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Motivation

Question. Is there f ∈ P such that f does not admit non-uniform circuits of size O(nk )?

Natural candidates:

I The `-clique problem on n-vertex graphs?

I Languages obtained by diagonalization in the time hierarchy theorem?

As far as we know, every problem in P might admit linear size circuits.

Can we at least show that some formal theories cannot prove that P ⊆ SIZE(nk)?
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Previous Work

I Several works on barriers and on the difficulty of proving lower bounds.

(important results, but often conditional, or restricted to a limited set of techniques.)

I We obtain results on the unprovability of upper bounds in a reasonably general and
established framework (unconditionally).

The closest reference seems to be

S. Cook and J. Krajíček, “Consequences of the provability of NP ⊆ P/poly”, 2007.

where conditional independence results were obtained for the theories PV, S1
2 , and S2
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Summary of the talk

1. Explain idea behind the formalization of a circuit upper bound as a formal sentence.

2. Discuss a theory (PV) that “understands” this sentence, and mention results that can
be formulated and proved in PV.

3. Sketch the ideas behind the argument that PV cannot prove that P ⊆ SIZE(nk ),
formalized as in 1. above.

4. Discussion and open problems.
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1. Formalizing non-uniform circuit upper bounds
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Informal statement

For a function symbol f and k , c ≥ 1,

we write a sentence to express that the language Lf ⊆ {0,1}∗ computed by f
has circuits of size ≤ cnk :

Informally,

∀n ∈ N ∃ circuit Cn ∀x ∈ {0,1}n
(
size(Cn) ≤ cnk ∧ (f (x) 6= 0↔ Cn(x) = 1)

)
.

I What is N? What about {0,1}n? A circuit? Symbol “∈”? Etc.
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Formal statement: The sentence UPk ,c(f )

UPk ,c(f ):

∀z ∃C ∀x
[
Circuit(C) ∧ size(C) ≤ c|z|k ∧

(
|x | = |z| → (f (x) 6= 0↔ CircEval(C, x) = 1)

)]
.

z, C, x are first-order variables (quantified over the same domain).

| · | is a function symbol, and one should think of |z| as the parameter n.

size(·), CircEval(·, ·), ≤, and f (·) are predicate/function symbols.

|z|k means |z| × . . .× |z|, etc. (we have function symbols + and ×).
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statements involving formulas of this form, we use a first-order theory.
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can use first-order quantifiers.
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2. The first-order theory PV

(informal discussion)
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Background

I PV (“Polynomially Verifiable”) introduced as an equational theory by S. Cook in 1975:
“Feasibly constructive proofs and the propositional calculus”.

Based on work of Cobham (1965) characterizing p-time functions by a function algebra.

Motivation: Formalizes feasible reasoning, connection to NP vs. coNP problem
(propositional translations).

I First-order formulation (PV1) presented in Krajíček, Pudlák, Takeuti (1991) as a
conservative extension of the equational theory.
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Background, cont.

I Definition of PV is technical. Some details not particularly important in our argument.

I Indeed, our unprovability results extends to the theory containing all true (in N)
universal sentences in the vocabulary LPV of PV.

We shall give a brief (and incomplete) introduction to PV on the next few slides.
(A formal treatment appears in Section 5.3 of Krajíček’s red book.)

An essentially equivalent formulation of the theory (perhaps more accessible) appears in:

E. Jeřábek, The strength of sharply bounded induction, 2006.
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PV and its vocabulary LPV

I Intended structure interpreting the symbols of PV is N, together with p-time functions
f̃ : N` → N interpreting each function symbol (“p-time algorithm”) f ∈ LPV.

I Informally, we view {0,1}? ↔ N, with the intention that ∀z, ∃C, ∀x quantify over the
same domain (numbers represent Boolean circuits, input strings, etc.).

I The function symbols in LPV and (part of) the axioms of PV are introduced
simultaneously, based on Cobham’s characterization of FP.
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PV and its vocabulary LPV: Cobham’s Theorem (1965)

Cobham’s Theorem. FP is equivalent to the set of functions in Nk → N, k ≥ 1, obtained
from the base functions below by composition and limited iteration on notation.

Base functions. 0, S, b x
2c, 2x , x ≤ y , Choice(x , y , z). (i.e. simple AC0 functions)

Limited iteration on notation.

f (~x ,0) = g(~x)

f (~x , y) = h(~x , y , f (~x , by
2
c)),

provided that |f (~x , y)| ≤ q(|~x |, |y |) for a fixed polynomial q and for all ~x , y ∈ N,
where |x | def

= dlog(x + 1)e is the length of the binary representation of x .
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PV and its vocabulary LPV, cont.

I As a new algorithm f is defined from previous ones:
◦ We add a new function symbol f to LPV,
◦ The corresponding defining equations are added to PV as new axioms.

I PV has also a form of induction axiom that simulates binary search.

I We use first-order predicate calculus to reason and prove theorems in PV.

Remark. PV can be axiomatized by universal formulas
(i.e., ∀~w φ(~w), where φ is quantifier-free).

14



PV and its vocabulary LPV, cont.

I As a new algorithm f is defined from previous ones:
◦ We add a new function symbol f to LPV,
◦ The corresponding defining equations are added to PV as new axioms.

I PV has also a form of induction axiom that simulates binary search.

I We use first-order predicate calculus to reason and prove theorems in PV.

Remark. PV can be axiomatized by universal formulas
(i.e., ∀~w φ(~w), where φ is quantifier-free).

14



PV and its vocabulary LPV, cont.

I As a new algorithm f is defined from previous ones:
◦ We add a new function symbol f to LPV,
◦ The corresponding defining equations are added to PV as new axioms.

I PV has also a form of induction axiom that simulates binary search.

I We use first-order predicate calculus to reason and prove theorems in PV.

Remark. PV can be axiomatized by universal formulas
(i.e., ∀~w φ(~w), where φ is quantifier-free).

14



PV and its vocabulary LPV, cont.

I As a new algorithm f is defined from previous ones:
◦ We add a new function symbol f to LPV,
◦ The corresponding defining equations are added to PV as new axioms.

I PV has also a form of induction axiom that simulates binary search.

I We use first-order predicate calculus to reason and prove theorems in PV.

Remark. PV can be axiomatized by universal formulas
(i.e., ∀~w φ(~w), where φ is quantifier-free).

14



UPk ,c(f ) as a sentence in LPV

Recall UPk ,c(f ):

∀z ∃C ∀x
[
Circuit(C) ∧ size(C) ≤ c|z|k ∧

(
|x | = |z| → (f (x) 6= 0↔ CircEval(C, x) = 1)

)]
.

I Circuit(·), size(·), CircEval(·), etc. are poly-time algorithms which can be associated to
well-behaved function symbols in LPV.

Question. Given k ≥ 1, is there a function symbol h ∈ LPV such that

PV 0 UPk ,c(h) ? (no matter the choice of c)

(By construction, the definition of h ∈ LPV contains in its description the specification of a
poly-time algorithm for h.)
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The strength of PV

I Many combinatorial and complexity-theoretic statements have been formalized and
proved in PV (or in theories believed to be strictly weaker than PV).

I This often involves clever adaptations of the original arguments, approximations of
probabilistic statements, discovering alternative proofs, etc.
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The strength of PV, cont.

I A recent substantial formalization obtained in PV:

J. Pich, “Logical strength of complexity theory and a formalization of the PCP Theorem
in Bounded Arithmetic, 2015.

“The aim of this paper is to show that a lot of complexity theory can be formalized in low
fragments of arithmetic like Cook’s theory PV1.

Our motivation is to demonstrate the power of bounded arithmetic as a counterpart to the
unprovability results we already have or want to obtain . . . ”

I Includes formalization of many other results, such as the Cook-Levin Theorem,
expander graphs, etc.
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For more information and background:
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3. The unconditional unprovability result

(main ideas and the associated difficulties)

19



Main Theorem

Theorem. For every k ≥ 1 there is a unary PV function symbol h such that for no
constant c ≥ 1 PV proves the sentence UPk ,c(h).

Remark. UPk ,c(h) is a ∀∃∀-sentence in LPV, and can be written as:

UPk ,c(h) ≡ ∀z ∃C ∀x φh(z,C, x), where φh is quantifier-free.
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The basic idea

I Logic/Provability as a bridge between non-uniform and uniform circuit complexity.

If PV ` UPk ,c(h) using a proof π (list of symbols), extract from π computational
information about sequence Cn of circuits computing h.

I Since PV is sound, provability of a sentence implies that the sentence is true in the
usual sense (in N).

I Perhaps contradict known (unconditional) lower bounds in uniform circuit complexity ?

(We will later explain why this natural approach is problematic.)
21
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Techniques

Standard tools from logic and complexity, which build on other important results:

I Uniform circuit lower bounds (Santhanam-Williams, 2014).

I Formalization of the argument from Santhanam-Williams in PV.

I Axiomatization of PV as a universal theory.

I Herbrand’s Theorem from mathematical logic.

I Krajicek-Pudlak-Takeuti Theorem (KPT) from bounded arithmetic.

I (Non-constructive) Inductive argument.
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The uniform lower bound

R. Santhanam and R. Williams, “On uniformity and circuit lower bounds”, 2014.

Theorem. For every k ≥ 1, there is L ∈ P such that L /∈ P-uniform-SIZE(nk ).

Why is this result so special?
L ∈ DTIME(n`), but P-uniform generating algorithm can run in time n2`

, n22`·k
, etc.

I Proof is a clever win-win argument by contradiction (non-constructive), and relies on a
time hierarchy theorem with advice.

I Our Approach. From a PV-proof of UPk ,c(h), we try to extract a poly-time generating
algorithm. We can’t control its p-time bound, but this is okay with the theorem above!
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R. Santhanam and R. Williams, “On uniformity and circuit lower bounds”, 2014.
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The KPT Witnessing Theorem

J. Krajíček, P. Pudlák, and G. Takeuti: “Bounded arithmetic and the polynomial hierarchy”, 1991.

Theorem. Assume T is a universal theory with vocabulary L, φ is a quantifier-free
L-formula, and

T ` ∀z ∃C ∀x φ(z,C, x) .

Then there exist a constant d ≥ 1 and a finite sequence t1, . . . , td of L-terms such that

T ` φ(z, t1(z), x1) ∨ φ(z, t2(z, x1), x2) ∨ . . . ∨ φ(z, td(z, x1, . . . , xd−1), xd).

I The result can be established using proof theory or model theory.
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Applying the KPT Theorem to PV and UPk ,c(f )

I Fix k ≥ 1, and assume that for every f ∈ LPV we have c ≥ 1 such that

PV ` UPk ,c(f ) Recall that this is ∀z ∃C ∀x φf (z,C, x).

I Assume we get d = 1 after applying the KPT statement, i.e.,

PV ` φf (z, t f
1(z), x1) , where t f

1(z) is an LPV-term.

I Then, by the soundness of PV, if we set z to be some n-bit integer 1(n),

N |= ∀x1 φf (1(n), t f
1(1

(n)), x1).

I Now t f
1(1

(n)), a term in PV, corresponds in N to a poly-time computation.
The assumption that we get this for all f ∈ LPV contradicts Santhanam-Williams.
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The general case

I If d > 1, we obtain from PV ` UPk ,c(f ) the more general scenario:

N |= φ(z, t1(z), x1) ∨ φ(z, t2(z, x1), x2) ∨ . . . ∨ φ(z, td(z, x1, . . . , xd−1), xd).

Either t1(1(n)) outputs a correct circuit for f , or
There is a counter-example a1 ∈ {0,1}n, and t2(1(n),a1) outputs a correct circuit, or

. . .

I Due to the counter-examples, we can only show that f ∈ [P-uniform /O(n)]-SIZE(nk ).

I Contradiction? A difficulty is the lack of super-linear non-uniform lower bounds!
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How to establish an unconditional unprovability result?

I Apply KPT to a specific UPk ,c(g), obtaining a disjunction of ≤ d formulas, d ∈ N.
(We will eliminate one by one in d stages, until we get a contradiction.)

I To handle each elimination step, we formalize the SW win-win argument inside PV.

The following ideas are crucial:

I Using the constructivity of PV and Herbrand’s Theorem, it can be shown that the
counter-examples that previously caused difficulties can be provably witnessed in PV.

I In the SW win-win analysis, the second case only needs a non-uniform assumption.
This allows us to move from d to d − 1 (our result is about non-uniform upper bounds!).

Check our paper for more details!
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4. Remarks and open problems
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Consistency of lower bounds

Given k and a “hard” h ∈ LPV, by a standard compactness argument over the formulas

PV ∪ {¬UPc,k (h) | c ∈ N},

Corollary. For every k ≥ 1 there exists a unary PV function symbol h and a model Mk of
PV such that for every c ≥ 1,

Mk |= ¬UPk ,c(h).
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Consistency of lower bounds, cont.

I From the point of view of the structure Mk , there are poly-time computations that
require non-uniform circuits of size ω(nk ).

I Thanks to the strength of PV, this means that a reasonable fraction of complex. theory
can be developed assuming ω(nk ) non-uniform lower bounds, without ever producing a
contradiction.

(In the spirit, for instance, of ZF Set Theory and the consistency of the Axiom of Choice.)
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Open problems and directions

I Prove a similar independence result for theories stronger than PV.

Example: APC1
def
= PV + dWPHP(LPV), a theory that formalizes many probabilistic arguments

and randomized algorithms (Jeřábek’s phd thesis, 2005), including:

Lovász Local Lemma and Goldreich-Levin [DaiTriManLe’14], Parity /∈ AC0 [Krajicek’95], etc.

I Obtain an explicit function symbol h in our result (instead of only an existential proof).

I Establish the same unprovability result under a ∃∀∃∀-formalization of the upper bound
statement, which also quantifies over the parameter c in the size bound cnk .
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Thank you.
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