Parity Helps to Compute Majority

Computational Complexity Conference 2019

Background and Motivation

► AC⁰: Bounded-depth circuits with **AND**, **OR**, **NOT** gates.

► A model that captures **fast parallel computations**.

Close connections to logic and finite model theory.

• Explicit lower bounds: $2^{\Omega(n^{1/(d-1)})}$ for Parity_n and Majority_n.

Lower bound techniques have led to several advances:

- Learning Algorithms for AC⁰ using random examples.
- PRGs for AC⁰ with poly-log seed length.
- Exponential lower bounds for AC⁰-Frege.

• Explicit lower bounds: $2^{\Omega(n^{1/(d-1)})}$ for Parity_n and Majority_n.

Lower bound techniques have led to several advances:

- Learning Algorithms for AC^0 using random examples.
- PRGs for AC⁰ with poly-log seed length.
- Exponential lower bounds for AC^0 -Frege.

► $AC^0[\oplus]$: Extension of AC^0 by \oplus (parity) gates.

► Parities can be **very helpful**: error-correcting codes, hash functions, GF(2)-polynomials, combinatorial designs, ...

• $AC^0[\oplus]$: Extension of AC^0 by \oplus (parity) gates.

► Parities can be **very helpful**: error-correcting codes, hash functions, GF(2)-polynomials, combinatorial designs, . . .

• Explicit lower bounds: $2^{\Omega(n^{1/2(d-1)})}$ for Majority_n.

• $AC^0[\oplus]$: Extension of AC^0 by \oplus (parity) gates.

► Parities can be **very helpful**: error-correcting codes, hash functions, GF(2)-polynomials, combinatorial designs, . . .

• Explicit lower bounds: $2^{\Omega(n^{1/2(d-1)})}$ for Majority_n.

► AC⁰ and AC⁰[\oplus] are significantly different circuit classes: **Example:** depth hierarchy for AC⁰, depth collapse for AC⁰[\oplus].

• Many fundamental questions remain wide open for $AC^{0}[\oplus]$.

- Can we learn $AC^0[\oplus]$ using random examples?
- Are there PRGs of seed length o(n)?
- Does every tautology admit a short $AC^0[\oplus]$ -Frege proof?

• Our primitive understanding of $AC^0[\oplus]$ is reflected in part on existing lower bounds:

Majority is one of the most studied boolean functions.

- Depth-d AC⁰ complexity of Majority is $2^{\widetilde{\Theta}(n^{1/(d-1)})}$ (1980's).
- Best known $AC^0[\oplus]$ lower bound is $2^{\Omega(n^{1/2(d-1)})}$ for any $f \in NP$.

(Razborov-Smolensky approximation method, 1980's)

• Our primitive understanding of $AC^{0}[\oplus]$ is reflected in part on existing lower bounds:

- Majority is one of the most studied boolean functions.
- Depth-*d* AC⁰ complexity of Majority is $2^{\widetilde{\Theta}(n^{1/(d-1)})}$ (1980's).

- Best known $AC^0[\oplus]$ lower bound is $2^{\Omega(n^{1/2(d-1)})}$ for any $f \in NP$.

(Razborov-Smolensky approximation method, 1980's)

• Our primitive understanding of $AC^{0}[\oplus]$ is reflected in part on existing lower bounds:

- Majority is one of the most studied boolean functions.

- Depth-*d* AC⁰ complexity of Majority is $2^{\widetilde{\Theta}(n^{1/(d-1)})}$ (1980's).
- Best known $AC^0[\oplus]$ lower bound is $2^{\Omega(n^{1/2(d-1)})}$ for any $f \in NP$.

(Razborov-Smolensky approximation method, 1980's)

• Our primitive understanding of $AC^{0}[\oplus]$ is reflected in part on existing lower bounds:

- Majority is one of the most studied boolean functions.

- Depth-*d* AC⁰ complexity of Majority is $2^{\widetilde{\Theta}(n^{1/(d-1)})}$ (1980's).
- Best known $AC^0[\oplus]$ lower bound is $2^{\Omega(n^{1/2(d-1)})}$ for any $f \in NP$.

(Razborov-Smolensky approximation method, 1980's)

2. Can we beat the "obviously" optimal algorithm?

2. Can we beat the "obviously" optimal algorithm?

3. Parity gates play crucial role in hardness magnification. **Example:** "a layer of parities away from NC¹ lower bounds".

2. Can we beat the "obviously" optimal algorithm?

3. Parity gates play crucial role in hardness magnification. **Example:** "a layer of parities away from NC¹ lower bounds".

4. Better understanding of circuit complexity of a class C often leads to progress w.r.t. related questions.

Results

► Neither the trivial upper bound of $2^{\widetilde{O}(n^{1/(d-1)})}$ gates nor the Razborov-Smolensky lower bound $2^{\Omega(n^{1/2(d-1)})}$ is tight.

Our new upper and lower bounds for $AC^0[\oplus]$ show that:

• Parity gates can speedup the computation of Majority for each large depth $d \in \mathbb{N}$.

► Indeed, the AC⁰ and AC⁰[⊕] complexities are similar at depth 3, but parity gates significantly help at depth 4.

► Neither the trivial upper bound of $2^{\widetilde{O}(n^{1/(d-1)})}$ gates nor the Razborov-Smolensky lower bound $2^{\Omega(n^{1/2(d-1)})}$ is tight.

Our new upper and lower bounds for $AC^0[\oplus]$ show that:

• Parity gates can speedup the computation of Majority for each large depth $d \in \mathbb{N}$.

▶ Indeed, the AC^0 and $AC^0[\oplus]$ complexities are similar at depth 3, but parity gates significantly help at depth 4.

Recall: For $d \ge 2$, the depth- $d \operatorname{AC}^0$ complexity of Majority_n is $2^{\widetilde{\Theta}(n^{1/(d-1)})}$.

Theorem 1. Let $d \ge 5$ be an integer. Majority on n bits can be computed by depth- $d \operatorname{AC}^{0}[\oplus]$ circuits of size $2^{\widetilde{O}\left(n^{\frac{2}{3}} \cdot \frac{1}{(d-4)}\right)}$.

A similar upper bound holds for symmetric functions and linear threshold functions. **Recall:** For $d \ge 2$, the depth- $d \operatorname{AC}^0$ complexity of Majority_n is $2^{\widetilde{\Theta}(n^{1/(d-1)})}$.

Theorem 1. Let $d \ge 5$ be an integer. Majority on n bits can be computed by depth- $d \operatorname{AC}^{0}[\oplus]$ circuits of size $2^{\widetilde{O}\left(n^{\frac{2}{3}} \cdot \frac{1}{(d-4)}\right)}$.

A similar upper bound holds for symmetric functions and linear threshold functions.

Razborov-Smolensky

The depth- $d \operatorname{AC}^{0}[\oplus]$ complexity of Majority_n is $2^{\Omega(n^{1/(2d-2)})}$.

Theorem 2. Let $d \ge 3$ be an integer. Majority on n bits requires depth- $d \operatorname{AC}^{0}[\oplus]$ circuits of size $2^{\Omega(n^{1/(2d-4)})}$.

A small improvement of explicit lower bounds for f ∈ NP.
 This improvement is significant for very small d.

Razborov-Smolensky

The depth- $d \operatorname{AC}^{0}[\oplus]$ complexity of Majority_n is $2^{\Omega(n^{1/(2d-2)})}$.

Theorem 2. Let $d \ge 3$ be an integer. Majority on n bits requires depth- $d \operatorname{AC}^{0}[\oplus]$ circuits of size $2^{\Omega(n^{1/(2d-4)})}$.

A small improvement of explicit lower bounds for $f \in NP$.

► This improvement is significant for very small *d*.

New lower bound + extension of upper bound techniques yield:

Corollary 1.

The depth-3 AC⁰[\oplus] circuit size complexity of Majority is $2^{\widetilde{\Theta}(n^{1/2})}$. The depth-4 AC⁰[\oplus] circuit size complexity of Majority is $2^{\widetilde{\Theta}(n^{1/4})}$.

▶ Parity gates significantly help at depth 4 but not at depth 3.

Techniques: $AC^0[\oplus]$ **Upper Bounds**

Theorem 1. Let $d \ge 5$ be an integer. Majority on n bits can be computed by depth- $d \operatorname{AC}^{0}[\oplus]$ circuits of size $2^{\widetilde{O}\left(n^{\frac{2}{3}} \cdot \frac{1}{(d-4)}\right)}$.

Goal: AC⁰[\oplus] circuits of size $pprox 2^{n^{2/3d}}$ for all $D_{i,j}, \ 0 \leq i
eq j \leq n.$

Theorem 1. Let $d \ge 5$ be an integer. Majority on n bits can be computed by depth- $d \operatorname{AC}^{0}[\oplus]$ circuits of size $2^{\widetilde{O}\left(n^{\frac{2}{3}} \cdot \frac{1}{(d-4)}\right)}$.

$$E_i(y) = \begin{cases} 1 & \text{if } |y|_1 = i, \\ 0 & \text{otherwise.} \end{cases} \quad D_{i,j}(y) = \begin{cases} 1 & \text{if } |y|_1 = i, \\ 0 & \text{if } |y|_1 = j. \end{cases}$$

Goal: AC⁰[\oplus] circuits of size $pprox 2^{n^{2/3d}}$ for all $D_{i,j}, \ 0 \leq i
eq j \leq n$.

Theorem 1. Let $d \ge 5$ be an integer. Majority on n bits can be computed by depth- $d \operatorname{AC}^{0}[\oplus]$ circuits of size $2^{\widetilde{O}\left(n^{\frac{2}{3}} \cdot \frac{1}{(d-4)}\right)}$.

$$E_i(y) = \begin{cases} 1 & \text{if } |y|_1 = i, \\ 0 & \text{otherwise.} \end{cases} \quad D_{i,j}(y) = \begin{cases} 1 & \text{if } |y|_1 = i, \\ 0 & \text{if } |y|_1 = j. \end{cases}$$

Goal: AC⁰[\oplus] circuits of size $\approx 2^{n^{2/3d}}$ for all $D_{i,j}$, $0 \le i \ne j \le n$.

The $D_{i,j}$ partial boolean function

• We consider the value |i - j|:

- Small regime: $|i-j| \le n^{1/3}$.

We use an "algebraic" construction. This circuit relies on a \mathbb{F}_2 polynomial, divide-and-conquer, and needs \oplus gates.

– Large regime: $|i-j| > n^{1/3}$.

We use a "**combinatorial**" construction. This circuit relies on a probabilistic construction of AC⁰ circuits for the *Coin Problem*.

• We consider the value
$$|i - j|$$
:

- Small regime:
$$|i-j| \le n^{1/3}$$
.

We use an "**algebraic**" construction. This circuit relies on a \mathbb{F}_2 polynomial, divide-and-conquer, and needs \oplus gates.

– Large regime:
$$|i-j| > n^{1/3}$$
.

We use a "**combinatorial**" construction. This circuit relies on a probabilistic construction of AC⁰ circuits for the *Coin Problem*.

$|i-j| \le n^{1/3}$: The algebraic construction I

Lemma [AW15]:

 $c_1, c_2, \ldots, c_\ell \in \mathbb{Z}$

There is a polynomial $Q: \{0, 1\}^n \to \mathbb{Z}$ such that: $Q(x) = c_i$ when $|x|_1$ agrees with corresponding layer.

Moreover,

t-th symmetric elementary polynomial

▶ $Q(x_1, ..., x_n)$ is defined over \mathbb{Z} . We take a homomorphism $\psi : \mathbb{Z} \to \mathbb{F}_2$.

$$P(x) = \sum_{t=0}^{\ell-1} b_t \cdot P_t(x)$$
 over \mathbb{F}_2 , where $\ell = (i-j) + 1$.

▶ P(x) computes $D_{i,j}(x)$ and has degree at most $\ell \leq n^{1/3}$.

– We would like to compute P(x) in depth-d AC⁰[\oplus].

– **Goal:** elementary symmetric polynomials Q_1,\ldots,Q_ℓ , where $\ell\leq n^{1/3}.$

▶ $Q(x_1, ..., x_n)$ is defined over \mathbb{Z} . We take a homomorphism $\psi \colon \mathbb{Z} \to \mathbb{F}_2$.

$$P(x) = \sum_{t=0}^{\ell-1} b_t \cdot P_t(x)$$
 over \mathbb{F}_2 , where $\ell = (i-j) + 1$.

• P(x) computes $D_{i,j}(x)$ and has degree at most $\ell \leq n^{1/3}$.

- We would like to compute P(x) in depth- $d \operatorname{AC}^{0}[\oplus]$.

– **Goal:** elementary symmetric polynomials Q_1,\ldots,Q_ℓ , where $\ell\leq n^{1/3}.$

▶ $Q(x_1, ..., x_n)$ is defined over \mathbb{Z} . We take a homomorphism $\psi : \mathbb{Z} \to \mathbb{F}_2$.

$$P(x) = \sum_{t=0}^{\ell-1} b_t \cdot P_t(x)$$
 over \mathbb{F}_2 , where $\ell = (i-j) + 1$.

• P(x) computes $D_{i,j}(x)$ and has degree at most $\ell \leq n^{1/3}$.

- We would like to compute P(x) in depth- $d \operatorname{AC}^{0}[\oplus]$.

- Goal: elementary symmetric polynomials Q_1, \ldots, Q_ℓ , where $\ell \leq n^{1/3}$.

$|i-j| \le n^{1/3}$: The algebraic construction III

Divide-and-conquer approach similar to depth-*d* circuit for STCONN:

We can compute P_ℓ using \bigwedge and \bigoplus in depth d and size $n^{O(\ell^{2/d})}$

For $\ell \leq n^{1/3}$, this gives AC⁰[\oplus] circuit size $2^{\tilde{O}(n^{2/3d})}$.

$|i-j| \le n^{1/3}$: The algebraic construction III

Divide-and-conquer approach similar to depth-*d* circuit for STCONN:

We can compute P_{ℓ} using \bigwedge and \bigoplus in depth d and size $n^{O(\ell^{2/d})}$.

For $\ell \leq n^{1/3}$, this gives $\mathsf{AC}^0[\oplus]$ circuit size $2^{ar{O}(n^{2/3d})}$.

$|i-j| \le n^{1/3}$: The algebraic construction III

Divide-and-conquer approach similar to depth-*d* circuit for STCONN:

We can compute P_{ℓ} using \bigwedge and \bigoplus in depth d and size $n^{O(\ell^{2/d})}$.

For $\ell \leq n^{1/3}$, this gives $AC^0[\oplus]$ circuit size $2^{\tilde{O}(n^{2/3d})}$.

Let i = n/2 + t and j = n/2 - t. Enough to compute Approximate Majority / Coin Problem.

Elegant construction [OW07], [Ama09], [RS17]: Can be done by depth-d AC⁰ circuits of size roughly $2^{(n/t)^{1/d}}$.

For $t=\Theta(|i-j|)>n^{1/3}$, this size bound is $2^{O(n^{2/3d})}$

Let i = n/2 + t and j = n/2 - t. Enough to compute Approximate Majority / Coin Problem.

Elegant construction [OW07], [Ama09], [RS17]: Can be done by depth-d AC⁰ circuits of size roughly $2^{(n/t)^{1/d}}$.

For $t = \Theta(|i - j|) > n^{1/3}$, this size bound is $2^{O(n^{2/3d})}$

Let i = n/2 + t and j = n/2 - t. Enough to compute Approximate Majority / Coin Problem.

Elegant construction [OW07], **[Ama09]**, **[RS17]**: Can be done by depth- $d AC^0$ circuits of size roughly $2^{(n/t)^{1/d}}$.

For $t=\Theta(|i-j|)>n^{1/3}$, this size bound is $2^{O(n^{2/3d})}$

Let i = n/2 + t and j = n/2 - t. Enough to compute Approximate Majority / Coin Problem.

Elegant construction [OW07], **[Ama09]**, **[RS17]**: Can be done by depth- $d AC^0$ circuits of size roughly $2^{(n/t)^{1/d}}$.

For $t = \Theta(|i - j|) > n^{1/3}$, this size bound is $2^{O(n^{2/3d})}$.

▶ Previous argument works for all **symmetric functions**.

▶ In depth d = 4, careful depth control + new ingredient: randomly splitting variables into buckets.

Linear Threshold Functions (LTFs) and Polytopes: AC⁰ reduction to Exact Threshold Functions (ETH) via [HP10], then reduction to symmetric functions (Chinese remaindering). Previous argument works for all symmetric functions.

ln depth d = 4, careful depth control + new ingredient: randomly splitting variables into buckets.

Linear Threshold Functions (LTFs) and Polytopes: AC⁰ reduction to Exact Threshold Functions (ETH) via [HP10], then reduction to symmetric functions (Chinese remaindering). ▶ Previous argument works for all **symmetric functions**.

ln depth d = 4, careful depth control + new ingredient: randomly splitting variables into buckets.

► Linear Threshold Functions (LTFs) and Polytopes: AC⁰ reduction to Exact Threshold Functions (ETH) via [HP10], then reduction to symmetric functions (Chinese remaindering).

Techniques: $AC^0[\oplus]$ Lower Bounds

Theorem 2. Let $d \ge 3$ be an integer. Majority on n bits requires depth- $d \operatorname{AC}^{0}[\oplus]$ circuits of size $2^{\Omega(n^{1/(2d-4)})}$.

Recall: Razborov-Smolensky shows a $2^{\Omega(n^{1/(2d-2)})}$ lower bound.

Intuition: How to save two layers of gates in the polynomial approximation method?

Degree Upper Bound:

Probabilistic polynomial P over \mathbb{F}_2 correct on each input w.h.p. AND, OR, NOT, PARITY: error ε and degree $\log(1/\varepsilon)$ Size-s depth-d AC⁰[\oplus]: deg(P) $\approx (\log s)^{d-1}$ and error $\varepsilon \leq 1/50$.

For Majority_n, deg($m{P}$) must be $\geq \sqrt{n \cdot \log(1/\varepsilon)}$.

Degree Upper Bound:

Probabilistic polynomial P over \mathbb{F}_2 correct on each input w.h.p. AND, OR, NOT, PARITY: error ε and degree $\log(1/\varepsilon)$ Size-*s* depth-*d* AC⁰[\oplus]: deg(P) $\approx (\log s)^{d-1}$ and error $\varepsilon \leq 1/50$.

Degree Lower Bound:

For Majority_n, deg(P) must be $\geq \sqrt{n \cdot \log(1/\varepsilon)}$.

Putting together the approximate degree bounds:

$$(\log s)^{d-1} \ge \sqrt{n \cdot \log(1/\varepsilon)}, \quad \varepsilon = 1/50.$$

This implies that $s \ge 2^{\Omega(n^{1/(2d-2)})}$.

(The RS lower bound is maximized when $\varepsilon = \text{constant.}$)

We follow Razborov-Smolensky, with two new ideas.

Idea 1. Exploit error $\varepsilon = 1/50$ of polynomial approximator:

- Error is **one-sided** and $\leq 1/\log s$ on say $C^{-1}(1)$.
- Hope to exploit stronger degree lower bound of $\sqrt{n \cdot \log(1/\varepsilon)}$.

Idea 2. Random restrictions for $AC^0[\oplus]$ circuits: – Prove that w.h.p. a random restriction leads to depth-2 subcircuits of smaller approximate degree. Can do better than $(\log s)^2$ on bottom layer

We follow Razborov-Smolensky, with two new ideas.

Idea 1. Exploit error $\varepsilon = 1/50$ of polynomial approximator:

- Error is **one-sided** and $\leq 1/\log s$ on say $C^{-1}(1)$.
- Hope to exploit stronger degree lower bound of $\sqrt{n \cdot \log(1/\varepsilon)}$.

Idea 2. Random restrictions for $AC^{0}[\oplus]$ circuits:

– Prove that w.h.p. a random restriction leads to depth-2 subcircuits of smaller approximate degree. Can do better than $(\log s)^2$ on bottom layers.

• We approximate every non-output gate to error $\leq 1/s^2$.

By union bound, every input wire of output gate is correct (except with prob. $\leq 1/s$).

Approximation method over OR gate is one-sided ("random parities"): zero inputs to OR gate always produce zero.

Smolensky's approximate degree lower bound:

$$\deg_{\varepsilon}(\mathsf{Majority}_n) = \Omega(\sqrt{n \cdot \log(1/\varepsilon)}).$$

Can we maintain this lower bound when error on $Majority_n^{-1}(0)$ is $\leq \varepsilon$ but error on $Majority_n^{-1}(1)$ is as large as 1/50?

We extend the technique of certifying polynomials [KS12] to show this is the case. Smolensky's approximate degree lower bound:

$$\deg_{\varepsilon}(\mathsf{Majority}_n) = \Omega(\sqrt{n \cdot \log(1/\varepsilon)}).$$

Can we maintain this lower bound when error on $Majority_n^{-1}(0)$ is $\leq \varepsilon$ but error on $Majority_n^{-1}(1)$ is as large as 1/50?

We extend the technique of certifying polynomials[KS12] to show this is the case.

▶ We prove the following lemma:

Random Restriction Lemma. Let *C* be a depth-2 $AC^{0}[\oplus]$ circuit on *n* vars and of size $s \ge n^{2}$. Let $p_{*} \le 1/(500 \log s)$. Then,

$$\mathbb{P}_{\boldsymbol{\rho} \sim \mathcal{R}_{p_*}^n}[\deg_{\varepsilon = 1/s^2}(C|_{\boldsymbol{\rho}}) > 10 \log s \mid \boldsymbol{\rho} \text{ is balanced }] < \frac{1}{10s}.$$

Case analysis based on gates of C (OR, AND, PARITY)

▶ We prove the following lemma:

Random Restriction Lemma. Let *C* be a depth-2 $AC^{0}[\oplus]$ circuit on *n* vars and of size $s \ge n^{2}$. Let $p_{*} \le 1/(500 \log s)$. Then,

$$\mathbb{P}_{\boldsymbol{\rho} \sim \mathcal{R}_{p_*}^n}[\deg_{\varepsilon = 1/s^2}(C|_{\boldsymbol{\rho}}) > 10 \log s \mid \boldsymbol{\rho} \text{ is balanced }] < \frac{1}{10s}.$$

Case analysis based on gates of C (OR, AND, PARITY).

Concluding Remarks

Challenge: What is the $AC^{0}[\oplus]$ complexity of Majority?

Close the gap between the $2^{\widetilde{O}\left(n^{\frac{2}{3}\cdot\frac{1}{(d-4)}}\right)}$ upper bound and the $2^{\Omega\left(n^{1/(2d-4)}\right)}$ lower bound.

Find more examples where the "optimal" algorithm or circuit can be improved.

Challenge: What is the $AC^{0}[\oplus]$ complexity of Majority?

Close the gap between the $2^{\widetilde{O}\left(n^{\frac{2}{3}\cdot\frac{1}{(d-4)}}\right)}$ upper bound and the $2^{\Omega\left(n^{1/(2d-4)}\right)}$ lower bound.

► Find more examples where the "optimal" algorithm or circuit can be improved.