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Background and motivation
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Structure versus Randomness

B Given a string x ∈ {0, 1}n, is it “structured” or “random”?

B Question of relevance to several fields, including:

LEARNING: Detecting pattern/structure in data.

CRYPTO: Encrypted strings must look random.
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Complexity of strings

B Different ways of measuring the complexity of x.

B This talk: Interested in hardness of estimating complexity.

If provably secure cryptography exists, algorithms shouldn’t be
able to estimate the “complexity” of strings.
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Circuit complexity and Kolmogorov complexity

Circuit Complexity:
– View x as a boolean function f : {0, 1}` → {0, 1}.

– complexity(x) = minimum size of a circuit for f .

– Deciding complexity is just the MCSP. Showing this is hard implies P 6= NP.

Kolmogorov Complexity:
– complexity(x) = minimum length of TM that prints x.

– Estimating complexity of x is undecidable.

“Extremal” . . . Is there an intermediate notion that is useful?
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Time-bounded Kolmogorov complexity

B Introduced by L. Levin in 1984.

B Takes into account description length and running time of TM.

Kt(x)
def
= min

A
TM M, time t

M prints x in time t

|M |+ log t

B Kt(x) can be computed in exponential time (brute-force).

Circuit Complexity Levin’s (Time-Bounded) Kt Kolmogorov Complexity

NP EXP undecidable
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Why is Kt an interesting measure?

B log t gives the “right” measure: connection to optimal search.

Example: Deterministic generation of n-bit prime numbers.

Fastest known algorithm runs in time 2n/2 [Lagarias-Odlyzko, 1987].

B Is there a sequence {pn} of n-bit primes such that Kt(pn) = o(n)?

True ⇐⇒ there is deterministic prime generation in time 2o(n)
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How difficult is to compute the complexity of a string?

Can we compute Kt(x) in polynomial time?

B Explicitly posed in [ABK+06]. We already know that P 6= EXP . . .

B Question strongly connected to power of learning algorithms.

B If provably secure cryptography exists, the answer should be negative.
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Main Result
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Summary of Main Contribution

B We introduce a randomized
analogue of Levin’s Kt complexity.

B Main Result: Randomized Kt complexity cannot be estimated in BPP.

(The problem can be solved in randomized exponential time.)

B This is an unconditional lower bound for a natural problem.
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Randomized Kt Complexity

B Adaptation of Levin’s definition to Randomized Computation.

B For x ∈ {0, 1}n, we consider algorithms that generate x w.h.p.:

rKt(x)
def
= min

A
randomized TM M, time t

PrM [M prints x in time t ] ≥ 2/3

|M |+ log t

Intuition: String probabilistically decompressed from short representation.
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Remarks about Kt Complexity

rKt(x)
def
= min

A
randomized TM M, time t

PrM [M prints x in time t ] ≥ 2/3

|M |+ log t

B Definition is robust.

B Connected to pseudodeterministic algorithms.
In particular, it follows from a recent joint work with R. Santhanam that

– There is an infinite sequence {pm}m of m-bit primes such that rKt(pm) ≤ mo(1).

B Under standard derandomization assumptions, Kt(x) = Θ(rKt(x)).
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How difficult is to compute the complexity of a string?

Can we compute Kt(x) in polynomial time?
MKtP – Minimum Kt Problem

Can we compute rKt(x) in randomized polynomial time?
MrKtP – Minimum rKt Problem
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Main Result: MrKtP is hard

“rKt cannot be approximated in quasi-polynomial time.”

Theorem 1. For every ε > 0, there is no randomized algorithm running in
time npoly(logn) that distinguishes between rKt(x) ≤ nε versus rKt(x) ≥ .99n,
where n is the length of the input string x.

Remark. This problem can be solved in randomized exponential time.
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Techniques
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Preliminaries

Gap-MrKtP[nε, .99n]:

YESn
def
= {x ∈ {0, 1}n | rKt(x) ≤ nε}

NOn
def
= {x ∈ {0, 1}n | rKt(x) > .99n}

B Algorithm for Gap-MrKtP[nε, .99n] distinguishes two cases.

B Approach: indirect diagonalization using techniques from
theory of pseudorandomness.
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Main Lemmas

Lemma 1. For every ε > 0, BPE ≤P/poly Gap-MrKtP[nε, .99n].

B Very strong non-uniform inclusion.

Lemma 2. For every ε > 0, PSPACE ⊆ BPPGap-MrKtP[nε,.99n].

B Strong uniform inclusion.

Lemma 3. If n ≤ s(n) ≤ 2o(n) then DSPACE[s3] * Circuit[s].

B Nexus between uniform and non-uniform inclusions.
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Main Result from Lemmas 1, 2, and 3

B Proof by contradiction. Sketch of weaker result:

Assume Gap-MrKtP[nε, .99n] ∈ BPP. This also gives inclusion in P/poly.

L1. BPE ≤P/poly Gap-MrKtP[nε, .99n]. This implies BPE ⊆ Circuit[poly].

L2. PSPACE ⊆ BPPGap-MrKtP[nε,.99n]. This implies PSPACE ⊆ BPP.

Translation gives DSPACE[npoly(logn)] ⊆ BPTIME[npoly(logn)] ⊆ BPE ⊆ Circuit[poly].

This inclusion contradicts L3. DSPACE[s3] * Circuit[s].
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Theory of Pseudorandomness – Intuition for Lemmas 1 and 2

B Hardness versus Randomness paradigm:

From “hard” f : {0, 1}m → {0, 1}, one designs a “pseudorandom generator”

Gf : {0, 1}` → {0, 1}n.

Proof often shows: Algorithm “breaking” Gf can be used to “compute” f .

Crucial: We can upper bound rKt complexity of output strings of Gf .

Algorithm solving Gap-MrKtP[nε, .99n] acts as a distinguisher!
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Theory of Pseudorandomness – Intuition for Lemmas 1 and 2

L1. BPE ≤P/poly Gap-MrKtP[nε, .99n]. Relies on PRG construction of [BFNW93].

L2. PSPACE ⊆ BPPGap-MrKtP[nε,.99n]. Relies on PRG construction of [TV07].

B L1 and variants: require notions of string complexity such as rKt and Kt.

B Randomness is used in the proof of L2: bottleneck to Levin’s Kt.
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Further Results

(uniform versus non-uniform lower bounds)
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Circuit lower bounds

B Lower bound presented before holds against uniform algorithms.

B Boolean circuits capture non-uniform computation.

Major Challenge: Show for an explicit problem that any circuit
solving the problem requires several AND, OR, NOT gates.
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State-of-the-art circuit lower bounds

After 50+ years of intensive investigation:

B Existing circuit lower bounds are of the form c · n for constant c.

B Boolean formulas (weaker model): lower bounds of the form n3−o(1).

We know that Gap-MrKtP[nε, .99n] is hard. Can we use it to
prove better circuit and formula lower bounds?
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Hardness Magnification

B Emerging theory showing that weak lower bounds can be “magnified” to
strong lower bounds.

B By adapting recent joint work with J. Pich and R. Santhanam:

Theorem 2. If for every ε > 0,

Gap-MrKtP[nε, .99n] /∈ Circuit[n1.01], then BPEXP * Circuit[poly].

Gap-MrKtP[nε, .99n] /∈ Formula[n3.01], then BPEXP * Formula[poly].
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Open Problems
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The deterministic case

B Can we prove that computing Levin’s Kt complexity cannot
be done in deterministic polynomial time?
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Power of randomness: NEXP versus BPP

B This work: natural problem that cannot be solved in
randomized quasi-polynomial time.

B Can we reduce approximating rKt to a problem in NEXP?

B Even a randomized reduction would show NEXP 6= BPP.
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