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Overview

1. Are there infinitely many prime numbers with “simple” descriptions?

2.  Is it hard to detect patterns in data?

3.  Is there a fast deterministic algorithm that, given n, outputs an n-bit prime?

Maths

CS

Maths/CS

This talk: 

New insights using a probabilistic extension of (time-bounded) Kolmogorov complexity
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Background and Motivation
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1. Number Theory: Mersenne Primes

“Simplest” possible representation 

of an n-bit prime.
Mersenne primes admit a short and effective representation.

Are there infinitely many Mersenne primes?
Are there infinitely many 

primes of “minimum description length”?Q. Q.
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Time-bounded Kolmogorov Complexity

Mersenne primes admit a short and effective representation.

Levin (1984) proposed the following notion of complexity for strings. 

Kolmogorov Complexity?

short effective
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2. Complexity Theory: Intractability

Kolmogorov complexity Levin’s Kt complexity

Given x, estimate C(x)

Given x, estimate Kt(x) Is it in polynomial time?

e.g. [ABKvMR’06]

Undecidable Exponential Time vs Polynomial Time

Problems about the complexity of strings play a significant role in theory of computing.

Q.

(e.g. learning & cryptography)
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3. Algorithms: Deterministic constructions 

“Simple objects are easier to find”

POLYMATH 4
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Summary

“Simplicity” as bounded Kt complexity (e.g. Mersenne primes).

Connections to basic questions in Maths/CS.

Q.

Q.

These remain longstanding problems relevant to number theory, algorithms, and complexity.
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A theory of probabilistic representations

[O-Santhanam’17] Pseudodeterministic constructions in subexponential time.

[O’19] Randomness and intractability in Kolmogorov complexity.

[Lu-O’20] An efficient coding theorem via probabilistic representations and its applications.
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Definition of rKt complexity

A short and effective probabilistic procedure that is likely to generate the observed data.

[O’19] A randomized analogue of Levin’s Kt complexity:
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Basic properties of rKt

Q. Are there strings that admit a more succinct representation using randomness?

As far as we know, gap between rKt and Kt could be maximum.
Proxy measure

to investigate Kt?
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A theory of probabilistic representations

[O-Santhanam’17] Pseudodeterministic constructions in subexponential time.

[O’19] Randomness and intractability in Kolmogorov complexity.

[Lu-O’20] An efficient coding theorem via probabilistic representations and its applications. 
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Probabilistic representations can see 

patterns in prime numbers

Informally, some primes are structured enough to admit “short” and “effective” 

probabilistic representations.
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Pseudorandomness
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Long list of works on PRGs in TCS:

Unconditional PRGs against “weak” tests.

Conditional PRGs against “expressive” tests.

Hardness Assumption (Pseudo)Randomness
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Hardness Assumption (Pseudo)Randomness Some primes have low rKt
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Infinitely many primes of 

bounded rKt complexity

yes no

Fact: PSPACE computations can 

detect first n-bit prime.

(probabilistic representation)
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A theory of probabilistic representations

[O-Santhanam’17] Pseudodeterministic constructions in subexponential time.

[O’19] Randomness and intractability in Kolmogorov complexity.

[Lu-O’20] An efficient coding theorem via probabilistic representations and its applications. 
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Is it hard to detect patterns?

We cannot feasibly distinguish “structured” strings from “random” strings.
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Proof of a weaker result:
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A more delicate argument is used for the gap problem and against BPTIME[quasi-poly].

Proof of a weaker result:
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A theory of probabilistic representations

[O-Santhanam’17] Pseudodeterministic constructions in subexponential time.

[O’19] Randomness and intractability in Kolmogorov complexity.

[Lu-O’20] An efficient coding theorem via probabilistic representations and its applications. 
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Perspective

rKt has enabled results that remain intriguing questions for Levin’s Kt complexity.

existence of shorter representations intractability of estimating rKt

Q. Can we further advance time-bounded Kolmogorov complexity using 

probabilistic representations?
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Pillars of Kolmogorov Complexity

Three essential results in Kolmogorov complexity:

Language Compression Theorem

Symmetry of Information

Source Coding Theorem

Time-bounded version?

Hardness Assumption

Hardness Assumption

?

See e.g. [Troy Lee, PhD Thesis] 
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Coding Theorem

Shannon’s Information Theory Kolmogorov Complexity

Distributions, entropy, compression, etc. Individual strings and their complexities.

Coding Theorem in 

Kolmogorov Complexity

Interested in establishing an unconditional time-bounded version of the Coding Theorem.
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An Efficient Coding Theorem for rKt

[Zhenjian Lu-O’20] “Samplable objects admit short and effective representations.”
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Extremely useful 

in applications!



Application: Efficient universal compression

0010101000101111010010010111100010101010001010100101111010010100

“There is a way of compressing it to k bits”   (in the sense of rKt).
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Is the existence of succinct representations for primes a rare phenomenon?

By the Coding Theorem for rKt, enough to show that:

This is a relaxation of the Polymath problem of deterministically generating primes.
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Open Problem



Summary: Probabilistic Data Representations

Succinct Descriptions:

Computational Hardness:

Coding Theorem:
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