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We know a fair bit about monotone functions and
monotone circuits (tight circuit lower bounds, etc).

Extending results from monotone to non-monotone circuits is
quite challenging.

In this work we continue the investigation of monotonicity and
the power of non-monotone operations in bounded-depth
boolean circuits.



Summary:

Exponential versus polynomial
weights in (monotone) threshold circuits.

The power of negation gates in bounded-depth
AND/OR/NQT circuits.



Part 1. Monotone threshold/majority circuits.



Weighted threshold functions

Def. f: {0,1}™ — {0,1} is a weighted threshold function if
there are integers (“weights”) wy, ..., wy, and t such that

m
fix)=1 < Z wix; > t.
i=1



Threshold circuits: Definition

o Each internal gate computes a weighted threshold function.

o This circuit has depth 3 (# layers) and size 10 (# gates).



Threshold circuits: The frontier

Simple computational model whose power remains mysterious.

Open Problem. Can we solve s-t-connectivity using
constant-depth polynomial size threshold circuits?

However, relative success in understanding the role of
large weights in the gates of the circuit:

“Exponential weights vs. polynomial weights”.



Threshold Circuits vs. Majority Circuits

o Majority circuits: “We care about the weights.”

Example: 3xy —4x3+2x7 — X >' 5.

The weight of this gateis 3+4+2+ 1 =10.

Size of Majority Circuit: Total weight in the circuit, or
equivalently, number of wires.



Polynomial weight is sufficient

[Siu and Bruck, 1991] Poly-size bounded-depth threshold
circuits simulated by poly-size bounded-depth majority circuits.

[Goldmann, Hastad, and Razborov, 1992] depth-d threshold
circuits simulated by depth-(d + 1) majority circuits.

[Goldmann and Karpinski, 1993] Constructive simulation.

Simplification/better parameters:
[Hofmeister, 1996] and [Amano and Maruoka, 2005].



[Goldmann and Karpinski, 1993]

“If original threshold circuit is monotone (positive weights),
simulation yields majority circuits with negative weights.”

[GK’93] Is there a monotone transformation?

(Question recently reiterated by J. Hastad, 2010 & 2014)

10



Previous Work [Hofmeister, 1992]

No efficient monotone simulation in depth 2:
Total weight must be 22(v7),
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Our first result.

Solution to the question posed by Goldmann and Karpinski:

No efficient monotone simulation in any fixed depth d € N.

Our hard monotone threshold gate: Addy y

Checks if the addition of d natural numbers
(each with N bits) is at least 2V.
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The lower bound

I\
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Theorem 1. For every fixed d > 2, any depth-d monotone MAJ
circuit for Addg v has size 22(N''), There is a matching upper

bound of the form 20(N"/9),
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S

“And you do Addition?” the White Queen asked. “What’s one and one and one and one and
one and one and one and one and one and one?”’

“I'don’t know,” said Alice. “I lost count.”
“She can’t do Addition,” the Red Queen interrupted.

— Lewis Carroll, Through the Looking Glass
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In order for Alice to compute Add n
efficiently in small depth, she must count and subtract ones!
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Our approach: pairs of pairs of distributions

We inductively construct distributions that are “hard” for deeper
and deeper circuits.

(YES1, NO1) (YES2, NO2)
(YES*2, NO*2) (YES*3 , NO*3)

(YES'1, NO'1) (YES'2, NO'2)

YES; distrib. support. over strings in {0, 1}**Ne with sum > 2N,
NO; distrib. support. over strings in {0, 1}*Ne with sum < 2N,

Main Lemma. For each 2 < ¢ < d, every “small” depth-¢
monotone MAJ circuit C satisfies:

¢
Pr[ C(YES])=1] + PrfC(NO;)=0] < 1+ 1180/.
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Each xyes ~ YES looks like:

i1 001 ... 0
o1 1 0 --- 1
Each yno ~ NO; looks like:
0 0 0
1 1 1

O —

Each xyes ~ YES] looks like:
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o As we proceed, new distributions increase number of rows
and columns in the support.

o We have to maintain careful control over the properties of
each pair of distributions.

o Proof of Main Lemma is by induction, considers three pairs of
distributions, and is reasonably technical.
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Part 2. Monotonicity and AC° circuits.
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Monotone Complexity

Semantics vs. syntax:

Monotone Functions

Monotone Circuits
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The Ajtai-Gurevich Theorem (1987)

There is monotone g,: {0,1}"” — {0, 1} such that:
> g€ ACO;
» g, requires monotone ACP circuits of size n*(1).

“Negations can speed-up the bounded-depth computation
of monotone functions.”

Obs.: g, computed by monotone AC° circuits of size n©1°9n.
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Question.

Is there an exponential speed-up in bounded-depth?

Similar question for arbitrary circuits answered positively
[Tardos, 1988].
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Our second resulit.

» fe AC® (f, computed in depth 3);
» Forevery d > 1, f, requires depth-d monotone MAJ
circuits of size 249,

Theorem 2. There is a monotone f,: {0,1}" — {0,1} s.t.:

o Exponential separation and depth-3 upper bound;
o Hardness against MAJ gates instead of AND/OR gates.

Proof. AC° upper bound for the addition function Addy n with
k = k(N) — oc.
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A related problem.

Our result is essentially optimal in some aspects.

But | don’t know the answer to the following question.

“Super Ajtai-Gurevich.” Is there a monotone function in
AC? that is not in monotone-P /poly?

(It is known that the addition function Addy  is in monNG?.)
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Thank you.
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