Addition is exponentially harder than counting for shallow monotone circuits

Igor Carboni Oliveira

University of Oxford

Joint work with Xi Chen and Rocco Servedio

We know a fair bit about monotone functions and monotone circuits (tight circuit lower bounds, etc).

Extending results from monotone to non-monotone circuits is quite challenging.

In this work we continue the investigation of monotonicity and the power of non-monotone operations in bounded-depth boolean circuits.

Exponential versus polynomial weights in (monotone) threshold circuits.

The power of negation gates in bounded-depth AND/OR/NOT circuits.

Part 1. Monotone threshold/majority circuits.

Weighted threshold functions

Def. $f: \{0,1\}^m \to \{0,1\}$ is a *weighted threshold function* if there are integers ("weights") w_1, \ldots, w_m and *t* such that

$$f(x) = 1 \quad \Leftrightarrow \quad \sum_{i=1}^{m} w_i x_i \ge t.$$

Threshold circuits: Definition

• Each internal gate computes a weighted threshold function.

• This circuit has **depth** 3 (# layers) and **size** 10 (# gates).

Threshold circuits: The frontier

Simple computational model whose power remains mysterious.

Open Problem. Can we solve **s-t-connectivity** using constant-depth polynomial size threshold circuits?

However, relative success in understanding the role of large weights in the gates of the circuit:

"Exponential weights vs. polynomial weights".

Threshold Circuits vs. Majority Circuits

• Majority circuits: "We care about the weights."

Example:
$$3x_1 - 4x_3 + 2x_7 - x_2 \ge ? 5.$$

The weight of this gate is 3+4+2+1=10.

Size of Majority Circuit: Total weight in the circuit, or equivalently, number of wires.

Polynomial weight is sufficient

[Siu and Bruck, 1991] Poly-size bounded-depth threshold circuits simulated by poly-size bounded-depth majority circuits.

[Goldmann, Hastad, and Razborov, 1992] depth-d threshold circuits simulated by depth-(d + 1) majority circuits.

[Goldmann and Karpinski, 1993] Constructive simulation.

Simplification/better parameters: [Hofmeister, 1996] and [Amano and Maruoka, 2005].

[Goldmann and Karpinski, 1993]

"If original threshold circuit is **monotone** (positive weights), simulation yields majority circuits with **negative weights**."

[GK'93] Is there a monotone transformation?

(Question recently reiterated by J. Hastad, 2010 & 2014)

Previous Work [Hofmeister, 1992]

No efficient monotone simulation in depth 2: Total weight must be $2^{\Omega(\sqrt{n})}$.

Our first result.

Solution to the question posed by Goldmann and Karpinski:

No efficient monotone simulation in any fixed depth $d \in \mathbb{N}$.

Our hard monotone threshold gate: Add_{d,N}

Checks if the addition of d natural numbers (each with N bits) is at least 2^N .

The lower bound

Theorem 1. For every fixed $d \ge 2$, any depth-*d* monotone MAJ circuit for $Add_{d,N}$ has size $2^{\Omega(N^{1/d})}$. There is a matching upper bound of the form $2^{O(N^{1/d})}$.

"And you do Addition?" the White Queen asked. "What's one and one?"

"I don't know," said Alice. "I lost count."

"She can't do Addition," the Red Queen interrupted.

- Lewis Carroll, Through the Looking Glass

In order for Alice to compute $Add_{k,N}$ efficiently in small depth, she must count and **subtract** ones!

Our approach: pairs of pairs of distributions

We inductively construct distributions that are "hard" for deeper and deeper circuits.

 $\begin{array}{l} \textbf{YES}^{\star}_{\ell} \text{ distrib. support. over strings in } \{0,1\}^{\ell \times N_{\ell}} \text{ with sum} \geq 2^{N_{\ell}}. \\ \textbf{NO}^{\star}_{\ell} \text{ distrib. support. over strings in } \{0,1\}^{\ell \times N_{\ell}} \text{ with sum} < 2^{N_{\ell}}. \end{array}$

Main Lemma. For each $2 \le \ell \le d$, every "small" depth- ℓ monotone MAJ circuit *C* satisfies:

$$\Pr[C(YES_{\ell}^{\star}) = 1] + \Pr[C(NO_{\ell}^{\star}) = 0] < 1 + \frac{10^{\ell}}{10^{d}}.$$

Each $x_{yes} \sim YES_1$ looks like:

Each $y_{no} \sim NO_1$ looks like:

Each $x_{yes} \sim YES'_1$ looks like:

Each $y_{no} \sim NO'_1$ looks like:

section 1	section <i>T</i> – 1	section T	section 7 + 1		section <i>n</i>
$ \begin{array}{ c c } \mathcal{YES}'_{\ell-1} \\ or \\ \mathcal{NO}_{\ell-1} \end{array} $	 $\mathcal{YES}'_{\ell-1} \ ext{or} \ \mathcal{NO}_{\ell-1}$	$\mathcal{YES}_{\ell-1}$	0 : 0	0 0	0·····0 ·····0

 $\boldsymbol{x} \sim \mathcal{YES}_{\ell}^{*}$

section 1	section <i>T</i> – 1	section T	section 7 + 1		section n
$ \begin{bmatrix} \mathcal{YES}'_{\ell-1} \\ \text{or} \\ \mathcal{NO}_{\ell-1} \end{bmatrix} $	 $\mathcal{YES}'_{\ell-1}$ or $\mathcal{NO}_{\ell-1}$	$\mathcal{NO}'_{\ell-1}$	1	[1 1

 $\bm{x} \sim \mathcal{NO}_\ell^*$

 \circ As we proceed, new distributions increase number of rows and columns in the support.

• We have to maintain careful control over the properties of each pair of distributions.

• Proof of **Main Lemma** is by induction, considers three pairs of distributions, and is reasonably technical.

Part 2. Monotonicity and AC⁰ circuits.

Monotone Complexity

Semantics vs. syntax:

Monotone Functions " = " Monotone Circuits

The Ajtai-Gurevich Theorem (1987)

There is **monotone** g_n : $\{0,1\}^n \rightarrow \{0,1\}$ such that:

•
$$g \in AC^{\circ}$$
;

• g_n requires **monotone** AC⁰ circuits of size $n^{\omega(1)}$.

"Negations can speed-up the bounded-depth computation of monotone functions."

Obs.: g_n computed by monotone AC⁰ circuits of size $n^{O(\log n)}$.

Question.

Is there an exponential speed-up in bounded-depth?

Similar question for **arbitrary** circuits answered positively **[Tardos, 1988]**.

Our second result.

Theorem 2. There is a monotone f_n : $\{0,1\}^n \rightarrow \{0,1\}$ s.t.:

- $f \in AC^0$ (f_n computed in depth 3);
- For every d ≥ 1, f_n requires depth-d monotone MAJ circuits of size 2^{Ω̃(n^{1/d})}.

Exponential separation and depth-3 upper bound;
Hardness against MAJ gates instead of AND/OR gates.

Proof. AC⁰ upper bound for the addition function $Add_{k,N}$ with $k = k(N) \rightarrow \infty$.

A related problem.

Our result is essentially optimal in some aspects.

But I don't know the answer to the following question.

"Super Ajtai-Gurevich." Is there a monotone function in AC⁰ that is not in monotone-P/poly?

(It is known that the addition function $Add_{N,N}$ is in monNC².)

Thank you.