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1. Matrices and intersections



The number of intersections

> Given a boolean matrix
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Q. How many intersections are needed to construct A from
row and column matrices (using unions and intersections)?



The base matrices

> Row matrices R1,..., R4.
0O 0 0 0
R, — 00 0 O
1111
00 0 0
> Column matrices C4,...,Cy.
01 00
Cy— 0100
0100
0100



Constructing A from R,,... Ry, C4,...,C

1100
A:0011:
01 10
1 011
110 0 00 00 00 00 00 00
00 00 0011 00 00 0000
U U U
00 00 0000 01 10 0000
0000 00 00 00 00 1 011

(We view each boolean matrix as a subset of I o [4] x [4].)

Claim. Each remaining matrix constructed with 1 intersection.



Constructing A from R,,... Ry, C4,...,Cy

Claim. Each remaining matrix constructed with 1 intersection:
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In other words, A’ = (C, U C3 U C4) N Ry.



Constructing A from R,,... Ry, C4,...,Cy

Claim. Each remaining matrix constructed with 1 intersection:
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constructed with < 4 intersections.
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> For AC [N] x [N]and Gy = {Ri,...,Rn,C1,...,Cn},

DA (A | Gn) is the number of N needed to construct A from Gy .

> The previous construction establishes more generally that:
Claim. For every boolean matrix A C [N] x [N],
Dn(A|Gn) < N.

> Interested in matrices that require several intersections.



A simple example

>> Consider the N x N “parity” matrices Py,

(i,j) € PN < i+ j =0 (mod2)



A simple example

>> Consider the N x N “parity” matrices Py,

(i,j) € PN < i+ j =0 (mod2)

Dn(Pn |Gn) = O(1)



Another example

Consider the N x N symmetric matrices

=l
o



Another example

Consider the N x N symmetric matrices

it
o

Exercise. If NV is a power of 2 then D~(Iy |Gn) = log N.



The random boolean matrix

Claim. If R C, ), [N] x [N] is a random boolean matrix, then

Dn(R|Gy) = Q(N) with probability — 1.
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The random boolean matrix

Claim. If R C, ), [N] x [N] is a random boolean matrix, then

Dn(R|Gy) = Q(N) with probability — 1.

> Showing a lower bound of Q(N/log N) is not difficult.
>> Tight bound uses a result of Uri Zwick (1996).
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Summary and Main Problem

> Every matrix A satisfies Dn(A|Gy) < N.
> A uniformly random matrix R satisfies Dn(R|Gn) = Q(N).

> The symmetric matrices Iy satisfy D~(Iy |Gn) = log N.
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Summary and Main Problem

> Every matrix A satisfies Dn(A|Gy) < N.
> A uniformly random matrix R satisfies Dn(R|Gn) = Q(N).

> The symmetric matrices Iy satisfy D~(Iy |Gn) = log N.

Problem. Show that some “explicit’ sequence Ey satisfies

Dﬂ(EN | QN) > 1010gN.
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2. The connection to computation

— Based on the following work:

Pavel Pudlék, Vojtech Rédl, and Petr Savicky.
Graph complexity.
Acta Inf., 25(5):515-535, 1988.
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Matrices, intersections, and computation

> Constructing such matrices has implications for Theoretical
Computer Science.

Proposition. If there is an “explicit” sequence Fx such that
Dn(En | Gn) > (log N)=M),

then P # NP.
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Matrices, intersections, and computation

> Constructing such matrices has implications for Theoretical
Computer Science.

Proposition. If there is an “explicit” sequence Fx such that
Dn(En | Gn) > (log N)=M),

then P # NP.

> Give me instead a sequence with D (En |Gy) > C - log N.
> C' > 10 would establish a new result in complexity theory.
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Sketch of the proof (1/4)

Dn(Ex |Gy) > (log N)*Y) — “Complexity Lower Bounds”

> Any computation can be simulated by boolean circuits.

X1 X1 X2 X2 X3 X3 X4 X4

> A circuit computes a boolean function g: {0,1}" — {0, 1}.

> Enough to prove circuit size lower bound for explicit

f:{0,1}" — {0, 1} obtained from matrix Ex.
14



Sketch of the proof (2/4)

> Let En require ¢ intersections when generated from Gy.
> Write N = 2". Fix natural bijection ¢: [N] x [N] — {0, 1}?".
> Define f: {0,1}2" — {0,1} by f~'(1) € (Ey) C {0,1}?".
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1 0
becomes Equality function over two n-bit strings.

=11
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Lemma. If SIZE(f) < sthen Dn(EN |Gn) < s.
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Sketch of the proof (2/4)

> Let En require ¢ intersections when generated from Gy.
> Write N = 2". Fix natural bijection ¢: [N] x [N] — {0, 1}?".
> Define f: {0,1}2" — {0,1} by f~'(1) € (Ey) C {0,1}?".

1 0
becomes Equality function over two n-bit strings.

=11
—_

Lemma. If SIZE(f) < sthen Dn(EN |Gn) < s.

Idea: A boolean circuit C computing f generates the set f~1(1)
starting from sets 1, ..., zop, 71, . . . , T2y C {0, 1}2™.
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Sketch of the proof (3/4)

Lemma. If SIZE(f) < sthen Dn(EN |Gn) < s.

> A circuit of size s for f generates a sequence:

Tlyeevs T2y T,y T2n Bla"'7 BS:f_l(l) c {0’1}271
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Sketch of the proof (3/4)

Lemma. If SIZE(f) < sthen Dn(EN |Gn) < s.

> A circuit of size s for f generates a sequence:

Tlyeevs T2y T,y T2n Bla"'7 BS:f_l(l) c {0’1}271

> Get from this and bijection ¢ a construction of Ey from Gy:

Example: ¢~1(B;) = Ex C [N] x [N].
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Sketch of the proof (3/4)

Lemma. If SIZE(f) < sthen Dn(EN |Gn) < s.

> A circuit of size s for f generates a sequence:

Tlyeevs T2y T,y T2n Bla"'7 BS:f_l(l) c {0’1}271

> Get from this and bijection ¢ a construction of Ey from Gy:

Example: ¢~1(B;) = Ex C [N] x [N].

Crucial: Need to generate ¢~ !(x;) and ¢~ 1(z;) C [N] x [N]
from row and column matrices in G5. Can be done without .
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Sketch of the proof (4/4)

Crucial: Need to generate ¢ !(z;) and o~ 1(z;) C [N] x [N]
from row and column matrices in Gy. Can be done without N.

The space {0,1}* and its The corresponding set in
“red” subspace z, C {0,1}* [4] x [4] via the bijection .

00 01 10 11
00 0
01

10

o o o o
G S
O

0
0
11 0
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3. An approach to estimate D~ (A | B)

— As an arbitrary set contained in ambient space I'.

— B s a collection of subsets of T".
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Intersections and Cover Problems

> Would like to lower bound D~ (A | B).

> Can adapt “fusion method” (Razborov/Karchmer) to show:

p(A,B) < Dn(A|B) < p(A,B)

19



Intersections and Cover Problems

> Would like to lower bound D~ (A | B).

> Can adapt “fusion method” (Razborov/Karchmer) to show:
p(A,B) < Dn(A|B) < p(4,B)%

Reduces complexity lower bounds to the analysis of
“static” 2-dimensional cover problems.
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> Would like to lower bound D~ (A | B).

> Can adapt “fusion method” (Razborov/Karchmer) to show:
p(A,B) < Dn(A|B) < p(4,B)%

Reduces complexity lower bounds to the analysis of
“static” 2-dimensional cover problems.

>> By adapting the work of Nakayama-Maruoka,

p(A,B) = DS(A|B) (intersections in C-networks)
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Intersections and Cover Problems

> Would like to lower bound D~ (A | B).

> Can adapt “fusion method” (Razborov/Karchmer) to show:
p(A,B) < Dn(A|B) < p(4,B)%

Reduces complexity lower bounds to the analysis of
“static” 2-dimensional cover problems.

>> By adapting the work of Nakayama-Maruoka,

p(A,B) = DS(A|B) (intersections in C-networks)
> Connections to other areas/problems + applications?
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Appendix: Cover complexity (1/3)

Appendix: Definition of p(A, B).

> Let Ac ¥ \ A, where T is the ambient space.

> A is non-trivial, i.e., both A and A° are non-empty.
>> B is a collection of subsets of I'.

Definition (Semi-filter)
A non-empty family 7 C P(U) is a semi-filter over U if the

following hold:
* (upward closure) If Uy € F and Uy C Uy C U, then Us € F.
* (non-trivial) O ¢ F.

. def
> We will always use U = A°.
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Appendix: Cover complexity (2/3)

Definition (Semi-filter above a € A)
F is above an element a € A (with respect to B) if for every

BeB,ifae Bthen BN A€ € F.

Definition (Preservation of pairs of subsets)
Let A = {(E1, H1),...,(Es, Hy)} be a family of pairs of subsets

of A¢. F preserves a pair (E;, H;) if E; € F and H; € F imply

E; N H; € F. F preserves A if it preserves every pair in A.
22



Appendix: Cover complexity (3/3)

Definition (Cover complexity)
p(A, B) is the minimum size of a collection A of pairs of subsets

of A€ such that there is no semi-filter F that preserves A and is
above an element a € A.

Theorem. The following results hold:

p(A,B) < Dn(A|B) < p(A,B)? and p(A,B) = DS(A|B)

Corollary: k-Clique (for £ = 3) monotone lower bounds of
Razborov extend to number of intersections in monotone
C-networks: ©(n?) intersections needed to detect a triangle.
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