Randomness and Intractability in Kolmogorov Complexity

Igor Carboni Oliveira

University of Oxford

ICALP 2019

Background and motivation

Structure versus Randomness

> Given a string x € {0,1}", is it “structured” or “random”?

> Question of relevance to several fields, including:
LEARNING: Detecting pattern/structure in data.

CRYPTO: Encrypted strings must look random.

Complexity of strings

> Different ways of measuring the complexity of z.

010011000111000011110000011111000000111111000000011111110000000011111111

> This talk: Interested in hardness of estimating complexity.

Complexity of strings

> Different ways of measuring the complexity of z.
010011000111000011110000011111000000111111000000011111110000000011111111

> This talk: Interested in hardness of estimating complexity.

If provably secure cryptography exists, algorithms shouldn’t be
able to estimate the “complexity” of strings.

Circuit complexity and Kolmogorov complexity

Circuit Complexity:
— View z as a boolean function f: {0,1}¢ — {0,1}.
— complexity(z) = minimum size of a circuit for f.

— Deciding complexity is just the MCSP. Showing this is hard implies P # NP.

Circuit complexity and Kolmogorov complexity

Circuit Complexity:
— View z as a boolean function f: {0,1}¢ — {0,1}.
— complexity(z) = minimum size of a circuit for f.

— Deciding complexity is just the MCSP. Showing this is hard implies P # NP.

Kolmogorov Complexity:
— complexity(z) = minimum length of TM that prints x.

— Estimating complexity of = is undecidable.

Circuit complexity and Kolmogorov complexity

Circuit Complexity:
— View z as a boolean function f: {0,1}¢ — {0,1}.
— complexity(z) = minimum size of a circuit for f.

— Deciding complexity is just the MCSP. Showing this is hard implies P # NP.

Kolmogorov Complexity:
— complexity(z) = minimum length of TM that prints x.

— Estimating complexity of = is undecidable.

“Extremal” ... Is there an intermediate notion that is useful?

Time-bounded Kolmogorov complexity
> Introduced by L. Levin in 1984. '

> Takes into account description length and running time of TM.

Kt(z) & min | M|+ logt

TM M, time t
M prints x in time t

Time-bounded Kolmogorov complexity
> Introduced by L. Levin in 1984. '

> Takes into account description length and running time of TM.

Kt(z) & min | M|+ logt

TM M, time t
M prints x in time t

> Kt(z) can be computed in exponential time (brute-force).

Time-bounded Kolmogorov complexity
> Introduced by L. Levin in 1984. '

> Takes into account description length and running time of TM.

Kt(z) & min | M|+ logt

TM M, time t
M prints x in time t

> Kt(z) can be computed in exponential time (brute-force).

Circuit Complexity Levin’s (Time-Bounded) Kt Kolmogorov Complexity
NP EXP undecidable

Why is Kt an interesting measure?

> logt gives the “right” measure: connection to optimal search.

Example: Deterministic generation of n-bit prime numbers.

Fastest known algorithm runs in time 2/2 [Lagarias-Odlyzko, 1987].

Why is Kt an interesting measure?

> logt gives the “right” measure: connection to optimal search.

Example: Deterministic generation of n-bit prime numbers.

Fastest known algorithm runs in time 2/2 [Lagarias-Odlyzko, 1987].

> s there a sequence {p,} of n-bit primes such that Kt(p,,) = o(n)?

Why is Kt an interesting measure?

> logt gives the “right” measure: connection to optimal search.

Example: Deterministic generation of n-bit prime numbers.

Fastest known algorithm runs in time 2/2 [Lagarias-Odlyzko, 1987].
> Is there a sequence {p, } of n-bit primes such that Kt(p,,) = o(n)?

True < there is deterministic prime generation in time 2°"

How difficult is to compute the complexity of a string?

Can we compute Kt(x) in polynomial time?

> Explicitly posed in [ABK*06]. We already know that P == EXP ...
> Question strongly connected to power of learning algorithms.

> If provably secure cryptography exists, the answer should be negative.

Main Result

Summary of Main Contribution

> We introduce a randomized
analogue of Levin’s Kt complexity.

> Main Result: Randomized Kt complexity cannot be estimated in BPP.

(The problem can be solved in randomized exponential time.)

> This is an unconditional lower bound for a natural problem.

10

Randomized Kt Complexity

> Adaptation of Levin’s definition to Randomized Computation.

> For z € {0, 1}", we consider algorithms that generate = w.h.p.:

rKt(z) o min | M| + log t

randomized TM M, time t
Pry[M prints z intime t] > 2/3

Intuition: String probabilistically decompressed from short representation.

11

Remarks about Kt Complexity

rKt(z) = min | M| + log t
randomized TM M, time t
Pry[M prints z intime t] > 2/3

> Definition is robust.

12

Remarks about Kt Complexity

rKt(z) = min | M| + log t

randomized TM M, time t
Pry[M prints z intime t] > 2/3

> Definition is robust.

> Connected to pseudodeterministic algorithms.
In particular, it follows from a recent joint work with R. Santhanam that

— There is an infinite sequence {p, },, of m-bit primes such that rKt(p,,,) < m°W).

12

Remarks about Kt Complexity

rKt(z) = min M|+ logt
g
randomized TM M, time t
Pry[M prints z intime t] > 2/3

> Definition is robust.

> Connected to pseudodeterministic algorithms.
In particular, it follows from a recent joint work with R. Santhanam that

— There is an infinite sequence {p, },, of m-bit primes such that rKt(p,,,) < m°W).

> Under standard derandomization assumptions, Kt(z) = O(rKt(x)).
12

How difficult is to compute the complexity of a string?

Can we compute Kt(z) in polynomial time?
MKtP — Minimum Kt Problem

Can we compute rKt(z) in randomized polynomial time?
MrKtP — Minimum rKt Problem

13

Main Result: MrKtP is hard

“rKt cannot be approximated in quasi-polynomial time.”

Theorem 1. For every € > 0, there is no randomized algorithm running in

time nPoY(loen) that distinguishes between rKt(x) < n® versus rKt(z) > .99n,
where n is the length of the input string z.

Remark. This problem can be solved in randomized exponential time.

14

Techniques

Preliminaries

Gap-MrKtP[n?, .99n]:

VES, ¥ {x € {0,1}" | rKt(z) < n°}

NO, ¥ {2 € {0,1}" | rKt(z) > .99n}

> Algorithm for Gap-MrKtP[n®, .99n] distinguishes two cases.

16

Preliminaries

Gap-MrKtP[n?, .99n]:
VES, ¥ {x € {0,1}" | rKt(z) < n°}

NO, ¥ {2 € {0,1}" | rKt(z) > .99n}
> Algorithm for Gap-MrKtP[n®, .99n] distinguishes two cases.

>> Approach: indirect diagonalization using techniques from
theory of pseudorandomness.

16

Main Lemmas

Lemma 1. For every € > 0, BPE <p /0, Gap-MrKtP[n?,.99n].

> Very strong non-uniform inclusion.

17

Main Lemmas

Lemma 1. For every € > 0, BPE <p /0, Gap-MrKtP[n?,.99n].

> Very strong non-uniform inclusion.

Lemma 2. For every ¢ > 0, PSPACE C Bpp&apMrkiP[n®.99n]

> Strong uniform inclusion.

17

Main Lemmas

Lemma 1. For every € > 0, BPE <p /0, Gap-MrKtP[n?,.99n].

> Very strong non-uniform inclusion.

Lemma 2. For every ¢ > 0, PSPACE C Bpp&apMrkiP[n®.99n]

> Strong uniform inclusion.

Lemma 3. If n < s(n) < 2°") then DSPACE([s?] ¢ Circuit[s].

> Nexus between uniform and non-uniform inclusions.

17

Main Result from Lemmas 1, 2, and 3

> Proof by contradiction. Sketch of weaker result:
Assume Gap-MrKtP[n®,.99n] € BPP. This also gives inclusion in P/poly.

L1. BPE <p/poly Gap-MrKtP[n®,.99n]. This implies BPE C Circuit[poly].
L2. PSPACE C BPPGap-MrKtP[n®,.99n] This implies PSPACE C BPP.

Translation gives DSPACE[nPoY(°8m)] € BPTIME[nPoY(°e™)] C BPE C Circuit[poly].

This inclusion contradicts L3. DSPACE[s®] € Circuit[s]. O

18

Theory of Pseudorandomness — Intuition for Lemmas 1 and 2

> Hardness versus Randomness paradigm:

From “hard” f: {0,1} — {0, 1}, one designs a “pseudorandom generator”

G/ {0,1}" = {0,1}"™.

19

Theory of Pseudorandomness — Intuition for Lemmas 1 and 2

> Hardness versus Randomness paradigm:

From “hard” f: {0,1} — {0, 1}, one designs a “pseudorandom generator”

G/ {0,1}" = {0,1}"™.

Proof often shows: Algorithm “breaking” G/ can be used to “compute” f.

19

Theory of Pseudorandomness — Intuition for Lemmas 1 and 2

> Hardness versus Randomness paradigm:

From “hard” f: {0,1} — {0, 1}, one designs a “pseudorandom generator”
G/ {0,1}" = {0,1}"™.

Proof often shows: Algorithm “breaking” G/ can be used to “compute” f.

Crucial: We can upper bound rKt complexity of output strings of G.

Algorithm solving Gap-MrKtP[n®, .99n] acts as a distinguisher!

19

Theory of Pseudorandomness — Intuition for Lemmas 1 and 2

L1. BPE <p/poy Gap-MrKtP[n®,.99n]. Relies on PRG construction of [BFNW93].

L2. PSPACE C BPPGap-MrKtP[n®,.99n] — Relies on PRG construction of [TVO7].

20

Theory of Pseudorandomness — Intuition for Lemmas 1 and 2

L1. BPE <p/poy Gap-MrKtP[n®,.99n]. Relies on PRG construction of [BFNW93].

L2. PSPACE C BPPGap-MrKtP[n®,.99n] — Relies on PRG construction of [TVO7].

> L1 and variants: require notions of string complexity such as rKt and Kt.

> Randomness is used in the proof of L2: bottleneck to Levin’s Kt.

20

Further Results

(uniform versus non-uniform lower bounds)

21

Circuit lower bounds

> Lower bound presented before holds against uniform algorithms.

> Boolean circuits capture non-uniform computation.

Major Challenge: Show for an explicit problem that any circuit
solving the problem requires several AND, OR, NOT gates.

22

State-of-the-art circuit lower bounds

After 50+ years of intensive investigation:
> Existing circuit lower bounds are of the form ¢ - n for constant c.

> Boolean formulas (weaker model): lower bounds of the form n?-°(1).

23

State-of-the-art circuit lower bounds

After 50+ years of intensive investigation:
> Existing circuit lower bounds are of the form ¢ - n for constant c.

> Boolean formulas (weaker model): lower bounds of the form n?-°(1).

We know that Gap-MrKtP[n®, .99n] is hard. Can we use it to
prove better circuit and formula lower bounds?

23

Hardness Magnification

> Emerging theory showing that weak lower bounds can be “magnified” to
strong lower bounds.

24

Hardness Magnification

> Emerging theory showing that weak lower bounds can be “magnified” to
strong lower bounds.

> By adapting recent joint work with J. Pich and R. Santhanam:

Theorem 2. If for every ¢ > 0,

Gap-MrKtP[n?,.99n] ¢ Circuit[n''], then BPEXP ¢ Circuit[poly].
Gap-MrKtP[n?, .99n] ¢ Formula[n®%!], then BPEXP ¢ Formula[poly].

24

Open Problems

The deterministic case

> Can we prove that computing Levin’s Kt complexity cannot
be done in deterministic polynomial time?

26

Power of randomness: NEXP versus BPP

>> This work: natural problem that cannot be solved in
randomized quasi-polynomial time.

> Can we reduce approximating rKt to a problem in NEXP?
>> Even a randomized reduction would show NEXP # BPP.

27

References and related work

Bl Eric Allender, Harry Buhrman, Michal Koucky, Dieter van Melkebeek, and Detlef Ronneburger.
Power from random strings.
SIAM J. Comput., 35(6):1467—-1493, 2006

[Eric Allender, Michal Koucky, Detlef Ronneburger, and Sambuddha Roy.
The pervasive reach of by ded K ity in
theory.
J. Comput. Syst. Sci., 77(1):14-40, 2011
B Eric Allender.
The complexity of complexity.
In Computability and Complexity, pages 79-94. Springer, 2017
[l Laszl6 Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson.
BPP has subexponential time simulations unless EXPTIME has publishable proofs.
Computational Complexity, 3:307-318, 1993.
[Eran Gat and Shafi Goldwasser.
Probabilistic search algorithms with unique answers and their cryptographic applications.
Electronic Colloquium on Computational Complexity (ECCC), 18:136, 2011
[Leonid A. Levin
conservation ii ities; information and independence in mathematical theories.
Information and Control, 61(1):15-37, 1984.
B Ming Li and Paul M. B. Vitanyi.
An ion to Ce ity and Its
Texts in Computer Science. Springer, 2008.
[Igor Carboni Oliveira, Jan Pich, and Rahul Santhanam.
Hardness magnification near state-of-the-art lower bounds.
Computational Complexity Conference (CCC), 2019
[Igor Carboni Oliveira and Rahul Santhanam.
ic constructions in ial til
In Symposium on Theory of Computing (STOC), pages 665677, 2017.
B Luca Trevisan and Salil P. Vadhan.

and gt ity via uniform
Computational Complexity, 16(4):331-364, 2007.

28

