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Abstract

We give an elementary algorithmic argument that sheds light on
the concentration of measure phenomenon observed in the sum of inde-
pendent random variables. Roughly speaking, we observe that without
concentration of measure, it would be possible to predict the outcome
of a fair coin toss with probability greater than 1/2. We use this idea
to derive an alternative proof for a particular case of the Chernoff-
Hoeffding bound.

1 Introduction.

The Chernoff-Hoeffding bound [1, 2] is one of the most useful inequalities in
discrete mathematics and theoretical computer science. In its simpler form,
it states that the sum X =

∑
iXi of n independent uniformly distributed

0/1 random variables is sharply concentrated around its expected value. The
textbook proof of this result proceeds by applying Markov’s inequality to
the moment generating function of X.

We provide a new proof of a very useful case of this inequality, namely,
a strong bound for deviations of magnitude at least εn around the expected
value n/2, for any fixed constant ε > 0. Although quite simple combinatorial
proofs exist for this particular concentration bound, we believe that our
proof may be of independent interest.

The Chernoff-Hoeffding bound is the simplest example of the concen-
tration of measure phenomenon observed in probability theory. From a
conceptual point of view, our main contribution is an algorithmic explana-
tion for the existence of concentration of measure. We observe that without
this phenomenon, it would be possible to predict the outcome of a fair coin
toss with non-trivial success probability.
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Our argument relies on a learning algorithm discovered about two decades
ago by Littlestone and Warmuth [3], the Weighted Majority Algorithm.
Consider a sequence of n boolean trials, and a learner that makes a predic-
tion for each trial. The final goal is to make as few mistakes as possible. The
learner receives help from a pool of k experts E1, . . . , Ek, with each expert
predicting the outcome of these trials according to some rule. Littlestone
and Warmuth proved that there exists a strategy for the learner to make
predictions based on the opinions of the experts that will always be almost
as good as the predictions of the best expert in the pool. The non-trivial
aspect of their result is that the learner of course does not know a priori
which expert will perform better in the corresponding sequence of trials.

Our proof of the concentration bound then proceed as follows. A simple
way to formulate the argument is by contradiction. First, fix a sequence
of trials, unknown to the learner. It follows from our assumption of weak
concentration that any expert Ei that predicts at random will be correct on
slightly more than n/2 trials with some small but non-negligible probabil-
ity. However, with k experts predicting (independently) at random, there
will be with high probability an expert E∗ with a small advantage over the
expected number n/2 of correct predictions. Although the learner does not
know a priori which expert will be more successful, the Weighted Majority
Algorithm guarantees that we can make almost the same number of correct
predictions as the best expert in the pool. In other words, for every fixed but
unknown sequence of trials, it is possible to have some non-trivial advantage
over random guessing (under our initial assumption of weak concentration,
and by taking k sufficiently large). Now also make the sequence of boolean
trials random. It follows from the previous discussion that we can predict
the outcome of a sequence of random coin tosses with non-trivial advantage.
A simple averaging argument then implies that there exists a particular ran-
dom coin in this sequence that admits a randomized strategy which predicts
its output with non-trivial success probability. This contradiction completes
the proof.

We believe that our contribution is conceptual, so we do not attempt
to optimize or generalize the argument. The proof of the concentration
inequality is presented in Section 3, while the following section provides a
brief introduction to the Weighted Majority Algorithm.
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2 The Weighted Majority Algorithm.

In this section we review the Weighted Majority Algorithm and some of its
properties. Consider a pool of k experts E1, . . . , Ek, and a sequence of n
trials. Each expert makes 0/1 predictions at each trial. Each trial event has
a binary label associated to it, and we denote a sequence of trials of size n
by a vector b = (b1, . . . , bn) ∈ {0, 1}n of correct labels. The algorithm has
a parameter 0 < β < 1 associated to it, and it makes predictions based on
the guesses of the experts as follows.

Weighted Majority Algorithm Akβ

1) Initialize weight wi = 1 for each expert Ei.
2) At a given trial:

• Expert Ei predicts zi ∈ {0, 1}.

• Let q0 =
∑

i:zi=0wi, and q1 =
∑

j:zj=1wj .

3) Predict the value y ∈ {0, 1} such that qy ≥ q1−y.
4) The algorithm has the following update rule: given the outcome a ∈ {0, 1}
of a trial (correct label), for each i such that zi 6= a, set wi ← wi · β.

Observe that the algorithm is quite intuitive: it decreases the weight
of experts that make wrong predictions, and obtain the next prediction by
taking into account the guesses of the pool of experts according to their
current weights. For completeness, we include the short proof that this
algorithm never performs much worse than the best expert in the pool.

Theorem 2.1. For any sequence of n trials, if the best expert among E1, . . . , Ek
makes m mistakes, then Weighted Majority Algorithm with parameter β
makes at most

M ≤
log k +m log 1

β

log 2
1+β

mistakes.

Proof. The proof relies on the following elegant potential/energy argument.
Let Wi be the total sum of the weights associated to the experts after the
application of the i-th update rule. Initially, W0 = k. If the algorithm makes
a mistake, it is easy to see that its total weight is reduced to at most

W

2
+
W

2
· β = W ·

(
1 + β

2

)
,
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where W is the total weight before the application of the update rule. There-
fore, if the execution of the Weighted Majority Algorithm makesM mistakes,
it follows that the final total weight Wn satisfies

Wn ≤ k ·
(

1 + β

2

)M
.

However, since the best expert makes m mistakes, we must have a final
total weight Wn ≥ βm. The upper bound on M now follows easily from the
inequalities

βm ≤Wn ≤ k
(

1 + β

2

)M
.

Observe that this theorem provides a worst-case guarantee on the num-
ber of mistakes. It turns out that in our proof of the Chernoff-Hoeffding
bound we only need an average-case guarantee. Fortunately, by making a
weighted random choice for each prediction, in proportion to the current
weight associated to each guess, it is possible to obtain a better (average-
case) dependence on m for the number of mistakes. The proof is essentially
the same, but considers instead the expected number of mistakes of the
learner.1 The interested reader is referred to the original paper of Littele-
stone and Warmuth [3] for further details. From now on, we let Akβ be the
randomized weighted majority algorithm with parameter β.

Fact 2.2. For any 0 ≤ ε ≤ 1/2, we have ln
(

1
1−ε

)
≤ ε+ ε2.

Theorem 2.3. Consider any fixed sequence b ∈ {0, 1}n of trials. If the best
expert among E1, . . . , Ek makes ≤ m mistakes, then

M = EAkβ [# mistakes of Akβ(b)] ≤ m ln 1/β + ln k

1− β
,

where the expectation if taken over the internal randomness of the random-
ized weighted majority algorithm. In particular, by taking β = 1 − ζ, it
follows from Fact 2.2 that

M ≤ m(1 + ζ) +
ln k

ζ
.

1Needless to say, this proof is also elementary, and does not rely on any concentration
bound.
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3 Proof of the Concentration Bound.

We will use Theorem 2.3 to give an algorithmic proof of the following con-
centration result. We state and prove only one side of the concentration
inequality, since we are in the symmetric case.

Theorem 3.1. For any ε > 0, there exists a constant δ = δ(ε) > 0 for which
the following holds. For any positive integer n, let X = X1 + . . .+Xn be the
sum of n independent uniformly distributed 0/1 random variables. Then

P
[
X ≥ n

2
+ εn

]
≤ exp(−δn).

Proof. Let P[X ≥ n/2 + t] = γ(n, t), for some function γ : N2 → R. We
need to upper bound the value of γ for t = εn.

Consider a sequence of random independent trials B = (B1, . . . , Bn),
where each Bi is uniformly distributed over {0, 1}. First, it is clear that for
any randomized strategy/algorithm A,

EB,A[# mistakes of A on B] =
∑
i

EB,A[# mistakes of A on Bi] =
n

2
. (1)

Now consider k experts E1, . . . , Ek, where each Ei tries to predict Bj
by tossing a fair coin, and let Akβ be the weighted majority algorithm with
parameter β > 0 obtained from these experts. The values of k and β will
be fixed appropriately later. Clearly,

EB,Akβ [# mistakes of Akβ] = EB[EAkβ [# mistakes of Akβ(B1, . . . , Bn)]]. (2)

Consider the value of the inner expectation for a fixed sequence of trials
b = (b1, . . . , bn) ∈ {0, 1}n. Let Bad be the event that no expert Ei has M i

b ≤
n/2− t, where M i

b is a random variable representing the number of mistakes
of Ei on sequence b. Since b is fixed, M i

b has distribution Binomial(n, 1/2).
In other words,

PEi [M
i
b ≤ n/2− t] = PEi [M

i
b ≥ n/2 + t] = γ(n, t).

Therefore, PAkβ [Bad] = (1− γ)k. It follows that EAkβ [# mistakes of Akβ(B)]

= E[ . . . | Bad] · P[Bad] + E[ . . . | ¬Bad] · P[¬Bad]

≤ n · (1− γ)k + EAkβ [# mistakes of Akβ(B) |M i
B ≤ n/2− t for some i]

≤ n(1− γ)k + (n/2− t)(1 + ζ) +
ln k

ζ
, (3)
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where the last inequality follows by Theorem 2.3 with the parametrization
β = 1 − ζ. It follows from equations (1), (2), (3) and t = εn that for any
integer k > 0 and ζ ≤ 1/2, we have:

n

2
≤ n(1− γ)k +

(
1

2
− ε
)

(1 + ζ)n+
ln k

ζ
.

By taking ζ = ζ(ε) > 0 to be a sufficiently small constant, we get

α− ln k

ζn
≤ (1− γ)k,

for some constant α(ζ) > 0. Observe that for k = exp
(
αζn
2

)
, we have

ln k
nζ ≤

α
2 , which implies that

eln
α
2 =

α

2
≤ α− ln k

nζ
≤ (1− γ)k ≤ e−γk.

This shows that ln α
2 ≤ −γk, or equivalently,

γ ≤ 1

k
ln

2

α
= ln

(
2

α

)
· exp

(
−αζn

2

)
≤ e−δn,

for some constant δ = δ(α, ζ) = δ(ε) > 0, which completes the proof of
Theorem 3.1.
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