Kolmogorov complexity, prime numbers, and complexity lower bounds

LMS Computer Science Colloquium

November/2020

Igor Carboni Oliveira

University of Warwick

Research funded by a Royal Society University Research Fellowship

1

Overview

Maths 1. Are there infinitely many prime numbers with "simple" descriptions?

cs 2. Is it hard to detect patterns in data?

Maths/CS 3. Is there a fast deterministic algorithm that, given n, outputs an n-bit prime?

This talk:

New insights using a **probabilistic** extension of (time-bounded) Kolmogorov complexity

Euclid's Elements

Background and Motivation

1. Number Theory: Mersenne Primes

Primes of the form $M_n = 2^n - 1$.

51 Mersenne primes are known. The largest known prime is $2^{82589933} - 1$.

In binary representation, a Mersenne prime is of the form 111111......11111.

Mersenne primes admit a <u>short</u> and <u>effective</u> representation.

"Simplest" possible representation of an n-bit prime.

Q. Are there infinitely many Mersenne primes? \gtrsim

Are there infinitely many primes of "minimum description length"?

Great Internet Mersenne Prime Search GIMPS

Finding World Record Primes Since 1996

Time-bounded Kolmogorov Complexity

Mersenne primes admit a <u>short</u> and <u>effective</u> representation.

Kolmogorov Complexity?

Levin (1984) proposed the following notion of complexity for strings.

$$\mathsf{Kt}(x) \stackrel{\text{def}}{=} \min |M| + \log t$$

$$\underset{\mathsf{M \ prints \ x \ in \ time \ t}}{\mathsf{TM \ M, \ time \ t}} \stackrel{\bullet}{\uparrow} \stackrel{\bullet}{\uparrow}$$

$$\underbrace{\mathsf{short}}_{\mathsf{effective}}$$

For every *n*-bit string *x*: $\log n \leq \operatorname{Kt}(x) \leq n + O(\log n)$

111...111

2. Complexity Theory: Intractability

Problems about the **complexity of strings** play a significant role in theory of computing.

(e.g. learning & cryptography)

3. Algorithms: Deterministic constructions

POLYMATH 4

$$[\underbrace{100\dots000}_{n \text{ bits}}, 111\dots111]_2 = [2^{n-1}, 2^n - 1]_{10}$$

Challenge of deterministically generating primes: Given n, output an n-bit prime. Best known deterministic algorithm runs in time $2^{n/2}$. [Lagarias-Odlyzko'87]

 \implies For every large *n*, there is an *n*-bit prime p_n with $\mathsf{Kt}(p_n) \leq \frac{n}{2} + o(n)$.

"Simple objects are easier to find"

If there is a sequence p_n of *n*-bit primes with $\mathsf{Kt}(p_n) \leq \gamma_n$ then primes can be deterministically generated in time $\approx 2^{\gamma_n}$.

Summary

"Simplicity" as bounded Kt complexity (e.g. Mersenne primes).

Connections to basic questions in Maths/CS.

Q. Are there n-bit primes of Kt complexity o(n)?
Q. It is hard to estimate Kt(x) of a given string x?
Q. Deterministic prime generation in time 2^{o(n)}?

These remain longstanding problems relevant to number theory, algorithms, and complexity.

[O-Santhanam'17] Pseudodeterministic constructions in subexponential time.

[O'19] Randomness and intractability in Kolmogorov complexity.

[Lu-O'20] An efficient coding theorem via probabilistic representations and its applications.

Definition of rKt complexity

[O'19] A randomized analogue of Levin's Kt complexity:

$$\mathsf{rKt}(x) \stackrel{\text{def}}{=} \min_{\substack{\text{randomized TM M, time t \\ \Pr_M[M \text{ prints } x \text{ in time } t] \ge 2/3}}} |M| + \log t$$

A short and effective probabilistic procedure that is likely to generate the observed data.

Basic properties of rKt

 $\mathsf{rKt}(x) \stackrel{\text{def}}{=} \min_{\substack{\text{randomized TM M, time t \\ \Pr_M[M \text{ prints } x \text{ in time } t] \ge 2/3}}} |M| + \log t \qquad \mathsf{Kt}(x) \stackrel{\text{def}}{=} \min_{\substack{\text{M} \mid + \log t \\ \mathsf{M} \text{ prints } x \text{ in time } t \end{bmatrix} \ge 2/3}} \mathsf{Kt}(x) \stackrel{\text{def}}{=} \min_{\substack{\text{M} \mid + \log t \\ \mathsf{M} \text{ prints } x \text{ in time } t \end{bmatrix}}}$

For every string x, $\mathsf{rKt}(x) \leq \mathsf{Kt}(x)$.

Q Are there strings that admit a more succinct representation using randomness?

[O'19] If $\mathsf{E} \not\subseteq \mathsf{i.o.SIZE}[2^{\varepsilon n}]$, for every string x we have $\mathsf{rKt}(x) = \Theta(\mathsf{Kt}(x))$.

As far as we know, gap between rKt and Kt could be maximum.

Proxy measure to investigate Kt?

A theory of probabilistic representations

[O-Santhanam'17] Pseudodeterministic constructions in subexponential time.

[O'19] Randomness and intractability in Kolmogorov complexity.

[Lu-O'20] An efficient coding theorem via probabilistic representations and its applications.

Probabilistic representations can see patterns in prime numbers

Recall: Open to show \exists primes of Kt complexity < n/2.

Theorem [O-Santhanam'17, O'19]. $\forall \varepsilon > 0$, for infinitely many values of n, $\exists n$ -bit prime p_n such that $\mathsf{rKt}(p_n) \leq n^{\varepsilon}$.

Informally, some primes are structured enough to admit "short" and "effective" probabilistic representations.

Intuition: A random *n*-bit string "hits" Primes_n with probability δ .

Constuct a pseudorandom distribution \mathcal{D} supported over $\mathcal{R}_{\leq n^{\varepsilon}}^{\mathsf{rKt}}$.

→ "Tests": $\mathsf{Primes}_n \in \mathsf{DTIME}[n^k]$.

14

Pseudorandomness

 $\mathcal D$ $\varepsilon\text{-fools}$ a class of tests $\mathcal T$ if:

For every function $f: \{0,1\}^n \to \{0,1\}$ in \mathcal{T} ,

$$\Pr_{x \sim \{0,1\}^n} [f(x) = 1] - \Pr_{y \sim \mathcal{D}} [f(y) = 1] \Big| \leq \varepsilon.$$

Example. $\mathcal{T} = \{x_1, \dots, x_n\}$ $G: \{0, 1\}^1 \rightarrow \{0, 1\}^n$ $G(0) = 000 \dots 000$ $G(1) = 111 \dots 111$ Fact: $G \varepsilon$ -fools \mathcal{T} for $\varepsilon = 0$.

 $G: \{0,1\}^s \to \{0,1\}^n, \ s \ll n, \text{ generates a distribution } \mathcal{D} \equiv G(\mathcal{U}_s).$

 $G: \{0,1\}^s \to \{0,1\}^n, \ s \ll n, \text{ generates a distribution } \mathcal{D} \equiv G(\mathcal{U}_s).$ "Fools" a class of tests \mathcal{T} .

Crucial: *n*-bit outputs of G have low rKt complexity: "explained" by a seed of length s.

NOT $(\star) \implies$ "Easiness"

Time-bounded computations are more powerful. Certain "patterns" in primes might become evident.

Example: The lexicographic first n-bit prime.

Need to find a "sweet spot" (\star) that is useful.

A theory of probabilistic representations

[O-Santhanam'17] Pseudodeterministic constructions in subexponential time.

[O'19] Randomness and intractability in Kolmogorov complexity.

[Lu-O'20] An efficient coding theorem via probabilistic representations and its applications.

Is it hard to detect patterns?

"structured"

 $\mathcal{R}^{\mathsf{rKt}}_{\geq .99n}$

"random"

Theorem [O'19]. $\forall \varepsilon > 0$, there is no randomised algorithm running in quasipolynomial time that accepts strings in $\mathcal{R}_{\leq n^{\varepsilon}}^{\mathsf{rKt}}$ and rejects strings in $\mathcal{R}_{\geq .99n}^{\mathsf{rKt}}$

We cannot feasibly distinguish "structured" strings from "random" strings.

Proof of a weaker result: The set $\mathcal{R}_{>n^{\varepsilon}}^{\mathsf{rKt}}$ is not in P.

Lemma. Any **dense** and **easy** set contains, infinitely often, strings x with $\mathsf{rKt}(x) \leq n^{\varepsilon}$.

Proof of a weaker result: The set $\mathcal{R}_{>n^{\varepsilon}}^{\mathsf{rKt}}$ is not in P.

Lemma. Any **dense** and **easy** set contains, infinitely often, strings x with $\mathsf{rKt}(x) \leq n^{\varepsilon}$.

 $\mathcal{R}_{>n^{\varepsilon}}^{\mathsf{rKt}}$ is dense.

If $\mathcal{R}_{>n^{\varepsilon}}^{\mathsf{rKt}}$ is also easy (in P), then we contradict the lemma.

A more delicate argument is used for the **gap problem** and against **BPTIME[quasi-poly]**.

 $\mathcal{R}^{\mathsf{rKt}}_{\leq n^{arepsilon}}$

 $\mathcal{R}^{\mathsf{rKt}}_{\geq .99n}$

"structured"

"random"

A theory of probabilistic representations

[O-Santhanam'17] Pseudodeterministic constructions in subexponential time.

[O'19] Randomness and intractability in Kolmogorov complexity.

[Lu-O'20] An efficient coding theorem via probabilistic representations and its applications.

Perspective

rKt has enabled results that remain intriguing questions for Levin's Kt complexity.

Q Can we further advance **time-bounded Kolmogorov complexity** using probabilistic representations?

Pillars of Kolmogorov Complexity

Three essential results in Kolmogorov complexity:

Time-bounded version?

Coding Theorem

Shannon's Information Theory

Distributions, entropy, compression, etc.

Coding Theorem in Kolmogorov Complexity

Kolmogorov Complexity

Individual strings and their complexities.

An object x can be sampled with probability δ

x admits a representation of length $\approx \log(1/\delta)$

Interested in establishing an **unconditional time-bounded** version of the **Coding Theorem**.

An Efficient Coding Theorem for rKt

[Zhenjian Lu-O'20] "Samplable objects admit short and effective representations."

Randomized Algorithm
$$A(1^m)$$

Runs in time $T(m)$ \longrightarrow $\mathsf{rKt}(x) = O_A(\log(1/\delta) + \log(T) + \log m)$
Outputs string x with probability $\geq \delta$

Efficient generation of representation: Given x, A, m, and δ , we can compute in time $poly(|x|, |A|, \log m, \log(1/\delta))$ and with probability $\geq .99$ a valid rKt representation.

"Magic": Running time has no dependence on T.

Extremely useful in applications!

Application: Efficient universal compression

"There is a way of compressing it to k bits" (in the sense of **rKt**). $\mathsf{rKt}(x) \leq k$

 \Longrightarrow

We can output in polynomial time with probability \geq .99 a valid rKt encoding of x of complexity O(k).

Open Problem

Is the existence of succinct representations for primes a rare phenomenon?

Prove that for every large n, there is an n-bit prime of rKt complexity $\leq \varepsilon n$.

By the **Coding Theorem for rKt**, enough to show that:

Problem. Is there a probabilistic algorithm that, given n as input, runs in time $2^{\varepsilon n}$ and outputs some fixed *n*-bit prime with probability at least $1/2^{\varepsilon n}$?

This is a relaxation of the Polymath problem of deterministically generating primes.

Summary: Probabilistic Data Representations

(under assumptions)

 $\mathsf{K}\mathsf{t}~\approx~\mathsf{r}\mathsf{K}\mathsf{t}$

Succinct Descriptions:

Infinitely many primes have rKt complexity $\leq n^{\varepsilon}$.

Computational Hardness:

It is intractable to estimate the rKt complexity of an input string.

Coding Theorem:

Samplable objects admit short and effective representations.

Main References

[O-Santhanam'17] Pseudodeterministic constructions in subexponential time (STOC'2017).

[O'19] Randomness and intractability in Kolmogorov complexity (ICALP'19).

[Lu-O'20] An efficient coding theorem via probabilistic representations and its applications (preprint).

[Levin'84] Randomness conservation inequalities; information and independence in mathematical theories. Information and Control, 61(1):15-37, 1984.

[ABKvMR'06] Eric Allender, Harry Buhrman, Michal Koucky, Dieter van Melkebeek, and Detlef Ronneburger. Power from random strings. SIAM J. Comput., 35(6):1467-1493, 2006.

[Polymath 4 - TCH12] Terence Tao, Ernest Croot, III, and Harald Helfgott. Deterministic methods to find primes. Math. Comp., 81(278):1233-1246, 2012.

[Troy Lee, PhD Thesis] Kolmogorov complexity and formula lower bounds. University of Amsterdam, 2006.

https://www.dcs.warwick.ac.uk/~igorcarb/complexity-meetings.html

