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Computational Complexity Theory

I Investigates limits and possibilities of algorithms and computations.

P vs BPP: Are randomised algorithms significantly faster than deterministic algorithms?

P vs NP: Is finding a solution harder than verifying a given solution?

I Uniform computations: single algorithm that works on all input lengths.
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Boolean circuits and non-uniform computations

I A simple combinatorial model that captures computations:

I Non-uniform computations:
Sequence {Cn}n of circuits, where Cn solves the problem on n-bit input instances.

I Algorithm running in time T(n) =⇒ circuits Cn with O(T(n) · log T(n)) gates.
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Circuit Complexity Theory

I Interested in circuit size (number of gates) required to compute f : {0, 1}n → {0, 1}m.

[Shannon’49] Most functions f : {0, 1}n → {0, 1} require circuits of size Ω(2n/n).

I In connection to algorithms and complexity, we would like to understand the circuit size
of “explicit” functions in P, NP, etc.
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Research on restricted classes of circuits

I Much progress over the last 40 years in understanding limited classes of circuits, such
as small-depth circuits with AND/OR/NOT gates.

– Addition of two n-bit numbers is provably easier than Multiplication.

– DISTk-CONNECTIVITY(n) requires depth-d circuits of size nkΘ(1/d)
.

– The constant-depth circuit complexity of k-CLIQUE is precisely nΘ(k).

I However, many important algorithms produce circuits of unbounded depth.
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Status of circuit lower bounds

I In this talk we will focus on unrestricted Boolean circuits.

I Best result for a problem in NP is a lower bound of (3 + 1/86) · n gates [FGHK’16].

I Proving a lower bound such as NP * SIZE[n2] seems out of reach.

I Motivates the study of circuit lower bounds for classes believed to be larger than NP.
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Frontiers

ZPPNP * SIZE[nk] [Kobler-Watanabe’90s]

MA/1 * SIZE[nk] [Santhanam’00s]

I Frontier 1: Lower bounds for deterministic class PNP?

While we have lower bounds for larger classes, there is an important issue:

I Frontier 2: All results of the form ω(n) only hold on infinitely many input lengths.
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a.e. versus i.o. results in algorithms and complexity

I Mystery: Existence of mathematical objects of certain sizes making computations
easier only around corresponding input lengths.

I Issue not restricted to complexity lower bounds:

Sub-exponential time generation of canonical prime numbers [Oliveira-Santhamam’17].
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The logical approach

I We discussed two frontiers in complexity theory:

1. Understand relation between PNP and say SIZE[n2].

2. Establish almost-everywhere circuit lower bounds.

I This work investigates these challenges from the perspective of mathematical logic.
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Investigating complexity through logic

I Theories in the standard framework of first-order logic.

I Investigation of complexity results that can be established under certain axioms.

Example: Does theory T prove that SAT can be solved in polynomial time?

I Complexity Theory that considers efficiency and difficulty of proving correctness.
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Bounded Arithmetics

I Fragments of Peano Arithmetic (PA).

I Intended model is N, but numbers can encode binary strings and other objects.

Example: Theory I∆0 [Parikh’71].

I∆0 employs the language LPA = {0, 1,+, ·, <}.

14 axioms governing these symbols, such as:

1. ∀x x + 0 = x
2. ∀x ∀y x + y = y + x
3. ∀x x = 0 ∨ 0 < x
. . .
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Bounded formulas and bounded induction

Induction Axioms. I∆0 also contains the induction principle

ψ(0) ∧ ∀x (ψ(x)→ ψ(x + 1))→ ∀xψ(x)

for each bounded formula ψ(x) (additional free variables are allowed in ψ).

A bounded formula only contains quantifiers of the form ∀y ≤ t and ∃y ≤ t, where t is a
term not containing y. Abbreviations for ∀y (y ≤ t→ . . .) and ∃y (y ≤ t ∧ . . .).

I This shifts the perspective from computability to complexity theory.
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Theories PV, S1
2, and T1

2

I [Cook’75] and [Buss’86] introduced theories more closely related to levels of PH:

Ex.: T1
2 uses induction scheme for bounded formulas corresponding to NP-predicates.

I We will use language LPV with function symbols for all p-time algorithms.

This does not mean that the corresponding theories prove correctness of algorithms:
T1

2 ` ∀x fAKS(x) = 1↔ “x is prime” ?

PV ≈ T0
2 ⊆ S1

2 ⊆ T1
2 ⊆ S2

2 ⊆ T2
2 ⊆ . . . ⊆

⋃
i T i

2 ≈ I∆0 + Ω1
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More about correctness of algorithms and bounded arithmetic

I PV and S1
2 can formalize several interesting algorithms (e.g. “Hungarian Method” for

Bipartite Matching).

I Suppose S1
2 ` “Primality is in P”, i.e., for some LPV function symbol g,

S1
2 ` ∀x (g(x) = 0↔ ∃y (1 < y < x ∧ y | x)).

S1
2 ` ∀x (g(x) = 0→ ∃y (1 < y < x ∧ y | x)).

S1
2 ` ∀x (¬g(x) = 0 ∨ ∃y (1 < y < x ∧ y | x)).

S1
2 ` ∀x ∃y (¬g(x) = 0 ∨ (1 < y < x ∧ y | x)).

Now if S1
2 ` ∀x ∃yϕ(x, y) for an open LPV-formula ϕ, then by Buss’ Witnessing Theorem,

S1
2 ` ∀xϕ(x, h(x)) for some LPV function symbol h.

I This places Integer-Factoring in P, which contradicts cryptographic assumptions.
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Resources I
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Resources II

I Some PhD Theses:

Kerry Ojakian (CMU, 2004). Combinatorics in Bounded Arithmetic.

Emil Jerabek (Prague, 2005). Weak Pigeonhole Principle and Randomized Computation.

Dai Tri Man Le (Toronto, 2014). Bounded Arithmetic and Formalizing Probabilistic Proofs.

Jan Pich (Prague, 2014). Complexity Theory in Feasible Mathematics.

I A recent work with pointers to several relevant references:

Moritz Muller and Jan Pich (2019). Feasibly constructive proofs of succinct weak circuit
lower bounds.
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Formalizations in Bounded Arithmetic

I Many complexity results have been formalized in such theories.

Cook-Levin Theorem in PV [folklore].

PCP Theorem in PV [Pich’15].

Parity /∈ AC0, k-Clique /∈ mSIZE[n
√

k/1000] in APC1 ⊆ T2
2 [Muller-Pich’19].

I Arguments often require ingenious modifications of original proofs:
not clear how to manipulate probability spaces, real-valued functions, etc.

Rest of the talk: Independence of complexity results from bounded arithmetic.
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Unprovability and circuit complexity

I Using LPV , we can refer to circuit complexity:

∃y (Ckt(y) ∧ Vars(y) = n ∧ Size(y) ≤ 5n ∧ ∀x (|x| = n→ (Eval(y, x) = 1↔ Parity(x) = 1)))

n is the “feasibility” parameter (formally, the length of another variable N).

I Sentences can express circuit size bounds of the form nk for a given LPV -formula ϕ(x).

Two directions: unprovability of LOWER bounds and unprovability of UPPER bounds.
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Unprovability of circuit LOWER bounds

I Initiated by Razborov in the nineties under a different formalization.

Motivation: Why are complexity lower bounds so difficult to prove?

Also: potential source of hard tautologies; self-referential arguments and implications.

Example: Is it the case that T2
2 0 k-Clique /∈ SIZE[n

√
k/100] ?

I Extremely interesting, but not much is known in terms of unconditional unprovability
results for strong theories such as PV.
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Unprovability of circuit UPPER bounds

I We currently cannot rule out that SAT ∈ SIZE[10n]. Can we at least show that easiness
of SAT doesn’t follow from certain axioms?

At least as interesting as previous direction:

1. Necessary before proving in the standard sense that SAT /∈ SIZE[10n]. Rules out
algorithmic approaches in a principled way.

2. Formal evidence that SAT is computationally hard:

– By Godel’s completeness theorem, there is a model M of T where SAT is hard.
– M satisfies many known results in algorithms and complexity theory.

3. Consistency of lower bounds: Adding to T axiom stating that SAT is hard will never
lead to a contradiction. We can develop a theory where circuit lower bounds exist.
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Some works on unprovability of circuit upper bounds

I Cook-Krajicek, 2007: “Consequences of the provability of NP ⊆ P/poly”.

Initiated a systematic investigation. Conditional unprovability results.

I Krajicek-Oliveira, 2017: “Unprovability of circuit upper bounds in Cook’s theory PV”.

Established unconditionally that PV does not prove that P ⊆ SIZE[nk].

I Bydzovsky-Muller, 2018: “Polynomial time ultrapowers and the consistency of circuit
lower bounds.”.

Model-theoretic proof of a slightly stronger statement.
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Weaknesses of previous results

1. We would like to show unprovability results for theories believed to be stronger than PV.

2. Infinitely often versus almost everywhere results:

PV might still show that every L ∈ P is infinitely often in SIZE[nk].

I Recall issue mentioned earlier in the talk:

We lack techniques to show hardness with respect to every large enough input length.
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This work

I T1
2 and weaker theories cannot establish circuit upper bounds of the form nk for classes

contained in PNP.

I Unprovability of infinitely often upper bounds, i.e., models where hardness holds
almost everywhere.

I All results are unconditional.
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Our main result

Theorem 1 (Informal): For each k ≥ 1,

T1
2 0 PNP ⊆ i.o.SIZE[nk]

S1
2 0 NP ⊆ i.o.SIZE[nk]

PV 0 P ⊆ i.o.SIZE[nk]

Extensions. True1
def
= ∀Σb

1(LPV)-sentences true in N can be included in first item.

Example: ∀x (∃y (1 < y < x ∧ y | x)↔ fAKS(x) = 0)

T1
2 ∪ True1 proves that Primes ∈ SIZE[nc] for some c ∈ N, but not that PNP ⊆ i.o.SIZE[nk].
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A more precise statement

I LPV -formulas ϕ(x) interpreted over N can define languages in P, NP, etc.

I The sentence UBi.o.
k (ϕ) expresses that the corresponding n-bit boolean functions are

computed infinitely often by circuits of size nk:

∀1(`) ∃1(n)(n ≥ `)∃Cn(|Cn| ≤ nk) ∀x(|x| = n), ϕ(x) ≡ (Cn(x) = 1)

Theorem
For any of the following pairs of an LPV -theory T and a uniform complexity class C:
(a) T = T1

2 and C = PNP,
(b) T = S1

2 and C = NP,
(c) T = PV and C = P,

there is an LPV -formula ϕ(x) defining a language L ∈ C such that T does not prove the
sentence UBi.o.

k (ϕ).
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High-level ideas

I Two approaches (forget the “i.o.” condition for now):

T1
2 0 PNP ⊆ i.o.SIZE[nk]

S1
2 0 NP ⊆ i.o.SIZE[nk]

Main ingredient is the use of “logical” Karp-Lipton theorems.

PV 0 P ⊆ i.o.SIZE[nk]

Extract from (non-uniform) circuit upper bound proofs a “uniform construction”.
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Approach 1: “Logical” Karp-Lipton theorems

I A few unconditional circuit lower bounds in complexity theory use KL theorems. For
instance, ZPPNP * SIZE[nk] can be derived from:

[Kobler-Watanabe’98] If NP ⊆ SIZE[poly] then PH ⊆ ZPPNP.

I Stronger collapses provide better lower bounds. It is not known how to collapse to PNP.

Better KL theorems in fact necessary in this case [Chen-McKay-Murray-Williams’19].

[Cook-Krajicek’07] If NP ⊆ SIZE[poly] and this is provable in a theory
T ∈ {PV, S1

2,T
1
2}, then PH collapses to a complexity class CT ⊆ PNP.
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Approach 2: A “bridge” between uniform and non-uniform circuits

If PV ` P ⊆ SIZE[nk], try to extract from PV-proof a “uniform” circuit family for each L ∈ P.

This would contradict known separation P * P-unifom-SIZE[nk] [Santhanam-Williams’13].

I This doesn’t quite work, but is the main intuition behind [Krajicek-Oliveira’17].

I Theorem 1 (c) strengthens Krajicek-Oliveira to rule out PV ` P ⊆ i.o.SIZE[nk].

Complications appear because Santhanam-Williams doesn’t provide a.e. lower bounds.
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The unprovability result of Krajicek-Oliveira’17

The sentence UBk,c(h) expresses that function symbol h admits circuits of size ≤ cnk.

Theorem. For every k ≥ 1 there is a PV function symbol h such that for no constant c ≥ 1
PV proves the sentence UBk,c(h).

Remark. UBk,c(h) is a ∀∃∀-sentence in LPV, and can be written as:

UBk,c(h) ≡ ∀z ∃C ∀x φh(z,C, x), where φh is quantifier-free.
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The basic idea

I Logic/Provability as a bridge between non-uniform and uniform computations.

If PV ` UBk,c(h) using a proof π (sequence of symbols), extract from π computational
information about sequence Cn of circuits computing h.

I Since PV is sound, provability of a sentence implies that the sentence is true in the
usual sense (in N).

I Perhaps contradict known (unconditional) lower bounds in uniform circuit complexity ?

(We will later explain an important issue with this idea, and how it can be fixed.)
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The uniform lower bound

R. Santhanam and R. Williams, “On uniformity and circuit lower bounds”, 2014.

Theorem. For every k ≥ 1, there is L ∈ P such that L /∈ P-uniform-SIZE(nk).

Why is this result so special?
L ∈ DTIME(n`), but P-uniform generating algorithm can run in time n2` , n22`·k

, etc.

I Proof is a clever win-win argument by contradiction (non-constructive), and relies on a
time hierarchy theorem with advice.

I Our Approach. From a PV-proof of UBk,c(h), we try to extract a poly-time generating
algorithm. We can’t control its p-time bound, but this is okay with the theorem above!
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The KPT Witnessing Theorem

J. Krajíček, P. Pudlák, and G. Takeuti: “Bounded arithmetic and the polynomial hierarchy”, 1991.

Theorem. Assume T is a universal theory with vocabulary L, φ is a quantifier-free
L-formula, and

T ` ∀z ∃C ∀x φ(z,C, x) .

Then there exist a constant d ≥ 1 and a finite sequence t1, . . . , td of L-terms such that

T ` φ(z, t1(z), x1) ∨ φ(z, t2(z, x1), x2) ∨ . . . ∨ φ(z, td(z, x1, . . . , xd−1), xd).

I The result can be established using proof theory or model theory.
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Applying the KPT Theorem to PV and UBk,c(f )

I Fix k ≥ 1, and assume that for every f ∈ LPV we have c ≥ 1 such that

PV ` UBk,c(f ) Recall that this is ∀z ∃C ∀x φf (z,C, x).

I Assume we get d = 1 after applying the KPT statement, i.e.,

PV ` φf (z, tf
1(z), x1) , where tf

1(z) is an LPV-term.

I Then, by the soundness of PV, if we set z to be some n-bit integer 1(n),

N |= ∀x1 φf (1(n), tf
1(1(n)), x1).

I Now tf
1(1(n)), a term in PV, corresponds in N to a poly-time computation.

The assumption that we get this for all f ∈ LPV contradicts Santhanam-Williams.
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The general case

I If d > 1, we obtain from PV ` UBk,c(f ) the more general scenario:

N |= φ(z, t1(z), x1) ∨ φ(z, t2(z, x1), x2) ∨ . . . ∨ φ(z, td(z, x1, . . . , xd−1), xd).

Either t1(1(n)) outputs a correct circuit for f , or
There is a counter-example a1 ∈ {0, 1}n, and t2(1(n), a1) outputs a correct circuit, or

. . .

I Due to the counter-examples, we can only show that f ∈ [P-uniform /O(n)]-SIZE(nk).

I Contradiction? A difficulty is the lack of super-linear non-uniform lower bounds!
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How to establish an unconditional unprovability result?

I Apply KPT to a specific UBk,c(g), obtaining a disjunction of ≤ d formulas, d ∈ N.
(We will eliminate one by one in d stages, until we get a contradiction.)

I To handle each elimination step, we formalize the SW win-win argument inside PV.

The following ideas are crucial:

I Using the constructivity of PV and Herbrand’s Theorem, it can be shown that the
counter-examples that previously caused difficulties can be provably witnessed in PV.

I In the SW win-win analysis, the second case only needs a non-uniform assumption.
This allows us to move from d to d − 1 (our result is about non-uniform upper bounds!).

Check the papers for more details!
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Bounded theories and a.e. vs i.o. circuit bounds

Parikh’s Theorem. Let A(~x, y) be a bounded formula.

If I∆0 ` ∀~x ∃y A(~x, y) then I∆0 ` ∀~x ∃y ≤ t(~x) A(~x, y).

I We use similar results to “tame” i.o. upper bounds in bounded arithmetic.

Example: If T1
2 ` SAT ∈ i.o.SIZE[nk] then T1

2 ` SAT ∈ SIZE[nk′ ].

I Not every language is paddable, and more delicate arguments are needed.
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Concluding Remarks: Logic and P vs NP

I A major question is to establish the unprovability of P = NP:

For a function symbol f ∈ LPV , consider the universal sentence

ϕP=NP(f )
def
= ∀x ∀y ψSAT(x, y)→ ψSAT(x, f (x))

Conjecture. For no function symbol f in LPV theory PV proves the sentence ϕP=NP(f ).

I Reduces to the study of unprovability of circuit lower bounds (Theorem 2 in our work).

I Motivates both research directions (unprovability of upper and lower bounds).
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Thank you
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