAC learning algorithm for this class

provides strong evidence that PSPACE does not admit such circuits. Previous results re-

quired stronger assumptions. For instance, the original theorem proven by Fortnow and

Klivans [70] assumes efficient PAC learnability, and the cryptographic hardness results of

Klivans and Sherstov [121] do not hold with respect to the uniform distribution or when

learner is allowed membership queries.

The main idea of the proof is to rework the Fortnow and Klivans approach but use

a PSPACE-complete problem described by Trevisan and Vadhan [187] that is downward

self-reducible and self-correctible. In contrast, Fortnow and Klivans used the Permanent

function (and its well-known self-reducibility properties) but had to first go through a

“collapse” argument to arrive in a scenario where the Permanent is complete for PSPACE.

The proof of Theorem 7.1.4 is presented in Section 7.4.

We also observe that Karp-Lipton style collapse results follow easily from a relativized

version of Theorem 7.1.4 and Occam’s Razor (Blumer et al. [32]), for any complexity

Chapter 7. Constructing hard functions from learning algorithms 157

class with complete problems that are both downward self-reducible and self-correctible.

While learning theory techniques have been used to prove collapse theorems in the past (cf.

Bshouty et al. [41]), our argument based on Occam’s Razor seems to be new.

7.1.3 Average-case hard functions from Statistical Query Learning

Our results above show that nontrivial learning algorithms in the exact, mistake-

bounded, or PAC model yield functions that are hard to compute in the worst-case. We

show that even weak learning algorithms that use only Correlational Statistical Queries

(CSQs) yield not just circuit lower bounds but explicit functions that are hard to compute

on average. Informally, a CSQ learner is allowed to make queries of the form E[q · c] where

c is the target function and q is some fixed (polynomial-time computable) predicate. The

learner then receives an estimate of the true value of this query to within τ , a “tolerance”

parameter. CSQ learning has been an active area of study recently in computational learning

theory. It is known [64] that the class of functions that are Evolvable (in the sense of Valiant

[194]) are exactly equal to the functions that are learnable by CSQs (we define Correlational

Statistical Queries formally in Section 7.2.4). We give the following consequence for CSQ

learning:

Theorem 7.1.5. Let C be a representation class of Boolean functions on {−1, 1}n. Let ε, τ

be any parameters satisfying ε < 1
2 and 2−o(n) ≤ τ ≤ min {ε, 1− 2ε}. Suppose there exists an

algorithm A that runs in time T = T (n, 1
ε ,

1
τ , s) that learns Cs on the uniform distribution

in the CSQ model to accuracy 1 − ε by at most Q = Q(n, 1
ε ,

1
τ , s) ≤ 2n queries, each of

tolerance τ . Then, there exists a Boolean function (family) f ∈ DTIME(T + poly(Q, 1
τ))

such that for every c ∈ Cs, Prx∼U [f(x) 6= c(x)] ≥ τ
4 .

We note that a weak average-case hardness for an explicit function (parity) can be

obtained by a simple argument based on SQ-dimension [30]. For example, it follows from

the definition of SQ-dimension that if C has polynomial SQ-dimension any c ∈ C differs

from parity on a non-zero but negligible fraction of inputs (this is discussed in more detail

in Section 7.5.2). Since τ is at least an inverse polynomial, Theorem 7.1.5 yields stronger

average-case hardness result against C.

Chapter 7. Constructing hard functions from learning algorithms 158

The proof of Theorem 7.1.5 uses a diagonalization trick similar to the one used for

obtaining lower bounds from online learning algorithms in order to construct a family of

functions G such that for every c ∈ C there is some g ∈ G that weakly approximates c.

We can then apply recent work due to Chattopadhyay et al. [46] relating explicit low-

discrepancy colorings to hard on average functions to find an explicit function f that has

low correlation with every function in G. This will be the desired hard on average function.

For a subtle technical reason, we need additional assumptions to obtain results for the

full SQ model of learning (see Section 7.5.3). We leave getting rid of these assumptions as

an interesting open problem, and discuss the difficulty in more detail in Section 7.6.

7.2 Preliminaries and notation

A Boolean function (concept) maps {−1, 1}n → {−1, 1}. A family of Boolean functions

f = {fn}n∈N, where fn : {−1, 1}n → {−1, 1}, naturally corresponds to the language Lf =

{x ∈ {−1, 1}n | f(x) = −1}. We use U (or Un) to denote the uniform distribution on

{−1, 1}n.

We will use C = ∪n∈N Cn to denote a representation class of Boolean functions, such

as DNFs, Boolean circuits, depth-two threshold circuits, etc. The size of c ∈ C in its

representation will be denoted by size(c). For concreteness, size(c) can be assumed to be the

number of bits required to write down the representation of c. We require the representation

be such that the value at any input of any function c can be computed in deterministic time

polynomial in n and the size of the representation. We will use T for denoting time bounds,

and s for denoting sizes of representations, both of which we assume to be constructive and

non-decreasing without explicit notice.

We now set up some notation to talk about languages and representation classes.

Definition 7.2.1 (Languages and Representation Classes). For any language L ⊆ {−1, 1}∗,

we denote the restriction of L to strings of length n by Ln. For any size function s : N→ N

and representation class C,

Cs = {L ⊆ {−1, 1}∗ | ∀n ∃c ∈ Cn with size(c) ≤ s such that x ∈ L⇔ c(x) = −1}.

Chapter 7. Constructing hard functions from learning algorithms 159

Let P/poly[C] = ∪c>0Cn
c
. When C is the class of circuits of AND, OR and NOT gates, we

denote Cs by SIZE(s) and P/poly[C] by just P/poly.

As such each one of our results will hold for sufficiently large n and we will skip noting

this explicitly in the interest of clarity. If we need to stress that we are dealing with functions

in C of n dimensions, we will make this explicit by writing Csn for the class Cs.

To denote that an algorithm has oracle access to a function family f , we write Af .

Equivalently, if we see the oracle as a language L, we write AL.

We now define the various learning models we will deal with in this chapter. We do

not require any of our learning algorithms to be proper, that is, the hypothesis output by

the algorithms need not be from the representation classes they learn.

7.2.1 Online Mistake Bound Learning

In the mistake-bounded model of learning, a concept c from some class C is fixed,

and a learner is presented with an arbitrary sequence of examples. After receiving each

example xi, the learner must output its prediction for c(xi). The learner succeeds with

mistake bound M if for any sequence of examples, the learner makes at most M mistakes.

Formally:

Definition 7.2.2 (Mistake Bound Learning). Let C be any class of Boolean functions over

an arbitrary domain X. A mistake bound learning algorithm A for C proceeds in rounds.

Let c ∈ C be the target function. In round i ≥ 1, algorithm A:

(1) is presented with an example point xi ∈ X, and outputs a label A(xi).

(2) is provided (by the target function oracle) with the correct label c(xi).

(3) runs an update procedure.

A learns Cs with mistake bound M(n, s) and time T (n, s), if for any c ∈ Cs and any (possibly

infinite) sequence of examples from X, A makes at most M(n, s) mistakes while outputting

the labels, and the update procedure runs in time T (n, s).

Chapter 7. Constructing hard functions from learning algorithms 160

7.2.2 Angluin’s model of Exact Learning

Angluin’s model of exact learning [17] provides the learner with more powerful access to

the target function than the Online Mistake Bound Learning Model. It can be easily shown

that any mistake bound algorithm can be translated into an exact learner in Angluin’s

model while preserving efficiency.

Let c ∈ Cs be a target function. In this model, the learning algorithm is allowed to ask

two kinds of queries about c to the target function oracle:

• Membership Queries: the learner presents a point x ∈ {−1, 1}n and the target function

oracle replies with c(x).

• Equivalence Queries: the learner presents a Boolean function h̃ : {−1, 1}n → {−1, 1}

to the oracle (represented as a circuit). If h̃ = c, the oracle responds with “yes”.

Otherwise, the oracle responds with “not equivalent”, and provides a counter example

x ∈ {−1, 1}n such that h̃(x) 6= c(x).

We can now define an exact learning algorithm for a class of Boolean functions Cs.

Definition 7.2.3 (Exact Learning in Angluin’s Model). A deterministic algorithm A exact

learns a representation class of Boolean functions Cs in time T (n, s) and queries Q(n, s) if

for any target function c ∈ Cs, A makes at most Q(n, s) membership and equivalence queries

to the oracle for c and outputs a hypothesis h : {−1, 1}n → {−1, 1} such that h(x) = c(x)

for all x ∈ {−1, 1}n in time T = T (n, s). Further, we assume that any equivalence query,

h̃, is computable in time O(T) on any input.

7.2.3 PAC Learning

In the most common PAC learning framework, there is an unknown concept c ∈ Cn to

be learned, and the learning algorithm receives random examples labelled consistently with

c according to some fixed but unknown distribution D over {−1, 1}n. Here we concentrate

on the stronger model in which the learner can ask membership queries (present any point x

and obtain the value of target function c(x)) about the unknown concept, and only needs to

Chapter 7. Constructing hard functions from learning algorithms 161

learn under the uniform distribution. In other words, we prove circuit lower bounds from a

weaker assumption, namely, the existence of learning algorithms in a more powerful model.

Definition 7.2.4. Let C be any class of Boolean functions. An algorithm A PAC-learns C

if for every c ∈ C and for any ε, δ > 0, given membership query access to c, algorithm A

outputs with probability at least 1− δ over its internal randomness, a hypothesis h such that

Prx∼Un [c(x) 6= h(x)] ≤ ε.

We measure the running time of A as a function T = T (n, 1/ε, 1/δ, size(c)), and require

that h itself can be evaluated in time at most T . We say that A is efficient if T is bounded

above by a fixed polynomial in its parameters.

7.2.4 Statistical Query Learning

Statistical query learning, defined by Kearns et al. [118] is a natural variant of PAC-

learning when the underlying data is noisy. We start with the definition of Statistical

Queries (SQs).

Definition 7.2.5 (Statistical Query Oracles and SQs). Let C be a concept class on {−1, 1}n.

For any c ∈ C, a statistical query oracle for c of tolerance τ > 0, STAT(c, τ), takes input

any representation of a bounded function ψ : {−1, 1}n × {−1, 1} → [−1, 1] and returns

v ∈ [−1, 1] such that |Ex∼U [ψ(x, c(x))] − v| ≤ τ . A query function ψ is said to be target

independent if for every x ∈ {−1, 1}n and y ∈ {−1, 1}, ψ(x, y) = ψ(x,−y), that is ψ doesn’t

depend on the target function c.

The Correlational Statistical Query (CSQ) Oracle is a less powerful version of the SQ

oracle which answers only correlational queries.

Definition 7.2.6 (Correlational Statistical Query Oracle). Let C be a concept class on

{−1, 1}n and D be any distribution on {−1, 1}n. For any c ∈ C, a correlational statistical

query oracle for c of tolerance τ > 0, CSTAT(c, τ), takes input any representation of a

bounded function ψ : {−1, 1}n → [−1, 1] and returns v ∈ [−1, 1] such that |〈c, ψ〉D − v| ≤ τ .

We now define learning from SQs and CSQs. We note that CSQ learning algorithms

are equivalent to Valiant’s [194] model of Evolvability [64].

Chapter 7. Constructing hard functions from learning algorithms 162

Definition 7.2.7 (Correlational Statistical Query Learning). Let C be a representation class

of Boolean functions on {−1, 1}n. A (Correlational) Statistical Query learning algorithm A

learns Cs on the uniform distribution in time T = T (n, 1
ε ,

1
τ , s) and queries Q = Q(n, 1

ε ,
1
τ , s)

if, for any c ∈ Cs and any ε ≥ τ > 0, A makes Q queries to STAT(c, τ) (CSTAT(c, τ)) and

uses at most T time units to return a hypothesis h such that

Pr
x∼D

[h(x) 6= c(x)] ≤ ε.

A is said to be efficient if both T and Q depend polynomially on n, 1
ε ,

1
τ and s.

Bshouty and Feldman ([39]) noted that any Statistical Query can be simulated by 2

target independent queries and 2 correlational queries. We include their simple proof for

completeness.

Proposition 7.2.8 (Bshouty and Feldman [39]). Any statistical query can be decomposed

into two statistical queries that are independent of the target and two correlational queries.

Proof. Let ψ be a statistical query, and let c be the target function. The result follows

immediately from the following equation:

E[ψ(x, c(x))] = E
[
ψ(x,−1)

1− c(x)

2
+ ψ(x, 1)

1 + c(x)

2

]
=

1

2
E[ψ(x, 1)c(x)]− 1

2
E[ψ(x,−1)c(x)] +

1

2
E[ψ(x, 1)] +

1

2
E[ψ(x,−1)].

Using Proposition 7.2.8, we will assume that any SQ algorithm A learning Cs actually

makes only target independent and correlational queries. Further, we will assume that each

target independent query is a Boolean function specified by a circuit of size poly(s).

7.3 Lower bounds from mistake-bounded and exact learning

algorithms

In this section we give a simple and direct method for constructing a hard function

given a (deterministic) mistake-bounded or exact learning algorithm. Specifically, we will

Chapter 7. Constructing hard functions from learning algorithms 163

show that if Cs (here Cs equals all concepts in C of size at most s) is learnable in the Online

Mistake Bound Model [130] (or the Exact Learning Model [17]) with mistake bound (or

number of queries for Exact Learning) less than 2n, then there is a function computable

in a uniform time class that is not computable by any function in Cs. As a corollary, we

will see that polynomial-time (deterministic) mistake-bounded or exact learning algorithms

for even linear-sized circuit classes implies that P = BPP. Previous work relating learning

algorithms to circuit lower bounds obtained only subexponential-time simulations of BPP.

Our proof shows how to use a mistake-bounded or exact learning algorithm to “fool”

every circuit from some large class. We do this by iteratively presenting the learning al-

gorithm labeled examples from different functions at each iteration (typically a learning

algorithm will only succeed if it is presented with labeled examples from a function fixed

in advance from within the class). Recall that our goal here is not to obtain an accurate

hypothesis, but to construct a hard function using the learning algorithm as a (black box)

subroutine. The running time of the algorithm for evaluating the hard function on any

input is dependent on the time and mistake bound (or queries for exact learning) of the

learning algorithm.

7.3.1 Lower bounds from mistake bounds

In this section, we present our “diagonalization” trick and show that the existence of

a Mistake-Bounded learning algorithm for a class C yields an explicit hard function for C:

Theorem 7.3.1 (Mistake Bound Learning yields Lower Bounds). Let C be any class of

Boolean functions. Suppose there exists an algorithm A that learns any c ∈ C with mistake

bound M = M(n, s) and time T = T (n, s), where s = s(n). Then, for any size s such that

M < 2n, there exists a function f ∈ DTIME(M · T) such that for any c ∈ Cs, we have

Pr
x∼Un

[f(x) 6= c(x)] >
1

M + 1
− 1

2n
.

Proof. We must define function f and prove that it cannot be computed by any circuit of

size s (pseudocode for the hard function f is given in Algorithm 1). To do this, we describe

f ’s behavior on input x.

Chapter 7. Constructing hard functions from learning algorithms 164

Algorithm 1 Hard function f that uses mistake-bounded learner A as a subroutine

Require:

Input: x ∈ {−1, 1}n.

Output: A value in {−1, 1}.
1: Set t = M + 1, where M = M(n, s(n)), and let {−1, 1}n be partitioned into

sequential blocks E1, E2, . . . , Ek of size t, where k = d2n/te (the last block may

contain less than t points). Initialize function ` on Ej to the constant −1.

2: Find j such that x ∈ Ej . Let t′ = |Ej | (note that t′ = M + 1 for any j < k).

3: Obtain all the points in Ej and order them lexicographically as {x1, x2, · · ·xt′}.
4: Start simulating the learner A on the sequence of points {x1, x2, · · ·xt′}.
5: for i = 1 to t′ do

6: Simulate A by presenting xi and obtain prediction: A(xi).

7: Tell the learner A that it made a mistake and report true label of xi as `(xi) =

−A(xi).

8: Simulate the update procedure of A.

9: end for

10: return `(x).

Let {−1, 1}n be partitioned into consecutive blocks in lexicographic order E1, . . . , Ek,

each of size t = M+1 (the last block may have size smaller than t). A function ` is initialized

to equal −1. On input x, f determines j ∈ [k] such that x ∈ Ej . It then simulates learner

A for t′ = |Ej | iterations by presenting it examples from Ej in lexicographic order. Let

{x1, x2, . . . , xt} be the examples in Ej . On the ith iteration, f simulates A and presents

it with example xi. The learner responds with its prediction, A(xi). The function f sets

`(xi) = −A(xi) and informs the learner that it has made a mistake. The function f then

simulates the update procedure of A by using the “true” label of xi, namely `(xi). At the

end of |Ej | iterations, f halts and outputs f(x) = `(xi). Since x ∈ Ej , f halts in at most t

iterations. Clearly f can be computed on any input in time O(M · T).

Assume for a moment that for any c ∈ Cs, functions f and c differ in at least one point

in Ej whenever |Ej | = M + 1. Then if |Ej | = M + 1 for each 1 ≤ j ≤ k, we have that

Prx∼Un [h(x) 6= c(x)] = 1
M+1 . If, on the other hand, |Ek| < M + 1, then Prx∼Un [h(x) 6=

c(x)] ≥ 1
M+1 · (1−

|Ek|
2n) > 1

M+1 −
1

2n .

Let j < k so |Ej | = M + 1. To see why f and c differ on Ej , observe that if there

exists a c ∈ Cs consistent with ` on all the examples in Ej , then the sequence of examples

Chapter 7. Constructing hard functions from learning algorithms 165

{x1, . . . , xt} and labels given to A by f are consistent with c. But we have forced the learner

to make exactly M + 1 mistakes on this sequence. This is a contradiction to the mistake

bound of A. Thus, the labeling given by ` for {x1, . . . , xt} cannot be consistent with any

c ∈ Cs.

7.3.2 Exact Learning yields circuit lower bounds

In this section we show that the existence of an algorithm that learns a class C in

Angluin’s model of exact learning using less than 2n membership and equivalence queries

implies lower bounds against C. Learnability in mistake-bounded model implies learning

in the exact model, thus the results presented here are stronger than those stated in the

previous section. On the other hand, we do not obtain an average case hard function

as we could from a mistake-bounded algorithm. In the proof, we make use of a similar

“diagonalization” trick, but there are a few more complications involved in simulating the

equivalence and membership queries.

Theorem 7.3.2 (Exact Learning yields Lower Bounds). Let C be a class of Boolean func-

tions. Suppose there exists an exact learning algorithm A that exact learns any target

function c ∈ C in time T = T (n, s) and < 2n equivalence and membership queries. Then

there exists a function f ∈ DTIME(T 2) such that f /∈ Cs.

Proof. As in the previous section, we describe a procedure to compute f using blackbox

access to the exact learning algorithm A. We will show that f /∈ Cs and f ∈ DTIME(T 2).

Let x be the input to f . Then f simulates the learner A and must give responses to the

membership queries and equivalence queries that A makes. The function f keeps track of

the membership queries made by A and counterexamples (in response to equivalence queries

made by A) in the set S. If A makes a membership query and asks for the label of w, and

w /∈ S, f replies with −1, adds w to the set S, and defines `(w) = −1. Otherwise f responds

with `(w). If A makes an equivalence query for hypothesis h̃ : {−1, 1}n → {−1, 1}, f replies

with “not equivalent”, returns counterexample y, the lexicographically first string not in S

(recall that Q < 2n), and adds y to S. In addition, f sets `(y) = −h̃(y).

If during f ’s simulation, A halts and outputs a hypothesis h, then f chooses a string

y, the lexicographically smallest string not in S, adds y to S, and sets `(y) = −h(y). This

Chapter 7. Constructing hard functions from learning algorithms 166

guarantees that ` differs from h on at least one point in S. Finally, we describe what f

should output on input x. If x ∈ S, output `(x). Otherwise, output −1.

We will need the following simple claim:

Claim 7.3.3. Suppose an exact learner A for Cs, running in time T = T (n, s) that makes

at most Q = Q(n, s) < 2n queries is provided answers to all its membership and equivalence

queries that are consistent with some c ∈ Cs. Let S be the union of the set of all membership

queries made by A and the set of all counterexamples presented to A. Then, if any c′ ∈ Cs

satisfies c′(x) = c(x) for all x ∈ S then, c(x) = c′(x) for every x ∈ {−1, 1}n.

Proof of Claim. Since A is an exact learner and all the membership and equivalence queries

made by it are answered with replies consistent with c, A must halt in at most T steps after

making at most Q queries with a hypothesis h such that h(x) = c(x) for every x ∈ {−1, 1}n.

On the other hand, since c′(x) = c(x) for every x ∈ S, the answers for the membership and

equivalence queries received by A are consistent with c′ also, and thus, h(x) = c′(x) for

every x ∈ {−1, 1}n.

We will now argue that f /∈ Cs. We need the following notation: let SA be the value

of S and `A be the value of ` when f stops simulating A. Similarly, let Sf be the value of

S and `f the value of ` when f halts (recall that Sf and `f differ from SA and `A only if A

returns a hypothesis h before f stops simulating it, in which case SA ⊂ Sf and `A and `f

agree on all points in SA).

Suppose that there exists c ∈ Cs such that f(x) = c(x) for every x ∈ SA. In other

words, the replies to the queries made by the algorithm A are consistent with c. In this

case, A must halt and return a hypothesis h in at most T steps. Moreover, since A is an

exact learner, h = c.

By Claim 7.3.3, c is the unique function in Cs that is consistent with f on SA. Thus,

if f is computed by some function in Cs, then f = c. But notice that, in this case, the

procedure for computing f guarantees that there exists a y ∈ Sf \SA such that f(y) 6= h(y).

This implies that f 6= c. Thus, there is no function in Cs that computes f .

On the other hand if for every c ∈ Cs, there is some value x ∈ SA such that f(x) 6= c(x),

then we immediately conclude that f is not computed by any c ∈ Cs. In either case, we

Chapter 7. Constructing hard functions from learning algorithms 167

have proved that f 6∈ Cs.

The function f can simulate A in time O(T). Since A makes at most T equivalence

queries, each of which is computable at any point in deterministic time O(T) (Section 7.2.2),

A spends at most O(T 2) time answering equivalence queries. All other computations of f

involve searching for strings outside S which takes at most O(S) = O(T) time. Thus we

have that f runs in time at most O(T 2).

As a simple corollary we obtain that efficient exact learnability of C yields DTIME(nω(1)) *

P/poly[C]. We now apply the theorem above to the special case of SIZE(n) to compare our

results with [70] and [92].

Corollary 7.3.4. Suppose SIZE(n) is learnable -

• by a Mistake-Bounded Algorithm in time and mistake bound polynomial in n; or

• by an Exact Learning Algorithm in time polynomial in n.

Then, DTIME(nω(1)) * P/poly.

Proof. By a simple padding argument, P/poly is efficiently learnable in the respective mod-

els. Applying Theorems 7.3.1 and 7.3.2 yields the result.

For a comparison, note that [70] proves that if P/poly is efficiently exactly learnable

in Angluin’s model, then EXPNP * P/poly, and [92] improves this result to obtain the

conclusion that EXP * P/poly.

7.3.3 Derandomization consequences from Exact Learners

The improvements in our lower bounds allow us to obtain a complete derandomization

of BPP from efficient learnability of P/poly.

We will require the following celebrated result of Impagliazzo and Wigderson:

Theorem 7.3.5 (Impagliazzo and Wigderson [101]). If there exists L ∈ DTIME(2O(n)) and

δ > 0 such that L /∈ SIZE(2δn), then P = BPP.

Previous work obtained only subexponential deterministic simulations of BPP given

the existence of efficient learning algorithms.

Chapter 7. Constructing hard functions from learning algorithms 168

Corollary 7.3.6. Suppose SIZE(n) is efficiently learnable in Angluin’s model of exact learn-

ing with membership and equivalence queries. Then P = BPP.

We only state the above corollary starting from exact learning algorithms, as mistake-

bounded learnability implies exact-learnability.

Proof. We again use a padding argument here, although we have to be a bit more explicit

with our parameters. Suppose SIZE(n) is exactly learnable in time O(nk). By padding

SIZE(s) is learnable in time O(sk). Let s = 2δn, where δ = 1
2k . The result now follows easily

from Theorem 7.3.2 and Theorem 7.3.5.

We note that using similar tools from derandomization, we can show that the existence

of sub-exponential time mistake-bounded learning algorithms for polynomial size circuits

implies subexponential-time derandomization of BPP.

7.4 Lower bounds from PAC learning algorithms

In this section we shift gears and obtain hard functions in PSPACE from PAC learning

algorithms. Previous work [70] showed the existence of hard functions in BPEXP. Indeed,

here we prove that unless randomness can speed-up arbitrary space-bounded computations,

any non-trivial PAC learning algorithm for a circuit class C yields a hard function in PSPACE

against C. We begin with a few important definitions.

Definition 7.4.1 (Downward Self-Reducibility). We say that a language L is downward-

self-reducible if there is a deterministic polynomial time algorithm A such that for all x ∈

{−1, 1}n, ALn−1(x) = L(x). In other words, A efficiently computes L(x) on any input x of

size n when given oracle access to a procedure that computes L on inputs of size n− 1.

Definition 7.4.2 (Self-Correctibility). We say that a language L is α(n)-self-correctible

if there is a probabilistic polynomial time algorithm A such that, for any Boolean function

c : {−1, 1}n → {−1, 1} that disagrees with Ln on at most an α(n)-fraction of the inputs of

size n, we have Pr[Ac(x) = L(x)] ≥ 2/3 for any x ∈ {−1, 1}n.

Chapter 7. Constructing hard functions from learning algorithms 169

Using an appropriate arithmetization of quantified Boolean formulas, Trevisan and

Vadhan [187] proved that there exists a PSPACE-complete language that is both downward-

self-reducible and self-correctible. Actually, by employing better self-correction techniques

introduced by Gemmel and Sudan [76] and a standard composition with the Hadamard

error-correcting code, it follows from their construction that [189]:

Proposition 7.4.3. There exists a PSPACE-complete language LPSPACE that is both downward-

self-reducible and α-self-correctible, where α = 1/100.

Finally, for any language O, we denote by BPTIME(T (n))O the class of languages that

can be computed by probabilistic algorithms that have oracle access to O and run in time

O(T (n)).

Theorem 7.4.4 (PAC Learning yields Lower Bounds). Let C be any concept class and sup-

pose that there exists an algorithm that PAC learns any c ∈ Cs under the uniform distribu-

tion using membership queries when given access to an oracle O1 in time T (n, 1/ε, log 1/δ, s).

Let L? be a language that is both downward-self-reducible and α(n)-self-correctible. Then,

at least one of the following conditions hold:

(i) L? /∈ Cs; or

(ii) L? ∈ BPTIME(poly(T (n, 1/α(n), log n, s)))O.

The proof of this result follows the same high-level approach employed by Fortnow and

Klivans [70], which we sketch next. Suppose for simplicity that we have an efficient PAC

learning algorithm for C that does not depend on any oracle O, and that L? ∈ P/poly[C]

(otherwise there is nothing to prove). Note that in order to prove Theorem 7.4.4, it is enough

to show that L? ∈ BPP. This can be obtained by combining the learning algorithm for C with

the downward-self-reducibility and self-correctibility of L?. Roughly speaking, we “learn”

how to compute L? on all inputs of size at most n starting from inputs of constant size, which

can be easily computed by a truth-table. Assuming that we know how to compute L?k with

high probability on every input, we can compute L?k+1 with high probability as follows.

1We stress that the learner can ask both membership queries about the unknown concept and queries to

oracle O.

Chapter 7. Constructing hard functions from learning algorithms 170

Simulate the learning algorithm with unknown concept c = L?k+1. Answer membership

queries using downward-self-reducibility and the procedure for L?k obtained by induction.

The learner outputs a hypothesis h for c = L?k+1 that is close to L?k+1. Now use the self-

correctibility of L? together with c to obtain an algorithm that computes L?k+1 on every

input with high probability. Observe that each stage can be computed efficiently from our

assumptions. After n stages, we obtain a randomized algorithm that computes L? on any

input of size n, which completes the proof that L? ∈ BPP. For completeness, we present

the full proof of Theorem 7.4.4 in Section 7.7.

The next corollary is immediate by taking O to be the empty language in the statement

of Theorem 7.4.4.

Corollary 7.4.5. Let C be any concept class and suppose that there exists an algorithm

that PAC learns any c ∈ Cs under the uniform distribution using membership queries in

time T (n, 1/ε, log 1/δ, s). Also, let LPSPACE be the PSPACE-complete language given by

Proposition 7.4.3. Then, at least one of the following conditions hold:

(i) LPSPACE /∈ Cs; or

(ii) LPSPACE ∈ BPTIME(poly(T (n,O(1), log n, s))).

For instance, for efficient PAC learning algorithms we have the following consequence:

Corollary 7.4.6. Let C be any concept class and suppose that there exists a polynomial-

time algorithm that PAC learns C under the uniform distribution using membership queries.

Then, at least one of the following conditions hold:

(i) PSPACE * P/poly[C]; or

(ii) PSPACE ⊆ BPP.

Corollary 7.4.6 implies the original result of Fortnow and Klivans: if PSPACE ⊆ BPP,

a simple padding argument gives EXPSPACE ⊆ BPEXP, and it is not hard to prove by

diagonalization that EXPSPACE requires circuits of size Ω(2n/n). Thus, under efficient PAC

learnability of C, it follows that either PSPACE * P/poly[C] or BPEXP requires circuits of

size Ω(2n/n). In particular, this implies that BPEXP * P/poly[C].

Chapter 7. Constructing hard functions from learning algorithms 171

Note that the second condition in the conclusion above does not depend on the class

C that appears in the hypothesis. We observe next that removing this “or” condition from

the conclusion of Corollary 7.4.6 would give us an unconditional proof that PSPACE 6= BPP.

To see this, suppose the following result is valid:

If C is PAC-learnable in polynomial-time then PSPACE * P/poly[C] (?)

Let C be the class of Boolean circuits, i.e., P/poly[C] = P/poly. Let P/poly-PAC-

learnable denote that C is PAC learnable in polynomial time. We prove that both P/poly-

PAC-learnable and its negation ¬P/poly-PAC-learnable imply BPP 6= PSPACE. First, if

P/poly-PAC-learnable then it follows from (?) that PSPACE * P/poly. Since BPP ⊆ P/poly

(Adleman [4]), this implies BPP 6= PSPACE. On the other hand, suppose we have ¬P/poly-

PAC-learnable. To show that that BPP 6= PSPACE, it is sufficient to prove that if BPP =

PSPACE then C is efficiently PAC-learnable. Using PSPACE ⊆ BPP, we can find a efficiently

find a hypothesis consistent with the labeled examples with high probability and a well

known result (Occam’s Razor, see Proposition 7.4.7 below) now implies PAC-learning.

7.4.1 A new way to prove Karp-Lipton collapse theorems

In this section we show that Proposition 7.4.7 (Occam’s Razor) together with Theo-

rem 7.4.4 (PAC learning yields circuit lower bound) can be used to prove Karp-Lipton style

collapse theorems (Karp and Lipton [115]). Recall that these theorems state that if some

circuit lower bound does not hold then there is a unexpected collapse involving uniform com-

plexity classes. These results are usually stated with respect to P/poly. The most famous

Karp-Lipton Theorem says that if NP ⊆ P/poly then PH = Σp
2, i.e., the polynomial time

hierarchy collapses to its second level. Similar theorems are known for different complexity

classes. To prove more refined results, we use SIZE(l(n)) to denote the class of languages

with circuits of size O(l(n)). For concreteness, we give a proof for PSPACE. However, it is

clear that the same argument works for any complexity class containing complete problems

that are both downward-self-reducible and self-correctible, such as #P.

We start by stating the Occam’s Razor technique [32].

Chapter 7. Constructing hard functions from learning algorithms 172

Proposition 7.4.7 (Occam’s Razor Principle). Let C be any representation class and s :

N→ N be an arbitrary constructive function. Suppose there exists an algorithm B that, given

any set of m ≥ 1
ε

(
s+ log 1

δ

)
uniformly distributed random examples labelled according to

some unknown concept c ∈ Csn, outputs a hypothesis h ∈ Cs that is consistent with this set

of examples. Then B is a PAC learning algorithm for C. In other words, the hypothesis h

outputted by B is ε-close to c with probability at least 1− δ.

Proposition 7.4.8. Let C be an arbitrary concept class and s′ : N→ N be any constructive

function with s′(n) ≥ n. If LPSPACE ∈ Cs
′(n) then LPSPACE ∈ BPTIME(poly(s′(n)))NP.

Proof. For any concept class C, there exists an algorithm B that uses an NP oracle and is able

to learn any concept c ∈ C in time T (n, 1/ε, log 1/δ, size(c)) = poly(n, 1/ε, log 1/δ, size(c)).

This algorithm simply draws m = 1
ε

(
size(c) + log 1

δ

)
random examples labelled according

to c and uses its NP oracle together with a standard search to decision reduction to find a

hypothesis h ∈ Csize(c) that is consistent with all examples. By Occam’s Razor (Proposition

7.4.7), B is a PAC learning algorithm for C.

Let L? = LPSPACE, O = NP, and s = s′(n) in the statement of Theorem 7.4.4. It

follows that either LPSPACE /∈ Cs′(n) or LPSPACE ∈ BPTIME(poly(T (n,O(1), log n, s′)))NP =

BPTIME(poly(s′(n)))NP. The result then follows from the assumption that LPSPACE ∈ Cs
′(n).

Corollary 7.4.9. If LPSPACE ∈ SIZE(l(n)) then LPSPACE ∈ BPTIME(poly(l(n)))NP.

Corollary 7.4.10. If PSPACE ⊆ P/poly then PSPACE ⊆ BPPNP.

We remark that this is not a new result. For instance, it is known that if PSPACE ⊆

P/poly then PSPACE ⊆ MA (Babai, Fortnow, and Lund [22]), and also that MA ⊆ ZPPNP ⊆

BPPNP (Goldreich and Zuckerman [81]).

Following the terminology of Trevisan and Vadhan [187], one may interpret our results

as a new way to prove “super Karp-Lipton” theorems for PSPACE. For instance, if there

exists a polynomial-time learning algorithm for TC0
2, it follows that PSPACE ⊆ TC0

2 implies

PSPACE = BPP.

Chapter 7. Constructing hard functions from learning algorithms 173

7.5 Lower bounds from SQ and CSQ learning algorithms

In this section we show that efficient SQ learning algorithms for a class C of circuits

yield circuit lower bounds. We will first show that efficient CSQ algorithms yield explicit

average case hard functions and then go on to obtain a non-constructive lower bound from

an SQ learning algorithm.

7.5.1 Preliminaries

Definition 7.5.1 (Inner Product). For any functions f, g mapping {−1, 1}n into {−1, 1},

we denote the inner product of f and g with respect to Un by 〈f, g〉. The inner product with

respect to the uniform distribution on X ⊆ {−1, 1}n, UX , is denoted by 〈f, g〉X .

Definition 7.5.2 (Hamming Distance). For any two Boolean functions f, g mapping {−1, 1}n

into {−1, 1}, the hamming distance between f and g denoted by dist(f, g) = 1
2n |{x ∈

{−1, 1}n | f(x) 6= g(x)}|. Observe that dist(f, g) = 1
2(1 − |〈f, g〉|). Hamming distance

is a metric on the space of Boolean functions on {−1, 1}n.

We will now define discrepancy of a bounded function class [47, 136, 149]. The defini-

tion we present here (and used in [46]) is a natural generalization of the standard definition

of discrepancy to classes of bounded functions.

Definition 7.5.3 (Discrepancy of a Class of Bounded Functions). Let C be a class of

bounded functions mapping a finite set X into [−1, 1] and let χ : X → {−1, 1} be a col-

oring of X. The discrepancy of χ with respect to a function c ∈ C is defined as χ(c) =∑
x:c(x)≥0 χ(x) · c(x). The discrepancy of χ with respect to the class C on X is defined as

disc[X, C](χ) = maxc∈C |χ(c)|.

A uniformly random coloring is, not surprisingly, a low discrepancy coloring. The

proof is a direct application of the Chernoff-Hoeffding Bounds. Further, this procedure to

construct a low-discrepancy coloring can be derandomized [176].

Lemma 7.5.4 (Deterministic Construction of Low Discrepancy Coloring [176]). Let C be a

class of bounded functions on X with |C| = m. There exists a deterministic algorithm run-

Chapter 7. Constructing hard functions from learning algorithms 174

ning in time poly(m, |X|) that produces a coloring with discrepancy at most
√

4|X| log 4m

for C.

There is a simple connection between a low discrepancy coloring χ for C on X and

average case hardness of χ for C observed in [46].

Proposition 7.5.5 (Low Discrepancy⇒ Average Case Hard Function). Let C be a class of

bounded functions mapping X into [−1, 1]. Let −C = {−c : c ∈ C} denote the class of all

negated functions from C. If χ : X → {−1, 1} is a coloring of X with discrepancy at most

ε|X| with respect to C ∪ −C then |〈χ, c〉UX | ≤ 2ε for each c ∈ C on X.

Proof. Let c ∈ C. Since χ has discrepancy at most ε|X| with respect to c and −c, we have:∣∣∣ ∑
x∈X
c(x)≥0

χ(x) · c(x)
∣∣∣ ≤ ε|X| and

∣∣∣ ∑
x∈X
c(x)≤0

χ(x) · c(x)
∣∣∣ ≤ ε|X|.

Thus,

|〈χ, c〉UX | =
∣∣∣Ex∼UX [χ(x) · c(x)]

∣∣∣
≤ 1

|X|
·
(∣∣∣ ∑

x∈X
c(x)≥0

χ(x) · c(x)
∣∣∣+
∣∣∣ ∑
x∈X
c(x)≤0

χ(x) · c(x)
∣∣∣)

≤ 1

|X|
·
(
ε|X|+ ε|X|

)
= 2ε.

7.5.2 CSQ Learning yields circuit lower bounds

To show that CSQ learning algorithms yield circuit lower bounds, we use a learning

algorithm A for C, to construct a small set of functions G such that each function in C is

non-trivially correlated with some function in G. This construction is well-known, and has

been employed in other contexts [64].

Lemma 7.5.6 (Small Weakly Correlating set from CSQ Algorithm). Let C be a representa-

tion class of Boolean functions on {−1, 1}n. Suppose for some ε, τ such that 1
2 > ε ≥ τ > 0

and τ ≤ 1−2ε, Cs is learnable on the uniform distribution in the CSQ model by an algorithm

Chapter 7. Constructing hard functions from learning algorithms 175

A running in time T = T (n, 1
ε ,

1
τ , s) while making at most Q = Q(n, 1

ε ,
1
τ , s) correlational

queries of tolerance τ . Then, there exists a set G of at most Q + 1 functions mapping

{−1, 1}n into [−1, 1] such that, for every c ∈ Cs, there exist a g ∈ G such that |〈g, c〉| ≥ τ .

Moreover, such a set G can be recovered by an algorithm running in deterministic time T .

Proof. We will simulate the CSQ oracle for A and simulate the learning algorithm to con-

struct the set of functions G.

Simulate the CSQ algorithm A for Cs. Each time the algorithm makes a correlational

query to the CSQ oracle, return 0. Stop the simulation if A runs for T steps or makes Q

queries. Let g1, g2, · · · , gk be the queries made by the algorithm after we stop the simulation.

Then, k ≤ Q. If A doesn’t return any hypothesis, there must be no function in Cs consistent

with our answers for the CSQs, which immediately yields that for every c ∈ Cs, there

exists a gi for i ∈ [k] such that |〈c, gi〉| > τ . If A returns a hypothesis, call it h, and let

G = {gi | 1 ≤ i ≤ k} ∪ {h}.

We now verify that G satisfies the required conditions stated in the theorem. Let

c ∈ Cs. One of the following two conditions has to be true:

1. |〈c, gi〉| ≤ τ for each 1 ≤ i ≤ k.

In this case observe that the answers returned to the algorithm while simulating the

CSQ oracle are consistent with the target function c within the tolerance bound of τ .

Thus, Prx∼U [h(x) 6= c(x)] ≤ ε , which gives |〈c, h〉| ≥ 1− 2ε ≥ τ .

2. There exists a j with 1 ≤ j ≤ k such that |〈gj , c〉| ≥ τ .

In this case we are immediately done, since gj ∈ G.

We now show that CSQ learning algorithms yield circuit lower bounds.

Theorem 7.5.7 (CSQ Learning yields circuit lower bounds). Let C be a representation class

of Boolean functions on {−1, 1}n. Let ε, τ be any parameters satisfying ε < 1
2 and 2−o(n) ≤

τ ≤ min {ε, 1− 2ε}. Suppose there exists an algorithm A that runs in time T = T (n, 1
ε ,

1
τ , s)

that learns Cs on the uniform distribution in the CSQ model to accuracy 1 − ε by at most

Q = Q(n, 1
ε ,

1
τ , s) ≤ 2n queries, each of tolerance τ . Then, there exists a Boolean function

(family) f ∈ DTIME(T + poly(Q, 1
τ)) such that for every c ∈ Cs, Prx∼U [f(x) 6= c(x)] ≥ τ

4 .

Chapter 7. Constructing hard functions from learning algorithms 176

The intuitive idea is that we can use Lemma 7.5.6 to construct the set G of size ≤ Q+1.

Running deterministic discrepancy minimization algorithm (Lemma 7.5.4) on G∪−G yields

a function f that has low correlation with every function in G (using Proposition 7.5.5).

The fact that every function in Cs is non-trivially correlated with some function in G is

then invoked to argue that f should be far from Cs.

Remark 5. The theorem holds for any ε < 1/2 and thus even a weak learning algorithm

for Cs that uses only CSQs yields lower bounds against Cs.

Algorithm 2 Hard Function f that uses CSQ learner A as a subroutine

Require:

Input: x ∈ {−1, 1}n
Output: A value in {−1, 1}.

1: Use learner A to obtain the set G of size at most Q + 1 of weakly correlating

functions for Cs.
2: Let {−1, 1}n be partitioned into consecutive blocks in lexicographic order

E1, E2, · · · , Ek each of size t (the last block may be of smaller size).

3: Determine j such that x ∈ Ej . Recover all the points in Ej .

4: Run deterministic discrepancy minimization on the class G ∪ −G and domain Ej
to obtain a function fj : Ej → {−1, 1}.

5: Return fj(x).

Proof. We need to describe a procedure to compute f using blackbox access to the CSQ

learning algorithm A. We will show that f is far from Cs and f ∈ DTIME(T + poly(Q)).

Let x be the input to f . First, construct G, the set of weakly correlating functions by

simulating the learning algorithm for Cs using Lemma 7.5.6. Notice that since the CSQ

algorithm doesn’t use any randomness of its own, the procedure produces a fixed set G in

any run of the algorithm. Let {−1, 1}n into consecutive blocks E1, E2, · · ·Ek each of size

t = d64 log 2|G|
τ2 e ≤ d64 log 4Q

τ2 e (the last block Ek may be smaller). f first finds out j such that

x ∈ Ej . It then runs the deterministic discrepancy minimization algorithm (Lemma 7.5.4)

on the class G ∪ −G and domain Ej . Suppose fj : Ej → {−1, 1}n is the function returned

by the algorithm. f outputs fj(x). We refer the reader to Algorithm 2 for the pseudo-code

of this routine.

Chapter 7. Constructing hard functions from learning algorithms 177

By using Proposition 7.5.5, we observe that for every g ∈ G, and for every j < k,

|〈fj , g〉Ej | ≤ 2

√
4 log 4Q

t
≤ τ/4.

Fix any j ∈ [k]. Notice that for any x ∈ Ej , the algorithm runs the discrepancy

minimization on the same class G∪−G and on the same domain Ej , thus constructing the

same function fj each time. Thus, for each x ∈ {−1, 1}n, f(x) = fj(x) whenever x ∈ Ej .

Therefore, for each g,

|〈f, g〉| =
∣∣∣ k∑
j=1

|Ej |
2n
〈fj , g〉Ej

∣∣∣ ≤ τ

4
·
(k−1∑
j=1

|Ej |
2n

)
+ 1 · t

2n
<

τ

4
+

1

2n
·
⌈64 log 4Q

τ2

⌉
≤ τ/2,

using our bounds on Q and τ from the statement of the theorem.

To show the average case hardness of f for Cs, fix any c ∈ Cs. Let gc ∈ G such that

|〈c, gc〉| ≥ τ , but |〈f, gc〉| ≤ τ
2 . Since by changing a single coordinate in the 2n-dimensional

vector representing function c we can only change the value of 〈c, gc〉 by ±2/2n, it must

be the case that c and f differ in at least a τ/4 fraction of the inputs. In other words,

Prx∼U [f(x) 6= c(x)] ≥ τ
4 , as desired. Finally, observe that the value of f at any x ∈ {−1, 1}n

can be evaluated in deterministic time poly(|G|, 1
τ) = poly(|Q|, 1

τ). This completes the

proof.

Note that since the class of all parity functions requires 2Ω(n) SQs to be learned [118],

we immediately obtain that if C is efficiently SQ learnable then C cannot compute some

parity function. Thus any efficient SQ learnability of a class C immediately yields a worst

case lower bound. Such an argument can actually be extended to obtain even a weak

average case lower bound. This is based on the characterization of CSQ learning by the SQ

dimension studied in [30]. The SQ dimension of a class C on the uniform distribution is the

largest number d such that there exist functions c1, c2, · · · cd ∈ C, such that for every i 6= j,

|〈ci, cj〉| ≤ 1
d3 . Kearns et al. characterized the query complexity of the best SQ algorithm

that learns C on U to be within a polynomial factor of the SQ dimension of C on U . The

following proposition shows that efficient CSQ learnability of C by CSQs of tolerance τ

implies that there is a parity which is 1− 1/nω(1)-hard for P/poly[C].

Compare this to Theorem 7.5.7, which shows from the same assumption that there is

a function computable in super-polynomial time that is τ/4-hard for P/poly[C].

Chapter 7. Constructing hard functions from learning algorithms 178

Lemma 7.5.8. Suppose Cs, a representation class of Boolean functions of size at most s,

is learnable to an accuracy of 1/3 by CSQs of tolerance τ (lower bounded by an inverse

polynomial in n) in time T (n, s) upper bounded by some polynomial in n, s where c is the

target function. Then, there exists a parity χS, |S| = O(log s
logn), such that Prx∼U [χS(x) 6=

c(x)] ≥ 1
n|S|

for every c ∈ Cs. Consequently for every k = ω(1), there exists a parity that

cannot be computed on at least 1
nk

fraction of the inputs by any function in P/poly[C]

Proof. Suppose Cs is learnable by a CSQ algorithm to accuracy of 1/3 in time T (n, s). Then

the SQ dimension of Cs on the uniform distribution is bounded above by T (n, s). For some

k, that we will fix later, consider the set of all parities over subsets of at most k variables

out of n variables.

Suppose for each T ⊆ [n] such that |T | ≤ k, there exists a cT ∈ P/poly[C] such

that |〈cT , χT 〉| > 1 − 1
nk

. Consider |〈cT , cR〉| = 2(1 − dist(cT , cR)) for some T,R such

that |T |, |R| ≤ k. Then, by triangle inequality (for Hamming distance), dist(χT , χR) ≤

dist(χT , cT) + dist(cT , cR) + dist(cR, χR). Using the orthogonality of distinct parities,

dist(cT , cR) ≥ 1 − 2 · (1
2 −

1
2nk

) = 1
nk

, yielding |〈cT , cR〉| < 1 − (1 − 1
nk

) = 1
nk

. This

yields that the set {cT | |T | ≤ k} forms a set of nk functions that satisfy |〈cT , cR〉| ≤ 1
nk

for

every T 6= R of size k, or that the SQ dimension of P/poly[C] is at least nk.

Now, choose a large enough constant k such that nk > T (n, s) to obtain a contradiction,

yielding that some parity on k variables cannot be correlated with any c ∈ Cs by more than

1− 1
nk

.

Remark 6. Observe that from the proof above, one can only obtain the conclusion that some

parity differs from every c ∈ P/poly[C] on a negligible fraction (inverse super-polynomial)

of inputs.

7.5.3 SQ Learning yields circuit lower bounds

In this section we prove that it is possible to obtain strong average-case hardness results

from the existence of an algorithm that learns using statistical queries. Formally, we will

show that if we can learn a class C in the statistical query model, then either there is an

explicit function f that is average-case hard for C, or P#P * P.

Chapter 7. Constructing hard functions from learning algorithms 179

We have seen in the proof of Theorem 7.5.7 that a learning algorithm that uses only cor-

relational queries yields an explicit average case hard function. Since the target independent

queries do not depend on the target function, a deterministic algorithm to compute such

queries will immediately give us the same conclusion starting from SQ algorithms. However,

answering a target independent query involves estimating the expectation of a function spec-

ified by some Boolean circuit, and no efficient deterministic algorithm is known for this task.

We explain why our proof technique cannot accommodate randomized learning algorithms

in Section 7.6.

Here, we show that we can indeed prove that SQ algorithms yield lower bound, but

our proof here will not be constructive as in the case of CSQ algorithms. Each target

independent query asks the oracle an estimate for the expectation of a function, given by

some circuit. Thus a #P oracle is enough to answer such queries exactly. (Recall that #P

is the class of counting problems associated with NP-relations.)

The main result of this section follows from Proposition 7.2.8 and a slight modification

of the argument used in the proof of Theorem 7.5.7.

Theorem 7.5.9 (SQ Learning Yields Circuit Lower Bounds). Let C be a representation

class of Boolean functions on {−1, 1}n. Let ε, τ satisfy ε < 1/2 and τ ≤ min {ε, 1− 2ε}.

Suppose there exists an algorithm A that runs in time T = T (n, 1
ε ,

1
τ , s) that learns Cs over

the uniform distribution to an accuracy of 1− ε using at most Q = Q(n, 1
ε ,

1
τ , s) SQs, each

of tolerance τ . Then, at least one of the following conditions hold:

• There exists a function (family) f ∈ DTIME(poly(T,Q, 1/τ)) such that for every

c ∈ Cs, we have

Pr[c(x) 6= f(x)] ≥ τ/4,

• or P#P * P.

Proof. If P#P * P, we are done. Assume P#P ⊆ P. Thus, we have an efficient deterministic

procedure to answer target independent queries. We now follow the proof of Theorem 7.5.7,

relying on Proposition 7.2.8. Observe that if we show that the conclusion of Lemma 7.5.6

follows even from an SQ (instead of CSQ) algorithm, we are done, as the rest of the proof

of Theorem 7.5.7 does not use A. To show the conclusion of Lemma 7.5.6 starting from

Chapter 7. Constructing hard functions from learning algorithms 180

an SQ algorithm, we describe how to obtain a set G of almost orthogonal functions. As

in the original proof, to every correlational query asked by A, f replies with 0. We use

the efficient algorithm granted by our assumption to answer target independent queries

(each one is specified by some poly(s) size circuit) within τ . Let g1, g2, · · · , gk be the

correlational queries made by algorithm A before it returns a hypothesis h, and define as

before G = {gi | 1 ≤ i ≤ k} ∪ {h}. The same argument used in the proof of Lemma 7.5.6

applies to G, and the result follows.

Remark 7. By using more powerful results it is possible to replace #P by smaller complexity

classes. In other words, the same argument works for any complexity class that allows us

to answer the target independent queries. We omit the details.

It is known that if P = NP then EXP requires circuits of exponential size.2 Therefore,

we have unconditionally that either P#P * P or EXP requires large circuits. Comparing this

result with our theorem, we observe that under efficient learnability Theorem 7.5.9 implies

that either P#P * P or P contains functions that are average-case hard for C.

7.6 Open problems and further research directions

In this chapter we showed that the existence of deterministic mistake-bounded or

exact learning algorithms yield lower bounds as long as the mistake-bound (or queries,

respectively) is less than the trivial bound of 2n. Further, our proofs for these classes work

even when the learning algorithms are allowed access to arbitrary oracles. Thus, obtaining

a new learning algorithm for a circuit class can be a method to prove new lower bounds

against it. An analogous approach was used by Williams [198, 199] to obtain new circuit

lower bounds from improved satisfiability algorithms.

Note, however, that our techniques do not yield an explicit lower bound starting from

randomized learning algorithms. In order to construct a hard function, we must simulate

a learning algorithm as a subroutine. If the behavior of the learning algorithm (on a fixed

2If P = NP then PH collapses to P. Using a padding argument, it follows that the exponential time

hierarchy collapses to EXP, which implies that this class contains functions of exponential circuit complexity

by Kannan’s theorem.

Chapter 7. Constructing hard functions from learning algorithms 181

input) is not deterministic (due to the learning algorithm’s internal randomness) then our

simulation is not fixed, and so may give different output values starting from the same

input. Thus, such learning algorithms will not yield a function. This is also the underlying

difficulty in simulating a general SQ algorithm, as the SQ algorithm may ask for an estimate

to Ex[g(x)] for an arbitrary (polynomial-time computable) predicate, which may be hard

to approximate deterministically.

We proved that PAC learning algorithms yield a stronger but conditional lower bound

(depending on whether PSPACE computations can be sped up by the use of randomness or

not). On the other hand, Fortnow and Klivans [70] showed that efficient PAC-learnability

of a class C yields that BPEXP does not have polynomial size circuits from C. Thus, an-

other open question is to extend this line of work and obtain the same conclusion involving

BPSUBEXP instead of BPEXP. As explained above, our “diagonalization” trick to prove

lower bounds breaks down in this case, as these algorithms use internal randomness. Inter-

estingly, Volkovich [196] proved that one can obtain a result of this form if a small amount of

advice is allowed in the definition of the hard function that is constructed from the learning

algorithm.

7.7 Auxiliary results

Here we provide the complete proof of Theorem 7.4.4. We state it again for convenience.

Theorem (Theorem 7.4.4). Let C be any concept class and suppose that there exists an

algorithm that PAC learns C under the uniform distribution using membership queries when

given access to an oracle O in time T (n, 1/ε, log 1/δ, size(c)). Let L? be a language that is

both downward-self-reducible and α(n)-self-correctible. Then, for any constructive function

s : N→ N, at least one of the following conditions hold:

(i) L? /∈ Cs; or

(ii) L? ∈ BPTIME(poly(T (n, 1/α(n), log n, s)))O.

Proof. If L? /∈ Cs then there is nothing to prove. Assume therefore that L? ∈ Cs. In other

words, there exists a constant n0 such that, for every n > n0, there is a concept cn ∈ Csn such

Chapter 7. Constructing hard functions from learning algorithms 182

that L?n = cn. Let d(n) be a non-decreasing polynomial that upper bounds the number of

downward queries necessary to compute L? on any input of size n given access to a routine

that computes L? on inputs of size n−1. Since L? is self-correctible, there exists an efficient

reduction such that, if we can compute L?n correctly on at least a (1−α(n))-fraction of the

inputs, then we can compute it correctly on every input of size n with probability at least

2/3. Finally, let Learner be an algorithm that, when given access to oracle O, is able to

learn C in time T (n, 1/ε, log 1/δ, size(c)), where size(c) is an upper bound on the size of the

unknown concept.

We need to prove that L? ∈ BPTIME(poly(T (n, 1/α(n), log n, s)))O. Given an input

x of size n, we use Learner and the special properties of language L? to “learn” how to

compute L? on every instance of size at most n. More specifically, for any integer k, given

a procedure Ak that decides L? on any instance of size k (with high probability), we use

Learner together with the downward-self-reducibility of L? and the fact that this language

is self-correctible to obtain a procedure Ak+1 that decides L? on any instance of size k + 1

(with high probability).

The execution of the algorithm for L? proceed as follows. First, it starts with a proce-

dure An0 that can be implemented by a lookup-table algorithm (recall that n0 is a constant).

Now we explain in more details how to go from, say, An0 to An0+1. We simulate Learner

pretending that the unknown concept is cn0+1 = L?n0+1. If at some point the learning al-

gorithm queries the value of cn0+1(w) on some input w of size n0 + 1, we use An0 together

with the downward-self-reducibility property of L? to provide an appropriate answer. If

Learner queries its oracle O, we provide the answer using our own oracle O. After finishing

its computation, the learning algorithm outputs a deterministic hypothesis hn0+1 that is

ε-close to cn0+1 with high probability. We use the fact that L? is self-correctible to obtain

from hn0+1 a procedure Ãn0+1 that is correct on every input of size n0 + 1 with probability

at least 2/3. Finally, using standard amplification techniques, it is possible to get from

Ãn0+1 a procedure An0+1 that is correct on every input with high probability. By repeating

this process at most n stages, we obtain a procedure An and output An(x). Let A be the

algorithm that runs as described. The formal description of A is presented in Algorithm 3.

Chapter 7. Constructing hard functions from learning algorithms 183

Algorithm 3 Description of Algorithm A that computes a hard function using PAC learner

Require:

Input: A string x of size n (and oracle access to O).

Output: The value L?(x) (with high probability).

1: Start with a “lookup-table” routine An0 that computes L correctly on all inputs of size

n0.

2: for k = n0 + 1 to n do

3: Run Learner with parameters k, ε = α(n), δ = 1/20n, and size(c) = s(k) (here we

use the fact that s(·) is constructible). Whenever Learner asks for the value ck(w) of

some example w of size k, use routine Ak−1 and the downward self-reducibility of L?

to compute a guess for ck(x) = L(x). Since A has oracle access to O, any query to this

oracle made by Learner can also be answered efficiently. When the learning algorithm

finishes its computation, it outputs with probability at least 1 − δ a deterministic

hypothesis hk that is ε-close to ck (note that hk does not have access to O).

4: Since ε = α(n) and L? is α(n)-self-correctible, A uses hk and the self-correctibility

of L? to get a routine Ãk such that for any input w of size k, Ãk(w) = L?(w) with

probability at least 2/3. By running Ãk at most O(log 1/γ) times and taking a majority

vote, it follows from standard Chernoff bounds that we obtain a routine Ak that is

incorrect on any input with probability at most γ. We set γ = 1/(20tnd(n)n), where

tn = T (n, 1/α(n), log 20n, s).

5: end for

6: return An(x).

First we argue that A computes L?(x) correctly with high probability, then we upper

bound its running time.

Claim 7.7.1. For any input x, A outputs L?(x) with probability at least 2/3.

Proof. Note that, for each stage k, A fails to obtain a good routine Ak only if:

• At least one the at most tn · d(n) downward queries answered by Ak−1 is incorrect. It

follows by a union bound that this happens with probability at most tn · d(n) · γ =

1/20n.

• Algorithm Learner does not output a good hypothesis. This also happens with prob-

ability at most δ = 1/20n.

Overall, for each stage k, we fail to obtain a good algorithm Ak with probability

no more than 1/10n. Since there are at most n stages, An fails to compute L?(x) with

probability at most 1/10 + γ ≤ 1/3.

Chapter 7. Constructing hard functions from learning algorithms 184

Claim 7.7.2. Given oracle access to O, algorithm A runs in randomized time at most

poly(T (n, 1/α(n), log n, s))).

Proof. First we upper bound the running time of each procedure Ak. Observe that Ak uses

Ãk, which is obtained from hk. Recall that the running time of hk is bounded by the running

time of Learner, which is at most t(k, 1/α(n), log 20n, s(k)) ≤ T (n, 1/α(n), log 20n, s) =

tn, since both s(·) and t(·) are non-decreasing3. Further, to obtain Ãk we use the self-

correctibility of L?, which is implemented by a polynomial-time reduction. In other words,

Ãk runs in time O(tan) for some constant a. Finally, the amplification step that is used when

we go from Ãk to Ak only needs to run Ãk for O(log 1/γ) = O(log(20tn · d(n) · n)) times,

which implies that the overall time complexity of Ak, for any 1 ≤ k ≤ n, is upper bounded

by O(tan · log(20tn · d(n) · n)) = O(tbn) for some constant b (recall that d(·) is a polynomial).

Now we upper bound the overall running time of algorithm A. Each stage k consists of

simulating algorithm Learner for at most t(k, 1/α(n), log 20n, s(k)) ≤ tn steps. In the worst-

case, each step may involve a membership query to the unknown concept, which translates

to at most d(n) downward queries to Ak−1. Since Ak−1 runs in time O(tbn), the overall time

complexity of each stage is at most O(tn · d(n) · tbn) = O(tcn) for some constant c. There

are no more than n stages. It follows that, given oracle access to O, algorithm A runs in

randomized time poly(T (n, 1/α(n), log n, s))).

3We have implicitly used the standard fact that any PAC learning algorithm can be efficiently converted

into an algorithm that has a logarithmic dependence on 1/δ. A proof of this result can be found on Kearns

and Vazirani [117] textbook.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 185

Chapter 8

Satisfiability algorithms, useful

properties, and lower bounds

8.1 Background, results, and organization

This chapter is concerned with two research directions in theoretical computer science:

the design of nontrivial algorithms for difficult computational tasks, and the search for

unconditional proofs that some natural computational problems are inherently hard (more

specifically, do not admit polynomial size circuits).

Perhaps surprisingly, these problems are deeply related. For instance, it follows from

the work of Karp and Lipton [115] (attributed to Meyer) that if 3-SAT admits a polynomial

time algorithm, then there are problems solved in exponential time that cannot be computed

by polynomial size circuits. On the other hand, it is known that constructive proofs of circuit

lower bounds lead to algorithms breaking exponentially hard pseudorandom generators that

are conjectured to exist (Razborov and Rudich [154]).

The last decade has produced several additional transference theorems1 of this form,

under many different algorithmic frameworks. For instance, the existence of subexponential

time learning algorithms for a class of functions C leads to circuit lower bounds against C

1In other words, these theorems show that one can transform an algorithmic result into a circuit lower

bound, i.e., they allow us to transfer a result from one area to another.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 186

(Fortnow and Klivans [70]). In a different domain, it is known that the design of subex-

ponential time deterministic algorithms for problems with efficient randomized algorithms

implies circuit lower bounds that have eluded researchers for decades (Kabanets and Im-

pagliazzo [110]). More recently, it has been shown that new circuit lower bounds can be

obtained from efficient compression algorithms (Chen et al. [49]), not to mention the con-

nection between satisfiability algorithms and circuit lower bounds (Williams [198], [199],

[201]). Several additional results have appeared in the literature ([120], [1], [3], [21], [92],

[122], among others). For a gentle introduction to some of these connections, see Santhanam

[168].

It turns out that the connection between algorithms and circuit lower bounds (“trans-

ference theorems”) can be used to prove new circuit lower bounds that had resisted the use

of more direct approaches for decades. Let C be a class of circuits, such as AC0,TC0,NC1,

etc. We say that a satisfiability algorithm for C is nontrivial if it runs in time time 2n/s(n),

for some function s(n) � poly(n). Building on work done by many researchers, Williams

([199], [198]) proved the following transference theorem: the existence of a nontrivial C-

SAT algorithm implies NEXP * C[poly]. In other words, faster satisfiability algorithms lead

to languages computed in nondeterminstic exponential time that cannot be computed by

polynomial size circuits from C.

Most importantly, by designing a new ACC-SAT algorithm, Williams [199] was able to

obtain a circuit lower bound for the circuit class ACC.2 Moreover, this is the only known

proof of this result. Other approaches that have been proposed are also based on the design

of new ACC algorithms (Chen et al. [49]).

Can we extend this technique to prove stronger circuit lower bounds? Is there any con-

nection between Williams’ transference theorem and other similar results discussed before?

This chapter is motivated by these questions. We break this introductory section into two

parts. The first part is a fast-paced introduction to some results connecting algorithms to

circuit lower bounds. After this (non-exhaustive) introduction to the literature, we discuss

2This is the class of languages computed by polynomial size constant-depth circuits consisting of AND,

OR, NOT and MODm gates (for a fixed integer m ∈ N). Every gate other than NOT is allowed to have

unbounded fan-in.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 187

our contributions, which extend and simplify a few of these connections.

We stress that our focus here is on generic connections between faster algorithms and

circuit lower bounds, instead of particular techniques that have found applications in both

areas (Fourier representation of Boolean functions [129], satisfiability coding lemma [151],

random restriction method [49], etc.).

8.1.1 A brief introduction to transference theorems

Satisfiability algorithms and circuit lower bounds. The connection between algo-

rithms for hard problems and circuit lower bounds has been known for decades. More

precisely, a collapse theorem attributed to Meyer [115] states that if EXP ⊆ P/poly then

EXP = Σp
2 (recall this is the second level of PH, the polynomial time hierarchy). On the

other hand, it is not hard to prove that if P = NP then P = Σp
2 = PH. Together, the

assumptions that there are efficient algorithms for NP-complete problems and that every

problem in EXP admits polynomial size circuits lead to P = EXP, a contradiction to the

deterministic time hierarchy theorem. In other words, if there exists efficient algorithms

for 3-SAT, it must be the case that EXP * P/poly.3 Similar transference results can be

obtained from the assumption that there are subexponential time algorithms for 3-SAT

(i.e., with running time 2n
o(1)

).

The existence of such algorithms is a very strong assumption. The best known algo-

rithms for k-SAT run in time 2n(1−δ(k)), for some fixed constant δ(k) > 0 that goes to zero

as k goes to infinity (cf. Dantsin and Hirsch [55]). These algorithms offer an exponential

improvement over the trivial running time Õ(2n). If we only require the running time to

be faster than exhaustive search (“nontrivial”), then improved algorithms are known for

many interesting circuit classes (see for instance [167], [49], [173], [107], [27], [106]). For an

introduction to some of these algorithms, see Schneider [170].

It makes sense therefore to investigate more refined versions of the transference theorem

for satisfiability algorithms. A result in this directions was obtained by Williams [198]: he

showed that the existence of nontrivial algorithms deciding the satisfiability of polynomial

3Using the fact that P = PH implies the collapse of the exponential time hierarchy to EXP, an even

stronger consequence can be obtained. We omit the details.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 188

size circuits is enough to imply NEXP * P/poly. Unfortunately, P/poly is a very broad

class, and the algorithms mentioned before do not work or have trivial running time on

such circuits.

In a follow-up work, Williams [199] extended his techniques from [198] to prove a more

general result that holds for other circuit classes as well.

Proposition 8.1.1 (“SAT algorithms yield circuit lower bounds, I” [199]).

Let C be a class of circuit families that is closed under composition (the composition of two

circuits from C is also in C) and contains AC0. There is a k > 0 such that, if satisfiability

of C-circuits with n variables and nc size can be solved in O(2n/nk) time for every c, then

NEXP * C[poly(n)].

In addition, he provided a nontrivial algorithm for ACC[2n
δ
] (the class of ACC circuits

of size 2n
δ
), where δ = δ(d,m) > 0 depends on the depth of the circuit and the modulo

gate. Altogether, these results imply the following circuit lower bound.

Corollary 8.1.2. NEXP * ACC.

Subsequent work of Williams [201] extended these techniques to prove the following

stronger transference theorem, which provides better circuit lower bounds.4

Proposition 8.1.3 (“SAT algorithms yield circuit lower bounds, II” [201]).

Let C be a class of circuit families that is closed under composition and contains AC0. There

is a k > 0 such that, if satisfiability of C-circuits with n variables and nlogc n size can be

solved in O(2n/nk) time for every c, then NE ∩ i.o.coNE * C[nlogn].

Moreover, the following strengthening of Corollary 8.1.2 is proven in the same paper

(the first statement is implicit in his proof).

Corollary 8.1.4. E * ACC[nlogn] or Quasi-NP ∩ i.o.Quasi-coNP * ACC[nlogn]. In particu-

lar, NE ∩ i.o.coNE * ACC[nlogn].

4We use NE ∩ i.o.coNE instead of NE ∩ coNE in the statement of Proposition 8.1.3 because the proof

described in [201] requires this extra condition [200].

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 189

The proof of these transference theorems has been simplified since then. For instance,

Santhanam and Williams [166] employed self-reduction (cf. Allender and Koucký [10]) to

obtain an equivalent circuit in a smaller circuit class given an arbitrary NC1 circuit (under

appropriate assumptions). This simplifies one of the main technical lemmas from [199]. (We

introduce another technique which yields a stronger transference theorem for satisfiability

in Section 8.1.2.)

Constructivity and circuit lower bounds. There are at least three important barriers

to circuit lower bound proofs: relativization (Baker, Gill, and Solovay [24]), natural proofs

(Razborov and Rudich [154]), and algebrization (Aaronson and Wigderson [2]). Roughly

speaking, these barriers can be interpreted as follows: some proof methods are too general,

and if a lower bound can be obtained by one of such techniques alone, then we get a

contradiction to some known result or a widely believed conjecture.5 As explained by

Williams [199], his lower bound proof combines several methods used in modern complexity

theory, and each one avoids a particular barrier.6

It was proven by Razborov and Rudich that most of the circuit lower bound proofs

known at the time proceeded (at least implicitly) as follows. There is a circuit class C

(say, AC0) that one wants to separate from a complexity class Γ (say, P). In order to do

that, one defines a property P of Boolean functions (i.e., a subset of all Boolean functions),

and prove that no function in C satisfies P, while there exists some hard function h ∈ Γ

for which P(h) = 1 (in this case, we say that P is useful against C). For instance, every

AC0 function simplifies after an appropriate random restriction ([75], [205], [98]), while the

parity function is still as hard as before.

As it turns out, for the property P defined in these proofs, there is an efficient algorithm

A (with respect to the size of the truth-table of f) that is able to decide whether P(f) = 1.

Such properties are referred to as constructive properties. In addition, it is usually the case

5These barriers can also be interpreted as independence results for some formal theories ([20], [158],

[105]).

6We stress, however, that there is no widely believed conjecture that leads to pseudorandom function

families in ACC, and this is an interesting open problem. As far as we know, there may exist a natural proof

that P * ACC.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 190

that a random function satisfies P with non-negligible probability (P satisfies the denseness

condition). These two conditions imply that A can be used to distinguish a function in C

from a random function. Put another way, if there exists a proof of this form that Γ * C,

then there is no pseudorandom function family in C.

However, if some number-theoretic problems are exponentially hard on average (an

assumption believed to be true by many researchers), then there are pseudorandom functions

in circuit classes as small as TC0
4 (Naor and Reingold [142], Krause and Lucks [127]). As

a consequence, such proofs (dubbed natural proofs in [154]) are not expected to prove

separations for more expressive circuit classes. Unfortunately, most (if not all) known

combinatorial proofs of circuit lower bounds implicitly define such properties, and this

explains the lack of significant progress obtained so far for more general classes of circuits

using these techniques only. The interested reader is referred to Chow [50] and Rudich [164]

for further developments.

As a consequence, any circuit lower bound proof for more expressive classes must

violate either the denseness or the constructivity condition. Williams [201] shed light into

this problem, by proving that any separation of the form NEXP * C is actually equivalent

to exhibiting a constructive property P that is useful against C.

Proposition 8.1.5 (“Constructivity is unavoidable”, informal [201]).

Let C be a typical circuit class. Then NEXP * C if and only if there exists a constructive

property P that is useful against C.

In other words, any lower bound proof against NEXP implies the existence of a prop-

erty that is both useful and constructive, but not necessarily dense. (As we explain later

in the text, P is actually computed with a small amount of advice. We clarify this point in

Section 8.1.2, where we discuss some extensions of the connection between useful properties

and circuit lower bounds.)

Additional transference theorems. As alluded to earlier, several additional transference

theorems of the form “faster algorithms yield circuit lower bounds” have been discovered.

In the next few paragraphs we describe some of these results in more detail. We focus on

learning algorithms, derandomization, and algorithms for string compression.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 191

Derandomization. There is a strong connection between the existence of pseudorandom

generators and circuit lower bounds (see [111], [188]). Furthermore, in some contexts it

is possible to show that pseudorandom generators are necessary in order to derandomize

probabilistic algorithms (Goldreich [85]).

For the randomized complexity class MA, it is known that any derandomization (such

as MA ⊆ NSUBEXP) implies superpolynomial circuit lower bounds for NEXP (Impagliazzo,

Kabanets and Wigderson [104]). Subsequent work of Kabanets and Impagliazzo [110] shows

that even the derandomization of a single, specific problem in BPP leads to some circuit

lower bounds. More precisely, let PIT be the language consisting of all arithmetic circuits

that compute the zero polynomial over Z, and PERM be the problem of computing the

permanent of integer matrices. We use SIZE[poly] to denote the set of languages computed

by polynomial size Boolean circuits. Similarly, let ASIZE[poly] be the family of languages

computed by arithmetic circuits of polynomial size over Z.

Proposition 8.1.6 (“Derandomization yields circuit lower bounds” [110]).

If PIT ∈ NSUBEXP, then at least one of the following results hold:

(i) NEXP * SIZE[poly]; or

(ii) PERM * ASIZE[poly].

Aaronson and van Melkebeek [1] proved a parameterized version of the result, in ad-

dition to showing that NEXP ∩ coNEXP can be used in place of NEXP. Another extension

appears in Kinne, van Melkebeek and Shaltiel [120].

Learning algorithms. Fortnow and Klivans [70] were the first to investigate more system-

atically the connections between learning algorithms and circuit lower bounds, following

results obtained by Impagliazzo and Wigderson [102]. Recall that a learning algorithm A

is given restricted access to a fixed but arbitrary function f from a class of functions C,

and it should output a hypothesis h that is as close to f as possible. Distinct learning

models provide difference access mechanisms to f , and impose specific requirements over h

(h should be close to f , h ≡ f , etc.) and A (learner is randomized, deterministic, etc).

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 192

An exact learning algorithm is a deterministic algorithm that has access to a member-

ship query oracle MQf and an equivalence query oracle EQf , and it is required to output a

hypothesis h which agrees with f over all inputs.7

Proposition 8.1.7 (“Learning yields circuit lower bounds” [70]).

Let C be a circuit class. If there exists a subexponential time exact learning algorithm for

C, then ENP * C.

The original proof of Proposition 8.1.7 relies on many complexity theoretic results.

Subsequent work done by Harkins and Hitchcock [92] strengthened the conclusion to EXP *

C. Finally, Klivans, Kothari and Oliveira [122] used a very simple argument to prove the

essentially optimal result that exact learning algorithms for C[s(n)] running in time t(n)

lead to a circuit lower bound of the form DTIME[poly(t(n))] * C[s(n)].8

Weaker results have been obtained for randomized learning algorithms (a formal def-

inition of the model is discussed in Section 8.5.3). Efficient PAC learning algorithms are

known to lead to circuit lower bounds against BPEXP, the exponential time analogue of

BPP [70]. A slightly stronger result was obtained by Klivans et al. [122], but the un-

derlying techniques do not provide interesting results for randomized subexponential time

algorithms. Volkovich [196] proved that if a small amount of advice is allowed in the def-

inition of the hard function, then one can obtain strong lower bounds from randomized

learning algorithms (see [196] for further details). Obtaining better lower bounds from ran-

domized learning algorithms without advice remains an interesting open problem.

Truth-table compression. More recently, Chen et al. [49] considered the problem of designing

efficient algorithms that obtain nontrivial compression of strings representing truth-tables

from a circuit class C. In other words, given a string tt(fn) ∈ {0, 1}N , where fn : {0, 1}n →

{0, 1} is a function from C ⊆ P/poly and N = 2n, a compression algorithm is required

to run in time poly(N) and output a circuit C over n inputs and size � 2n/n such that

tt(C) = tt(f). In the same paper, they observed that several circuit lower bound proofs

7On input x ∈ {0, 1}n, MQf (x) returns f(x). On input a circuit c, EQf outputs “yes” if c ≡ f , otherwise

it outputs an arbitrary input z such that c(z) 6= f(z).

8The same result was obtained independently by Russell Impagliazzo and Valentine Kabanets [112].

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 193

that rely on the method of random restrictions yield efficient compression algorithms. On

the other hand, they obtained the following transference theorem.

Proposition 8.1.8 (“Compression leads to circuit lower bounds” [49]).

Let C be a circuit class. Suppose that for every c ∈ N there is a deterministic polynomial-time

algorithm that compresses a given truth table of an n-variate Boolean function f ∈ C[nc] to

an equivalent circuit of size o(2n/n). Then NEXP * C.

It follows from Proposition 8.1.8 that designing a compression algorithm for ACC would

provide an alternative proof of Corollary 8.1.2. This is left as an interesting open problem

by [49].

8.1.2 Our results

Lower bounds from satisfiability algorithms for low depth circuits. Let TC0
2

denote the class of languages admitting polynomial size circuits of depth two with gates

that compute arbitrary linear threshold functions. Perhaps surprisingly, it is consistent with

our current knowledge that NEXP ⊆ TC0
2. It makes sense therefore to investigate whether

the techniques used in the proof of Corollary 8.1.2 can be helpful in proving separations

against bounded-depth circuit classes of this form.

A more refined version of Proposition 8.1.1 discussed in [199] shows that circuit lower

bounds for circuits of depth d follow from satisfiability algorithms for depth 2d+O(1). We

prove that it is possible to obtain a tight transference theorem for satisfiability algorithms

for constant-depth circuits. Let Cd be a circuit class consisting of circuits of depth d, and g

be an arbitrary function. We write g[k] ◦ Cd to denote the class of functions computed by

circuits of depth d + 1 consisting of a top layer gate g of fan-in k that is fed by k circuits

from Cd.

Theorem 8.1.9 (“SAT algorithms for depth d+2 yield circuit lower bounds for depth d”).

Let C be a reasonable circuit class. If there exists a nontrivial satisfiability algorithm for

AND[3] ◦ OR[2] ◦ Cd[poly], then NEXP * Cd[poly].

We define reasonable circuit classes in Section 8.2. This result can be obtained through

an extension of the original technique used by Williams [198]. In particular, our presenta-

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 194

tion avoids the technical details from [199]. The proof of Theorem 8.1.9 and some additional

remarks are presented in Section 8.3. (A similar result is described in Jahanjou, Miles and

Viola [108], but their approach is different.)

Useful properties and circuit lower bounds. We investigate more closely the relation

between circuit lower bounds and useful properties (Proposition 8.1.5). For a uniform

complexity class Γ (such as P, NP, etc), we say that a property of Boolean functions P is a

Γ-property if it can be decided in Γ. We use Γ/s(m) to denote the corresponding complexity

class with advice of size s(m), where m is the size of the input. Recall that a property is

useful against C if it distinguishes some hard function from all functions in C (a formal

definition is presented in Section 8.2).

First, we notice that nondeterminism is of no use in the context of useful properties,

which is a somewhat surprising result. This result has been independently observed by other

authors (cf. Allender [11]), and we include a self-contained proof here using our notation

for convenience of the reader.9

Theorem 8.1.10 (“NP-property yields P-property”).

Let C be a circuit class. If there exists a NP-property that is useful against C[poly], then

there is a P-property that is useful against C[poly].

We discuss now in more detail the connection discovered by Williams (Proposition

8.1.5) between constructive useful properties (P-properties under our notation) and circuit

lower bounds. It turns out that the statement of Proposition 8.1.5 requires a broader

definition, one for which the algorithm deciding the property is allowed inputs of arbitrary

size instead of size N = 2n, where n ∈ N. Put another way, the algorithm receives any string

as input, and is allowed to parse its input size as 2n + k. Now it is free to interpret k as an

advice string of length logN . We clarify this issue here, and observe that Theorem 8.1.10

together with standard techniques imply the following characterization of NEXP circuit

lower bounds.10

9The statement presented next follows from a slightly more general result (Proposition 8.4.1) proved in

Section 8.4.

10We stress that in this chapter any algorithm that decides a property of Boolean functions works over

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 195

Theorem 8.1.11 (“Equivalence between NEXP lower bounds and useful properties”).

Let C be a circuit class. Then NEXP * C[poly] if and only if there exists a P/ logN -property

that is useful against C[poly].

It makes sense therefore to investigate whether there exists an equivalence between

useful properties computed without advice and circuit lower bounds. The following result

holds.

Theorem 8.1.12 (“NE ∩ coNE lower bounds and useful properties”).

Let C be a circuit class. The following holds:

(i) If NE ∩ coNE * C[poly] then there is a P-property that is useful against C[poly].

(ii) If for every c ∈ N there exists a P-property that is useful against C[nlogc n], then

NE ∩ i.o.coNE * C[nlogn].

One direction follows from Theorem 8.1.10, while the other is implicit in the work of

Williams [201]. Given these results, the following conjecture seems plausible.

Conjecture 8.1.13 (“NE ∩ coNE lower bounds versus useful properties?”).

Let C be a circuit class. Then NE ∩ coNE * C[poly] if and only if there exists a P-property

that is useful against C[poly].

We discuss how this conjecture relates to Williams’ program for circuit lower bounds

in Section 8.4.1. The results related to useful properties appear in Section 8.4.

Applications and further connetions. It is possible to use the results mentioned above

to prove a few propositions stated in Section 8.1.1. Further, we observe that several trans-

ference theorems are in fact connected, and improvements in one framework propagates to

other results.

The first application that we discuss is for compression algorithms, as investigated

by Chen et al. [49]. Observe that Proposition 8.1.8 shows circuit lower bounds for NEXP

from exact compression of truth-tables of polynomial size circuits. As mentioned in the

same paper, their result can be extended to show that even lossy compression algorithms

strings of length N = 2n, where n ∈ N.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 196

lead to circuit lower bounds. We flesh out the details here, and obtain a slightly stronger

connection as well.

We say that a circuit class C admits lossy compression algorithms if there exists an

efficient algorithm A (over inputs of size N = 2n) that when given as input a truth-table

tt(f) from C, where f : {0, 1}n → {0, 1}, outputs a circuit C of size o(2n/n) such that

Prx[C(x) = f(x)] ≥ .51. A more general definition is discussed in Section 8.5.1.

Theorem 8.1.14 (“Circuit lower bounds from lossy compression”).

Let C be a circuit class. The following results hold.

(i) If for every c ∈ N there exists a lossy compression algorithm for C[nc], then NEXP *

C[poly(n)].

(ii) If for every c ∈ N there exists a lossy compression algorithm for C[nlogc n], then NE ∩

i.o.coNE * C[nlogn].

In particular, any efficient algorithm for lossy compression of strings is either trivial on

infinitely many input strings represented by truth-tables from TC0
2 (i.e., does not provide a

lossy encoding of significantly smaller size), or a certain circuit lower bound holds. Theorem

8.1.14 follows from an easy application of Theorem 8.1.11, and its proof is presented in

Section 8.5.1.

Next we observe that Proposition 8.1.6 (“derandomization yield circuit lower bounds”)

follows from the transference theorem for satisfiability. More precisely, Theorem 8.1.9 ex-

tends to slightly more general algorithms, an observation that we discuss in more detail in

Section 8.3.1. Using this generalization, it is possible to prove that if Proposition 8.1.6 is

false, then a contradiction can be obtained. This proof is presented in Section 8.5.2.

In the context of learning algorithms, some extensions of the main result of Fortnow

and Klivans [70] for exact learning (Proposition 8.1.7) follow easily from results for useful

properties (Theorems 8.1.11 and 8.1.12). In addition, it is not hard to show that even

subexponential time randomized learning leads to useful properties decided by efficient

randomized algorithms.

Theorem 8.1.15 (“Useful properties and learning algorithms”).

Let C = C[poly] be a circuit class. If there exists a subexponential time randomized PAC

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 197

learning algorithm for C, then there exists a (promise)coRP-property that is useful against

C.

These transference theorems can be obtained by interpreting learning algorithms as

lossy compression schemes, or by relying directly on Theorems 8.1.11 and 8.1.12. These

results are discussed in more detail in Section 8.5.3.

Overall, these observations show that an improvement of a transference theorem in

one framework leads to similar improvements in other frameworks. For instance, a proof of

Conjecture 8.1.13 implies many interesting results of the form “nontrivial algorithms yield

circuit lower bounds”. More precisely, it immediately implies new transference theorems

for both (lossy) compression and satisfiability algorithms, and an alternative proof of the

extension of Proposition 8.1.6 obtained by Aaronson and van Melkebeek [1]. Moreover, a

direct improvement of the transference theorems for satisfiability is likely to imply a similar

strengthening of Proposition 8.1.6.

8.1.2.1 An overview of the results

For convenience of the reader, Figure 8.1 summarizes the relations between algorithms

and circuit lower bounds discussed in this chapter.

Lossy Compression

Useful Properties

Learning

DerandomizationSatisfiability

Circuit Lower Bounds

Algorithms

Algorithms

Figure 8.1: Bold arrows represent transference theorems, while a dotted arrow from A to B indi-

cates that an improvement of the transference theorem for A implies a similar improvement of the

transference theorem for B.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 198

8.2 Preliminaries and notation

We assume familiarity with basic notions from computational complexity theory. The

reader is referred to Arora and Barak [19] and Goldreich [84] for more details. For conve-

nience, we postpone some definitions that are specific to a particular section of the chapter

to that corresponding section.

We say that h is a family of Boolean functions if h = {hn}n∈N, where each hn : {0, 1}n →

{0, 1}. Recall that any such family corresponds to a language L ⊆ {0, 1}∗, and that Ln

denotes L ∩ {0, 1}n.

We will use Γ to denote uniform complexity classes such as P, coRP and NP. Sometimes

we will extend these complexity classes to the corresponding classes with advice of size a(m),

where m is the input size. In this case, we use Γ/a(m). A language L is in i.o.Γ if there

exists L′ ∈ Γ such that Ln = L′n for infinitely many values of n.

Following [201], we say that a circuit class C is typical if C ∈ {AC0,ACC,TC0,NC1,P/poly}.

The results stated for typical classes hold for more general circuit classes. We use SIZE[s(n)]

to denote the family of functions computed by circuits of size s(n). Similarly, ASIZE[s(n)]

denotes the family of functions computed by arithmetic circuits of size s(n). Although each

circuit class corresponds to a set of languages, we may abuse notation and say that a given

circuit D is from C. In general, for any circuit class C, let Cd[s(n)] be the family of functions

computed by circuits from C of depth d and size s(n), where the size of a circuit is the

number of gates in the circuit. If for convenience we omit s(n), assume the circuits are of

polynomial size. For instance, TC0
2[n2] corresponds to the class of languages computed by

circuits of depth-two with O(n2) gates, each one corresponding to some linear threshold

function. All circuit classes considered here are non-uniform. If we mention a circuit D of

size s(n) without attributing it to a specific circuit class, assume it is composed of AND,

OR and NOT gates of fan-in at most two.

In order to prove a tight transference theorem for some circuit classes, we make the

following definition.

Definition 8.2.1. A circuit class C is reasonable if:

(i) The constant zero function f : {0, 1}n → {0, 1} with f(x) = 0 for every input x is in

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 199

C.

(ii) For every function g ∈ C, the function ḡ = NOT(g) is in C, i.e., C is closed under

complementation. In addition, there is an efficient algorithm that, given the descrip-

tion of a circuit computing g, outputs a circuit from C of the same size computing

ḡ.

(iii) The gates of circuits from C may have direct access to constant inputs 0 and 1 in

addition to the input variables and their negations.11

(iv) Any language in C[poly(n)] is in P/poly.

The results that are stated for reasonable classes hold for more general circuit classes,

but for simplicity we stick with this definition. In any case, most circuit classes are reason-

able (in the sense of Definition 8.2.1), including AC0, TC0
2, NC1, P/poly, etc.

We say that a deterministic algorithm is nontrivial if it runs in time 2n/nω(1). We

may use this terminology to talk about nondeterministic and randomized algorithms with

similar time bounds.

The following folklore result shows that to prove a circuit lower bound for P it is

enough to obtain a circuit lower bound for the non-uniform class P/poly.

Lemma 8.2.2. Let Cd[poly(n)] be a reasonable circuit class. If P ⊆ Cd[poly(n)], then for

every b ∈ N there exists a t ∈ N such that every Boolean circuit over n inputs of size nb

admits an equivalent circuit from Cd of size nt.

Proof. Assume that P ⊆ Cd[poly(n)]. Consider the following problem:

Circuit-Evalb = {〈E, x〉 : E is a circuit on n variables of size ≤ nb and E(x) = 1}

Clearly, Circuit-Evalb is in P (for any fixed b), and thus there exists t such that Circuit-

Evalb ∈ Cd[nt]. In other words, there exists a sequence {Dn}n∈N of circuits from Cd of size

O(nt) that computes Circuit-Evalb.

Let En : {0, 1}n → {0, 1} be a function over n Boolean variables computed by a circuit

of size at most nb. We can hardwire the description of En inside circuit Dn (recall that

11This allows us to hardwire some values without increasing the depth of the circuit.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 200

C is reasonable, and that this operation does not increase the depth of the circuit). The

resulting circuit is in Cd, has size at most nt, and it computes En by definition of Dn.

The next definition will play an important role in many results discussed later.

Definition 8.2.3 (Properties that are useful against C [201]). A property of Boolean func-

tions is a subset of the set of all Boolean functions. For a typical circuit class C, a property

P is said to be useful against C if, for all k, there are infinitely many positive integers n

such that

• P(fn) is true for at least one function fn : {0, 1}n → {0, 1}, and

• P(gn) is false for all functions gn : {0, 1}n → {0, 1} that admit circuits from C[nk].

We say that P is a Γ-property if, given the truth-table tt(fn) ∈ {0, 1}N (where N = 2n) of

any Boolean function fn : {0, 1}n → {0, 1}, P(fn) can be decided in complexity class Γ. In

other words, the language

LP = {w ∈ {0, 1}N | w = tt(fn) for some function fn : {0, 1}n → {0, 1} with P(fn) = 1}

is in Γ.

A useful property distinguishes some “hard” function from all easy ones. This is weaker

than the notion of natural properties studied by [154], which also requires P to be dense,

i.e., P(f) = 1 for a non-negligible fraction of functions.

Recall that a verifier V for a language L ∈ NTIME[t(n)] satisfies the following proper-

ties:

• V (x,w) runs in deterministic time O(t(n)), where n = |x|.

• x ∈ L if and only if there exists w ∈ {0, 1}O(t(n)) such that V (x,w) = 1.

If L ∈ NEXP and V is a verifier for L running in time 2n
O(1)

, we say that V is a NEXP-verifier

for L. Similarly, we may talk about NE-verifiers running in time 2O(n).

Definition 8.2.4. Let C be a typical circuit class. We say that a NEXP-verifier V for a

language L ∈ NEXP admits witness circuits from C[s(n)] if for all x ∈ L, there exists a

circuit C ∈ C[s(n)] such that V (x, tt(C)) = 1.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 201

Proposition 8.2.5 (Impagliazzo et al. [104], Williams [199]). Let C be a typical circuit

class. If NEXP ⊂ C then for any language L ∈ NEXP and every NEXP-verifier V for L,

there exists c ∈ N such that V admits witness circuits from C[nc].

Definition 8.2.6. Given functions f, g : {0, 1}n → {0, 1} and δ > 0, we say that g computes

f with advantage δ if

Pr
x∈R{0,1}n

[f(x) = g(x)] ≥ 1

2
+ δ.

The results for learning algorithms and lossy compression rely on the following fact.

Lemma 8.2.7 (“Random functions are hard to approximate”).

There exists a constant α > 0 such that for any sufficiently large n, there exists a function

h : {0, 1}n → {0, 1} that cannot be computed with advantage δ > 0 by any circuit of size

α · 2nδ2/n.

Proof. Fix any circuit C : {0, 1}n → {0, 1}. Using the Chernoff-Hoeffding bound, we get

that the probability that C computes a random function r : {0, 1}n → {0, 1} with advantage

δ is at most exp(−2δ2N), where N = 2n as usual. There are at most 2O(s(n) log s(n)) functions

on n inputs computed by circuits with s(n) gates. Therefore, it follows by a simple union

bound that for some α > 0, there exists a function h that is not computed with advantage

δ by any circuit of size α · 2nδ2/n.

8.3 Lower bounds from non-trivial satisfiability algorithms

In this section we present the transference theorem for satisfiability algorithms. We

start with the following definition.

Definition 8.3.1. Let C be a circuit class. We define the computational problem Equiv-

AND-C as follows. Given the description of circuits from C computing functions f1, f2, f3 :

{0, 1}n → {0, 1}, check if AND(f1, f2)(x) = f3(x) for every x ∈ {0, 1}n. The Equiv-OR-C

problem is defined analogously.

Remark 8. Observe that if Cd is reasonable, then an algorithm for Equiv-AND-Cd can be

used to solve Cd-SAT. Moreover, the same algorithm can be used to solve Equiv-OR-C, since

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 202

two functions are equivalent if and only if their negations are equivalent (by assumption,

any reasonable circuit class is closed under negations).

The proof presented here follows closely the original argument used by Williams [198],

which works for P/poly. However, we introduce a new technique that allows us to obtain

an equivalent C-circuit from a general P/poly-circuit. It simplifies the proof in [199], and

provides a tighter connection between satisfiability algorithms and circuit lower bounds in

the case of bounded-depth circuits. The proof of the next lemma is partially inspired by

some ideas in Rossman [160].

Lemma 8.3.2 (“Conversion Lemma”). Let C be a reasonable circuit class, and suppose that

P ⊆ C. In addition, assume that there is a nontrivial algorithm for Equiv-AND-C. Then

there exists a nondeterministic algorithm N with the following properties. Given as input

any circuit B over m variables of size mb,

• N has at least one accepting path, and in every accepting path it outputs a circuit G

from C[mt] that is equivalent to B (where t = O(b)).

• N runs in time at most 2m

s(m) , for some superpolynomial function s(m).

Proof. Let A be an algorithm for Equiv-AND-C running in time 2m/a(m), for a superpoly-

nomial function a(m). We proceed as follows. Let x1, x2, . . . , xm, g1, . . . , gk for k = mb be

a topological sort of the gates of B, where each gate gi ∈ {AND,OR,NOT} has fan-in at

most two. We will guess and verify (by induction) equivalent C-circuits of size mt for each

gate gi in B. Since P ⊆ C, it follows from Lemma 8.2.2 that the functions computed at the

internal gates of B admit such circuit.

More details follow. Suppose (by induction) that N has produced equivalent C-circuits

BCi of size at most mt for every gate gi of B, where i < ` (otherwise it has aborted already).

If g` is an AND gate with inputs gi1 , gi2 , where i1, i2 < `, N guesses a circuit BC` in C[mt] over

the same input variables, then use the Equiv-AND-C algorithm to check if AND(BCi1 , B
C
i2

)

and BC` are equivalent. N rejects if these circuits are not equivalent, otherwise it continues

the computation, completing the induction step. If g` corresponds to an OR gate, a similar

computation is performed, this time applying an algorithm for Equiv-OR-C (check Remark

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 203

8). Finally, if g` is a NOT gate, using the fact that C is reasonable, it is possible to produce

in polynomial time an equivalent C-circuit for g` of the same size. This completes the

induction step. Observe that the base case is trivial.

Note that N runs algorithm A for at most k times, i.e., a polynomial number of times.

In addition, each execution is performed over circuits from C of size O(mt). Therefore the

total running time of N is poly(m) · 2m/a(m), for some superpolynomial function a(m).

Setting s(m) = a(m)/poly(m) completes the proof of Lemma 8.3.2.

In addition, we will need the following auxiliary results, whose notation we borrow

from Williams [199].

Definition 8.3.3. The computational problem Succinct-SAT is defined as follows. Given a

circuit C over n input variables, denote by FC the instance of 3-SAT obtained by evaluating

C over all inputs in lexicographic order (i.e., FC is the 2n-bit string representing the truth-

table tt(C) of C). Decide if FC is satisfiable.

We say that FC is the decompression of C, and call C the compression of FC .

Lemma 8.3.4 (Tourlakis [186], Fortnow et a. [72], Williams [198]). There is a fixed constant

c > 0 for which the following holds. For every L ∈ NTIME[2n] there is a polynomial time

reduction from L to Succinct-SAT that maps every input x of size n to a circuit Cx over

at most n + c log n input variables and size O(nc), such that x ∈ L if and only if the

decompressed formula FCx is satisfiable (observe that this is a formula of size 2npoly(n)).

Definition 8.3.5. We say that Succinct-SAT admits succinct satisfying assignments if there

exists a constant c > 0 such that for every language L ∈ NTIME[2n] the following holds.

Given any x ∈ L, there exists some circuit Wx of polynomial size over k ≤ n+ c log n input

variables for which the assignment zi = W (i) for i ∈ {1, . . . , 2k} is a satisfying assignment

for FCx, where Cx is the circuit obtained from the reduction to Succinct-SAT given by Lemma

8.3.4.

The following lemma is an easy consequence of Proposition 8.2.5.

Lemma 8.3.6. If NEXP ⊆ P/poly then Succinct-SAT admits succinct satisfying assign-

ments.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 204

We use these auxiliary results to prove the following proposition. For simplicity, we

only state it for polynomial size classes, but a parameterized version can be obtained using

the same techniques.

Proposition 8.3.7. Let C = Cd[poly(n)] be a reasonable circuit class. If there exist a

nontrivial algorithm for Equiv-AND-C, then NEXP * C.

Proof. Let A be a nontrivial algorithm for Equiv-AND-C, and assume for the sake of a

contradiction that NEXP ⊆ C. We use these assumptions to show that every language

L ∈ NTIME[2n] is in NTIME[o(2n)], a contradiction to the nondeterministic time hierarchy

theorem ([52], [171], [206]).

The proof relies on the fact that every language L ∈ NTIME[2n] can be efficiently

reduced to an instance of the Succinct-SAT problem (Lemma 8.3.4). In other words, there

is a polynomial time algorithm that maps any input x ∈ {0, 1}n to a circuit Dx on n+c log n

input variables and at most O(nc) gates such that x ∈ L if and only if the decompression

Fx = tt(Dx) of Dx is satisfiable.

It follows from NEXP ⊆ C ⊆ P/poly (C is reasonable) and Lemma 8.3.6 that if Fx is

satisfiable then there is a satisfying assignment encoded by a circuit Ex of polynomial size

over n+O(log n) variables. Summarizing what we have so far:

x ∈ L ⇐⇒ ∃ circuit E : {0, 1}n+O(logn) → {0, 1} of size O(nd) such that Fx(tt(E)) = 1,

where Fx = tt(Dx) is a 3-CNF formula and Dx : {0, 1}n+O(logn) → {0, 1} is an arbitrary

circuit (not necessarily in C) of size O(nc) encoding this formula.

Our nontrivial algorithm for L now guesses a candidate circuit E of this form. It uses

Dx and three copies of E to build a circuit B = B(Dx, E) of size O(nb) over n + O(log n)

inputs such that:

B is satisfiable ⇐⇒ some clause Ci of Fx is not satisfiable by the assignment tt(E).

The description of B is as follows. An input y to B is interpreted as an integer i, and

B uses this index to obtain from Dx the description of the i-th clause Ci in Fx. Let z1, z2, z3

be the literals in Ci. Circuit B uses three copies of E to obtain the Boolean values of the

variables corresponding to these literals, and finally outputs 1 if and only if these values

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 205

do not satisfy Ci. This last verification can be done by a polynomial size circuit. Observe

that B is not a C-circuit: Dx and E are arbitrary circuits, these circuits are composed, and

there is additional circuitry computing the final output value of B. Overall, we obtain:

x ∈ L ⇐⇒ circuit B : {0, 1}n+O(logn) → {0, 1} is unsatisfiable. (8.1)

Note that all these steps can be performed in NTIME[poly(n)]. Recall that we can use

Equiv-AND-C to solve C-SAT in less than 2n steps, but B is not a circuit from C. We can

assume without loss of generality that B is a circuit of size mb (where m = n + O(log n))

consisting of AND, OR and NOT gates of fan-in at most two.

While in Williams’ original proof there is a step that guesses and verifies an equivalent

C-circuit for Dx (and already assumes E in C[poly(n)] with some extra work), our nonde-

terministic algorithm for L produces directly an equivalent C-circuit for the final circuit B.

Under our assumptions, Lemma 8.3.2 can be applied, and it allows the nondeterministic

algorithm for L to obtain a circuit G over m inputs from C[mt] that is equivalent to B.

This step can be performed in time 2m/s(m) for a superpolynomial function s(m). Since

m = n+O(log n), this running time is still nontrivial in n.

Using condition (8.1), it follows that x ∈ L if and only if G is unsatisfiable. Finally,

since C is reasonable, we can use algorithm A to check if this is true, in which case our

algorithm for L accepts input x. Again, this is a computation that can be performed in

nontrivial running time by our assumption over A. Overall, it follows that we can decide L

in NTIME[o(2n)], which completes the proof of the theorem.

Corollary 8.3.8. Let C = Cd[poly(n)] be a reasonable circuit class. If there exist nontrivial

satisfiability algorithms for both AND[3] ◦ C and AND[2] ◦ OR[2] ◦ C, then NEXP * C.

Proof. It is enough to observe that these satisfiability algorithms can be used to solve Equiv-

AND-C in nontrivial running time (Proposition 8.3.7). Let f1, f2, f3 be functions from C.

Then

¬EQUIV(AND(f1, f2), f3) ⇐⇒ XOR(AND(f1, f2), f3) is satisfiable. (8.2)

For bits a, b ∈ {0, 1}, we have XOR(a, b) ≡ OR(AND(a, b̄),AND(ā, b)). Using de Morgan’s

rules and combining gates, it is not hard to see that

XOR(AND(f1, f2), f3) ≡ OR(AND(f1, f2, f̄3),AND(OR(f̄1, f̄2), f3)).

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 206

It follows from (8.2) that an algorithm for ¬Equiv-AND-C should output 1 if and only if

either AND(f1, f2, f̄3) or AND(OR(f̄1, f̄2), f3) is satisfiable. Since C is reasonable, a circuit

for f̄i can be computed efficiently from a circuit for fi. Hence nontrivial algorithms for

AND[3] ◦ C-SAT and AND[2] ◦ OR[2] ◦ C-SAT can be used to solve ¬Equiv-AND-C, which

completes the proof.

8.3.1 A remark for the algorithm designer

It is hard to find satisfiability algorithm for expressive circuit classes even when we

allow very modest running times, such as 2n/nlogn. Here we mention a weaker assumption

on the algorithmic side that may be relevant when proving lower bounds.12

Definition 8.3.9 (“Algorithms useful for circuit lower bounds”).

Let C be a circuit class. A nondeterministic algorithm A for Equiv-AND-C is useful if the

following conditions hold:

• Every path of the (nondeterministic) computation of A either outputs “abort”, or

provides the correct answer.

• At least one path of the computation of A does not abort, and runs in time bounded

by 2n/s(n) for some superpolynomial function s(n).

Proposition 8.3.10. Let C = Cd[poly(n)] be a reasonable circuit class. If there exists a

useful algorithm for Equiv-AND-C then NEXP * C.

Proof. Observe that the proof of Proposition 8.3.7 still holds with such algorithms, provided

that we abort in any computation path that runs for more than 2n/s(n) steps. It is still

the case that x ∈ L if and only if there exists a computation path that accepts x. More

precisely, if x /∈ L, even if equivalent circuits are guessed and verified in each stage, a useful

algorithm for Equiv-AND-C will never output “yes” in the last step of the computation that

checks if the final circuits is equivalent to the zero function (i.e., it is unsatisfiable). On

the other hand, for x ∈ L, it is clear from the definition of useful algorithm that some

computation path will accept in nontrivial running time.

12This is not the most encompassing definition, but it is a fairly natural one.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 207

Observe that useful algorithms for unsatisfiability also lead to circuit lower bounds,

since these can be used in place of an Equiv-AND-C algorithm. The same is true for satis-

fiability algorithms, since useful algorithms are closed under complementation. In Section

8.5.2 we will use Proposition 8.3.10 to prove that derandomization implies circuit lower

bounds (Proposition 8.1.6).

Why is this a natural relaxation? Suppose there exists a class C such that for any circuit

D in this class, there exists some subset S ⊂ [n] of the inputs of D such that by trying all

assignments to the variables in S, we can check on average time strictly less than 2n−|S|

(over the restrictions) the satifiability of the remaining circuits. Then C admits a useful

satisfiability algorithm, since the set S can be guessed at the beginning of the execution. For

the reader familiar with the satisfiability algorithm for small threshold circuits described

by Impagliazzo, Paturi and Schneider [107], it means that their algorithm gives more than

what is needed for lower bounds. There the expected running time is nontrivial over the

subset of inputs to be restricted, which is a stronger guarantee. It is sufficient that a single

subset provides a nontrivial running time.

8.4 Useful properties and circuit lower bounds

In this section we focus on the relation between useful properties and circuit lower

bounds, a connection investigated in a recent paper written by Williams [201]. Recall that

an algorithm that computes a property of Boolean functions receives as input a string of

size N = 2n representing the truth-table tt(f) of a function f : {0, 1}n → {0, 1}. We start

with the following simple result.

Proposition 8.4.1 (“Useful NP-property yields useful P-property”).

Let C be a typical circuit class, and let s : N → N be any function. If there is a NP/s(N)-

property useful against C then there is a P/s(N)-property useful against C.

Proof. First we prove the proposition without advice, then we observe that the same proof

works in the presence of advice strings as well. Let P be a NP-useful property against C.

In other words, for any fixed k, there exists an infinite subset Sk ⊆ N such that for any

n ∈ Sk:

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 208

• P(fn) = 1 for at least one function fn : {0, 1}n → {0, 1}.

• P(gn) = 0 for any function gn : {0, 1}n → {0, 1} computed by circuits in C[nk].

In addition, there exists a polynomial time verifier VP : {0, 1}N × {0, 1}Nc−N → {0, 1}

(where N = 2n and c ∈ N) for LP . Put another way, for any function hn,

P(hn) = 1 ⇐⇒ ∃w ∈ {0, 1}Nc−N such that VP(tt(hn), w) = 1.

Let A = {n′ | n′ = cn, n ∈ N}. For convenience, set N ′ = 2n
′

= N + (N c − N). We

define a predicate P ′ defined on any function over n′ inputs, where n′ ∈ A (the definition

of P ′ over functions with a different number of inputs can be arbitrary). For any h′n′ :

{0, 1}n′ → {0, 1}, view its representation tt(h′n′) ∈ {0, 1}N
′

as a pair of strings (tt(hn), w),

where tt(hn) ∈ {0, 1}N and w ∈ {0, 1}Nc−N . To be more precise, let hn : {0, 1}n → {0, 1}

be the restriction of h′n′ defined by hn(x) = h′n′(x0(c−1)n), where x ∈ {0, 1}n. Finally, let

P ′(h′n′) = 1 ⇐⇒ VP(tt(hn), w) = 1.

We claim that P ′ is a P-property that is useful against C. First observe that since VP

is an efficient algorithm, P ′ can be computed in time polynomial in N ′ = |tt(h′n′)|. Fix any

k ∈ N. We need to define an infinite set S′k ⊆ A such that for every n′ ∈ S′k,

• P(f ′n′) = 1 for at least one function f ′n′ : {0, 1}n′ → {0, 1}.

• P(g′n′) = 0 for any function g′n′ : {0, 1}n′ → {0, 1} computed by circuits in C[n′k].

Let S′k = {n′ | n′ = cn, n ∈ Sk+1}. This set is infinite because so is Sk+1. Let n′ ∈ S′k.

It follows from the definition of Sk+1 that there is a function fn : {0, 1}n → {0, 1} for

which P(fn) = 1. Hence there exists w ∈ {0, 1}Nc−N such that VP(tt(fn), w) = 1. By

construction, the corresponding function f ′n′ : {0, 1}n′ → {0, 1} whose truth-table is the

concatenation of the pair (fn, w) satisfies P ′.

Finally, in order to establish the second bullet, assume for the sake of a contradiction

that there exists a function g′n′ : {0, 1}n′ → {0, 1} computed by circuits from C[n′k] for

which P ′(g′n′) = 1. Clearly, the function gn : {0, 1}n → {0, 1} defined as before by the

restriction gn(x) = g′n′(x0(c−1)n) also admits circuits from C of size n′k = (cn)k ≤ nk+1, for

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 209

sufficiently large values of n. But then P(gn) = 0, since n ∈ Sk+1. However, this contradicts

the assumption that P ′(g′n′) = 1, since in this case there is no w ∈ {0, 1}Nc−N such that

VP(tt(gn), w) = 1. In other words, for every function g′n′ with n′ ∈ S′k that is computed by

circuits from C[n′k], we have P ′(g′n′) = 0.

If the original verifier works with advice strings of length s(N), then property P ′ can

be decided correctly using the same advice. However, the definition of P ′ over functions on

n′ = cn inputs is based on the definition of P over functions on n inputs. Therefore, the

advice for the new algorithm is of size s(N ′1/c), since it gets as input truth-tables of size

N ′ = N c. Assuming that s(.) is non-decreasing and c ≥ 1, it follows that P ′ can be decided

with advice of size s(N ′1/c) ≤ s(N ′). This completes the proof of Proposition 8.4.1.

The new useful property may not be dense, even if the original property is dense. The

reason is that there may be just a few certificates for each hard function, thus almost no

function will satisfy the newly defined property. However, if we start with an RP-natural

property useful against C (i.e., a dense property in which every hard function has many

certificates), the proof of Proposition 8.4.1 yields a corresponding P-natural property.

The next proposition clarifies the relation between NEXP circuit lower bounds and the

existence of properties that are useful against C. Recall that for any typical circuit class,

standard arguments can be used to prove that NEXP * C if and only if NE * C.

Proposition 8.4.2. Let C be a typical class. Then NEXP * C if and only if there exists a

P/ logN -property that is useful against C.

Proof. Let N = 2n as usual. First assume that NEXP * C, and let L ∈ NE\C. Let

L′ = L∪{1n | n ∈ N}, and notice that L′ ∈ NE\C. For every n ∈ N, let b(n) be the number

of strings of size n in L′. Observe that b(n) ∈ [1, 2n]. Therefore b(n) can be encoded by a

string a(n) ∈ {0, 1}logN . Let fn = Ln, i.e., fn(x) = 1 if and only if x ∈ L. Consider the

property P such that P(g) = 1 if and only if g = fn for some n ∈ N. We claim that P

is a NP/ logN -property that is useful against C. Let V ′ be an NE-verifier for L′ accepting

witnesses of size 2cn.

Clearly, P is useful against C, because L′ /∈ C. On the other hand, the following NP-

verifier decides P when it is given the correct advice string a(n):

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 210

Verifier V for P:

On inputs tt(h) ∈ {0, 1}N and advice string z ∈ {0, 1}logN , reject if |h−1(1)| 6= z. Otherwise,

guess witnesses wx ∈ {0, 1}N
c

for every x ∈ h−1(1), and accept if and only if V ′(x,wx) = 1

for every such x.

Clearly, when z = a(n), the only function over n inputs accepted by V is fn = Ln. In

addition, V runs in time poly(N). It follows that P is computed in NP/ logN . Therefore,

there is a NP/ logN -property that is useful against C, and Proposition 8.4.1 guarantees the

existence of a P/ logN -property useful against C.

Now suppose that there exists a P/ logN -property P ′ that is useful against C. We

use this assumption to define a NEXP-verifier V ′ that does not admit witness circuits of

polynomial size. Observe that it follows then from Proposition 8.2.5 that NEXP * C, which

completes the proof our result.

Let A′ be an algorithm running in time Nd that decides P ′ on inputs tt(f) ∈ {0, 1}N

when it is given access to an appropriate advice string a(N) ∈ {0, 1}logN , i.e, a string of

size n. Consider the following verifier.

NEXP-verifier V ′:

On input 〈x,w〉, where x ∈ {0, 1}n and w ∈ {0, 1}N , output A′(w)/x (i.e., run A′ on input

w with advice string x).

First observe that V ′ is a NEXP-verifier. Fix any c ∈ N. We prove that V ′ does not

admit witness circuits from C[nc]. First, there are infinitely many inputs n for which P ′

correctly discriminates a hard function hn : {0, 1}n → {0, 1} from a function in C[nc]. For

any such value of n, there is a correct advice string a(N) for which algorithm A′ computes

P ′. However, whenever x = a(N), it follows from the definition of V ′ that it only accepts

certificates for x that do not correspond to any truth-table from C[nc]. In addition, V ′

accepts at least one truth-table, by definition of P ′. As discussed before, this completes the

proof of Proposition 8.4.2.

One may be tempted to pose the following conjecture.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 211

Conjecture 8.4.3. Let C be a typical circuit class. If there exists a P/O(logN)-property

that is useful against C, then there is a P-property that is useful against C.

We will see shortly that if a slightly more general version of this conjecture holds, then

a generic NEXP circuit lower bound can always be converted into a NE∩coNE lower bound,

a rather surprising consequence, given its generality.

Now we move to the relation between useful properties decided without advice and

circuit lower bounds.

Proposition 8.4.4. For any typical C, if NE∩coNE * C then there exists a P-property that

is useful against C.

Proof. Let L ∈ NE ∩ coNE\C, and let V 0 and V 1 be verifiers running in time 2O(n) for

n = |x| such that:

x ∈ L ⇐⇒ ∃wx ∈ {0, 1}2
O(n)

such that V 1(x,wx) = 1.

x /∈ L ⇐⇒ ∃wx ∈ {0, 1}2
O(n)

such that V 0(x,wx) = 1.

We view L as a family of functions f = {fn}n∈N, where f−1
n (1) = Ln. Let P = {fn | n ∈ N}.

First observe that this property is useful against C, since L /∈ C. In addition, there is an

efficient verifier VP for P: on input a string tt(h) ∈ {0, 1}N representing the truth-table of

a function h : {0, 1}n → {0, 1}, guess 2n certificates yx ∈ {0, 1}N
c
, one for each x ∈ {0, 1}n,

and accept if and only if V h(x)(x, yx) = 1 for every such x. Clearly, VP is a NP-verifier for

P. It follows then from Proposition 8.4.1 that there exists a P-property P ′ that is useful

against C, which completes the proof.

Conversely, which consequences can we obtain from the existence of P-properties (with-

out advice) that are useful against C? The following result is implicit in the work of Williams

[201], and shows that without advice even stronger consequences can be obtained (although

in the quasipolynomial size regime).

Proposition 8.4.5. Let C be a typical circuit class. If for every c ∈ N there exists a

P-property that is useful against C[nlogc n], then NE ∩ i.o.coNE * C[nlogn].

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 212

We give a self-contained proof of this result in Section 8.7.

Proposition 8.4.5 sheds some light into Conjecture 8.4.3. It shows that if the analogue of

this conjecture for quasipolynomial size circuits holds, then NEXP lower bounds against such

circuits can be translated into similar NE∩ coNE circuit lower bounds (via a generalization

of Proposition 8.4.2 to quasipolynomial size circuits).

Given the statement of Propositions 8.4.4 and 8.4.5, it is plausible to conjecture that

there is a tight correspondence between useful properties computed without advice and

circuit lower bounds for NE ∩ coNE.

Conjecture 8.4.6. Let C = C[poly] be a typical circuit class. Then NE ∩ coNE * C if and

only if there exists a P-property that is useful against C.

We will see in Section 8.5 that useful properties are powerful enough to simplify and

generalize many results of the form “nontrivial algorithms yield circuit lower bounds”. In

particular, a proof of Conjecture 8.4.6 would provide stronger transference theorems in

different frameworks.

8.4.1 Satisfiability algorithms and useful properties

It is possible to formulate the main result from Section 8.3 as follows: the existence

of nontrivial satisfiability algorithms leads to useful properties, which in turn imply circuit

lower bounds. This can be accomplished using the fact that the nondeterministic hierarchy

theorem also holds for unary languages. In other words, if there exists a nontrivial SAT

algorithm for a circuit class C, the proof of Proposition 8.3.7 shows that any verifier for a

hard unary language must have infinitely many inputs that only admit certificates of high

C-circuit complexity. This verifier can be used to define a property that is useful against C:

given a truth table tt(hn), check if it is a valid certificate for the input 1n.

More specifically, satisfiability algorithms for polynomial size circuits lead to P-properties

useful against circuits of polynomial size, while algorithms for quasipolynomial size circuits

lead to P-properties useful against circuits of such size. The reader should compare the

transference theorems from [199] and [201] (Propositions 8.1.1 and 8.1.3, respectively) to

the statements of Propositions 8.4.2 and 8.4.5. If Conjecture 8.4.6 is true, the existence of

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 213

nontrivial satisfiability algorithms for C[poly] would imply that NE∩ coNE * C[poly], a new

result.

8.5 Applications and additional connections

8.5.1 Lower bounds from lossy compression

In this section we prove the transference theorem obtained by Chen et al. [49], which

we state again for convenience.

Proposition 8.5.1 (Compression yields circuit lower bounds [49]).

Let C be a typical circuit class. Suppose that for every c ∈ N there is a deterministic

polynomial-time algorithm that compresses a given truth table of an n-variate Boolean func-

tion f ∈ C[nc] to an equivalent circuit of size o(2n/n). Then NEXP * C.

As mentioned before, it is possible to show a similar result from the existence of lossy

compression algorithms.

Definition 8.5.2 (Lossy compression scheme). Let C be a typical circuit class. We say that

a deterministic algorithm A is a (δ(n), s(n))-compression algorithm for C if A runs in time

poly(N), and for any fixed k ∈ N, there are infinitely many integers n for which the following

holds. Given any string tt(fn) ∈ {0, 1}N representing a function fn : {0, 1}n → {0, 1}

computed by circuits in C[nk], A outputs a circuit C on n inputs of size at most s(n) that

computes fn with advantage δ(n).

Proposition 8.5.3 (Lossy compression yields circuit lower bounds).

Let C be a typical circuit class, and let δ(n) : N→ (0, 1/2] be an arbitrary function. If there

exists a (δ(n), o(2nδ2/n))-compression algorithm for C, then NEXP * C.

Proof. Let C be a typical circuit class. Fix any function δ = δ(n). Let A be an efficient

(δ, o(2nδ2/n))-compression algorithm for C. We use A to construct an algorithm B that

implicitly defines a property that is useful against C. The proof then follows immediately

from Proposition 8.4.2.

We define B as follows. Given any truth table tt(f) ∈ {0, 1}N as input, apply A to

tt(f) to obtain the description of a circuit C over n inputs. If C is not a valid circuit, or it

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 214

has more than α · 2nδ2/n gates, accept. Otherwise, check if C computes f with advantage

δ, and accepts tt(f) if and only if this is not the case.

Let P be the property computed by B. We need to check that P is a P-property that

is useful against C. First, observe that B runs in time poly(N), since by assumption A is

efficient, and N = 2n. Also, B will always accept some family of hard functions, since it

follows from Lemma 8.2.7 that for sufficiently large n there are functions that cannot be

computed with advantage δ by circuits of size less than α · 2nδ2/n. Finally, for any fixed k,

it follows from the definition of lossy compression that there are infinitely many input sizes

n on which A succeeds. For all such inputs sizes, algorithm B will correctly reject functions

computed by circuits from C[nk].

This result is optimal for very small δ. More precisely, it follows from elementary

Fourier analysis of Boolean functions that for every Boolean function fn there is a parity

function over some subset S ⊆ [n] that computes fn with advantage Ω(2−n/2). Further, it

is possible to check all parity functions in deterministic time poly(N).

Remark 9. Similar techniques can be used to show that lossy compression of quasipoly-

nomial size circuits leads to circuit lower bounds for NE ∩ i.o.coNE. This can be obtained

through an application of Proposition 8.4.5.

8.5.2 Derandomization, SAT algorithms and circuit lower bounds

In this section we use Williams’ framework to prove that derandomization yields circuit

lower bounds. Recall that PIT is the language consisting of all arithmetic circuits that

compute the zero polynomial over Z, and PERM is the problem of computing the permanent

of integer matrices.

Our proof uses the notion of useful algorithms introduced in Definition 8.3.9. The

following consequence is immediate from Proposition 8.3.10.

Corollary 8.5.4. Assume that NEXP ⊆ SIZE[poly]. Then there is c ∈ N such that there is

no useful algorithm for Equiv-AND-SIZE[nc].

In addition, we will need the following auxiliary lemma.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 215

Lemma 8.5.5 (Kabanets and Impagliazzo [110], Aaronson and van Melkebeek [1]).

There exists an efficient algorithm that takes as input an arithmetic circuit Am and an

integer m, and produces an arithmetic circuit Cm such that Am computes the permanent of

m×m matrices matrices over Z if and only if Cm ∈ PIT.

We are now ready to give a short proof of the following result. Our argument follows

the same high-level approach employed by [110] and [1].

Proposition 8.5.6 (Kabanets and Impagliazzo [110]).

If PIT ∈ NSUBEXP, then at least one of the following results hold:

(i) NEXP * SIZE[poly(n)]; or

(ii) PERM * ASIZE[poly(n)].

Proof. In order to derive a contradiction, assume that:

• PIT ∈ NSUBEXP;

• NEXP ⊆ SIZE[poly(n)];

• PERM ⊆ ASIZE[poly(n)].

More precisely, NEXP ⊆ SIZE[poly(n)] implies that there exists a family of circuits D =

{Dn}n∈N of size nd that solves Equiv-AND-SIZE[nc]. In addition, PERM over matrices of

order m can be solved by a family of arithmetic circuits A = {Am}m∈N of size ma (for some

a ∈ N). We prove that these assumptions contradict Corollary 8.5.4. We construct a useful

algorithm A for Equiv-AND-SIZE[nc] as follows.

Algorithm A:

Input: Circuits C1, C2 of size nc.

• First, A guesses a circuit Dn of size nd.

• A prepares a query to the polynomial time hierarchy13 to check if Dn solves Equiv-

AND-SIZE[nc].

13Observe that Dn does not solve the equivalence problem if and only if (∃C1, C2 ∃x such that C1(x) 6=

C2(x) and Dn(C1, C2) = 1) or (∃C1, C2 such that ∀x(C1(x) = C2(x)) and Dn(C1, C2) = 0).

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 216

• It uses Toda’s theorem [185] together with the completeness of the permanent problem

[191] to reduce this query to a call to PERM over matrices of dimension m, where

m = poly(nd).

• Next, A guesses an arithmetic circuit Am of size ma.

• It then applies Lemma 8.5.5 to obtain a circuit Cm such that Am computes the

permanent of m×m matrices matrices over Z if and only if Cm ∈ PIT.

• Now A uses nondeterminism and the assumption that PIT ∈ NSUBEXP to check if

Cm ∈ PIT. It aborts otherwise.

• It uses Am to answer the initial query, and aborts if Dn does not solve Equiv-AND-

SIZE[nc].

• Finally, A uses Dn to solve Equiv-AND-SIZE[nc] on inputs C1 and C2.

Clearly, A runs in nondeterministic subexponential time. In addition, it is easy to

see that it is a useful algorithm for Equiv-AND-SIZE[nc], which completes the proof of

Proposition 8.1.6.

Most importantly, this proof shows that any improvement over Corollary 8.5.4 implies

a corresponding improvement over Proposition 8.5.6. In addition, it is not hard to see

that Conjecture 8.4.6 immediately implies the extension of Proposition 8.5.6 obtained by

Aaronson and van Melkebeek [1].14

8.5.3 Useful properties and learning algorithms

The existence of learning algorithms in many different models yields circuit lower

bounds, as shown by Fortnow and Klivans [70]. In this section we discuss two frameworks

for learning: deterministic exact learning from membership and equivalence queries (An-

gluin [17]), and randomized PAC learning (Valiant [193]). Recall that we have discussed

14Here is a sketch of the argument. Assume that NE ∩ coNE ⊆ P/poly. Then by Conjecture 8.4.6 there is

no P-property useful against P/poly. However, it is possible to show that useful algorithms for satisfiability

lead to useful properties. Altogether, these assumptions imply the desired strengthening of Corollary 8.5.4.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 217

several learning models in Chapter 5. For convenience of the reader, we briefly review the

definitions that will be relevant for the results discussed here.

Exact learning algorithms. Let C be a typical circuit class. In this model, a determinis-

tic algorithm is given access to oracles MQf and EQf for some function f : {0, 1}n → {0, 1}

in C. There oracles are defined as follows.

MQf : Given x ∈ {0, 1}n, returns f(x).

EQf : Given a hypothesis h : {0, 1}n → {0, 1} represented as a circuit, returns 1 if h ≡ f .

Otherwise, returns an arbitrary input x ∈ {0, 1}n such that f(x) 6= h(x).

For a size function s : N → N, we say that a learning algorithm A exact learns C[s(n)] in

time t(n) if for every f ∈ C, when given access to oracles MQf and EQf , A runs in time

at most t(n), and outputs the description of a circuit C computing f . In particular, every

equivalence query is invoked on a circuit of size at most t(n), and the final hypothesis C is

a circuit of size at most t(n).

Recall that one of the main results from Fortnow and Klivans [70] states that exact

learning a circuit class leads to circuit lower bounds against ENP (Proposition 8.1.7). The

original proof used by them is a clever combination of many results from complexity theory.

Here we observe that it is relatively easy to prove results of this form using the machinery of

useful properties. To simplify the argument even more, we can view learning as compression,

which yields a quick proof of the following result.

Proposition 8.5.7 (“Learning yields circuit lower bounds”).

Let C be a circuit class. Suppose there exists an exact learning algorithm for C[poly] that

runs in subexponential time. Then NEXP * C[poly].

Proof. Let A be an exact learning algorithm for C. It is easy to see that given any truth-

table tt(h) ∈ {0, 1}N from C[poly], we can simulate A on input h in time 2O(n). In other

words, it is possible to provide correct answers to the membership and equivalence queries

asked during A’s computation. By assumption, the learning algorithm outputs a circuit of

subexponential size that computes h. This is therefore a valid compression algorithm for

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 218

C[poly], and Proposition 8.5.7 follows immediately from Proposition 8.5.3 with δ = 1.

In addition to its simplicity, this proof offers other advantages. The framework of useful

properties is more flexible with respect to changes in the learning model. For instance,

one could consider deterministic learning algorithms using equivalence queries over subsets

S ⊆ {0, 1}n encoded by subexponential size circuits, and only require that the learning

algorithm outputs a hypothesis that is ε-close to the unknown concept. Again, Proposition

8.5.3 easily implies circuit lower bounds.

Next we turn our attention to randomized learning algorithms, a class of algorithms

for which theorems of the form “learning implies circuit lower bounds” are still a bit weaker

than their deterministic counterpart.

Randomized PAC learning algorithms. In the PAC learning framework, there is an

unknown function f ∈ C that the learning algorithm is supposed to learn (after obtaining

limited information about f). Here we concentrate on the stronger model in which the

learner can ask membership queries, and only needs to learn under the uniform distribu-

tion15. In other words, the learner can query the value f(x) on any input x, and should

be able to obtain, with high probability, a good approximation h for f . In general, for any

function f : {0, 1}n → {0, 1} in C[s(n)], given parameters n, ε (accuracy), δ (confidence),

and an upper bound s(n) on the size of the circuit computing f , the learning algorithm

should output with probability at least 1− δ a hypothesis h such that Prx[f(x) 6= h(x)] ≤ ε

(i.e., h is ε-close to f), where the probability is taken over all strings x of size n under

the uniform distribution. We measure the running time tA(n, 1/δ, 1/ε, s(n)) of a learning

algorithm A as a function of these parameters. As opposed to what is usually called proper

learning, the learning algorithm is allowed to output the description of any circuit of size at

most tA(.) as its final hypothesis. For simplicity, we say that an algorithm A PAC learns C

if it learns any function from C to accuracy 1/4 with probability at least 1− 1/n.

It is known that the existence of a polynomial time PAC learning algorithm for C[poly]

15In other words, a transference theorem for this learning model is a stronger result. In addition, it is easy

to see that the results discussed here hold under even more powerful learning models.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 219

implies that BPEXP * C[poly] (Fortnow and Klivans [70]). However, the same proof pro-

vides much weaker results for subexponential time learning, and it is an interesting open

problem to show that the existence of subexponential time PAC learning algorithms lead

to similar circuit lower bounds. The next proposition shows that this problem is related to

the power of randomness in the context of useful properties. First, we extend the definition

of useful properties to promise properties.

Definition 8.5.8 (“Promise properties useful against C”).

A promise property of Boolean functions P = (Pyes,Pno) consists of two nonempty disjoint

subsets of the set of all Boolean functions. For a typical circuit class C, P is said to be

useful against C if, for all k, there are infinitely many positive integers n such that

• Pyes(f) = 1 for at least one function f : {0, 1}n → {0, 1}, and

• Pno(g) = 1 for all g : {0, 1}n → {0, 1} that admits circuits from C[nk].

We say that a promise property P is a Γ-property if its corresponding promise problem LP

is in promise-Γ.

Proposition 8.5.9 (“Useful properties from randomized learning”).

Let C be a typical circuit class. Suppose there exists a randomized algorithm A that PAC

learns C[poly] in time 2n
o(1)

. Then there exists a (promise-coRP)-property that is useful

against C.

Proof. We use a subexponential time randomized learning algorithm A for C to define a

(promise) coRP-property P that is useful against C. Consider the following randomized

algorithm B. Given the truth-table tt(fn) ∈ {0, 1}N of an arbitrary function fn : {0, 1}n →

{0, 1}, it simulates the computation of A over fn, until A outputs a circuit C of size 2n
o(1)

as its final hypothesis. Algorithm B accepts fn if and only if C is not 1/10-close to fn.

It follows from Lemma 8.2.7 that for any large enough n there is a function hn that

cannot be 1/10-approximated by circuits of subexponential size (for definiteness, fix some

constructive size bound). In other words, for any large n, there exists at least one function

hn not in C[poly] that is accepted with probability one. In addition, since A is a PAC

learning algorithm for C, every function in C is rejected with high probability. Clearly,

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 220

B computes a promise coRP-property that is useful against C: Pyes consists of Boolean

functions that cannot be approximated by circuits of subexponential size, and Pno = C.

This result gives another example of the relevance of useful properties in the context

of results of the form “algorithms yield circuit lower bounds”.

8.6 Open problems and further research directions

We mention here three directions related to the results discussed in this chapter that

we find particularly interesting.

Strengthening the ACC lower bound. Williams proved that NEXP * ACC. It follows

easily from Lemma 8.2.2 that either P * ACC or NEXP * P/poly. Give an unconditional

proof that one of these circuit lower bounds hold.

Stronger lower bound from satisfiability algorithms. Can we prove that the ex-

istence of non-trivial (deterministic) satisfiability algorithms for a circuit class C leads to

lower bounds for complexity classes contained in NEXP ∩ coNEXP?

Lossy compression of ACC and TC0
2. Design efficient lossy compression schemes for

circuit classes such as ACC or TC0
2. To the best of our knowledge, these results do not

violate any widely believed cryptographic assumption.

8.7 Auxiliary results

In this section we describe the proof of Proposition 8.4.5, which we state again for

convenience.

Proposition. Let C be a typical circuit class. If for every c ∈ N there exists a P-property

that is useful against C[nlogc n], then NE ∩ i.o.coNE * C[nlogn].

This result is implicit in the work of Williams [201]. Its proof consists of an interesting

combination of nondeterminism, a collapse theorem, a hardness vs. randomness result, and

simple diagonalization. We will need the following auxiliary results.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 221

Lemma 8.7.1. Let C be a typical circuit class, and assume that P ⊆ C[nlogn]. Then for

every d ∈ N, any function f : {0, 1}n → {0, 1} computed by circuits of size nlogd n is

computed by circuits from C[nlogO(d) n].

Proof. The result follows from a parameterized version of Lemma 8.2.2, and the proof is

similar.

Lemma 8.7.2 (Miltersen, Vinodchandran and Watanabe [137]).

Let g(n) > 2n and s(n) ≥ n be functions that are both increasing and time-constructible.

There exists a constant d ∈ N for which the following holds. If E ⊆ SIZE(s(n)) then

DTIME[g(n)] ⊆ MATIME[s(d log g(n))d].

For a function h` : {0, 1}` → {0, 1}, let CC(h) be the size (number of gates) of the

smallest circuit computing h.

Proposition 8.7.3 (Umans [188]).

There is a constant k ∈ N and a function G : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ for which the

following holds. For every s ∈ N and Boolean function h` : {0, 1}` → {0, 1} satisfying

CC(h`) ≥ sk, and for all circuits C of size at most s over s inputs,∣∣∣∣ Pr
z∈{0,1}k·`

[C(G(tt(h`), z)) = 1]− Pr
z∈{0,1}s

[C(z) = 1]

∣∣∣∣ < 1

s
.

In addition, G can be computed in poly(2`) time.

The next lemma shows that useful properties together with the lack of circuit lower

bounds for P allow us to obtain a nontrivial derandomization of Merlin-Arthur games.

Lemma 8.7.4. Let C be a typical circuit class, and suppose that for every c ∈ N there exists

a P-property that is useful against C[nlogc n]. In addition, assume that P ⊆ C[nlogn]. Then

there is an infinite subset S ⊆ N such that for any L ∈ MATIME[nO(log3 n)], there exists a

language L′ ∈ NE such that for every n ∈ S, we have Ln = L′n. In addition, for all n /∈ S,

we have L′n = ∅.

Proof. First, observe that Lemma 8.7.1 implies that for every c ∈ N there exists a property

Pc that is useful against SIZE[nlogc n]. Let Ac be an efficient algorithm computing Pc (we

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 222

set the value of c later). Let L ∈ MATIME[nO(log3 n)]. There exists a MA-verifier V for L

running in time s = nO(log3 n) such that

x ∈ L =⇒ ∃y ∈ {0, 1}s Pr
w∈{0,1}s

[V (x, y, w) = 1] ≥ 2

3

x /∈ L =⇒ ∀y ∈ {0, 1}s Pr
w∈{0,1}s

[V (x, y, w) = 1] ≤ 1

3

Our nondeterministic algorithm N for L proceeds as follows. On input x ∈ {0, 1}n, it

first guesses a string y ∈ {0, 1}s, then constructs a circuit Cx,y from SIZE[s] such that for all

w ∈ {0, 1}s we have Cx,y(w) = V (x, y, w). Then N guesses truth-tables tt(hm) ∈ {0, 1}M

for every m ∈ [2(logn)5/(c+1)
, 2(log(n+1))5/(c+1)

), where M = 2m as usual. If Ac rejects all such

functions, then N rejects x. Otherwise, let h` be the first function for which Ac(h`) = 1.

Since Ac computes a useful property, s = nO(log3 n), and ` ≥ 2(logn)5/(c+1)
, for any c ∈ N we

have:

CC(h`) ≥ `logc ` ≥ nlog4 n � sk,

for any k ∈ N and sufficiently large n. Finally, N runs the algorithm granted by Proposition

8.7.3 on Cx,y using h`, and accepts its input x if and only if

Pr
z∈{0,1}k·`

[Cx,y(G(tt(h`), z)) = 1] ≥ 1

2
. (8.3)

Observe that there exists an infinite set S ⊆ N such that for each n ∈ S and for every

x ∈ {0, 1}n, N is able to find a function h` for which CC(h`) ≥ sk, where k is the constant in

the statement of Proposition 8.7.3. Put another way, N is correct on input sizes in S, and

by construction N rejects every other input whose input size is not in S. Also, S depends

only on Pc.

The (nondeterministic) running time of N is dominated by the computation of the

probability in (8.3), and the time required to verify using Ac whether some hard function

has been guessed. Finally, set c = 5, and observe that for this value of c we have ` � n.

It follows therefore that N runs in time at most 2n. This completes the proof that there

exists L′ ∈ NE such that for every n ∈ S, L′n = Ln, and for all n /∈ S, we have L′n = ∅.

We are now ready to give the proof of Proposition 8.4.5.

Chapter 8. Satisfiability algorithms, useful properties, and lower bounds 223

Proof of Proposition 8.4.5. Assume that NE ∩ i.o.coNE ⊆ C[nlogn]. In particular, E ⊆

SIZE[nlogn]. Let g(n) = 2n
2 logn

and s(n) = nlogn. Using Lemma 8.7.2, we get DTIME[2n
2 logn

] ⊆

MATIME[nO(log3 n)]. Clearly, our assumptions also imply that P ⊆ C[nlogn].

Let L ∈ DTIME[2n
2 logn

]. It follows from Lemma 8.7.4 that there exists an infinite

set S ⊆ N and a language L′ ∈ NE such that Ln = L′n for every n ∈ S. Consider

L ∈ DTIME[2n
2 logn

], the complement of L. Then, again, there exists a language L′′ ∈ NE

such that for every n ∈ S, Ln = L′′n. Clearly, L′′ ∈ coNE, and for every n ∈ S we have

L′′n = Ln = L′n. In other words, L′ ∈ NE ∩ i.o.coNE. Overall, we get

DTIME[2n
2 logn

] ⊆ i.o.(NE ∩ i.o.coNE) ⊆ i.o.C[nlogn],

where the last inclusion uses our initial assumption.

However, using a simple diagonalization argument, we can define a language L∗ ∈

DTIME[2n
2 logn

] such that for all n ≥ n0, L∗n is not computed by circuits from C[nlogn]. This

contradiction completes the proof of Proposition 8.4.5.

Chapter 9. Concluding remarks 224

Chapter 9

Concluding remarks

The results presented in this work encompass the power and limitations of bounded-

depth circuits and monotone circuits, the role of negations in learning theory and cryp-

tography, and some connections between algorithms and circuit lower bounds. Our proofs

combine and extend many techniques employed in theoretical computer science in the past,

including recent approaches to circuit lower bounds. We discussed a few concrete open

problems and research directions in each appropriate chapter.

The main challenge lies in understanding more general classes of Boolean circuits.

As far as unconditional lower bounds are concerned, their computational power remains

mysterious, and it is unclear which mathematical techniques will turn out to be useful in

the investigation of these problems. We believe that the interplay between unconditional

lower bounds, conditional results, and algorithm design will continue to shed light into this

research area.

Finally, one should not be discouraged by the difficulty of proving unconditional lower

bounds for general algorithms and circuit classes. Computational complexity theory is

a relatively young discipline, and we share the hope and excitement that a satisfactory

answer to these problems will eventually be discovered, similarly to many other seemingly

unapproachable problems from different domains of Mathematics.

Bibliography 225

Bibliography

[1] Scott Aaronson and Dieter van Melkebeek. On circuit lower bounds from derandomiza-

tion. Theory of Computing, 7(1):177–184, 2011. 186, 191, 197, 215, 216

[2] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.

Transactions on Computation Theory, 1(1), 2009. 50, 189

[3] Scott Aaronson, Baris Aydinlioglu, Harry Buhrman, John M. Hitchcock, and Dieter

van Melkebeek. A note on exponential circuit lower bounds from derandomizing Arthur-

Merlin games. Electronic Colloquium on Computational Complexity (ECCC), 17:174,

2010. 186

[4] Leonard M. Adleman. Two theorems on random polynomial time. In Symposium on

Foundations of Computer Science (FOCS), pages 75–83, 1978. 171

[5] Alok Aggarwal, Maria M. Klawe, David Lichtenstein, Nathan Linial, and Avi Wigderson.

A lower bound on the area of permutation layouts. Algorithmica, 6(2):241–255, 1991. 46

[6] Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth compu-

tations. In Symposium on Theory of Computing (STOC), pages 471–474, 1984. 76

[7] Miklós Ajtai and Yuri Gurevich. Monotone versus positive. J. ACM, 34(4):1004–1015,

1987. 26

[8] Miklós Ajtai.
∑1

1-formulae on finite structures. Annals of Pure and Applied Logic,

24(1):1–48, 1983. 50

[9] Adi Akavia, Andrej Bogdanov, Siyao Guo, Akshay Kamath, and Alon Rosen. Candidate

Bibliography 226

weak pseudorandom functions in AC0◦ MOD2. In Innovations in Theoretical Computer

Science (ITCS), pages 251–260, 2014. 147

[10] Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-

reducibility. J. ACM, 57(3), 2010. 51, 189

[11] Eric Allender. When worlds collide: Derandomization, lower bounds, and Kolmogorov

complexity. In Conference on Foundations of Software Technology and Theoretical Com-

puter Science (FSTTCS), pages 1–15, 2001. 194

[12] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of Boolean func-

tions. Combinatorica, 7(1):1–22, 1987. 50

[13] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley-Interscience, 2008.

11

[14] Kazuyuki Amano and Akira Maruoka. On learning monotone Boolean functions under

the uniform distribution. In International Conference on Algorithmic Learning Theory

(ALT), pages 57–68, 2002. 98

[15] Kazuyuki Amano and Akira Maruoka. A superpolynomial lower bound for a circuit

computing the clique function with at most 1/6 log log n negation gates. SIAM J. Com-

put., 35(1):201–216, 2005. 100, 120

[16] Alexander E. Andreev. On a method for obtaining lower bounds for the complexity of

individual monotone functions. Soviet Math. Dokl, 31(3):530–534, 1985. 50

[17] Dana Angluin. Queries and concept learning. Machine learning, 2(4):319–342, 1988.

98, 160, 163, 216

[18] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. SIAM

J. Comput., 36(4):845–888, 2006. 120, 147

[19] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.

Cambridge University Press, 2009. 58, 125, 198

Bibliography 227

[20] Sanjeev Arora, Russell Impagliazzo, and Umesh Vazirani. Relativizing versus nonrel-

ativizing techniques: the role of local checkability. Manuscript, 1992. 189

[21] Baris Aydinlioglu, Dan Gutfreund, John M. Hitchcock, and Akinori Kawachi. Deran-

domizing Arthur-Merlin games and approximate counting implies exponential-size lower

bounds. Computational Complexity, 20(2):329–366, 2011. 186

[22] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time

has two-prover interactive protocols. Computational Complexity, 1:3–40, 1991. 172

[23] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subex-

ponential time simulations unless EXPTIME has publishable proofs. Computational

Complexity, 3:307–318, 1993. 153

[24] Theodore P. Baker, John Gill, and Robert Solovay. Relativizatons of the P =? NP

question. SIAM J. Comput., 4(4):431–442, 1975. 50, 189

[25] Robert Beals, Tetsuro Nishino, and Keisuke Tanaka. More on the complexity of

negation-limited circuits. In Symposium on Theory of Computing (STOC), pages 585–

595, 1995. 120

[26] Robert Beals, Tetsuro Nishino, and Keisuke Tanaka. On the complexity of negation-

limited Boolean networks. SIAM J. Comput., 27(5):1334–1347, 1998. 120

[27] Paul Beame, Russell Impagliazzo, and Srikanth Srinivasan. Approximating AC0 by

small height decision trees and a deterministic algorithm for #AC0. In Conference on

Computational Complexity (CCC), pages 117–125, 2012. 187

[28] Eric Blais and Li-Yang Tan. Approximating Boolean functions with depth-2 circuits.

Electronic Colloquium on Computational Complexity (ECCC), 20:51, 2013. 111

[29] Eric Blais, Clément L. Canonne, Igor C. Oliveira, Rocco A. Servedio, and Li-Yang

Tan. Learning circuits with few negations. Electronic Colloquium on Computational

Complexity (ECCC), 21:144, 2014. 120, 124, 129, 138, 140, 141, 148, 150

Bibliography 228

[30] Avrim Blum, Merrick L. Furst, Jeffrey Jackson, Michael J. Kearns, Yishai Mansour,

and Steven Rudich. Weakly learning DNF and characterizing statistical query learning

using Fourier analysis. In Symposium on Theory of Computing (STOC), pages 253–262,

1994. 9, 157, 177

[31] Avrim Blum, Carl Burch, and John Langford. On learning monotone Boolean func-

tions. In Symposium on Foundations of Computer Science (FOCS), pages 408–415, 1998.

98, 101, 120, 121, 138

[32] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.

Occam’s razor. Inf. Process. Lett., 24(6):377–380, 1987. 156, 171

[33] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin.

On problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–434, 2009. 53

[34] Hans L. Bodlaender. NC-algorithms for graphs with small treewidth. In International

Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages 1–10, 1988.

23, 44

[35] Hans L. Bodlaender. Treewidth: Characterizations, applications, and computations. In

Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages 1–14, 2006.

16

[36] Andrej Bogdanov and Siyao Guo. Sparse extractor families for all the entropy. In

Innovations in Theoretical Computer Science (ITCS), pages 553–560, 2013. 121, 123,

141

[37] Lucas Bordeaux, Youssef Hamadi, and Pushmeet Kohli. Tractability: Practical Ap-

proaches to Hard Problems. Cambridge University Press, 2014. 23

[38] Allan Borodin. Horner’s rule is uniquely optimal. In International Symposium on the

Theory of Machines and Computations, pages 45–57, 1971. 91

[39] Nader H. Bshouty and Vitaly Feldman. On using extended statistical queries to avoid

membership queries. The Journal of Machine Learning Research, 2:359–395, 2002. 162

Bibliography 229

[40] Nader H. Bshouty and Christino Tamon. On the Fourier spectrum of monotone func-

tions. J. ACM, 43(4):747–770, 1996. 98, 101, 105, 110, 120

[41] Nader H. Bshouty, Richard Cleve, Ricard Gavaldà, Sampath Kannan, and Christino

Tamon. Oracles and queries that are sufficient for exact learning. J. Comput. Syst. Sci.,

52(3):421–433, 1996. 157

[42] Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complex-

ity: A survey. Theor. Comput. Sci., 288(1):21–43, 2002. 21

[43] Harry Buhrman and John M. Hitchcock. NP-hard sets are exponentially dense unless

coNP ⊆ NP/poly. In Conference on Computational Complexity (CCC), pages 1–7, 2008.

53

[44] Joshua Buresh-Oppenheim, Valentine Kabanets, and Rahul Santhanam. Uniform hard-

ness amplification in NP via monotone codes. Electronic Colloquium on Computational

Complexity (ECCC), 13(154), 2006. 121, 123, 138

[45] Arkadev Chattopadhyay and Rahul Santhanam. Lower bounds on interactive compress-

ibility by constant-depth circuits. In Symposium on Foundations of Computer Science

(FOCS), pages 619–628, 2012. 7, 51, 53, 54, 57, 65, 66, 70, 81, 83, 91

[46] Eshan Chattopadhyay, Adam Klivans, and Pravesh Kothari. An explicit VC-theorem

for low-degree polynomials. In Workshop on Randomization and Computation (RAN-

DOM), pages 495–504, 2012. 158, 173, 174

[47] Bernard Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge

University Press, 2000. 173

[48] Chandra Chekuri and Julia Chuzhoy. Polynomial bounds for the grid-minor theorem.

In Symposium on Theory of Computing (STOC), pages 60–69, 2014. 25, 46

[49] Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David

Zuckerman. Mining circuit lower bound proofs for meta-algorithms. Electronic Collo-

quium on Computational Complexity (ECCC), 20:57, 2013. 186, 187, 192, 193, 195,

213

Bibliography 230

[50] Timothy Y. Chow. Almost-natural proofs. J. Comput. Syst. Sci., 77(4):728–737, 2011.

190

[51] Amin Coja-Oghlan. The asymptotic k-SAT threshold. In Symposium on Theory of

Computing (STOC), pages 804–813, 2014. 19

[52] Stephen A. Cook. A hierarchy for nondeterministic time complexity. J. Comput. Syst.

Sci., 7(4):343–353, 1973. 204

[53] Michal Cutler and Yossi Shiloach. Permutation layout. Networks, 8(3):253–278, 1978.

46

[54] Dana Dachman-Soled, Homin K. Lee, Tal Malkin, Rocco A. Servedio, Andrew Wan,

and Hoeteck Wee. Optimal cryptographic hardness of learning monotone functions. The-

ory of Computing, 5(1):257–282, 2009. 120

[55] Evgeny Dantsin and Edward A. Hirsch. Worst-case upper bounds. In Handbook of

Satisfiability, pages 403–424. 2009. 187

[56] Holger Dell and Dieter van Melkebeek. Satisfiability allows no nontrivial sparsification

unless the polynomial-time hierarchy collapses. J. ACM, 61(4):23, 2014. 53

[57] Holger Dell. A simple proof that AND-compression of NP-complete problems is hard.

Electronic Colloquium on Computational Complexity (ECCC), 14:75, 2014. 53

[58] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complex-

ity. Springer, 2013. 15

[59] Andrew Drucker. New limits to classical and quantum instance compression. In Sym-

posium on Foundations of Computer Science (FOCS), pages 609–618, 2012. 53

[60] Bella Dubrov and Yuval Ishai. On the randomness complexity of efficient sampling. In

Symposium on Theory of Computing (STOC), pages 711–720, 2006. 52

[61] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan.

Protecting circuits from leakage: the computationally-bounded and noisy cases. In Inter-

Bibliography 231

national Conference on the Theory and Applications of Cryptographic Techniques (EU-

ROCRYPT), pages 135–156, 2010. 53

[62] Uriel Feige. Relations between average case complexity and approximation complexity.

In Symposium on Theory of Computing (STOC), pages 534–543, 2002. 19

[63] Vitaly Feldman, Homin K. Lee, and Rocco Servedio. Lower bounds and hardness ampli-

fication for learning shallow monotone formulas. Journal of Machine Learning Research,

19:273–292, 2011. 109

[64] Vitaly Feldman. Evolvability from learning algorithms. In Symposium on Theory of

Computing (STOC), pages 619–628, 2008. 157, 161, 174

[65] William Feller. Generalization of a probability limit theorem of Cramér. Transactions

of the American Mathematical Society, 54(3):361–372, 1943. 93

[66] Michael J. Fischer. The complexity of negation-limited networks - A brief survey. In

International Colloquium on Automata, Languages and Programming (ICALP), pages

71–82, 1975. 121

[67] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006. 15,

38, 40, 44

[68] Jürgen Forster, Matthias Krause, Satyanarayana V. Lokam, Rustam Mubarakzjanov,

Niels Schmitt, and Hans-Ulrich Simon. Relations between communication complexity,

linear arrangements, and computational complexity. In Conference on Foundations of

Software Technology and Theoretical Computer Science (FSTTCS), pages 171–182, 2001.

82

[69] Jürgen Forster. A linear lower bound on the unbounded error probabilistic communi-

cation complexity. J. Comput. Syst. Sci., 65(4):612–625, 2002. 82

[70] Lance Fortnow and Adam R. Klivans. Efficient learning algorithms yield circuit lower

bounds. J. Comput. Syst. Sci., 75(1):27–36, 2009. 9, 152, 154, 156, 167, 168, 169, 181,

186, 191, 192, 196, 216, 217, 219

Bibliography 232

[71] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and suc-

cinct PCPs for NP. J. Comput. Syst. Sci., 77(1):91–106, 2011. 53

[72] Lance Fortnow, Richard J. Lipton, Dieter van Melkebeek, and Anastasios Viglas. Time-

space lower bounds for satisfiability. J. ACM, 52(6):835–865, 2005. 203

[73] Cees M. Fortuin, Pieter W. Kasteleyn, and Jean Ginibre. Correlation inequalities on

some partially ordered sets. Communications in Mathematical Physics, 22(2):89–103,

1971. 130

[74] Alan M. Frieze. Edge-disjoint paths in expander graphs. SIAM J. Comput., 30(6):1790–

1801, 2000. 32

[75] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the

polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984. 50, 52,

189

[76] Peter Gemmell and Madhu Sudan. Highly resilient correctors for polynomials. Inf.

Process. Lett., 43(4):169–174, 1992. 169

[77] Craig Gentry and Shai Halevi. Fully homomorphic encryption without squashing using

depth-3 arithmetic circuits. In Symposium on Foundations of Computer Science (FOCS),

pages 107–109, 2011. 152

[78] Mikael Goldmann and Alexander Russell. Spectral bounds on general hard-core pred-

icates. In Symposium on Theoretical Aspects of Computer Science (STACS), pages 614–

625, 2000. 121, 123, 140

[79] Oded Goldreich and Rani Izsak. Monotone circuits: One-way functions versus pseu-

dorandom generators. Theory of Computing, 8(1):231–238, 2012. 8, 120, 121, 122, 131,

133

[80] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.

In Symposium on Theory of Computing (STOC), pages 25–32, 1989. 119

[81] Oded Goldreich and David Zuckerman. Another proof that BPP ⊆ PH (and more).

In Studies in Complexity and Cryptography, pages 40–53. 2011. 172

Bibliography 233

[82] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-

tions. J. ACM, 33(4):792–807, 1986. 119

[83] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic Tools. Cambridge

University Press, 2007. 125

[84] Oded Goldreich. Computational Complexity - A Conceptual Perspective. Cambridge

University Press, 2008. 198

[85] Oded Goldreich. In a world of P=BPP. In Studies in Complexity and Cryptography,

pages 191–232. 2011. 191

[86] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sen-

sitivity (Full Version). CoRR, abs/1311.2355, 2013. 31

[87] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sen-

sitivity (Conference Version). In Symposium on Theory of Computing (STOC), pages

847–856, 2014. 6, 15, 19, 20, 21, 22, 31

[88] Parikshit Gopalan and Rocco A. Servedio. Learning and lower bounds for AC0 with

threshold gates. In Workshop on Randomization and Computation (RANDOM), pages

588–601, 2010. 86

[89] Martin Grohe, Thomas Schwentick, and Luc Segoufin. When is the evaluation of

conjunctive queries tractable? In Symposium on Theory of Computing (STOC), pages

657–666, 2001. 16

[90] Martin Grohe. The complexity of homomorphism and constraint satisfaction problems

seen from the other side. J. ACM, 54(1), 2007. 6, 16, 24

[91] András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán.

Threshold circuits of bounded depth. J. Comput. Syst. Sci., 46(2):129–154, 1993. 57

[92] Ryan C. Harkins and John M. Hitchcock. Exact learning algorithms, betting games,

and circuit lower bounds. In International Colloquium on Automata, Languages and

Programming (ICALP), pages 416–423, 2011. 9, 153, 154, 167, 186, 192

Bibliography 234

[93] Danny Harnik and Moni Naor. On the compressibility of NP instances and crypto-

graphic applications. SIAM J. Comput., 39(5):1667–1713, 2010. 53

[94] Juris Hartmanis and Richard Stearns. Classification of computations by time and

memory requirements. In Proceedings of the IFIP Congress, volume 65, pages 31–35,

1965. 2

[95] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Symposium

on Theory of Computing (STOC), pages 6–20, 1986. 5, 50, 52, 86

[96] Johan H̊astad. On the correlation of parity and small-depth circuits. SIAM J. Comput.,

43(5):1699–1708, 2014. 5

[97] Thomas Hofmeister. The power of negative thinking in constructing threshold circuits

for addition. In Structure in Complexity Theory Conference (CCC), pages 20–26, 1992.

26, 120, 147

[98] Johan H̊astad. Computational Limitations for Small Depth Circuits. PhD thesis, MIT,

1986. 189

[99] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: amplifying

communication complexity hardness to time-space trade-offs in proof complexity. In

Symposium on Theory of Computing (STOC), pages 233–248, 2012. 21, 22

[100] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput.

Syst. Sci., 62(2):367–375, 2001. 25

[101] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:

Derandomizing the XOR lemma. In Symposium on Theory of Computing (STOC), pages

220–229, 1997. 167

[102] Russell Impagliazzo and Avi Wigderson. Randomness vs time: Derandomization

under a uniform assumption. J. Comput. Syst. Sci., 63(4):672–688, 2001. 191

[103] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have

strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. 19

Bibliography 235

[104] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy

witness: exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci.,

65(4):672–694, 2002. 191, 201

[105] Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. An axiomatic

approach to algebrization. In Symposium on Theory of Computing (STOC), pages 695–

704, 2009. 189

[106] Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability

algorithm for AC0. In Symposium on Discrete Algorithms (SODA), pages 961–972, 2012.

187

[107] Russell Impagliazzo, Ramamohan Paturi, and Stefan Schneider. A satisfiability algo-

rithm for sparse depth-2 threshold circuits. CoRR, abs/1212.4548, 2012. 187, 207

[108] Hamidreza Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. Electronic

Colloquium on Computational Complexity (ECCC), 20:20, 2013. 194

[109] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers. Springer, 2012.

1, 4, 5, 14, 17, 121, 125

[110] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests

means proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. 186,

191, 215

[111] Valentine Kabanets. Derandomization: A brief overview. Bulletin of the EATCS,

76:88–103, 2002. 191

[112] Valentine Kabanets. Private communication, 2013. 155, 192

[113] Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on Boolean

functions. In Symposium on Foundations of Computer Science (FOCS), pages 68–80,

1988. 131

[114] Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require

super-logarithmic depth. SIAM J. Discrete Math., 3(2):255–265, 1990. 12, 19

Bibliography 236

[115] Richard M. Karp and Richard J. Lipton. Some connections between nonuniform

and uniform complexity classes. In Symposium on Theory of Computing (STOC), pages

302–309, 1980. 171, 185, 187

[116] Michael J. Kearns and Leslie G. Valiant. Cryptographic limitations on learning

Boolean formulae and finite automata. J. ACM, 41(1):67–95, 1994. 98, 152

[117] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learn-

ing Theory. MIT Press, 1994. 1, 4, 184

[118] Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM,

45(6):983–1006, 1998. 161, 177

[119] V. M. Khrapchenko. A method of determining lower bounds for the complexity of

π-schemes. Math. Notes Acad. of Sci. (USSR), 10(1):474–479, 1971. 52

[120] Jeff Kinne, Dieter van Melkebeek, and Ronen Shaltiel. Pseudorandom generators,

typically-correct derandomization, and circuit lower bounds. Computational Complexity,

21(1):3–61, 2012. 186, 191

[121] Adam R. Klivans and Alexander A. Sherstov. Cryptographic hardness for learning

intersections of halfspaces. J. Comput. Syst. Sci., 75(1):2–12, 2009. 152, 156

[122] Adam Klivans, Pravesh Kothari, and Igor C. Oliveira. Constructing hard functions

using learning algorithms. In Conference on Computational Complexity (CCC), pages

86–97, 2013. 186, 192

[123] Swastik Kopparty and Srikanth Srinivasan. Certifying polynomials for AC0(⊕) cir-

cuits, with applications. In Conference on Foundations of Software Technology and The-

oretical Computer Science (FSTTCS), pages 36–47, 2012. 55, 66, 95, 96

[124] Sajin Koroth and Jayalal Sarma. Depth lower bounds against circuits with sparse

orientation. In Conference on Computing and Combinatorics (COCOON), pages 596–

607, 2014. 124, 126, 145, 150

[125] Aleksej D. Korshunov. Monotone Boolean functions. Russian Mathematical Surveys,

58(5):929–1001, 2003. 14, 98

Bibliography 237

[126] Jan Kraj́ıcek. Bounded Arithmetic, Propositional Logic, and Complexity Theory.

Cambridge University Press, 1995. 1, 4

[127] Matthias Krause and Stefan Lucks. Pseudorandom functions in TC0 and crypto-

graphic limitations to proving lower bounds. Computational Complexity, 10(4):297–313,

2001. 190

[128] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University

Press, 1997. 1, 4, 12, 20, 52, 58, 125

[129] Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier

transform, and learnability. J. ACM, 40(3):607–620, 1993. 105, 187

[130] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-

threshold algorithm. In Machine Learning, pages 285–318, 1988. 163

[131] Florence J. MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting

Codes. North-Holland, 1977. 140

[132] A. A. Markov. On the inversion complexity of a system of functions. J. ACM,

5(4):331–334, 1958. 8, 99, 121, 122, 128, 129, 150

[133] Dániel Marx. Can you beat treewidth? Theory of Computing, 6(1):85–112, 2010. 16,

26

[134] Dániel Marx. Tractable hypergraph properties for constraint satisfaction and con-

junctive queries. J. ACM, 60(6):42, 2013. 16

[135] Jǐŕı Matoušek and Jan Vondrák. Lecture notes on the probabilistic method, 2008. 93

[136] Jǐŕı Matoušek. Geometric Discrepancy: An Illustrated Guide (Algorithms and Com-

binatorics). Springer, 1999. 173

[137] Peter Bro Miltersen, Vinodchandran N. Variyam, and Osamu Watanabe. Super-

polynomial versus half-exponential circuit size in the exponential hierarchy. In Computing

and Combinatorics Conference (COCOON), pages 210–220, 1999. 221

Bibliography 238

[138] Hiroki Morizumi. Limiting negations in formulas. In International Colloquium on

Automata, Languages and Programming (ICALP), pages 701–712, 2009. 100, 120

[139] Hiroki Morizumi. Limiting negations in non-deterministic circuits. Theor. Comput.

Sci., 410(38-40):3988–3994, 2009. 100, 120

[140] Elchanan Mossel and Ryan O’Donnell. On the noise sensitivity of monotone functions.

Random Struct. Algorithms, 23(3):333–350, 2003. 109, 111, 115, 116

[141] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions

and applications. SIAM J. Comput., 22(4):838–856, 1993. 127

[142] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-

random functions. J. ACM, 51(2):231–262, 2004. 190

[143] Eduard I. Nečiporuk. On a Boolean function. Soviet Math. Dokl., 7(4):999–1000,

1966. 52

[144] Ryan O’Donnell and Rocco A. Servedio. Learning monotone decision trees in poly-

nomial time. SIAM J. Comput., 37(3):827–844, 2007. 98

[145] Ryan O’Donnell and Karl Wimmer. KKL, Kruskal-Katona, and monotone nets. SIAM

J. Comput., 42(6):2375–2399, 2013. 98, 120

[146] Ryan O’Donnell. Computational applications of noise sensitivity. PhD thesis, MIT,

2003. 109

[147] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

12, 136, 140, 144

[148] Igor C. Oliveira. Algorithms versus circuit lower bounds. Electronic Colloquium on

Computational Complexity (ECCC), 13:117, 2013. 51

[149] Janos Pach and Pankaj Agrawal. Combinatorial Geometry. Wiley-Interscience, 1995.

173

[150] Christos H. Papadimitriou and Michael Sipser. Communication complexity. J. Com-

put. Syst. Sci., 28(2):260–269, 1984. 58

Bibliography 239

[151] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma.

Chicago J. Theor. Comput. Sci., 1999. 187

[152] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combina-

torica, 19(3):403–435, 1999. 14, 19, 20

[153] Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth.

J. ACM, 39(3):736–744, 1992. 14, 98, 146

[154] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci.,

55(1):24–35, 1997. 10, 50, 185, 189, 190, 200

[155] Alexander A. Razborov. Lower bounds on monotone complexity of the logical per-

manent. Mathematical Notes, 37(6):485–493, 1985. 5, 50

[156] Alexander A. Razborov. Lower bounds on the monotone complexity of some Boolean

functions. Doklady Akademii Nauk SSSR, 281:798–801, 1985. English translation in:

Soviet Mathematics Doklady 31:354–357, 1985. 5, 98

[157] Alexander A. Razborov. Lower bounds on the size of constant-depth networks over

a complete basis with logical addition. Mathematicheskie Zametki, 41(4):598–607, 1987.

52, 53, 66, 71, 72, 92, 95

[158] Alexander A. Razborov. Unprovability of lower bounds on circuit size in certain

fragments of bounded arithmetic. Izvestiya: Mathematics, 59(1):205–227, 1995. 189

[159] Neil Robertson and Paul D. Seymour. Graph minors V. Excluding a planar graph. J.

Comb. Theory, Ser. B, 41(1):92–114, 1986. 46

[160] Benjamin Rossman. Average-case complexity of detecting cliques. PhD thesis, MIT,

2010. 202

[161] Benjamin Rossman. The monotone complexity of k-clique on random graphs. SIAM

J. Comput., 43(1):256–279, 2014. 5

[162] Benjamin Rossman. Correlation bounds against monotone NC1. In Conference on

Computational Complexity (CCC), 2015. 100

Bibliography 240

[163] Steven Rudich and Leonard Berman. Optimal circuits and transitive automor-

phism groups. In International Colloquium on Automata, Languages and Programming

(ICALP), pages 516–524, 1988. 91

[164] Steven Rudich. Super-bits, demi-bits, and NP/qpoly-natural proofs. In Workshop on

Randomization and Computation (RANDOM), pages 85–93, 1997. 190

[165] Miklos Santha and Christopher B. Wilson. Limiting negations in constant depth

circuits. SIAM J. Comput., 22(2):294–302, 1993. 100, 147

[166] Rahul Santhanam and Ryan Williams. Uniform circuits, lower bounds, and QBF

algorithms. Electronic Colloquium on Computational Complexity (ECCC), 19:59, 2012.

189

[167] Rahul Santhanam. Fighting perebor: New and improved algorithms for formula and

QBF satisfiability. In Symposium on Foundations of Computer Science (FOCS), pages

183–192, 2010. 187

[168] Rahul Santhanam. Ironic complicity: Satisfiability algorithms and circuit lower

bounds. Bulletin of the EATCS, 106:31–52, 2012. 51, 186

[169] Dierk Schleicher and Malte Lackmann. An Invitation to Mathematics: From Compe-

titions to Research. Springer, 2011. 1

[170] Stefan Schneider. Satisfiability algorithms for restricted circuit classes. CoRR,

abs/1306.4029, 2013. 187

[171] Joel I. Seiferas, Michael J. Fischer, and Albert R. Meyer. Separating nondeterministic

time complexity classes. J. ACM, 25(1):146–167, 1978. 204

[172] Rocco Servedio. On learning monotone DNF under product distributions. Information

and Computation, 193(1):57–74, 2004. 98

[173] Kazuhisa Seto and Suguru Tamaki. A satisfiability algorithm and average-case hard-

ness for formulas over the full binary basis. Computational Complexity, 22(2):245–274,

2013. 187

Bibliography 241

[174] Claude Shannon. The synthesis of two-terminal switching circuits. Bell System Tech-

nical Journal, 28(1):59–98, 1949. 5

[175] Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Com-

pany, 1997. 2

[176] D. Sivakumar. Algorithmic derandomization via complexity theory. In Symposium

on Theory of Computing (STOC), pages 619–626, 2002. 173

[177] Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean

circuit complexity. In Symposium on Theory of Computing (STOC), pages 77–82, 1987.

52, 53, 66, 71, 92, 95

[178] Philip M. Spira. On time-hardware complexity tradeoffs for Boolean functions. In

Hawaii International Conference on System Sciences (HICSS), pages 525–527, 1971. 17

[179] Srikanth Srinivasan. On improved degree lower bounds for polynomial approximation.

In Conference on Foundations of Software Technology and Theoretical Computer Science

(FSTTCS), pages 201–212, 2013. 53, 54

[180] Shao Chin Sung and Keisuke Tanaka. An exponential gap with the removal of one

negation gate. Inf. Process. Lett., 82(3):155–157, 2002. 120

[181] Shao Chin Sung and Keisuke Tanaka. Limiting negations in bounded-depth circuits:

An extension of Markov’s theorem. Inf. Process. Lett., 90(1):15–20, 2004. 100, 120

[182] Michel Talagrand. How much are increasing sets positively correlated? Combinator-

ica, 16(2):243–258, 1996. 109, 131

[183] Éva Tardos. The gap between monotone and non-monotone circuit complexity is

exponential. Combinatorica, 8(1):141–142, 1988. 26, 120

[184] Jun Tarui. Smallest formulas for the parity of 2k variables are essentially unique.

Theor. Comput. Sci., 411(26-28):2623–2627, 2010. 91

[185] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput.,

20(5):865–877, 1991. 216

Bibliography 242

[186] Iannis Tourlakis. Time-space tradeoffs for SAT on nonuniform machines. J. Comput.

Syst. Sci., 63(2):268–287, 2001. 203

[187] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity

via uniform reductions. Computational Complexity, 16(4):331–364, 2007. 156, 169, 172

[188] Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst.

Sci., 67(2):419–440, 2003. 191, 221

[189] Salil P. Vadhan. Personal communication, 2012. 169

[190] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Symposium

on Mathematical Foundations of Computer Science (MFCS), pages 162–176, 1977. 51

[191] Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,

8:189–201, 1979. 216

[192] Leslie G. Valiant. Exponential lower bounds for restricted monotone circuits. In

Symposium on Theory of Computing (STOC), pages 110–117, 1983. 51

[193] Leslie G. Valiant. A theory of the learnable. In Symposium on Theory of Computing

(STOC), pages 436–445, 1984. 152, 216

[194] Leslie G. Valiant. Evolvability. J. ACM, 56(1), 2009. 157, 161

[195] Emanuele Viola. On the power of small-depth computation. Foundations and Trends

in Theoretical Computer Science, 5(1):1–72, 2009. 51, 54, 57

[196] Ilya Volkovich. On learning, lower bounds and (un)keeping promises. In Interna-

tional Colloquium on Automata, Languages, and Programming (ICALP), pages 1027–

1038, 2014. 181, 192

[197] Ingo Wegener. Relating monotone formula size and monotone depth of Boolean func-

tions. Inf. Process. Lett., 16(1):41–42, 1983. 17

[198] Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds.

In Symposium on Theory of Computing (STOC), pages 231–240, 2010. 10, 180, 186, 187,

188, 193, 202, 203

Bibliography 243

[199] Ryan Williams. Non-uniform ACC circuit lower bounds. In Conference on Compu-

tational Complexity (CCC), pages 115–125, 2011. 10, 180, 186, 188, 189, 193, 194, 201,

202, 203, 212

[200] Ryan Williams. Private communication, 2013. 188

[201] Ryan Williams. Natural proofs versus derandomization. In Symposium on Theory of

Computing (STOC), pages 21–30, 2013. 10, 186, 188, 190, 195, 198, 200, 207, 211, 212,

220

[202] Ryan Williams. Algorithms for circuits and circuits for algorithms. In Conference on

Computational Complexity (CCC), pages 248–261, 2014. 51

[203] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Symposium

on Theory of Computing (STOC), pages 664–673, 2014. 51

[204] Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2, 2014. 51

[205] Andrew Yao. Separating the polynomial-time hierarchy by oracles (preliminary ver-

sion). In Symposium on Foundations of Computer Science (FOCS), pages 1–10, 1985.

50, 189

[206] Stanislav Žák. A Turing machine time hierarchy. Theor. Comput. Sci., 26(3):327–333,

1983. 204

	Bibliographic Note
	Introduction
	Complexity Theory
	Different flavors of lower bounds
	The Boolean circuit model
	Main contributions and outline of this thesis

	Preliminaries and Notation
	I Circuit Lower Bounds
	On the monotone complexity of the satisfiability problem
	Background, results, and organization
	A transfer principle for constraint satisfaction problems
	Lower bounds for k-SAT and sparse CSPs
	Upper bounds via depth-width complexity
	An unconditional classification theorem for CSPs
	Example: The depth-width of the Cycle

	Majority is incompressible by AC0[p] circuits
	Background, results, and organization
	Preliminaries and notation
	The communication cost of AC0[p]-compression games
	Multiparty interactive compression
	The connection with circuits augmented with oracle gates
	Interactive compression versus computation
	An improved round separation theorem for AC0
	Open problems and further research directions
	Auxiliary results

	II Negations in Learning Theory and Cryptography
	Learning circuits with negations
	Background, results, and organization
	Structural results
	A learning algorithm for non-monotone circuits
	The complexity of learning non-monotone circuits
	Auxiliary results

	The power of negations in Cryptography
	Background, results, and organization
	Preliminaries and notation
	Basic results and technical background
	Lower bounds on negation complexity
	Open problems and further research directions
	Auxiliary results

	III Connections between Algorithms and Circuit Lower Bounds
	Constructing hard functions from learning algorithms
	Background, results, and organization
	Preliminaries and notation
	Lower bounds from mistake-bounded and exact learning algorithms
	Lower bounds from PAC learning algorithms
	Lower bounds from SQ and CSQ learning algorithms
	Open problems and further research directions
	Auxiliary results

	Satisfiability algorithms, useful properties, and lower bounds
	Background, results, and organization
	Preliminaries and notation
	Lower bounds from non-trivial satisfiability algorithms
	Useful properties and circuit lower bounds
	Applications and additional connections
	Open problems and further research directions
	Auxiliary results

	Concluding remarks
	Bibliography

