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Given a circuit C ∈ C over n bits, deterministically 
distinguish between the cases:

>   C accepts all but at most 2n/3 of its inputs

>   C rejects all but at most 2n/3 of its inputs

Classical derandomization (CAPP)
>   the standard derandomization problem



>   When C=P/poly equivalent to prBPP=prP

>   Implied by average-case lower bounds for C

>   hardness-randomness [Yao’82, BM’84, NW’94]

>   hardness amplification (e.g., [IW’99])

>   gives blackbox derandomization (i.e., a PRG)

Classical derandomization (CAPP)
>   lower bounds ⇒ derandomization



Classical derandomization (CAPP)

>   P/poly: ?

>   TC0, NC1: ?

>   ACC0: sat in time 2n-n^ε [Wil’11]

>   AC0: quasipoly time [AW’85, Bra’11, TX’12, Tal’17]

>   CNFs: time nÕ(loglogn) [LV’96, Baz’07, DETT’10, GMR’12]

>   state of the art



Classical derandomization (CAPP)
>   derandomization ⇒ lower bounds

>   Blackbox derand implies lower bounds
>   output-set of PRG/HSG is “hard” function

>   Whitebox derand implies (weaker) lower bounds
>   indirect arguments [IW’98, IKW’02, KI’04, Wil’11, BV’14, MW’18]

>   “hard” function in ENP, NEXP, NQP, NTIME[nlog*(n)]

>   Faster derand ⇒ better lower bounds
>   circuit size, explicitness of “hard” function



Quantified derandomization
>   a relaxed derandomization problem [GW’14]

Given a circuit C ∈ C over n bits, deterministically 
distinguish between the cases:

>   C accepts all but at most B(n) of its inputs

>   C rejects all but at most B(n) of its inputs

 ⇒ in the classical problem B(n)=2n/3; we think of B(n) = o( 2n )



>   In “complexity 101” they said that ⅓ is arbitrary!

>   error-reduction: just how low can it take us?

>   For B(n)=0, I know how to solve the problem!
>   detecting extremely small bias is easy

>   So is it easy or hard to detect extremely small bias?

Quantified derandomization
>   conflicting intuitions



“Easy” vs “hard” values for B(n)

Quantified derandomization

B(n)

0 2n/3
O(1) n5 2n/102n^{.99}

>   for a fixed circuit class C



Quantified derandomization

B(n)

0 2n/3

Goal 1: Understand! Get tight results

>   for a fixed circuit class C



Quantified derandomization

B(n)

0 2n/3

Goal 1: Understand! Get tight results

Goal 2: Make green and red cross ⇒ standard derand

>   for a fixed circuit class C



>   Blackbox derand implies lower bounds 1

>   output-set of PRG/HSG still a “hard” function

>   Whitebox derand doesn’t (necessary) imply LBs
>   implies LBs indirectly, via standard derandomization

>   No (known) speed vs. size trade-off

Quantified derandomization
>   derandomization ⇒ lower bounds

1    assuming non-triviality: #exceptional inputs ≥ #outputs of HSG/PRG



Polynomials that vanish rarely

1    question interesting even for non-explicit hitting-sets!

>   Consider degree-d polys Fn → F for finite field F=Fq

>   Hitting-set for all polys has size ≥ (n+d choose d)

>   Is there a hitting-set for polys that vanish on 
at most b(n) of inputs of size o( (n+d choose d) )?



Some known results
research directions that have been active



>  Constant-depth circuits:
>  AC0 [GW’14, GVW’15, CL’16, T’17]

>  AC0[⊕] [GW’14, T’17]

>  TC0, LTF/PTF ckts [T’18, KL’18]

>  Polys that vanish rarely [GW’14, T’17, in progress]

>  Proof systems [GW’14]

Overview of known results



time 2Õ(log^3(n))

AC0: touching the threshold

B(n)

0 2n/3
2^(n/logd-2(n)) 2^(n/logd-O(1)(n))2^(n.99)

polytime

>   circuits of constant depth d

poly overhead

1    see [GW’14, GVW’15, CL’16, T’17]



TC0, LTF and PTF circuits
>   circuits of constant depth d quant derand 

with B(n) ≈ 2n^{.99}#wires lower bounds

n1+exp(-d)

n1+O(1/d)

poly(n)

bounds against 
specific funcs can be 
“magnified” [AK’10]

unconditional quant 
derand for LTF, PTF ckts 
[T’18,KL’18]

quant derand would 
imply standard derand of 
all TC0 [T’18]

unconditional bds: 
parity, gen Andreev 
[IPS’97, CSS’16]

1    see [T’18, KL’18]



Polys that vanish rarely

2-d 1-2-d

>   polys Fn → F of any degree d=d(n)

c⋅2-d

F2

q-d d/q
Fq

q-c

1    see [GW’14, T’17]; work in progress



Known techniques 
and their limitations



Deterministic restrictions
>   high-level strategy suggested by [GW’14]

{0,1}n

Idea: Given C:{0,1}n → {0,1}, find simple function that

   approximates C in large subset S⊆{0,1}n, |S| ≫ B(n)

≤ B(n) 
exceptional 

inputs

{0,1}n

|S| ≫ B(n)
C↾S “simple”



>   Obs: Method is “complete”

>   Subset S not necessarily a subcube
>   but we need to approx the bias of the simple func in S

>   Can use whitebox access to circuit

>   “Full derandomization” of restriction procedures

>   previous applications required only partial derand [AW’85]

Deterministic restrictions
>   comments



Polys that vanish rarely
>   several ad-hoc techniques

>   Structural results:
>   biased polys approximated by low-degree polys

>   biased polys constant on almost all large subspaces

>   Biased ckts have probabilistic representation 

as biased polys ⇒ approx by low-degree polys



Input

Error-reduction

C:{0,1}m➝{0,1}
   >   depth d, size s

   >   at most 2m/3 bad inputs

Output

C’:{0,1}n➝{0,1}
   >   blow-up in d, s, n=n(m)

   >   preserves majority output

   >   at most B(n) bad inputs



Error-reduction
>   using a seeded extractor / averaging sampler
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>   Extractors in “weak models” barely studied before
>   this led to fruitful study of extractors in AC0, TC0, polys

>   Extractors are an “overkill”
>   we only need to sample one event, induced by circuit C ∈ C

>   weaker notions: extractor for C-events, whitebox extractor

1    AC0-extractors for AC0-tests cannot be significantly more efficient than AC0-extractors for all tests

Error-reduction
>   comments



Limitation of blackbox techniques



Step 2: Restrictions
   >   distribution over restrictions

   >   doesn’t depend on specific C

Step 1: Error-reduction
   >  extractor for C-events

   >   doesn’t depend on specific C

Limitation of blackbox techniques



>   Thm: For any class C ⊇ {polysize DNFs}, if there are

1.   C-computable extractor with B’(n) bad inputs for error Ω(1)

2.   distribution over sets of size B(n) that simplifies every C ∈ C 
to a constant, wp > ½ 

Then, necessarily B(n) < B’(n).

⇒   Naive comb of the two techs cannot suffice for standard derand

Limitation of blackbox techniques

1    restriction procedures for “small AC0[⊕]”, LTF ckts, PTF ckts already whitebox



Open problems are everywhere
here’s a carefully-trimmed list



Where next?
>   few suggested directions

>   Non-deterministic algorithm for quantified derand 

>   suffice for “derand ⇒ lower bounds” [Wil’11]

>   can use collapse hypothesis & some advice [FS’16,MW’17]

>   Whitebox samplers (sampler for specific circuit)

>   HSGs for polys Fn
q → Fq that vanish rarely



Thank you!

⇒ relaxed circuit-analysis task
⇒ limitations on blackbox techniques

⇒ “interesting problem! perhaps relevant to stuff I like?”


