Clique is hard on average for regular resolution

llario Bonacina, UPC Barcelona Tech
July 27, 2018

Oxford Complexity Day

Talk based on a joint work with:

A. Atserias S. de Rezende M. Lauria

U

/7N

J. Nordstrom A. Razborov

e k-clique is a fundamental NP-complete problem

e regular resolution captures state-of-the-art algorithms for
k-clique

e for k small (say k < \/n) the standard tools from proof

complexity fail

Input: a graph G = (V, E) with n vertices and k € N
Output: YES if G contains a k-clique as a subgraph;
NO otherwise

Input: a graph G = (V, E) with n vertices and k € N

Output: YES if G contains a k-clique as a subgraph;

NO otherwise

77
1Z

%
V

\[

s\
22\

%
[z

\

Ny
\

V0T
IXXE
550

NZ—

k-clique

Input: a graph G = (V, E) with n vertices and k € N
Output: YES if G contains a k-clique as a subgraph;
NO otherwise

\

WS

UIN

>

{llm.\\\\
s

——

"

/

=N (X
“’,,*: 77
SONR
\\W///,' ",!;'
3

Input: a graph G = (V, E) with n vertices and k € N

Output: YES if G contains a k-clique as a subgraph;

NO otherwise

77
1Z

%
V

\[

s\
22\

%
[z

\

Ny
\

V0T
IXXE
550

NZ—

k-clique

Input: a graph G = (V, E) with n vertices and k € N
Output: YES if G contains a k-clique as a subgraph;
NO otherwise

BRE
2 %
S K
W A
Iy 7

SN

ST AOKS
N2
NS
X

k-clique

Input: a graph G = (V, E) with n vertices and k € N
Output: YES if G contains a k-clique as a subgraph;
NO otherwise

- k-clique can be solved in time n®(%),

e.g. by brute-force

N . :
‘\\}g’;s - k-clique is NP-complete
A
§'§" - assuming ETH, there is no
o
\"' f(k)n°(F)-time algorithm for k-clique

for any computable function f

ST AOKS
N2
NS
X

Resolution

clausey V var clause, V —var

S o ® N\ S

clausey V clausey

Resolution

clausey V var clause, V —var

S o ® N\ S

clausey V clausey

xVy

\/

Resolution

clausey V var clause, V —var

S o ® N\ S

clausey V clausey

Yy

d

X
<
N

Resolution

clausey V var clause, V —var

S o ® N\ S

clausey V clausey

Resolution

clausey V var clause, V —var

e & \ ./

clausey V clausey

XV —z

Resolution

clausey V var clause, V —var

\/

clausey V clausey

Resolution

clausey V var clause, V —var

\/

clausey V clausey

Resolution

clausey V var clause, V —var

.\\/

clausey V clausey

X -z ———> Z

Tree-like = the proof DAG is a tree

Regular = no variable resolved twice in any source-to-sink path
Size = # of nodes in the proof DAG 4

What is Resolution good for?

e algorithms routinely used to solve SAT (CDCL-solvers) are
somewhat formalizable in resolution

e the state-of-the-art algorithms to solve k-clique
(Bron-Kerbosch, OStergérd, Russian dolls algorithms, ...) are

formalizable in regular resolution

k-clique formula

Construct a propositional formula @ , unsatisfiable if and only if

“G does not contain a k-clique”
Xy j = "v is the j-th vertex of a k-clique in G".

The clique formula ®¢ ,

for i € [K]

and
for i € [k], u,veV
and
fori#j € [kl,u,veV, (uv)¢E

S5(®¢ k) = minimum size of a resolution refutation of ®¢ 4
Stree(P 6 1) = minimum size of a tree-like resolution ref. of ®¢
Sreg (P k) = minimum size of a regular resolution ref. of ®¢ x

L4 S(q)G,k) < Sreg(d)G,k) < S1.“ree((‘JDG,I<) < n(’)(k)
e if G is (k— 1)-colorable then S, (¢) < 2¥k2n? [~BGL13]

[BGL13] Beyersdorff, Galesi and Lauria 2013. Parameterized complexity of DPLL
search procedures.

Erdos-Rényi random graphs

A graph G = (V,E) ~ G(n, p) is such that |V| = n and each
edge {u, v} € E independently with prob. p € [0, 1]

Erdos-Rényi random graphs

A graph G = (V,E) ~ G(n, p) is such that |V| = n and each
edge {u, v} € E independently with prob. p € [0, 1]

o if p< n?/(k=1) then a.as. G ~ G(n, p) has no k-cliques

e Aas. G ~G(n,3) has no clique of size [2log; n]

Main Result (simplified)

Main Theorem (version 1)
Let G ~ G(n, p) be an Erdés-Rényi random graph with, for
simplicity, p = n=*/(k=1) and let k < n'/2=¢ for some arbitrary

small e. Then, Syeg(Pc k) 325 pQ(k)

Main Result (simplified)

Main Theorem (version 1)
Let G ~ G(n, p) be an Erdés-Rényi random graph with, for
simplicity, p = n=*/(k=1) and let k < n'/2=¢ for some arbitrary

small e. Then, Syeg(Pc k) 325 pQ(k)

the actual lower bound decreases smoothly w.r.t. p

Main Result (simplified)

Main Theorem (version 1)

Let G ~ G(n, p) be an Erdés-Rényi random graph with, for
simplicity, p = n=*/(k=1) and let k < n'/2=¢ for some arbitrary
small e. Then, Syeg(Pc k) 325 pQ(k)

Main Theorem (version 2)
Let G ~ G(n, %) then

Sreg(P k) “Z* 08" for k = O(log n)

and
a.a

Sreg(Pek) "= 0 for k = o(log” n).

How hard is to prove that a graph is Ramsey?

Open Problem

Let G be a graph in n vertices with no set of k vertices forming a
clique or independent set, where k = [2log n]. Is it true that
S(reg)(q)G,k) _ nQ(Iog n)?

([LPRT17] proved this but for a binary encoding of ®¢ x)

[LPRT17] Lauria, Pudldk, Rédl, and Thapen, 2017. The complexity of proving that
a graph is Ramsey.

10

Previous lower bounds

[BGL13] If G is the complete (k — 1)-partite graph,
then Stree((bG,k) = k),
The same holds for G ~ G(n, p) with suitable edge
density p.

[BISO7] for n®/® < k < 2 and G ~ G(n, p) (with suitable
edge density p), then S(®¢ «) 225 on

[LPRT17] if we encode k-clique using some other propositional
encodings (e.g. in binary) we get nfk) size lower
bounds for resolution

[BIS07] Beame, Impagliazzo and Sabharwal, 2007. The resolution complexity of
independent sets and vertex covers in random graphs.

[LPRT17] Lauria, Pudldk, Rédl, and Thapen, 2017. The complexity of proving that
a graph is Ramsey. 11

Rest of the talk

Focus on k = [2log n] and G ~ G(n, 3), and how to prove
Sreg(ch,k) Bl nQ(Iog n)

12

Theorem 1
Let k = [2logn]. A.as. G = (V,E)~G(n,3) is such that:

1. Vis (50, ©(n®?))-dense; and

2. For every (ﬁ,@(0-9))-dense W C V there exists S C V,
\5\ \/ﬁst for every R C V, with |R| < 0 and

INw (R)| < ©(n°9) it holds that [R N S| > 1—0.

13

Theorem 1
Let k = [2logn]. A.as. G = (V,E)~G(n,3) is such that:

1. Vis (50, ©(n®?))-dense; and

2. For every (ﬁ,@(0-9))-dense W C V there exists S C V,
\5\ \/ﬁst for every R C V, with |R| < 0 and
INw (R)| < ©(n°9) it holds that [R N S| > 1—0.
Theorem 2
Let k = [2log n]. For every G satisfying properties (1) and (2),
Sreg(¢G,k) = pflogn)

13

Theorem 1
Let k = [2logn]. A.as. G = (V,E)~G(n,3) is such that:

1. Vis (50, ©(n®?))-dense; and

2. For every (ﬁ,@(0-9))-dense W C V there exists S C V,
\5\ \/ﬁst for every R C V, with |R| < 50 and
INw (R)| < ©(n°9) it holds that [R N S| > 1—0.
Theorem 2
Let k = [2log n]. For every G satisfying properties (1) and (2),
Sreg(q)G,k) = pflogn)

Proof ideas: boosted Haken bottleneck counting. Bottlenecks are
pair of nodes with special properties and a way of visiting them.

The proof heavily uses regularity. 1

Denseness |

W CVis if for every subset R C V of size < r, it
holds |Nw(R)| = g, where is the set of common neighbors
of Rin W

14

Denseness |

W CVis if for every subset R C V of size < r, it
holds |Nw(R)| = g, where is the set of common neighbors
of Rin W

14

Denseness |

W C Vs (r, q)-dense if for every subset R C V of size < r, it
holds WW(R)] > q, where Nyy,/(R) is the set of common neighbors

of Rin W

14

Denseness |

W C Vs (r, q)-dense if for every subset R C V of size < r, it
holds WW(R)] > q, where Nyy,/(R) is the set of common neighbors

of Rin W

In G ~G(n,3),
o [Nw(R)| ~ |W~ R]|-27IRl

o Vis (&,0(n%?))-dense,

where k = [2log n].

14

Denseness |l

Theorem 1
Let k = [2logn]. A.as. G = (V,E) ~ G(n,3) is such that:

1. Vis (50, ©(n®?))-dense; and

2. For every (150550 ©(n%°))-dense W C V there exists S C V,
\S\ ﬁst for every R C V, with |R| < 50 and

INw (R)| < ©(n°9) it holds that [R N S| > 1—0.

ii5)

Denseness |l

Theorem 1
Let k = [2logn]. A.as. G = (V,E)~G(n,3) is such that:
1. Vis (50, ©(n®?))-dense; and

2. For every (150550 ©(n%°))-dense W C V there exists S C V,
S| < ﬁst for every R C V, with |R| < 50 and

|Nw(R)| < ©(n®®) it holds that [R N S| > 15555

w

ii5)

Denseness |l

Theorem 1
Let k = [2logn]. A.as. G = (V,E)~G(n,3) is such that:
1. Vis (50, ©(n®?))-dense; and

2. For every (150550 ©(n%°))-dense W C V there exists S C V,
S| < /ns.t. for every R C V, with |R| < 50 and
INw(R)| < ©(n°9) it hoIdsthat|RﬂS\>1—0.

w

ii5)

Denseness |l

Theorem 1
Let k = [2logn]. A.as. G = (V,E)~G(n,3) is such that:
1. Vis (50, ©(n®?))-dense; and

2. For every (150550 ©(n%°))-dense W C V there exists S C V,
S| < /ns.t. for every R C V, with |R| < 50 and
INw(R)| < ©(n°9) it hoIdsthat|RﬂS\>1—0.

w

Ny (R)

-

ii5)

Denseness |l

Theorem 1
Let k = [2logn]. A.as. G = (V,E)~G(n,3) is such that:

1. Vis (50, ©(n®?))-dense; and

2. For every (150550 ©(n%°))-dense W C V there exists S C V,
S| < /ns.t. for every R C V, with |R| < 50 and
INw(R)| < ©(n°9) it hoIdsthat|RﬂS\>1—0.

Denseness |l

Theorem 1
Let k = [2logn]. A.as. G = (V,E)~G(n,3) is such that:
1. Vis (50, ©(n®?))-dense; and

2. For every (150550 ©(n%°))-dense W C V there exists S C V,
S| < /ns.t. for every R C V, with |R| < 50 and
INw(R)| < ©(n°9) it hoIdsthat|RﬂS\>1—0.

, Nw(R)

w

ii5)

Denseness |l

Theorem 1
Let k = [2logn]. A.as. G = (V,E)~G(n,3) is such that:

1. Vis (50, ©(n®?))-dense; and

2. For every (15655 ©(n%9))-dense W C V there exists S C V,

S| < ﬁst for every R C V, with |R| < % and

|Nw(R)| < ©(n®®) it holds that [R N S| > 15555

Denseness |l

Theorem 1
Let k = [2logn]. A.as. G = (V,E)~G(n,3) is such that:

1. Vis (50, ©(n®?))-dense; and

2. For every (150550 ©(n%°))-dense W C V there exists S C V,
S| < /ns.t. for every R C V, with |R| < 50 and
INw(R)| < ©(n°9) it hoIdsthat|RﬂS\>1—0.

ii5)

Thank you!

full paper

bonacina@cs.upc.edu

bonacina@cs.upc.edu

Appendix

Regular resolution = Read-Once Branching Programs

Regular resolution = Read-Once Branching Programs

Haken bottleneck counting idea

“Lemma 1”
Every random path v ~ D in the ROBP passes through a
bottleneck node.

“Lemma 2”
Given any bottleneck node b in the ROBP,

Prbenr] <n 9.
y~D

Then, it is trivial to conclude:

= P%[Elb € ROBP b bottleneck and b € 7]
Y~

< |ROBP| - max Pr [b € 7]
b bottleneck ~y~D
in the ROBP

< |ROBP| - n= O

The random path

= max (partial) assignment contained in all paths from the

source to ¢

JE[K]is at ¢ if no sink reachable from c¢ has label

\/VG v Xv,j

The random path ~
e if j forgotten at c or
B(c) U {x,j = 1} falsifies a short clause of ®¢ j
then continue with x, j = 0
e otherwise toss a coin and with prob. ©(n=09)

continue with x, ; =1

The real bottleneck counting

={veV : B(a)(x.) =0}
Lemma 1
For every random path ~, there exists two nodes a, b in the

ROBP s.t.

1. ~y touches a, sets < [ﬁ} variables to 1 and then touches b;

2. there exists a j* € [k] not-forgotten at b and such that
Vﬁ(b) ~ \/ﬁ(a) is (1555, ©(n%°))-dense.
Lemma 2
For every pair of nodes (a, b) in the ROBP satisfying point (2) of
Lemma 1,

—0(k)

Pr['y touches a, sets < w vars to 1 and then touches b] < n

{200

Proof sketch of Lemma 2

Let E="vy touches a, sets < [k/200] vars to 1 and then touches b"
and let W = V2(b)~\ V2(a)

Case 1: Vi(a)={v eV : Jie€[k] B(a)(xv.;) = 1} has large size
(> k/20000). Then Pr[E] < n~®(k) because of the prob. of 1s in
the random path ~ and a Markov chain argument.

Case 2.1: V1(a) is not large but many (> ©(n%®)) vertices in W
are set to 0 by coin tosses.

So Pr[E A W has many coin tosses] < n~®(k) again by a Markov
chain argument as in Case 1.

Case 2.2: V1(a) is not large and not many vertices in W are set
to 0 by coin tosses. Then many of the 1s set by the random path
~ between a and b must belong to a set of size at most 1/n, by the
new combinatorial property (2).

So Pr[E A W has not many coin tosses] < n=©(). ~ O

	Appendix
	Appendix

