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Background and Motivation
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Bounded-depth boolean circuits

I AC0: Bounded-depth circuits with AND, OR, NOT gates.

I A model that captures fast parallel computations.

I Close connections to logic and finite model theory.
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We know a lot about AC0

I Explicit lower bounds: 2Ω(n1/(d−1)) for Parityn and Majorityn.

I Lower bound techniques have led to several advances:

– Learning Algorithms for AC0 using random examples.

– PRGs for AC0 with poly-log seed length.

– Exponential lower bounds for AC0-Frege.
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This talk: AC0[⊕] circuits

I AC0[⊕]: Extension of AC0 by ⊕ (parity) gates.

I Parities can be very helpful: error-correcting codes, hash
functions, GF(2)-polynomials, combinatorial designs, . . .

I Explicit lower bounds: 2Ω(n1/2(d−1)) for Majorityn.

I AC0 and AC0[⊕] are significantly different circuit classes:
Example: depth hierarchy for AC0, depth collapse for AC0[⊕].
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AC0[⊕] and its challenges

I Many fundamental questions remain wide open for AC0[⊕].

– Can we learn AC0[⊕] using random examples?

– Are there PRGs of seed length o(n)?

– Does every tautology admit a short AC0[⊕]-Frege proof?
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AC0 versus AC0[⊕]

I Our primitive understanding of AC0[⊕] is reflected in part on
existing lower bounds:

– Majority is one of the most studied boolean functions.

– Depth-d AC0 complexity of Majority is 2Θ̃(n1/(d−1)) (1980’s).

– Best known AC0[⊕] lower bound is 2Ω(n1/2(d−1)) for any f ∈ NP.

(Razborov-Smolensky approximation method, 1980’s)

Question. Can ⊕ gates help us computing Majority?
7
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Why should we care?

1. Combinatorics: huge gap between 2n
1/(d−1) and 2n

1/2(d−1).

2. Can we beat the “obviously” optimal algorithm?

3. Parity gates play crucial role in hardness magnification.
Example: “a layer of parities away from NC1 lower bounds”.

4. Better understanding of circuit complexity of a class C often
leads to progress w.r.t. related questions.
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Results
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Informal Summary

I Neither the trivial upper bound of 2Õ(n1/(d−1)) gates nor the
Razborov-Smolensky lower bound 2Ω(n1/2(d−1)) is tight.

Our new upper and lower bounds for AC0[⊕] show that:

I Parity gates can speedup the computation of Majority for
each large depth d ∈ N.

I Indeed, the AC0 and AC0[⊕] complexities are similar at
depth 3, but parity gates significantly help at depth 4.
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Divide-and-conquer is not optimal for AC0[⊕]

Recall: For d ≥ 2, the depth-d AC0 complexity of Majorityn is 2Θ̃
(
n1/(d−1)

)
.

Theorem 1. Let d ≥ 5 be an integer. Majority on n bits can be

computed by depth-d AC0[⊕] circuits of size 2Õ
(
n

2
3 ·

1
(d−4)

)
.

I A similar upper bound holds for symmetric functions and
linear threshold functions.
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Strengthening Razborov-Smolensky

Razborov-Smolensky

The depth-d AC0[⊕] complexity of Majorityn is 2Ω
(
n1/(2d−2)

)
.

Theorem 2. Let d ≥ 3 be an integer. Majority on n bits

requires depth-d AC0[⊕] circuits of size 2Ω
(
n1/(2d−4)

)
.

I A small improvement of explicit lower bounds for f ∈ NP.

I This improvement is significant for very small d.
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The small depth regime

New lower bound + extension of upper bound techniques yield:

Corollary 1.

The depth-3 AC0[⊕] circuit size complexity of Majority is 2Θ̃(n1/2).

The depth-4 AC0[⊕] circuit size complexity of Majority is 2Θ̃(n1/4).

I Parity gates significantly help at depth 4 but not at depth 3.
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Techniques: AC0[⊕] Upper Bounds
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Improved upper bound for all large depths

Theorem 1. Let d ≥ 5 be an integer. Majority on n bits can be

computed by depth-d AC0[⊕] circuits of size 2Õ
(
n

2
3 ·

1
(d−4)

)
.

Ei(y) =





1 if |y|1 = i,

0 otherwise.
Di,j(y) =





1 if |y|1 = i,

0 if |y|1 = j.

Goal: AC0[⊕] circuits of size ≈ 2n
2/3d for all Di,j, 0 ≤ i 6= j ≤ n.
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The Di,j partial boolean function
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Circuit for Di,j

I We consider the value |i− j|:

– Small regime: |i− j| ≤ n1/3.

We use an “algebraic” construction. This circuit relies on a F2

polynomial, divide-and-conquer, and needs ⊕ gates.

– Large regime: |i− j| > n1/3.

We use a “combinatorial” construction. This circuit relies on a
probabilistic construction of AC0 circuits for the Coin Problem.
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|i− j| ≤ n1/3: The algebraic construction I
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|i− j| ≤ n1/3: The algebraic construction II

I Q(x1, . . . , xn) is defined over Z. We take a homomorphism ψ : Z→ F2.

P (x) =
`−1∑

t=0

bt · Pt(x) over F2, where ` = (i− j) + 1.

I P (x) computes Di,j(x) and has degree at most ` ≤ n1/3.

– We would like to compute P (x) in depth-d AC0[⊕].

– Goal: elementary symmetric polynomials Q1, . . . , Q`, where ` ≤ n1/3.
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|i− j| ≤ n1/3: The algebraic construction III

P`(x1, . . . , xn) =
∑

S∈([n]
` )

∏

j∈S
xj

We simulate P` using an
algebraic branching program:

Divide-and-conquer approach similar to depth-d circuit for STCONN:

We can compute P` using
∧

and
⊕

in depth d and size nO(`2/d).

For ` ≤ n1/3, this gives AC0[⊕] circuit size 2Õ(n2/3d).
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|i− j| > n1/3: The combinatorial construction

By moving from n to Θ(n) input bits, we can assume i and j
are equally spaced from middle layer.

Let i = n/2 + t and j = n/2− t. Enough to compute
Approximate Majority / Coin Problem.

Elegant construction [OW07], [Ama09], [RS17]:
Can be done by depth-d AC0 circuits of size roughly 2(n/t)1/d.

For t = Θ(|i− j|) > n1/3, this size bound is 2O(n2/3d).
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Extensions of the Upper Bound

I Previous argument works for all symmetric functions.

I In depth d = 4, careful depth control + new ingredient:
randomly splitting variables into buckets.

I Linear Threshold Functions (LTFs) and Polytopes:
AC0 reduction to Exact Threshold Functions (ETH) via [HP10],
then reduction to symmetric functions (Chinese remaindering).
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Techniques: AC0[⊕] Lower Bounds
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Improved lower bounds for all depths

Theorem 2. Let d ≥ 3 be an integer. Majority on n bits

requires depth-d AC0[⊕] circuits of size 2Ω
(
n1/(2d−4)

)
.

Recall: Razborov-Smolensky shows a 2Ω(n1/(2d−2)) lower bound.

I Intuition: How to save two layers of gates in the
polynomial approximation method?
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Review of Razborov-Smolensky

I Degree Upper Bound:

Probabilistic polynomial P over F2 correct on each input w.h.p.

AND, OR, NOT, PARITY: error ε and degree log(1/ε)

Size-s depth-d AC0[⊕]: deg(P ) ≈ (log s)d−1 and error ε ≤ 1/50.

I Degree Lower Bound:

For Majorityn, deg(P ) must be ≥
√
n · log(1/ε).
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The lower bound

Putting together the approximate degree bounds:

(log s)d−1 ≥
√
n · log(1/ε), ε = 1/50.

This implies that s ≥ 2Ω(n1/(2d−2)).

(The RS lower bound is maximized when ε = constant.)
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Our approach

We follow Razborov-Smolensky, with two new ideas.

Idea 1. Exploit error ε = 1/50 of polynomial approximator:
– Error is one-sided and ≤ 1/ log s on say C−1(1).

– Hope to exploit stronger degree lower bound of
√
n · log(1/ε).

Idea 2. Random restrictions for AC0[⊕] circuits:
– Prove that w.h.p. a random restriction leads to depth-2 subcircuits of

smaller approximate degree. Can do better than (log s)2 on bottom layers.
27
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First idea: One-sided approximations

I We approximate every non-output gate to error ≤ 1/s2.

I By union bound, every input wire of output gate is correct
(except with prob. ≤ 1/s).

I Approximation method over OR gate is one-sided (“random
parities”): zero inputs to OR gate always produce zero.
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First idea: Stronger degree lower bound

I Smolensky’s approximate degree lower bound:

degε(Majorityn) = Ω(
√
n · log(1/ε)).

Can we maintain this lower bound when error on Majority−1
n (0)

is ≤ ε but error on Majority−1
n (1) is as large as 1/50?

I We extend the technique of certifying polynomials
[KS12] to show this is the case.
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Second idea: random restrictions for AC0[⊕]

I We prove the following lemma:

Random Restriction Lemma. Let C be a depth-2 AC0[⊕]

circuit on n vars and of size s ≥ n2. Let p∗ ≤ 1/(500 log s).
Then,

Pρ∼Rn
p∗

[degε=1/s2(C|ρ) > 10 log s | ρ is balanced ] <
1

10s
.

I Case analysis based on gates of C (OR, AND, PARITY).
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Concluding Remarks
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Open Problems

Challenge: What is the AC0[⊕] complexity of Majority?

I Close the gap between the 2Õ
(
n

2
3 ·

1
(d−4)

)
upper bound and the

2Ω
(
n1/(2d−4)

)
lower bound.

I Find more examples where the “optimal” algorithm or circuit
can be improved.
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