
NOTES ON THE METHOD OF APPROXIMATIONS
AND THE EMERGENCE OF THE FUSION METHOD
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Abstract. This text is mostly a technical exposition of some results from [Raz89] on the
power and limitations of the method of approximations. For clarity, we adopt a clear dis-
tinction between legitimate models in the “pure” sense, and models with auxiliary variables.
We refer to the use of the latter models in circuit lower bound proofs as the “generalized”
approximation method.

We carefully explain the origins of the fusion method as a certain instantiation of the gen-
eralized approximation method. While fusion can be described as an independent framework
(cf. [Kar93, Wig93]), establishing lower bounds using the fusion technique inherits some of
the difficulties that apply to the approximation method, as briefly mentioned in the con-
cluding remarks of [Raz89].

One of the purposes of our exposition is to clarify such difficulties for a reader that is not
so familiar with these approaches, and to explain the role of adaptivity and probabilistic
techniques when applying the fusion method against general boolean circuits.
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1. Formalization and limitations of the pure approximation method

1.1. Notation. We adopt most of the notation employed in Razborov’s work [Raz89].

- We let Bn denote {0, 1}n.
- Fn is the set of all functions f : Bn → {0, 1}.
- For u ∈ Bn, ui denotes the i-th bit of u.

- Xε
i

def
= {u ∈ Bn | ui = ε}, where ε ∈ {0, 1} and i ∈ [n].

- We let x1
i

def
= xi and x0

i
def
= ¬xi, and often view these literals as boolean functions in Fn.

- A circuit has gates {∨,∧} and inputs 0, 1, xεi , where ε ∈ {0, 1} and i ∈ [n].
- We use [[C]] ∈ Fn to denote the function computed by a circuit C.
- size(C) denotes the circuit size of C, i.e., the number of {∨,∧}-gates in C.
- size(f) is the minimum size of a circuit for f .
- Similarly, size+(g) denotes the monotone circuit size of a monotone function g.

Definition 1 (Legitimate model). A set M ⊆ Fn supplied with two commutative binary
operations

∨̄, ∧̄ : M×M→M
is a (general)1 legitimate model (of order n) if

{0, 1, xεi (i ∈ [n], ε ∈ {0, 1})} ⊆ M.

We describe a legitimate model using the tripe 〈M, ∨̄, ∧̄〉.

- Given C, we use C̄ to denote the circuit obtained from C after replacing {∨,∧} by {∨̄, ∧̄}.
The commutativity of the latter operations guarantees that the function inM computed by
the new circuit is well defined.
- Abusing notation, we use [[C̄]] to denote the function inM computed by theM-circuit C̄.
- We will denote boolean functions in M by f̄ , ḡ, etc.
- For convenience, we often view a boolean function in Fn as a subset of Bn, and write f ≤ g
to denote f ⊆ g.

Definition 2 (Error sets). We introduce notation to capture the set of “errors” when oper-
ations in {∨,∧} are performed over h̄, ḡ ∈M instead of the M-operations in {∨̄, ∧̄}:

δ+
∧ (ḡ, h̄)

def
= (ḡ ∧ h̄) \ (ḡ ∧̄ h̄),

δ−∧ (ḡ, h̄)
def
= (ḡ ∧̄ h̄) \ (ḡ ∧ h̄),

δ+
∨ (ḡ, h̄)

def
= (ḡ ∨ h̄) \ (ḡ ∨̄ h̄),

δ−∨ (ḡ, h̄)
def
= (ḡ ∨̄ h̄) \ (ḡ ∨ h̄).

Moreover, we set

∆+ def
= {δ+

? (ḡ, h̄) | ḡ, h̄ ∈M, ? ∈ {∧,∨}},

∆−
def
= {δ−? (ḡ, h̄) | ḡ, h̄ ∈M, ? ∈ {∧,∨}}.

We define the distance between f ∈ Fn and a function ḡ ∈M as follows.

1The functions ¬xi are not necessary if we are interested in lower bounds for monotone models of com-
putation. In this case, we might also refer to 〈M, ∨̄, ∧̄〉 as a monotone legitimate model.
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Definition 3 (Distance of f to ḡ ∈ M). Given f ∈ Fn and ḡ ∈ M, we let ρM(f, ḡ) be the
minimal t ∈ N∪{∞} for which there exist t triples (?i, āi, b̄i) with ?i ∈ {∨,∧} and āi, b̄i ∈M
such that

f ≤ ḡ ∨
t∨
i=1

δ+
?i

(āi, b̄i),

ḡ ≤ f ∨
t∨
i=1

δ−?i(āi, b̄i).

Intuitively, we approximate f by ḡ, and cover the errors/mistakes using the minimal
number of sets in ∆+ and ∆−. We introduce next a measure of distance from an arbitrary
f ∈ Fn to a legitimate model M.

Definition 4 (Distance to a legitimate model). Given f ∈ Fn and a legitimate model M of
order n, we let

ρ(f,M)
def
= min

ḡ∈M
ρM(f, ḡ).

1.2. Obtaining lower bounds via the pure approximation method. A fundamental
property of these definitions is the following connection between circuit complexity and
distance to a legitimate model.

Proposition 1 (Lower bounds via the pure approximation method). For every legitimate
model M of order n and circuit C over n input variables,

ρM([[C]], [[C̄]]) ≤ size(C).

Consequently, for every f ∈ Fn,

size(f) ≥ max
M

ρ(f,M) = max
M

min
ḡ∈M

ρM(f, ḡ),

where M ranges over all legitimate models of order n.

Proof. We say that a gate location g in C has a plus-error on a string w ∈ {0, 1}n if g(w) = 1
and ḡ(w) = 0, where ḡ is the corresponding gate of C̄. For the i-th {∨,∧}-gate in C, let gi
and hi be its predecessors in C, and ?i be the corresponding boolean operation. We claim
that

[[C]] ≤ [[C̄]] ∨
∨
i

δ+
?i

(ḡi, h̄i).

Let v be an input such that C(v) = 1 and C̄(v) = 0. In other words, v is a plus-error for the
output gate of C. Since no plus-error can occur over the input gates of C, there exists an
internal gate e in C such that e has a plus-error on v, but its predecessors gate locations g
and h in C do not have a plus-error on v. (For later reference, we say that such gate location
is a distinguished gate w.r.t the input v.) Let e = g ? h, where ? ∈ {∨,∧}. We claim that
v ∈ δ+

? (ḡ, h̄).

Recall that δ+
? (ḡ, h̄)

def
= (ḡ ? h̄) \ (ḡ ?̄ h̄). Thus we need to argue that (ḡ ? h̄)(v) = 1 and

(ḡ ?̄ h̄)(v) = 0. Notice that the assumptions over the gates e, g, and h on v imply that
e(v) = 1, ē(v) = 0, ḡ(v) ≥ g(v), and h̄(v) ≥ h(v). Finally, since e = g ? h, we have ē = ḡ ?̄ h̄.
These inequalities yield (ḡ ?̄ h̄)(v) = ē(v) = 0 and (ḡ ? h̄)(v) ≥ (g ? h)(v) = e(v) = 1, as
desired.
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The proof of the other direction in Definition 3 is similar, employing the natural analogue
notion of minus-errors instead of plus-errors. �

Consequently, for every legitimate modelM of order n and f ∈ Fn, ρM(f,M) ≤ size(f) =
O(2n/n). In particular, the distance to a legitimate model as introduced in Definition 4 is
always finite.

There is an analogue of Proposition 1 for monotone circuits and monotone legitimate
models. Under this restriction, it is possible to construct monotone models 〈Mn, ∨̄, ∧̄〉 for
explicit functions f such as k-clique witnessing that size+(f) ≥ ρMn(f,Mn) ≥ n(1−o(1))k

[Raz85], where k ∈ N.
We describe next the methodology employed in the proof of this lower bound, adapted

to the setting of general circuits and general legitimate models. We will refer to it as lower
bounds obtained via the approximation method using probabilistic counting arguments.

- We use boldface symbols such as ḡ and δ to denote random variables. In some places,
we abuse notation and also view such objects as distributions. The support of a random
variable x is denoted by support(x).
- If E denotes an inequality or a property involving random variables, we use 1[E] to denote
the event that E holds.

Fix a non-constant boolean function f ∈ Fn, and consider distributions v ∼ Dfyes and

u ∼ Dfno supported over f−1(1) and f−1(0), respectively. Now let

d+ def
= max

δ+∈∆+
Pr[δ+(v) = 1] and d−

def
= max

δ−∈∆−
Pr[δ−(u) = 1].

If both d+ and d− are non-zero,2 we set

ρ(f,M,v,u)
def
= min

ḡ∈M
max

{
Pr[ḡ(v) = 0]

d+
,
Pr[ḡ(u) = 1]

d−

}
.

This provides a convenient approach to prove lower bounds on ρ(f,M), as described next.

Proposition 2 (Lower bound using a probabilistic counting argument).
For every v and u as above, and ḡ ∈M, we have

ρM(f, ḡ) ≥ max{dPr[ḡ(v) = 0]/d+e, dPr[ḡ(u) = 1]/d−e}.

Therefore,

ρ(f,M) ≥ ρ(f,M,v,u).

Proof. It is not hard to see that ρM(f, ḡ) ≥ dPr[ḡ(v) = 0]/d+e using the corresponding defi-
nitions and the fact that v is supported over f−1(1). The proof that ρM(f, ḡ) ≥ dPr[ḡ(u) =
1]/d−e is similar. �

2Observe that this might not always be the case. For instance, if 〈M, ∨̄, ∧̄〉 = 〈Fn,∨,∧〉, the corresponding
error sets ∆+ and ∆− are trivial, and they contain only the empty set.
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1.3. Limitations of the pure approximation method. In this section we discuss limi-
tations of the approximation method formalized in the preceding section.

Theorem 1 (Limitations of the pure approximation method [Raz89]). There exists a uni-
versal constant γ > 0 for which the following holds. For every n ∈ N, f ∈ Fn, and legitimate
model M of order n,

ρ(f,M) ≤ γ · n2.

An even stronger limitation can be established in the case of lower bounds obtained by
the pure approximation method via probabilistic counting arguments.

Theorem 2 (Probabilistic counting arguments in the pure approximation method [Raz89]).
For every n ∈ N, non-constant boolean function f ∈ Fn, and legitimate model M of order
n, the following holds. If v ∼ Dfyes and u ∼ Dfno are supported over f−1(1) and f−1(0),
respectively, and the corresponding values d+ = d+(M,v) and d− = d−(M,u) are non-zero,
then

ρ(f,M,v,u) ≤ 24n+ 24.

The proofs of Theorems 1 and 2 rely on the following lemma.

Lemma 1 (Main technical lemma).
Let M be a legitimate model of order n, and f ∈ Fn be a non-constant boolean function.
Then there are distributions h̄, δ+, and δ−, supported over M, ∆+, and ∆−, respectively,
that satisfy the following properties.

• If v ∈ f−1(1), then Pr[h̄(v) = 0] ≤ (12n+ 12) · Pr[δ+(v) = 1].
• If u ∈ f−1(0), then Pr[h̄(u) = 1] ≤ (12n+ 12) · Pr[δ−(u) = 1].

Roughly speaking, Lemma 1 says that if a fixed input in {0, 1}n is not correctly computed
by a typical h̄ (with respect to f), then this input is covered with reasonable probability by
a random δ.

Assuming Lemma 1, we describe the proof of Theorem 2, which is simpler and of more
relevance to the results discussed in Section 2. We sketch the proof of Lemma 1 in Appendix
A.

Proof of Theorem 2. We are given f , M, v, and u. In order to upper bound ρ(f,M,v,u),
we prove the existence of a function ḡ ∈M such that

Pr[ḡ(v) = 0]

d+
≤ 24n+ 24 and

Pr[ḡ(u) = 1]

d−
≤ 24n+ 24.

Recall that d+ = maxδ+∈∆+ Pr[δ+(v) = 1], and d− = maxδ−∈∆− Pr[δ−(u) = 1]. Observe that

Pr[h̄(v) = 0] =
∑

v∈support(v)

Pr[h̄(v) = 0] · Pr[v = v]

(by Lemma 1) ≤
∑

v∈support(v)

(12n+ 12) · Pr[δ+(v) = 1] · Pr[v = v]

(independence of δ+ and v) = (12n+ 12) · Pr[δ+(v) = 1]

(definition of d+) ≤ (12n+ 12) · d+.
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Equivalently, using that d+ > 0,

Eḡ∼h̄
[

Pr[ḡ(v) = 0]

d+

]
= E

[
1

d+
· 1[h̄(v)=0]

]
≤ 12n+ 12.

A similar argument shows that

Eḡ∼h̄
[

Pr[ḡ(u) = 1]

d−

]
≤ 12n+ 12.

By linearity of expectation,

Eḡ∼h̄
[

Pr[ḡ(v) = 0]

d+
+

Pr[ḡ(u) = 1]

d−

]
≤ 24n+ 24.

This shows the existence of the desired function ḡ ∈M, which completes the proof. �

To sum up, the probabilistic counting arguments that were used to obtain lower bounds
in monotone circuit complexity cannot be use to prove super-linear lower bounds against
general circuits.

The proof of Theorem 1 is slightly more complicated. One needs to employ Lemma 1 and
an amplification argument using a majority function in order to bound the distance of an
arbitrary f ∈ Fn to M. This extra step weakens the upper bound to O(n2).3

2. The fusion framework and the generalized approximation method

2.1. Auxiliary variables and extended legitimate models. The results described in
this section use terminology that is slightly different than the one appearing in [Raz89].

In order to go beyond the limitations described in Theorem 1, we will introduce in this
section the concept of an extended legitimate model for a function f ∈ Fn. Roughly speaking,
we will consider legitimate modelsM of order N > n and an embedding of f as a projection
of a boolean function fN ∈ FN . The important points are that size(f) = size(FN) and
size(fN) ≥ ρ(fN ,M). However, since M is of order N , we have more flexibility when
defining its operations ∨̄, ∧̄ : M×M→M (given the additional N − n dimensions). This
provides the possibility of proving stronger lower bounds on ρ(fN ,M), and consequently
also on size(f).4 We refer to lower bounds obtained via this technique as the generalized
approximation method.

Definition 5 (Extended legitimate models). Let f ∈ Fn, and N ≥ n. We say that 〈M, ∨̄, ∧̄〉
is an extended legitimate model for f (of order N) is the following holds :

• M ⊆ FN .
• ∨̄, ∧̄ : M×M→M are commutative operations.
• {0, 1, xεi (i ∈ [n], ε ∈ {0, 1})} ⊆ M.

(Observe that the functions xn+1, . . . , xN ∈ FN are not required to be in M.)

3While the argument in [Raz89] directly produces an M-approximator for each f ∈ Fn, we remark
that by the results in [RR97, Section 5] it is enough to show that a random function h ∼ Fn satisfies
ρ(h,M) = O(n2).

4The reason we call M an extended legitimate model instead of simply a legitimate model of order
N is because (due to our embedding of f in fN as a projection) there is no need to force the functions
xn+1, . . . , xN ∈ FN to be in M (as in Definition 1). We remark that this distinction is not explicitly made
in [Raz89, pg. 170], though it appears to us that the legitimate models investigated there are not required
to contain the functions xn+1, . . . , xN ∈ FN .
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Remark 1. Observe that in this definition the model M depends on the parameter n, the
number of input arguments of f , but not on the values of f . Since all concrete extended
legitimate models discussed later in the text will actually rely on the values of the function
f , we maintain the current terminology.

- Given f ∈ Fn and N ≥ n, we use fN ∈ FN to denote the boolean function defined as

follows. For every x ∈ {0, 1}n and x′ ∈ {0, 1}N−n, fN(xx′)
def
= f(x).

- For M an extended legitimate model for f ∈ Fn of order N , h ∈ FN , and ḡ ∈ M, the
definitions of ρM(h, ḡ) and ρ(h,M) remain unchanged.

Claim 1. For f ∈ Fn, fN ∈ FN , and M as above,

size(f) = size(fN) ≥ ρ(fN ,M).

Proof. First, size(f) ≤ size(FN) since a circuit C(x1, . . . , xn) for f can also be viewed as a
circuit C(x1, . . . , xN) for fN . On the other hand, from any circuit C(x1, . . . , xN) for fN , the

circuit C ′(x1, . . . , xn)
def
= C(x1, . . . , xn,~0) computes fn, and has no larger size that C.

In order to see that ρ(fN ,M) ≤ size(fN), let C(x1, . . . , xN) be an optimal circuit for fN ,

the embedding of f in FN . This time we view the circuit C ′(x1, . . . , xn)
def
= C(x1, . . . , xn,~0)

as a circuit computing a function in FN . Clearly, fN = [[C ′]], since fN does not depend
on the input variables xn+1, . . . , xN . Now an argument entirely analogous to the proof of
Proposition 1 establishes that ρ(fN ,M) ≤ size(C ′) ≤ size(fN). �

- From now on, let f ∈ Fn be a non-constant boolean function.

- Let U
def
= f−1(0), and V

def
= f−1(1).

- We use P(U) to denote the set of subsets of U . For a family F ⊆ P(U), we use F(A) ∈
{0, 1} to denote whether A ∈ F .

Definition 6 (Semi-filter consistent with v). We say that a family F ⊆ P(U) is a semi-filter
if the following conditions hold :

• (non-trivial) F(∅) = 0 and F(U) = 1.
• (monotonicity) For A ⊆ B ⊆ U , F(A) ≤ F(B).

A semi-filter F is said to be consistent with v ∈ V if

• For each i ∈ [n], F(U ∩Xε
i ) = vi ⊕ ε⊕ 1.

Let Fv denote the class of all semi-filters consistent with v ∈ V , and set F
def
=
⋃
v∈V Fv.

- Observe that by definition if a semi-filter F is consistent with v1 and with v2, then v1 = v2.
We let v(F) be the unique element v ∈ V such that F ∈ Fv.

The extended legitimate models M(F′).

- Let F′ ⊆ F be a non-empty collection of semi-filters, and N
def
= n+ dlog |F′|e.

- In order to avoid trivial considerations, we assume that there exist v1, v2 ∈ V with v1 6= v2

such that Fv1 ∩ F′ 6= ∅ and Fv2 ∩ F′ 6= ∅. We say that a collection of semi-filters with this
property is a non-trivial collection.
- Fix a surjective function γ : {0, 1}N−n → F′. From now on, we identify y ∈ {0, 1}N−n with
the semi-filter F = γ(y).
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Given F′ as above, we define an extended legitimate model of order N for the boolean
function f ∈ Fn. In order to do that, to each g ∈ Fn we associate a function ḡ ∈ FN , defined
as follows:

ḡ(x, y) = ḡ(x,F) =

{
g(x) if x 6= v(F),

F(Ug) if x = v(F),

where Ug
def
= U ∩ g−1(1). We let M(F′)

def
= {ḡ | g ∈ Fn}. Finally, we define its corresponding

binary operations ∨̄ and ∧̄ by:

ḡ ∨̄ h̄ def
= g ∨ h and ḡ ∧̄ h̄ def

= g ∧ h.

Proposition 3. The operations ∨̄, ∧̄ : M×M→M are well-defined, and 〈M(F′), ∨̄, ∧̄〉 is
an extended legitimate model for f of order N .

Proof. It is clear that M(F′) ⊆ FN , and that ∨̄, ∧̄ : M×M→M are commutative opera-
tions. It also follows easily from the definitions that {0, 1, xεi (i ∈ [n], ε ∈ {0, 1})} ⊆ M(F′)
as functions in FN , since the definitions of ḡ(x,F) and of semi-filter consistent with v imply
that 0̄ = 0, 1̄ = 1, and that xεi = xεi . Finally, to prove that the operations are well-defined,
observe that if g1 = g2 for g1, g2 ∈ Fn, then g1 = g2. This follows immediately from the
definition of ḡ, our assumptions on F′, and the fact that the map γ is surjective. �

2.2. Extended legitimate models and the fusion method. In this section we discuss
special features of the models M(F′). Such properties considerably simplify the gener-
alized approximation method, and give rise to a certain combinatorial characterization of
ρ(fN ,M(F′)) as a cover problem. We refer to the corresponding combinatorial cover problem
and its investigation as the fusion method.

Let δ+
∧ , δ−∧ , δ+

∨ and δ−∨ be the error functions in M(F′)×M(F′)→ P({0, 1}N) associated
to M(F′) (Definition 2). Recall that f ∈ Fn embeds into fN ∈ FN .

Theorem 3 (The fusion method for lower bounds). Let M =M(F′) be the extended legiti-
mate model for f ∈ Fn of order N under consideration. Then,

(i) For any ḡ, h̄ ∈M,

δ−∧ (ḡ, h̄) = δ+
∨ (ḡ, h̄) = ∅.

Consequently, the mistakes appearing during the approximation can only be covered

by sets in ∆+
∧

def
= {δ+

∧ (ḡ, h̄) | ḡ, h̄ ∈M} and ∆−∨
def
= {δ−∨ (ḡ, h̄) | ḡ, h̄ ∈M}.

(ii) The only element in M that can be used to approximate fN ∈ FN as given by Defi-
nition 3 is the function f̄ . In other words,

ρ(fN ,M) = ρM(fN , f̄) ∈ N and ρM(fN , ḡ) =∞ for every ḡ 6= f̄ in M.

Moreover, f̄ ≤ fN , and no sets from ∆−∨ are required for the approximation.
(iii) For A,B ⊆ U , we say that the pair (A,B) covers a semi-filter F ∈ F′ if

F(A) = 1, F(B) = 1, F(A ∩B) = 0.

Then ρM(fN , f̄) is the minimum number of pairs (A,B) that cover all semi-filters in
F′. Furthermore, a mistake occurs on an input (x, y) ∈ {0, 1}N if and only if it is of
the form (v(F),F).
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Proof. In order to prove (i), let ḡ, h̄ ∈M. As in the proof of Proposition 3, there are unique
functions g, h ∈ Fn mapping to ḡ and h̄, respectively. Observe that:

δ+
∨ (ḡ, h̄) = (ḡ ∨ h̄) \ (ḡ ∨̄ h̄) = (ḡ ∨ h̄) \ (g ∨ h),

δ−∧ (ḡ, h̄) = (ḡ ∧̄ h̄) \ (ḡ ∧ h̄) = (g ∧ h) \ (ḡ ∧ h̄).

Let (x, y) = (x,F) ∈ {0, 1}N be an input. If x 6= v(F) then ḡ(x,F) = g(x), h̄(x,F) = h(x),
(g ∨ h)(x,F) = (g ∨ h)(x), etc., which imply that the previous equations evaluate to 0 on
(x,F). On the other hand, if x 6= v(F), the expressions evaluate on (x,F) to

(F(Ug) ∨ F(Uh)) \ F(Ug∨h) and F(Ug∧h) \ (F(Ug) ∧ F(Uh)),

respectively. Since F is a monotone semi-filter, it follows that both expressions evaluate to
0 as well. This completes the proof that the sets δ+

∨ and δ−∧ are trivial.

In (ii), it is clear that ρ(fN ,M) is finite, since ρ(fN ,M) ≤ size(fN) ≤ 2n according to
Claim 1.

On the other hand, suppose ḡ 6= f̄ . Then g 6= f , as observed before. Let w ∈ {0, 1}n
be an input such that f(w) 6= g(w), and F ∈ F′ be a semi-filter such that v(F) 6= w
(such semi-filter exists since F′ is assumed to be a non-trivial collection). By definition,
f̄(w,F) = f(w) = fN(w,F) and ḡ(w,F) = g(w), which gives fN(w,F) 6= ḡ(w,F). Since
w 6= v(F), it is easy to see that the input (w,F) cannot be covered by an error set. This
shows that ρM(fN , ḡ) =∞.

For the moreover part of the claim, observe that on an input (x,F) with x 6= v(F) we
get f̄(x,F) = f(x) = fN(x), while if x = v(F), we obtain f̄(x,F) = F(Uf ) = F(∅) = 0. In
particular, by inspecting Definition 3 it is easy to see that sets in ∆−∨ do not play a role in
the approximation.

We proceed with the proof of (iii). By the previously established claims, ρM(fN , f̄) is the
minimum number t ∈ N of sets δ+

∧ (ḡi, h̄i) ∈ ∆+
∧ such that

fN ≤ f̄ ∨
t∨
i=1

δ+
∧ (ḡi, h̄i).

Let T
def
= {(x,F) ∈ {0, 1}N | fN(x,F) = 1 and f̄(x,F) = 0} be the set of inputs that need

to be covered. We claim that (x,F) ∈ T if and only if x = v(F). Indeed, if fN(x,F) = 1
and f̄(x,F) = 0 we must have x = v(F), as otherwise fN(x,F) = f̄(x,F) = f(x). On the
other hand, if x = v(F) note that fN(x,F) = f(x) = 1, using that v(F) ∈ V = f−1(1). In
addition, f̄(x,F) = F(Uf ) = F(∅) = 0, which is a property of semi-filters.

Now to cover an input (x,F) satisfying x = v(F) by a set in ∆+
∧ , it is necessary and

sufficient that

(ḡ ∧ h̄)(x,F) = 1 and (ḡ ∧̄ h̄)(x,F) = (g ∧ h)(x,F) = 0.

Using x = v(F), this is equivalent to

F(Ug) = F(Uh) = 1 and F(Ug∧h) = 0.

Finally, during the construction of the cover the sets Ug = A and Uh = B can be arbitrary
subsets of U , by the fact thatM is in one-to-one correspondence with Fn. This proves that
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ρM(fN , f̄) is precisely the minimum number of pairs (A,B) of subsets of U that cover all
semi-filters in F′. �

Observe that in the proof we have used that the second condition in the definition of
ḡ(x, y) enforces that x = v(F) ∈ V is a positive input of f . However, it is not necessary in
the proof of Theorem 3 to use the assumption that the semi-filter F is consistent with v.

Consider now the entire collection F =
⋃
v∈V Fv as introduced in Definition 6, and let

Mmax
def
= M(F) ⊆ FNmax be the corresponding extended legitimate model of f (over some

choice of the surjective map γ).

Theorem 4 (Completeness of the fusion method). There exists a universal constant ζ > 0
independent of n, f ∈ Fn, and Mmax for which the following holds :

size(f) ≤ ζ · (ρ(fNmax ,Mmax) + n)3.

In other words, it follows from Claim 1, Theorem 3, and Theorem 4 that the circuit
complexity of a boolean function f : {0, 1}n → {0, 1} can be characterized up to a polynomial
by a purely combinatorial cover problem. A proof of Theorem 4 can be found in [Raz89].
We remark that the proof of this result makes crucial use that each semi-filter is consistent
with a (positive) input of f .

2.3. Probabilistic counting arguments in the generalized approximation method.
Let f ∈ Fn, and M be an arbitrary extended legitimate model of order N for f , where
N ≥ n. Following our convention, fN ∈ FN denotes the extension of f to an N -bit function
that depends only on x1, . . . , xn.

Similarly to our treatment of probabilistic counting arguments in Section 1.2, consider
random variables α and β supported over f−1

N (1) and f−1
N (0), respectively. Define d+ and

d− as before. If these values are non-zero, ρ(fN ,M,α,β) is well-defined, and it is not hard
to show that

size(f) = size(fN) ≥ ρ(fN ,M) ≥ ρ(fN ,M,α,β).

It thus make sense to consider possibly stronger bounds that one can obtain on ρ(fn,M,α,β),
i.e., the power of probabilistic counting arguments in the generalized approximation method.

Unfortunately, an analogue of Lemma 1 still holds in this context, as stated next.

Lemma 2. Let M be an extended legitimate model of order N for f ∈ Fn, where f is non-
constant and N ≥ n. There are distributions h̄, δ+, and δ−, supported over M, ∆+, and
∆−, respectively, that satisfy the following properties.

• If α ∈ f−1
N (1), then Pr[h̄(α) = 0] ≤ (12n+ 12) · Pr[δ+(α) = 1].

• If β ∈ f−1
N (0), then Pr[h̄(β) = 1] ≤ (12n+ 12) · Pr[δ−(β) = 1].

Crucially, in the previous inequalities we have the parameter n instead of N . We discuss
the proof of this lemma in Section A (it is immediate from the proof of Lemma 1, and in
[Raz89] these lemmas are treated together).

Proceeding as in the proof of Theorem 2, we get the following consequence.

Theorem 5. Let f , n, M, fN , α, and β be as described above. If d+ = d+(M,α) and
d− = d−(M,β) are non-zero, then

ρ(f,M,α,β) ≤ 24n+ 24.
10



In particular, one cannot use an extended model M of order N � n and probabilistic
counting arguments to a prove super-linear circuit lower bound for f .

However, we stress that the analogue of Theorem 1 obtained via Lemma 2 only provides
an upper bound of order N · n. Indeed, as we explained in Section 2.2, circuit lower bounds
for f : {0, 1}n → {0, 1} are in fact polynomially equivalent to establishing lower bounds on
ρ(fN ,M), for an appropriate choice of the extended legitimate modelM (such as the model
Mmax). Thus non-trivial lower bounds can be established within the generalized approxima-
tion method framework via techniques that go beyond probabilistic counting arguments.

2.4. On proving non-monotone lower bounds using the fusion framework. We dis-
cuss in this section the role of probabilistic arguments in the context of the fusion framework,
i.e., with respect to the extended models M = M(F′), where F′ ⊆

⋃
v∈f−1(1) Fv (Definition

6) is non-trivial.
Recall that ρ(fN ,M) = ρM(fN , f̄) and f̄ ≤ fN (Theorem 3). Consequently, for any

distribution β supported over f−1
N (0), we have Pr[f̄(β) = 1] = 0. This implies that

ρ(fN ,M,α,β) = 0, i.e., the approach described in Section 2.3 is trivial in the fusion context.
In order to remedy this situation, it is natural to consider a one-sided version of this

approach. We crucially use Theorem 3 to simplify our notation. Fix a single distribution

α supported over T
def
= {(v(F),F) | F ∈ F′} ⊆ f−1

N (1) (recall that fN(v,F) = f(v) = 1,
since v is by assumption a positive input of f). Here we focused on this particular subset of
f−1
N (1) because by Theorem 3 (iii) errors cannot occur over f−1

N (1) \ T . Observe that α is
simply a distribution over F′, given that v(F) is determined by F .

In addition, we let d+ def
= maxδ+∧∈∆+

∧
Pr[δ+

∧ (α) = 1]. We take the maximum over ∆+
∧ instead

of ∆+ thanks to Theorem 3 (i). Observe that d+ is simply the maximum measure (with
respect to α) of the number of semi-filters in F′ that are covered by a single pair (A,B) with
A,B ⊆ U , according to Theorem 3 (iii). If d+ 6= 0, we set

ρ(fN ,M,α)
def
=

Pr[f̄(α) = 0]

d+
=

1

d+
.

We consider only f̄ thanks to Theorem 3 (ii). It should be clear that

ρ(fN ,M) = ρ(fN , f̄) ≥ ρ(fN ,M,α).

We proceed to describe an important difficulty when one tries to apply the fusion method
to non-monotone circuits. The one-sided variant of Lemmas 1 and 2 can be stated in the
language of the fusion method as follows.

Lemma 3 (Following the concluding remarks in [Raz89]). There exists a distribution (A,B)
over pairs (A,B) with A,B ⊆ U = f−1(0) such that for every semi-filter F ∈ F′,

Pr[ (A,B) covers F ] ≥ 1

8n+ 8
.

Lemma 3 is obtained by specializing the proof of Lemma 2 to the extended legitimate
models employed in the fusion method. While we will discuss the argument in Section A,
let us emphasize that so far we have only adapted the terminology of Section 2.3 to fusion
(thanks to Theorem 3). In order to establish Lemma 3, it is enough to argue that the
analogue of Pr[h̄(α) = 0] from Lemma 2 occurs with probability 1 due to our choice of
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M(F′), and to use properties of this class of extended legitimate models to obtain slightly
better bounds.

A simpler averaging argument (compared to the proofs of Theorems 2 and 5) implies the
following result.

Theorem 6. Under the notation and assumptions made above,

ρ(fN ,M,α) ≤ 8n+ 8.

In contrast to the monotone case (in the context of the pure approximation method), this
result says that the power of the fusion method can only be harnessed via the use of tech-
niques that either go beyond or adapt the aforementioned probabilistic counting arguments.
(Recall that, by Theorem 4, fusion can be used to characterize circuit size.)

Can probabilistic arguments still be useful? The next discussion assumes basic famil-
iarity with [Kar93] or [Raz89, Section 4], where it is explained how the pairs (A,B) that
appear in Theorem 3 are connected to the AND-gates of a boolean circuit.

The right way to proceed in a lower bound proof against general circuits in the fusion
framework is by picking the distribution over semi-filters after a candidate small circuit C
has been exposed. If C could correctly compute f , its set ΓC of AND-gates (A,B) (relative
to U = f−1(0)) would cover all semi-filters in F (in the sense of Theorem 3). But if f is hard
and C is small (say, of size s), we can inspect the collection ΓC of pairs (A,B) and produce
a distribution αC supported over F such that for every (A,B) ∈ ΓC ,

Pr
(v(F),F)∼αC

[ (A,B) covers F ] < 1/s.

If this can be done for every circuit C of size ≤ s, then size(f) > s.
Clearly, if f is not computable by size-s circuits, then there is some distribution αC with

this property for each circuit C of size ≤ s. The challenge of course is to unconditionally
establish the existence of such distribution, which is equivalent to proving the corresponding
circuit lower bound. (We remark that the strategy employed in [Kar93] for monotone circuit
lower bounds for 3-clique can be naturally formulated in this context.)

We conclude that for non-monotone boolean circuits the generalized approximation method
(which includes the fusion method) needs to be applied in an adaptive way if the lower bound
proof is based solely on probabilistic counting arguments (as opposed to the simpler case
of monotone circuits). One cannot hope to consider a fixed distribution of input instances
(pure approximation) or semi-filters (fusion) and to count the number of errors in each ap-
proximation step. However, we stress that a successful proof might still employ probabilistic
arguments in a crucial way, by adapting the distribution over instances given the circuit that
must be defeated.
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Appendix A. The proof of Lemma 1 and its variants

In this section we sketch the proofs of Lemmas 1, 2, and 3.

Proof of Lemma 1. Let M be a legitimate model of order n, and f ∈ Fn be a non-constant
function. Our goal is to define distributions h̄, δ+, and δ− with the desired properties. For
simplicity, we will focus here only on h̄ and δ+ (the construction and argument for δ− is not
very different). Recall the proof of Proposition 1, and the definition of distinguished gate
location. There one constructs an M-circuit C from a circuit C that correctly computes f .
This M-circuit and its gate locations are used to define the corresponding function in M
and the pairs associated with the sets in ∆+, respectively.

The argument here will borrow part of this idea. The main difficulty is that we don’t have
a circuit for f of small size. Informally, the proof consists of three mains steps:

(i) Define a “brute-force” circuit C of size exponential in n that correctly computes f , and
consider its corresponding M-circuit C and associated function h̄.

(ii) For each v ∈ f−1(1) that is a plus-error for the pair (C, C), we isolate a set Sv of O(n)
gate locations in C that will always contain a distinguished gate location for v (in particular,
it covers this mistake, as in the proof of Proposition 1). C is actually a random circuit, and
while different inputs v will be associated to different gate locations Sv, all circuits in the
support of C share the same structure (i.e., directed acyclic graph), and for those that make
a plus-error on v, we can take the same (small) set Sv of gate locations.

(iii) Crucially, these properties and the randomized construction of C will allow us to define
δ+ in a way that is independent of v, while we will still able to prove that for each v ∈ f−1(1),

(1) Pr[h̄(v) = 0] ≤ (12n+ 12) · Pr[δ+(v) = 1].

In other words, distinguished gates (for each fixed v) will be sampled by δ+ with the desired
probability, although the definition of δ+ does not depend on a particular v.

We provide more details now. For g ∈ Fn over input variables x1, . . . , xn, we recursively
define a circuit Cg using binary operations in {∨,∧} and inputs in {x1, . . . , xd, x1, . . . , xd, 0, 1}
such that [[Cg]] = g. For ε ∈ {0, 1}, set gε

def
= g(x1, . . . , xd−1, ε) ∈ Fd−1. We let

(2) Cg
def
= (Cg0 ∧ x0

d) ∨ (Cg1 ∧ x1
d),

where in the base case consisting of a boolean function over no input variables (i.e. a con-
stant), the corresponding sub-circuit is replaced by the appropriate constant (no syntactic
simplifications take place over the circuits produced by this recursive procedure). Roughly
speaking, Cg can be viewed as a complete decision tree for g.

First, we define h̄. Let gn be a random function in Fn. Clearly,

f = gn ⊕ (gn ⊕ f) = (gn ∧ (gn ⊕ f ⊕ 1)) ∨ ((gn ⊕ 1) ∧ (gn ⊕ f)),

for any function in the support of gn. We define the random circuit

(3) C
def
= (Cgn ∧ Cgn⊕f⊕1) ∨ (Cgn⊕1 ∧ Cgn⊕f ).
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Since each circuit Ch computes the function h, it follows that [[C]] computes f with proba-

bility 1. We let h̄
def
= [[C̄]] be the function inM computed by theM-circuit C̄. Observe that

all circuits in the support of C share the same directed acyclic graph, with variations only
on the labels corresponding to the constants 0 and 1 (i.e., the base case). This completes
our discussion of Part (i).

Now fix an input v ∈ f−1(1) and the circuit Dg in the support of C that is obtained from
a function g in the support of gn. Following the proof of Proposition 1, we say that a gate
e of Dg has a plus-error on v if e(v) = 1 and ē(v) = 0, where ē is the function computed
at the corresponding gate of the M-circuit Dg. Recall that Dg computes f , which implies
that Dg(v) = 1, and that errors do not occur at locations corresponding to the input literals
of Dg. Therefore, if Dg(v) = 0 there is some internal {∨,∧}-gate e where a plus-error must
occur but no plus-error occur at the gates feeding e. In other words, e is a distinguished
gate location (with respect to v). The importance of distinguished gates is that they can fix
a mistake on v, as in the proof of Proposition 1.

Recall that Dg = (Cg ∧ Cg⊕f⊕1) ∨ (Cg⊕1 ∧ Cg⊕f ). Consider for each such sub-circuit the
leaf addressed by v in the natural way, and marked by a constant in {0, 1} (it corresponds
to Cgv in Equation 2, where we go left or right according to the bits of v). Each such leaf
induces a unique path to the root node of Dg. We say that a gate location of Dg is in Sv
if it is an ∨-gate or ∧-gate appearing in one of the four paths from these leaves to the root
of Dg. Consequently, there are 3 + 4 · 3n gate locations in Sv. Note that the definition of
Sv does not depend on g or on Dg, only on the underlying graph of the circuit, which we
denote by G = (V,E).

Claim 2. If Dg(v) = 0 then there is some gate location in Sv corresponding to operation ei?e2

over sub-circuits e1 and e2 (with respect to the circuits Dg and Dg) such that v ∈ δ+
? (e1, e2).

We argue as follows. If one of the three gates appearing in Equation 3 are distinguished
gates for Dg and Dg we are done, since these are in Sv by definition. Otherwise, there is a
plus-error for v on the top gate of one of the four sub-circuits, say, in Cg. The crucial obser-
vation is that on the path from the leaf to the top gate of Cg marking the corresponding gate
locations in Sv, there must be a distinguished gate location somewhere along the path that
produces a plus-error (with respect to Cg and Cg), but whose preceding input gates cause
no plus-error on v. This is because there is no plus-error occurring on a leaf of Dg, and no
plus-error can occur on the ∧-gate of the sub-circuits coming from Equation 2 when we take
the wrong path with respect to v: the literal xεd evaluates to 0 on v when we deviate from
the correct path, and so does the ∧-gate above this literal. This completes our discussion of
Part (ii).

We proceed with Part (iii), starting with the definition of δ+ (the random variables
appearing below are independent of the construction of h̄). We then explain why this
definition satisfies Equation 1 for each choice of v ∈ f−1(1).
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Let `γ be uniformly and independently sampled from Fγ, for each choice of γ ∈ {1, . . . , n}.
Pick independently and uniformly at random γ ∈ {1, . . . , n,⊕} and t ∈ {0, 1,∨}. Now let

δ+ def
=


δ+
∧ ([[C`tγ ]], xtγ) if γ ∈ {1, . . . , n} and t ∈ {0, 1},
δ+
∨ ([[C`0γ ∧ x0

γ ]], [[C`1γ ∧ x1
γ ]]) if γ ∈ {1, . . . , n} and t = ∨,

δ+
∧ ([[C`n⊕t ]], [[C`n⊕t⊕f⊕1 ]]) if γ = ⊕ and t ∈ {0, 1},
δ+
∨ ([[C`n ∧ C`n⊕f⊕1 ]], [[C`n⊕1 ∧ C`n⊕f ]]) if γ = ⊕ and t = ∨.

We say that the pair (γ, t) defines the type of δ+. Note that the random variable type has

support size 3n+ 3. For convenience, let W
def
= Support(type).

We consider a fixed map ψ : V (G)\{leaves of G} → W , where G is the underlying directed
acyclic graph of C. This is done in the natural way, and won’t be formalized here (observe
that δ+ closely follows the structure of C). In particular, the map ψ labels by a type each
gate location in Sv ⊆ V (G), for an arbitrary v ∈ f−1(1).

Fix v ∈ f−1(1). Given a function gn ∈ Fn which induces circuits C and C and a function
h̄ such that h̄(v) = 0, we consider a decomposition Pr[h̄(v) = 0] =

∑
w∈W pvw where each

value pvw is defined as follows. Say that gn = g. We fix for this choice of v and g a
canonical distinguished gate location in Sv ⊆ V (G), which is guaranteed to exist by Claim
2. This provides a corresponding type given by the map ψ. Then each value pvw collects
the probability mass of the type w over those functions g in the support of C that yield a
function h̄ such that Pr[h̄(v) = 0].

Under these definitions, it is possible to show that:

Pr[δ+(v) = 1] =
∑
w∈W

1

3n+ 3
· Pr[δ+(v) = 1 | type = w] ≥ 1

3n+ 3

∑
w

pvw
4

=
Pr[h̄(v) = 0]

12n+ 12
,

where we leave the formal verification that Pr[δ+(v) = 1 | type = w] ≥ pvw/4 for each type
w ∈ W to the reader. The crucial point is that each sub-circuit of the four main sub-circuits
in Equation 3 is a random circuit, in the sense that each function gn, gn⊕f ⊕1, gn⊕1, and
gn ⊕ f appearing in that equation is uniformly random over Fn, and so are the 0/1-values
labeling the leaves of the corresponding subgraphs of G. This justifies the definition of δ+,
and completes our description of Part (iii). �

Proof of Lemma 2. The proof is the same, except for the following change of perspective.
We view each circuit C as a circuit that computes the function fN ∈ FN , instead of a
function in Fn. Nevertheless, C as a (random) syntactical object will be labelled only by
literals produced from x1, . . . , xn (recall that fN only depends on the initial n inputs). The
size of C is still exponential in n (instead of N), and |Sv| = O(n) as before. The rest of
the argument is unaffected, with fN and α ∈ f−1

N (1) substituted for f and v (respectively)
whenever necessary. �

Proof of Lemma 3. The statement of this lemma uses a different terminology when compared
to the statement of Lemma 2, but the argument is essentially the same. This is because the
fusion method is a particular case of the generalized approximation method, as explained in
Section 2.2. The change of terminology is motivated by Theorem 3. The distribution (A,B)
is simply the distribution induced by δ+, which we discuss next.

First, observe that the second case of Lemma 2 is not necessary here, thanks to Theorem 3
(ii) and the one-sided formulation described in Section 2.4. Thus in this proof we only need
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to consider h̄ and δ+, as covered in the proof of Lemma 1 and its generalization described
above (Lemma 2).

We proceed as in the proof of Lemma 2, defining a random circuit C, the sets Sα, etc.
There are only two modifications in the argument. First, observe that Pr[h̄(α) = 0] = 1,
where h̄ is the function computed by the M(F′)-circuit C. Indeed, it follows that h̄ = f̄
using the definitions of C and of the operations ∧̄ and ∨̄ in M(F′). Furthermore, the only
inputs α ∈ f−1

N (1) that need to be considered in Lemma 3 are of the form (v(F),F), following
the discussion in Section 2.4. On such inputs, by definition, we have f̄(v(F),F) = F(Uf ) =
F(∅) = 0.

Finally, observe that in Lemma 3 we use 8n+8 instead of the term 12n+12 which appears
in Lemma 2. This is because only ∧-gates are needed to cover the errors in the extended
legitimate models employed in the fusion method (Theorem 3), and the number of types of
gates appearing in the definition of δ+ can be reduced accordingly. �
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