Parity Helps to Compute Majority

Igor Carboni Oliveira
Rahul Santhanam

Srikanth Srinivasan

Computational Complexity Conference 2019

Background and Motivation

Bounded-depth boolean circuits

» ACY: Bounded-depth circuits with AND, OR, NOT gates.
» A model that captures fast parallel computations.

» Close connections to logic and finite model theory.

We know a lot about AC’

1/(d—1)

» Explicit lower bounds: 29"“") for Parity, and Majority,,.

We know a lot about AC’

(d-1)

» Explicit lower bounds: 22" for Parity, and Majority,,.

» Lower bound techniques have led to several advances:

— Learning Algorithms for AC° using random examples.
— PRGs for ACY with poly-log seed length.

— Exponential lower bounds for AC’-Frege.

This talk: AC°[@] circuits

» ACY[@]: Extension of AC’ by @ (parity) gates.

» Parities can be very helpful: error-correcting codes, hash
functions, GF(2)-polynomials, combinatorial designs, . ..

This talk: AC°[@] circuits

» ACY[@]: Extension of AC’ by @ (parity) gates.

» Parities can be very helpful: error-correcting codes, hash
functions, GF(2)-polynomials, combinatorial designs, . ..

» Explicit lower bounds: 22""*“™") for Majority,,.

This talk: AC°[@] circuits

» ACY[@]: Extension of AC’ by @ (parity) gates.

» Parities can be very helpful: error-correcting codes, hash
functions, GF(2)-polynomials, combinatorial designs, . ..

» Explicit lower bounds: 22""*“™") for Majority,,.

» AC" and AC’[@] are significantly different circuit classes:
Example: depth hierarchy for AC’, depth collapse for AC'[@].

AC’[@] and its challenges

» Many fundamental questions remain wide open for AC'[3].

— Can we learn AC’[®] using random examples?
— Are there PRGs of seed length o(n)?

— Does every tautology admit a short AC’[®]-Frege proof?

AC® versus AC’[@)]

» Our primitive understanding of AC’[@] is reflected in part on
existing lower bounds:

AC® versus AC’[@)]

» Our primitive understanding of AC’[@] is reflected in part on
existing lower bounds:

— Majority is one of the most studied boolean functions.

— Depth-d AC® complexity of Majority is 2°"“™") (1980s).

AC® versus AC’[@)]

» Our primitive understanding of AC’[@] is reflected in part on
existing lower bounds:

— Majority is one of the most studied boolean functions.

— Depth-d AC” complexity of Majority is 2©<n“<d‘”> (1980’s).

— Best known AC’[@)] lower bound is 22"*“"") for any f € NP.

(Razborov-Smolensky approximation method, 1980’s)

AC® versus AC’[@)]

» Our primitive understanding of AC’[@] is reflected in part on
existing lower bounds:

— Majority is one of the most studied boolean functions.
— Depth-d AC” complexity of Majority is 2©<n“<d‘”> (1980’s).
— Best known AC’[@)] lower bound is 22"*“"") for any f € NP.

(Razborov-Smolensky approximation method, 1980’s)

Question. Can @ gates help us computing Majority?

Why should we care?

1/2(d—1)

1. Combinatorics: huge gap between 2/“™" and 2"

Why should we care?

1/2(d—1)

1. Combinatorics: huge gap between 2/“™" and 2"

2. Can we beat the “obviously” optimal algorithm?

Why should we care?

1/2(d—1)

1. Combinatorics: huge gap between 2/“™" and 2"
2. Can we beat the “obviously” optimal algorithm?

3. Parity gates play crucial role in hardness magnification.
Example: “a layer of parities away from NC' lower bounds”.

Why should we care?

1/2(d—1)

1. Combinatorics: huge gap between 2/“™" and 2"
2. Can we beat the “obviously” optimal algorithm?

3. Parity gates play crucial role in hardness magnification.
Example: “a layer of parities away from NC' lower bounds”.

4. Better understanding of circuit complexity of a class C often
leads to progress w.r.t. related questions.

Results

Informal Summary

» Neither the trivial upper bound of 20"/“"") gates nor the
Razborov-Smolensky lower bound 2%"*“™") is tight.

10

Informal Summary

» Neither the trivial upper bound of 20"/“"") gates nor the
Razborov-Smolensky lower bound 2%"*“™") is tight.

Our new upper and lower bounds for AC’[©] show that:

» Parity gates can speedup the computation of Majority for
each large depth d € N.

» Indeed, the AC" and AC’[®] complexities are similar at
depth 3, but parity gates significantly help at depth 4.

10

Divide-and-conquer is not optimal for AC°[3)]

Recall: For d > 2, the depth-d AC’ complexity of Majority, is 2°(*/“")

Theorem 1. Let d > 5 be an integer. Majority on n bits can be

computed by depth-d AC°[&] circuits of size 20(” @),

11

Divide-and-conquer is not optimal for AC°[3)]

Recall: For d > 2, the depth-d AC’ complexity of Majority, is 2°(*/“")

Theorem 1. Let d > 5 be an integer. Majority on n bits can be
computed by depth-d AC°[&] circuits of size 20(” @),

» A similar upper bound holds for symmetric functions and
linear threshold functions.

11

Strengthening Razborov-Smolensky

Razborov-Smolensky

The depth-d AC’[®] complexity of Majority,, is Q@ (n/2i-2))

Theorem 2. Let d > 3 be an integer. Majority on n bits
requires depth-d AC’[®] circuits of size g (/=)

12

Strengthening Razborov-Smolensky

Razborov-Smolensky

The depth-d AC’[®] complexity of Majority,, is Q@ (n/2i-2))

Theorem 2. Let d > 3 be an integer. Majority on n bits
requires depth-d AC’[®] circuits of size g (/=)

» A small improvement of explicit lower bounds for f € NP.
» This improvement is significant for very small d.

12

The small depth regime

New lower bound + extension of upper bound techniques yield:

Corollary 1.
The depth-3 AC’[&] circuit size complexity of Majority is 26",
The depth-4 AC’[&)] circuit size complexity of Majority is 260",

» Parity gates significantly help at depth 4 but not at depth 3.

13

Techniques: AC'[¢] Upper Bounds

14

Improved upper bound for all large depths

Theorem 1. Let d > 5 be an integer. Majority on n blts can be

computed by depth-d AC’[@] circuits of size 20 (¥ @)

i\Y) =
0 otherwise.

15

Improved upper bound for all large depths

Theorem 1. Let d > 5 be an integer. Majority on n blts can be

computed by depth-d AC’[@] circuits of size 20 (¥ @)

B =t TWh=h gy 2 Te=g
Z 0 otherwise. " 0 if |yl1 =7

15

Improved upper bound for all large depths

Theorem 1. Let d > 5 be an integer. Majority on n blts can be

computed by depth-d AC’[@] circuits of size 20 (¥ @)

L if |yl =1, L if |y =1,

Ei(y) = D;(y) =

0 otherwise. 0 if |yl1 =7

Goal: AC’[&] circuits of size ~ 27" forall D, ;, 0 <i # j <n.

15

The D, ; partial boolean function

111...111

Di,j: {0, 1}” — {0, 1}

i,j € [n] ~ 1 Dij(r) =1

t/ \\
y ~J Djj(x)=
\\ \ /}///
S " D;j(x) € {0,1}
5 /
000...000

16

Circuit for D‘L'.J'

» We consider the value |i — j|:

— Small regime: |i —j| < n'/3.

We use an “algebraic” construction. This circuit relies on a IFy
polynomial, divide-and-conquer, and needs & gates.

17

Circuit for D,‘J

» We consider the value |i — j|:

— Small regime: |i —j| < n'/3.

We use an “algebraic” construction. This circuit relies on a IFy
polynomial, divide-and-conquer, and needs & gates.

— Large regime: |i — j| > n'/3.

We use a “combinatorial”’ construction. This circuit relies on a
probabilistic construction of AC® circuits for the Coin Problem.

17

li — j| < n'/3: The algebraic construction |

Lemma [AW15]: C1,C2,...,C0 €L
\ There is a polynomial @Q: {0,1}"* — Z such that:
/. . \\\ cl
e A2 Q(z) = ¢; when |z|; agrees with corresponding layer.
/,’, A LCe
4 s Moreover,
i L —1
T deg(@) <£—1 and Q) =31 T-Qt(ﬂf)
:\: o :’, 7,
. aw= ¥ Il
4 sé()ies

t-th symmetric elementary polynomial

18

li — j| < n'/3: The algebraic construction II

» Q(z1,...,z,)is defined over Z. We take a homomorphism ¢: Z — Fs.

/—1
P(x) =Y b - Pi(x) over F,, where (= (i —j) + 1.
t=0

19

li — j| < n'/3: The algebraic construction II

» Q(z1,...,z,)is defined over Z. We take a homomorphism ¢: Z — Fs.

/—1
P(x) =Y b - Pi(x) over F,, where (= (i —j) + 1.
t=0

» P(x) computes D, ;(x) and has degree at most ¢ < n'/3.

— We would like to compute P(x) in depth-d AC’[@)].

19

li — j| < n'/3: The algebraic construction II

» Q(z1,...,z,)is defined over Z. We take a homomorphism ¢: Z — Fs.

/—1
P(x) =Y b - Pi(x) over F,, where (= (i —j) + 1.
t=0

» P(x) computes D, ;(x) and has degree at most ¢ < n'/3.

— We would like to compute P(x) in depth-d AC’[@)].

— Goal: elementary symmetric polynomials Q1, ..., Q., where ¢ < n'/3,

19

li — j| < n'/3: The algebraic construction lll

We simulate P, using an
P, a) = D]2 e
se() 568 algebraic branching program:

U1,1 T2 U2, Vg—1,1

Ty ? Tt
To V12 V22 2t Vr—1,2 Z H
. \ : $0 width n
lv:l:‘n Uz,n 7h?ilm, length E + 1

20

li — j| < n'/3: The algebraic construction lll

We simulate P, using an
Py vz) = 2, 1l \gebrale branching -
se() €8 algebraic branching program:
T Ul s T2 V2,1 T UVg—1,1
:;2 V1,2 V2,2 a Ve—1,2 ZH
: \ : $ ® width n
Ul'n 7)'7;1‘” length E + 1

Divide-and-conquer approach similar to depth-d circuit for STCONN:

We can compute P, using A and € in depth d and size n®“'",

20

li — j| < n'/3: The algebraic construction lll

We simulate P, using an
Py vz) = 2, 1l \gebrale branching -
se() €8 algebraic branching program:
T Ul s T2 V2,1 T UVg—1,1
:;2 V1,2 V2,2 a Ve—1,2 ZH
: \ : $ ® width n
Ul:n Ve im length ¢+ 1

Divide-and-conquer approach similar to depth-d circuit for STCONN:

We can compute P, using A and € in depth d and size n®“'",

For ¢ < n'/3, this gives AC’[@] circuit size 20**),
20

i — j| > n'/?: The combinatorial construction

By moving from n to ©(n) input bits, we can assume i and j
are equally spaced from middle layer.

21

i — j| > n'/?: The combinatorial construction

By moving from n to ©(n) input bits, we can assume i and j
are equally spaced from middle layer.

Leti =n/2+tand j =n/2 —t. Enough to compute
Approximate Majority / Coin Problem.

21

i — j| > n'/?: The combinatorial construction

By moving from n to ©(n) input bits, we can assume i and j
are equally spaced from middle layer.

Leti =n/2+tand j =n/2 —t. Enough to compute
Approximate Majority / Coin Problem.

Elegant construction [OW07], [Ama09], [RS17]:
Can be done by depth-d AC” circuits of size roughly 2(*/0"",

21

i — j| > n'/?: The combinatorial construction

By moving from n to ©(n) input bits, we can assume i and j
are equally spaced from middle layer.

Leti =n/2+tand j =n/2 —t. Enough to compute
Approximate Majority / Coin Problem.

Elegant construction [OW07], [Ama09], [RS17]:
Can be done by depth-d AC” circuits of size roughly 2(*/0"",

n2/3d)

Fort = O(|i — j|) > n'/3, this size bound is 2°

21

Extensions of the Upper Bound

» Previous argument works for all symmetric functions.

22

Extensions of the Upper Bound

» Previous argument works for all symmetric functions.

» In depth d = 4, careful depth control + new ingredient:
randomly splitting variables into buckets.

22

Extensions of the Upper Bound

» Previous argument works for all symmetric functions.

» In depth d = 4, careful depth control + new ingredient:
randomly splitting variables into buckets.

» Linear Threshold Functions (LTFs) and Polytopes:
AC” reduction to Exact Threshold Functions (ETH) via [HP10],
then reduction to symmetric functions (Chinese remaindering).

22

Techniques: AC'[@] Lower Bounds

23

Improved lower bounds for all depths

Theorem 2. Let d > 3 be an integer. Majority on n bits
requires depth-d AC’[®] circuits of size 29(”1/(%_4)).

1/(2d—2)

Recall: Razborov-Smolensky shows a 24") lower bound.

» Intuition: How to save two layers of gates in the
polynomial approximation method?

24

Review of Razborov-Smolensky

» Degree Upper Bound:

Probabilistic polynomial P over F, correct on each input w.h.p.
AND, OR, NOT, PARITY: error ¢ and degree log(1/¢)

Size-s depth-d AC’[®]: deg(P) =~ (log s)*! and error ¢ < 1/50.

25

Review of Razborov-Smolensky

» Degree Upper Bound:

Probabilistic polynomial P over F, correct on each input w.h.p.
AND, OR, NOT, PARITY: error ¢ and degree log(1/¢)

Size-s depth-d AC’[®]: deg(P) =~ (log s)*! and error ¢ < 1/50.

» Degree Lower Bound:
For Majority,,, deg(P) must be > \/n -log(1/¢).

25

The lower bound

Putting together the approximate degree bounds:

(logs)™' > /n-log(l/e), =1/50.

This implies that s > 22"*™),

(The RS lower bound is maximized when ¢ = constant.)

26

Our approach

We follow Razborov-Smolensky, with two new ideas.

Idea 1. Exploit error ¢ = 1/50 of polynomial approximator:
— Error is one-sided and < 1/log s on say C~'(1).
— Hope to exploit stronger degree lower bound of /7 - log(1/e).

27

Our approach

We follow Razborov-Smolensky, with two new ideas.

Idea 1. Exploit error ¢ = 1/50 of polynomial approximator:
— Error is one-sided and < 1/log s on say C~'(1).
— Hope to exploit stronger degree lower bound of /7 - log(1/e).

Idea 2. Random restrictions for AC’[¢] circuits:
— Prove that w.h.p. a random restriction leads to depth-2 subcircuits of

smaller approximate degree. Can do better than (log s)? on bottom layers.
27

First idea: One-sided approximations

» We approximate every non-output gate to error < 1/s2.

» By union bound, every input wire of output gate is correct
(except with prob. < 1/s).

» Approximation method over OR gate is one-sided (“‘random
parities”): zero inputs to OR gate always produce zero.

28

First idea: Stronger degree lower bound

» Smolensky’s approximate degree lower bound:

deg_(Majority,,) = Q(y/n - log(1/e)).

Can we maintain this lower bound when error on Majority, *(0)
is < ¢ but error on Majority, *(1) is as large as 1/50?

29

First idea: Stronger degree lower bound

» Smolensky’s approximate degree lower bound:
deg_(Majority,,) = Q(y/n - log(1/e)).

Can we maintain this lower bound when error on Majority, *(0)
is < ¢ but error on Majority, *(1) is as large as 1/50?

» We extend the technique of certifying polynomials
[KS12] to show this is the case.

29

Second idea: random restrictions for AC’[3)]

» We prove the following lemma:

Random Restriction Lemma. Let C' be a depth-2 AC"[)]
circuit on n vars and of size s > n?. Let p, < 1/(5001og s).
Then,

. 1
Pprs [deg._1/2(Cp) > 10log s | p is balanced | < 105"

S

30

Second idea: random restrictions for AC’[3)]

» We prove the following lemma:

Random Restriction Lemma. Let C' be a depth-2 AC"[)]
circuit on n vars and of size s > n?. Let p, < 1/(5001og s).
Then,

. 1
Pprn [deg._,2(Cly) > 10log s | p is balanced | < 105"
D S

» Case analysis based on gates of C' (OR, AND, PARITY).

30

Concluding Remarks

31

Open Problems

Challenge: What is the AC’[®] complexity of Majority?

2 (n% @

» Close the gap between the 2¢
22(n/) 1ower bound.

) upper bound and the

Dy, exp(n?/34) exp(n?/34) exp(n'/??) ? exp(n!/29)

“small” “large” small medium large

i
| .?‘ 1/4 1/2

32

Open Problems

Challenge: What is the AC’[®] complexity of Majority?

2 (n% @

» Close the gap between the 2¢

) upper bound and the
22(n/) 1ower bound.

Dy, exp(n?/34) exp(n?/34) exp(n'/??) ? exp(n!/29)

“small” “large” small medium large

li — jl
nl/3 plit nl/2

» Find more examples where the “optimal” algorithm or circuit
can be improved.

32

