
Clique is hard on average for regular resolution

Ilario Bonacina, UPC Barcelona Tech

July 27, 2018

Oxford Complexity Day

Talk based on a joint work with:

A. Atserias S. de Rezende M. Lauria

J. Nordström A. Razborov

1

Motivations

• k-clique is a fundamental NP-complete problem

• regular resolution captures state-of-the-art algorithms for

k-clique

• for k small (say k �
√
n) the standard tools from proof

complexity fail

2

k-clique

Input: a graph G = (V ,E) with n vertices and k ∈ N
Output: yes if G contains a k-clique as a subgraph;

no otherwise

- k-clique can be solved in time nO(k),

e.g. by brute-force

- k-clique is NP-complete

- assuming ETH, there is no

f (k)no(k)-time algorithm for k-clique

for any computable function f

3

k-clique

Input: a graph G = (V ,E) with n vertices and k ∈ N
Output: yes if G contains a k-clique as a subgraph;

no otherwise

- k-clique can be solved in time nO(k),

e.g. by brute-force

- k-clique is NP-complete

- assuming ETH, there is no

f (k)no(k)-time algorithm for k-clique

for any computable function f

3

k-clique

Input: a graph G = (V ,E) with n vertices and k ∈ N
Output: yes if G contains a k-clique as a subgraph;

no otherwise

- k-clique can be solved in time nO(k),

e.g. by brute-force

- k-clique is NP-complete

- assuming ETH, there is no

f (k)no(k)-time algorithm for k-clique

for any computable function f

3

k-clique

Input: a graph G = (V ,E) with n vertices and k ∈ N
Output: yes if G contains a k-clique as a subgraph;

no otherwise

- k-clique can be solved in time nO(k),

e.g. by brute-force

- k-clique is NP-complete

- assuming ETH, there is no

f (k)no(k)-time algorithm for k-clique

for any computable function f

3

k-clique

Input: a graph G = (V ,E) with n vertices and k ∈ N
Output: yes if G contains a k-clique as a subgraph;

no otherwise

- k-clique can be solved in time nO(k),

e.g. by brute-force

- k-clique is NP-complete

- assuming ETH, there is no

f (k)no(k)-time algorithm for k-clique

for any computable function f

3

k-clique

Input: a graph G = (V ,E) with n vertices and k ∈ N
Output: yes if G contains a k-clique as a subgraph;

no otherwise

- k-clique can be solved in time nO(k),

e.g. by brute-force

- k-clique is NP-complete

- assuming ETH, there is no

f (k)no(k)-time algorithm for k-clique

for any computable function f

3

Resolution

clause1 ∨ clause2

clause1 ∨ var clause2 ∨ ¬var

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z ¬z

⊥

Tree-like = the proof DAG is a tree

Regular = no variable resolved twice in any source-to-sink path

Size = # of nodes in the proof DAG

4

Resolution

clause1 ∨ clause2

clause1 ∨ var clause2 ∨ ¬var

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z ¬z

⊥

Tree-like = the proof DAG is a tree

Regular = no variable resolved twice in any source-to-sink path

Size = # of nodes in the proof DAG

4

Resolution

clause1 ∨ clause2

clause1 ∨ var clause2 ∨ ¬var

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z ¬z

⊥

Tree-like = the proof DAG is a tree

Regular = no variable resolved twice in any source-to-sink path

Size = # of nodes in the proof DAG

4

Resolution

clause1 ∨ clause2

clause1 ∨ var clause2 ∨ ¬var

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z ¬z

⊥

Tree-like = the proof DAG is a tree

Regular = no variable resolved twice in any source-to-sink path

Size = # of nodes in the proof DAG

4

Resolution

clause1 ∨ clause2

clause1 ∨ var clause2 ∨ ¬var

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z ¬z

⊥

Tree-like = the proof DAG is a tree

Regular = no variable resolved twice in any source-to-sink path

Size = # of nodes in the proof DAG

4

Resolution

clause1 ∨ clause2

clause1 ∨ var clause2 ∨ ¬var

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z ¬z

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z ¬z

⊥

Tree-like = the proof DAG is a tree

Regular = no variable resolved twice in any source-to-sink path

Size = # of nodes in the proof DAG

4

Resolution

clause1 ∨ clause2

clause1 ∨ var clause2 ∨ ¬var

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z ¬z

⊥

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z ¬z

⊥

Tree-like = the proof DAG is a tree

Regular = no variable resolved twice in any source-to-sink path

Size = # of nodes in the proof DAG

4

Resolution

clause1 ∨ clause2

clause1 ∨ var clause2 ∨ ¬var

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z ¬z

⊥

Tree-like = the proof DAG is a tree

Regular = no variable resolved twice in any source-to-sink path

Size = # of nodes in the proof DAG 4

What is Resolution good for?

• algorithms routinely used to solve SAT (CDCL-solvers) are

somewhat formalizable in resolution

• the state-of-the-art algorithms to solve k-clique

(Bron-Kerbosch, Österg̊ard, Russian dolls algorithms, ...) are

formalizable in regular resolution

5

k-clique formula

Construct a propositional formula ΦG ,k unsatisfiable if and only if

“G does not contain a k-clique”

xv ,j ≡ “v is the j-th vertex of a k-clique in G”.

The clique formula ΦG ,k

∨
v∈V

xv ,i for i ∈ [k]

and

¬xu,i ∨ ¬xv ,i for i ∈ [k], u, v ∈ V

and

¬xu,i ∨ ¬xv ,j for i 6= j ∈ [k], u, v ∈ V , (u, v) /∈ E

6

Size

S(ΦG ,k) = minimum size of a resolution refutation of ΦG ,k

Stree(ΦG ,k) = minimum size of a tree-like resolution ref. of ΦG ,k

Sreg (ΦG ,k) = minimum size of a regular resolution ref. of ΦG ,k

• S(ΦG ,k) 6 Sreg (ΦG ,k) 6 Stree(ΦG ,k) 6 nO(k)

• if G is (k − 1)-colorable then Sreg (ΦG ,k) 6 2kk2n2 [∼BGL13]

[BGL13] Beyersdorff, Galesi and Lauria 2013. Parameterized complexity of DPLL

search procedures.

7

Erdős-Rényi random graphs

A graph G = (V ,E) ∼ G(n, p) is such that |V | = n and each

edge {u, v} ∈ E independently with prob. p ∈ [0, 1]

• if p � n−2/(k−1) then a.a.s. G ∼ G(n, p) has no k-cliques

• A.a.s. G ∼ G(n, 1
2) has no clique of size d2 log2 ne

8

Erdős-Rényi random graphs

A graph G = (V ,E) ∼ G(n, p) is such that |V | = n and each

edge {u, v} ∈ E independently with prob. p ∈ [0, 1]

• if p � n−2/(k−1) then a.a.s. G ∼ G(n, p) has no k-cliques

• A.a.s. G ∼ G(n, 1
2) has no clique of size d2 log2 ne

8

Main Result (simplified)

Main Theorem (version 1)

Let G ∼ G(n, p) be an Erdős-Rényi random graph with, for

simplicity, p = n−4/(k−1) and let k 6 n1/2−ε for some arbitrary

small ε. Then, Sreg (ΦG ,k)
a.a.s.
= nΩ(k).

the actual lower bound decreases smoothly w.r.t. p

Main Theorem (version 2)

Let G ∼ G(n, 1
2), then

Sreg (ΦG ,k)
a.a.s.
= nΩ(log n) for k = O(log n)

and

Sreg (ΦG ,k)
a.a.s.
= nω(1) for k = o(log2 n) .

9

Main Result (simplified)

Main Theorem (version 1)

Let G ∼ G(n, p) be an Erdős-Rényi random graph with, for

simplicity, p = n−4/(k−1) and let k 6 n1/2−ε for some arbitrary

small ε. Then, Sreg (ΦG ,k)
a.a.s.
= nΩ(k).

the actual lower bound decreases smoothly w.r.t. p

Main Theorem (version 2)

Let G ∼ G(n, 1
2), then

Sreg (ΦG ,k)
a.a.s.
= nΩ(log n) for k = O(log n)

and

Sreg (ΦG ,k)
a.a.s.
= nω(1) for k = o(log2 n) .

9

Main Result (simplified)

Main Theorem (version 1)

Let G ∼ G(n, p) be an Erdős-Rényi random graph with, for

simplicity, p = n−4/(k−1) and let k 6 n1/2−ε for some arbitrary

small ε. Then, Sreg (ΦG ,k)
a.a.s.
= nΩ(k).

the actual lower bound decreases smoothly w.r.t. p

Main Theorem (version 2)

Let G ∼ G(n, 1
2), then

Sreg (ΦG ,k)
a.a.s.
= nΩ(log n) for k = O(log n)

and

Sreg (ΦG ,k)
a.a.s.
= nω(1) for k = o(log2 n) .

9

How hard is to prove that a graph is Ramsey?

Open Problem
Let G be a graph in n vertices with no set of k vertices forming a

clique or independent set, where k = d2 log ne. Is it true that

S(reg)(ΦG ,k) = nΩ(log n)?

([LPRT17] proved this but for a binary encoding of ΦG ,k)

[LPRT17] Lauria, Pudlák, Rödl, and Thapen, 2017. The complexity of proving that

a graph is Ramsey.

10

Previous lower bounds

[BGL13] If G is the complete (k − 1)-partite graph,

then Stree(ΦG ,k) = nΩ(k).

The same holds for G ∼ G(n, p) with suitable edge

density p.

[BIS07] for n5/6 � k < n
3 and G ∼ G(n, p) (with suitable

edge density p), then S(ΦG ,k)
a.a.s.
= 2n

Ω(1)

[LPRT17] if we encode k-clique using some other propositional

encodings (e.g. in binary) we get nΩ(k) size lower

bounds for resolution

[BIS07] Beame, Impagliazzo and Sabharwal, 2007. The resolution complexity of

independent sets and vertex covers in random graphs.

[LPRT17] Lauria, Pudlák, Rödl, and Thapen, 2017. The complexity of proving that

a graph is Ramsey. 11

Rest of the talk

Focus on k = d2 log ne and G ∼ G(n, 1
2), and how to prove

Sreg (ΦG ,k)
a.a.s.
= nΩ(log n)

12

Proof scheme

Theorem 1

Let k = d2 log ne. A.a.s. G = (V ,E) ∼ G(n, 1
2) is such that:

1. V is (k
50 ,Θ(n0.9))-dense; and

2. For every (k
10000 ,Θ(n0.9))-dense W ⊆ V there exists S ⊆ V ,

|S | 6
√
n s.t. for every R ⊆ V , with |R| 6 k

50 and

|N̂W (R)| < Θ̃(n0.6) it holds that |R ∩ S | > k
10000 .

Theorem 2

Let k = d2 log ne. For every G satisfying properties (1) and (2),

Sreg (ΦG ,k) = nΩ(log n)

Proof ideas: boosted Haken bottleneck counting. Bottlenecks are

pair of nodes with special properties and a way of visiting them.

The proof heavily uses regularity.

13

Proof scheme

Theorem 1

Let k = d2 log ne. A.a.s. G = (V ,E) ∼ G(n, 1
2) is such that:

1. V is (k
50 ,Θ(n0.9))-dense; and

2. For every (k
10000 ,Θ(n0.9))-dense W ⊆ V there exists S ⊆ V ,

|S | 6
√
n s.t. for every R ⊆ V , with |R| 6 k

50 and

|N̂W (R)| < Θ̃(n0.6) it holds that |R ∩ S | > k
10000 .

Theorem 2

Let k = d2 log ne. For every G satisfying properties (1) and (2),

Sreg (ΦG ,k) = nΩ(log n)

Proof ideas: boosted Haken bottleneck counting. Bottlenecks are

pair of nodes with special properties and a way of visiting them.

The proof heavily uses regularity.

13

Proof scheme

Theorem 1

Let k = d2 log ne. A.a.s. G = (V ,E) ∼ G(n, 1
2) is such that:

1. V is (k
50 ,Θ(n0.9))-dense; and

2. For every (k
10000 ,Θ(n0.9))-dense W ⊆ V there exists S ⊆ V ,

|S | 6
√
n s.t. for every R ⊆ V , with |R| 6 k

50 and

|N̂W (R)| < Θ̃(n0.6) it holds that |R ∩ S | > k
10000 .

Theorem 2

Let k = d2 log ne. For every G satisfying properties (1) and (2),

Sreg (ΦG ,k) = nΩ(log n)

Proof ideas: boosted Haken bottleneck counting. Bottlenecks are

pair of nodes with special properties and a way of visiting them.

The proof heavily uses regularity.
13

Denseness I

W ⊆ V is (r , q)-dense if for every subset R ⊆ V of size 6 r , it

holds |N̂W (R)| > q, where N̂W (R) is the set of common neighbors

of R in W

W

R

•
•
•

•

. . .

•
•

••
•

. . . •

In G ∼ G(n, 1
2),

• |N̂W (R)| ≈ |W rR| · 2−|R|

• V is (k
50 ,Θ(n0.9))-dense,

where k = d2 log ne.

14

Denseness I

W ⊆ V is (r , q)-dense if for every subset R ⊆ V of size 6 r , it

holds |N̂W (R)| > q, where N̂W (R) is the set of common neighbors

of R in W

W

R

•
•
•

•

. . .

•
•

••
•

. . . •

In G ∼ G(n, 1
2),

• |N̂W (R)| ≈ |W rR| · 2−|R|

• V is (k
50 ,Θ(n0.9))-dense,

where k = d2 log ne.

14

Denseness I

W ⊆ V is (r , q)-dense if for every subset R ⊆ V of size 6 r , it

holds |N̂W (R)| > q, where N̂W (R) is the set of common neighbors

of R in W

W

R

•
•
•

•

. . .
N̂W (R)

•
•

••
•

. . . •

In G ∼ G(n, 1
2),

• |N̂W (R)| ≈ |W rR| · 2−|R|

• V is (k
50 ,Θ(n0.9))-dense,

where k = d2 log ne.

14

Denseness I

W ⊆ V is (r , q)-dense if for every subset R ⊆ V of size 6 r , it

holds |N̂W (R)| > q, where N̂W (R) is the set of common neighbors

of R in W

W

R

•
•
•

•

. . .
N̂W (R)

•
•

••
•

. . . •

In G ∼ G(n, 1
2),

• |N̂W (R)| ≈ |W rR| · 2−|R|

• V is (k
50 ,Θ(n0.9))-dense,

where k = d2 log ne.

14

Denseness II

Theorem 1

Let k = d2 log ne. A.a.s. G = (V ,E) ∼ G(n, 1
2) is such that:

1. V is (k
50 ,Θ(n0.9))-dense; and

2. For every (k
10000 ,Θ(n0.9))-dense W ⊆ V there exists S ⊆ V ,

|S | 6
√
n s.t. for every R ⊆ V , with |R| 6 k

50 and

|N̂W (R)| < Θ̃(n0.6) it holds that |R ∩ S | > k
10000 .

W

S

R

N̂W (R)

15

Denseness II

Theorem 1

Let k = d2 log ne. A.a.s. G = (V ,E) ∼ G(n, 1
2) is such that:

1. V is (k
50 ,Θ(n0.9))-dense; and

2. For every (k
10000 ,Θ(n0.9))-dense W ⊆ V there exists S ⊆ V ,

|S | 6
√
n s.t. for every R ⊆ V , with |R| 6 k

50 and

|N̂W (R)| < Θ̃(n0.6) it holds that |R ∩ S | > k
10000 .

W

S

R

N̂W (R)

15

Denseness II

Theorem 1

Let k = d2 log ne. A.a.s. G = (V ,E) ∼ G(n, 1
2) is such that:

1. V is (k
50 ,Θ(n0.9))-dense; and

2. For every (k
10000 ,Θ(n0.9))-dense W ⊆ V there exists S ⊆ V ,

|S | 6
√
n s.t. for every R ⊆ V , with |R| 6 k

50 and

|N̂W (R)| < Θ̃(n0.6) it holds that |R ∩ S | > k
10000 .

W

S

R

N̂W (R)

15

Denseness II

Theorem 1

Let k = d2 log ne. A.a.s. G = (V ,E) ∼ G(n, 1
2) is such that:

1. V is (k
50 ,Θ(n0.9))-dense; and

2. For every (k
10000 ,Θ(n0.9))-dense W ⊆ V there exists S ⊆ V ,

|S | 6
√
n s.t. for every R ⊆ V , with |R| 6 k

50 and

|N̂W (R)| < Θ̃(n0.6) it holds that |R ∩ S | > k
10000 .

W

S

R

N̂W (R)

R

N̂W (R)

15

Denseness II

Theorem 1

Let k = d2 log ne. A.a.s. G = (V ,E) ∼ G(n, 1
2) is such that:

1. V is (k
50 ,Θ(n0.9))-dense; and

2. For every (k
10000 ,Θ(n0.9))-dense W ⊆ V there exists S ⊆ V ,

|S | 6
√
n s.t. for every R ⊆ V , with |R| 6 k

50 and

|N̂W (R)| < Θ̃(n0.6) it holds that |R ∩ S | > k
10000 .

W

S

R

N̂W (R)

R

N̂W (R)

15

Denseness II

Theorem 1

Let k = d2 log ne. A.a.s. G = (V ,E) ∼ G(n, 1
2) is such that:

1. V is (k
50 ,Θ(n0.9))-dense; and

2. For every (k
10000 ,Θ(n0.9))-dense W ⊆ V there exists S ⊆ V ,

|S | 6
√
n s.t. for every R ⊆ V , with |R| 6 k

50 and

|N̂W (R)| < Θ̃(n0.6) it holds that |R ∩ S | > k
10000 .

W

S

R

N̂W (R)

15

Denseness II

Theorem 1

Let k = d2 log ne. A.a.s. G = (V ,E) ∼ G(n, 1
2) is such that:

1. V is (k
50 ,Θ(n0.9))-dense; and

2. For every (k
10000 ,Θ(n0.9))-dense W ⊆ V there exists S ⊆ V ,

|S | 6
√
n s.t. for every R ⊆ V , with |R| 6 k

50 and

|N̂W (R)| < Θ̃(n0.6) it holds that |R ∩ S | > k
10000 .

W

S

R

N̂W (R)

15

Denseness II

Theorem 1

Let k = d2 log ne. A.a.s. G = (V ,E) ∼ G(n, 1
2) is such that:

1. V is (k
50 ,Θ(n0.9))-dense; and

2. For every (k
10000 ,Θ(n0.9))-dense W ⊆ V there exists S ⊆ V ,

|S | 6
√
n s.t. for every R ⊆ V , with |R| 6 k

50 and

|N̂W (R)| < Θ̃(n0.6) it holds that |R ∩ S | > k
10000 .

W

S

R

N̂W (R)

R

N̂W (R)

15

full paper

Thank you!

bonacina@cs.upc.edu

15

bonacina@cs.upc.edu

Appendix

Regular resolution ≡ Read-Once Branching Programs

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

x ∨ y

y ∨ z z

x ∨ ¬z ¬z

⊥

Regular resolution ≡ Read-Once Branching Programs

x ∨ w

¬x ∨ z ¬y

y ∨ ¬w

¬y ∨ ¬z ¬x

c

0

1
z

x

1

0

y

1

0

y

0

1

x

1

0

0

1

Haken bottleneck counting idea

“Lemma 1”
Every random path γ ∼ D in the ROBP passes through a

bottleneck node.

“Lemma 2”
Given any bottleneck node b in the ROBP,

Pr
γ∼D

[b ∈ γ] 6 n−Θ(k).

Then, it is trivial to conclude:

1 = Pr
γ∼D

[∃b ∈ ROBP b bottleneck and b ∈ γ]

6 |ROBP| · max
b bottleneck
in the ROBP

Pr
γ∼D

[b ∈ γ]

6 |ROBP| · n−Θ(k)

The random path

β(c) = max (partial) assignment contained in all paths from the

source to c

j ∈ [k] is forgotten at c if no sink reachable from c has label∨
v∈V xv ,j

The random path γ

• if j forgotten at c or

β(c) ∪ {xv ,j = 1} falsifies a short clause of ΦG ,k

then continue with xv ,j = 0

• otherwise toss a coin and with prob. Θ(n−0.6)

continue with xv ,j = 1

The real bottleneck counting

V 0
j (a) = {v ∈ V : β(a)(xv ,j) = 0}

Lemma 1
For every random path γ, there exists two nodes a, b in the

ROBP s.t.

1. γ touches a, sets 6 d k
200e variables to 1 and then touches b;

2. there exists a j∗ ∈ [k] not-forgotten at b and such that

V 0
j∗(b)rV 0

j∗(a) is (k
10000 ,Θ(n0.9))-dense.

Lemma 2

For every pair of nodes (a, b) in the ROBP satisfying point (2) of

Lemma 1,

Pr
γ

[γ touches a, sets 6

⌈
k

200

⌉
vars to 1 and then touches b] 6 n−Θ(k)

Proof sketch of Lemma 2

Let E=“γ touches a, sets 6 dk/200e vars to 1 and then touches b”

and let W = V 0
j∗(b)rV 0

j∗(a)

Case 1: V 1(a) = {v ∈ V : ∃i ∈ [k] β(a)(xv ,i) = 1} has large size

(> k/20000). Then Pr[E] 6 n−Θ(k) because of the prob. of 1s in

the random path γ and a Markov chain argument.

Case 2.1: V 1(a) is not large but many (> Θ̃(n0.6)) vertices in W

are set to 0 by coin tosses.

So Pr[E ∧W has many coin tosses] 6 n−Θ(k) again by a Markov

chain argument as in Case 1.

Case 2.2: V 1(a) is not large and not many vertices in W are set

to 0 by coin tosses. Then many of the 1s set by the random path

γ between a and b must belong to a set of size at most
√
n, by the

new combinatorial property (2).

So Pr[E ∧W has not many coin tosses] 6 n−Θ(k). ∼

	Appendix
	Appendix

