
Mean-Payoff Parity Games

Krishnendu Chatterjee† Thomas A. Henzinger†‡ Marcin Jurdziński§

†
Electrical Engineering and Computer Sciences, University of California, Berkeley

‡
Computer and Communication Sciences, EPFL, Switzerland

§
Department of Computer Science, University of Warwick, UK

{c krish,tah,mju}@eecs.berkeley.edu

Abstract

Games played on graphs may have qualitative objec-
tives, such as the satisfaction of an ω-regular property, or
quantitative objectives, such as the optimization of a real-
valued reward. When games are used to model reactive
systems with both fairness assumptions and quantitative
(e.g., resource) constraints, then the corresponding objec-
tive combines both a qualitative and a quantitative com-
ponent. In a general case of interest, the qualitative com-
ponent is a parity condition and the quantitative compo-
nent is a mean-payoff reward. We study and solve such
mean-payoff parity games. We also prove some interest-
ing facts about mean-payoff parity games which distinguish
them both from mean-payoff and from parity games. In par-
ticular, we show that optimal strategies exist in mean-payoff
parity games, but they may require infinite memory.

1. Introduction

Games played on graphs have come to play a central role
in many areas of computer science. In particular, when
the vertices and edges of a graph represent the states and
transitions of a reactive system, then the synthesis problem
(Church’s problem) asks for the construction of a winning
strategy in a graph game [4, 18, 17]. Game-theoretic formu-
lations have also proved useful for the modeling [9], verifi-
cation [1], refinement [12], and compatibility checking [8]
of reactive systems. In all these cases, the winning objective
is typically an ω-regular condition, because the ω-regular
sets are expressive enough to model the usual fairness as-
sumptions of reactive systems [14]. Of particular interest is
the parity (or Rabin chain) condition, which can express all
ω-regular sets and enjoys pleasant duality properties [19].
Algorithms for solving parity games have enjoyed much re-
cent interest [13, 20, 2], not least because of the close and
intriguing connection between parity games and μ-calculus

model checking [11]. We refer to ω-regular graph games
in general, and parity games in particular, as qualitative
games, because the result of a game is binary for each player
(win or lose).

In classical game theory, usually more traditional quan-
titative objectives are pursued, that is, the result of a game
is a real-valued payoff for each player. Because of their rich
applicability in economics, these games have been stud-
ied from an algorithmic perspective for some time [6, 21].
However, recently the interest in quantitative games has
been rising for two additional reasons. First, their algorith-
mics, such as strategy improvement schemes, is hoped to
give insight and lead to improved algorithms for qualitative
games such as parity games [20, 2]. Second, many nat-
ural models of reactive systems, such as probabilistic and
resource models, include quantitative information, and the
corresponding synthesis question requires the solution of
quantitative games. Quantities may represent, for example,
the power usage of an embedded component, or the buffer
size of a networking element [5]. In such cases, for reactive
systems with both quantitative information and fairness as-
sumptions, the appropriate objective combines both a quan-
titative and qualitative component; for instance, in [5] the
authors present an algorithm for solving so-called Büchi-
threshold games, where the qualitative component of the
objective is a Büchi fairness constraint and the quantitative
component mandates that an infinite behavior of a reactive
system stay below some threshold power (say) value.

In this paper, we solve a general combination of quali-
tative and quantitative objectives for graph games, namely,
the combination of qualitative parity objectives and quan-
titative mean-payoff objectives. In a graph game, the ver-
tices are partitioned into player-1 and player-2 vertices: at
player-1 vertices, the first player chooses an outgoing edge,
and at player-2 vertices, the second player chooses an out-
going edge. The game is played forever and the result, or
play, of the game is an infinite path through the graph. In a
(pure) mean-payoff game, each vertex is labeled by a real-
valued payoff for player 1, whose objective is to maximize

the limit-average of all (infinitely many) payoffs in a play.
In a mean-payoff parity game, player 1 obtains the mean-
payoff value only if the play satisfies the parity condition;
otherwise her reward is −∞. The reward for player 2 is
dual, as the game is zero-sum. To our knowledge, such
a combination of general qualitative (parity) and general
quantitative (mean-payoff) objectives has not been studied
before.

Interestingly, the combination of mean-payoff and par-
ity objectives results in games whose properties differ from
both mean-payoff games and parity games. In particular,
player-1 optimal strategies in general require infinite mem-
ory. To see this, consider the following example.

Example 1 Consider the mean-payoff parity game shown
in Fig 1. The game consist of three vertices v0, v1, and v2.
The priority function is as follows: p(v0) = 1, p(v1) = 1,
and p(v2) = 0, and the parity objective of player 1 is to en-
sure that the minimum priority that is visited infinitely of-
ten is even. The reward function is as follows: r(v0) = 10,
r(v1) = 10, and r(v2) = 2. All three vertices are player-1
vertices. A memoryless strategy for player 1 chooses a suc-
cessor at each vertex independent of the sequence of ver-
tices visited previously in the history of the play. Consider
the two possible memoryless strategies of player 1: (a) if at
v0 the strategy chooses successor v1, then the minimum pri-
ority visited infinitely often is odd, and therefore player 1’s
reward is −∞; (b) if at v0 the strategy chooses successor v2

instead, then player 1’s reward is the mean payoff 6.
Now consider the following (not memoryless) strategy

for player 1: the strategy chooses v0 → v1 for k times fol-
lowed by choosing v0 → v2 once, and this sequence of k+1
choices is repeated forever. The resulting play ω visits v2 in-
finitely often; hence the minimum priority visited infinitely
often is even, and the reward of player 1 is the mean-payoff
value of ω. For all ε > 0, it is possible to choose large k,
depending on ε, such that player 1 ensures that she gets a
reward of at least 10 − ε. Finally, consider the following
strategy σ for player 1: the strategy is played in rounds; in
round i ≥ 0, the strategy σ plays v0 → v1 for i times, then
plays v0 → v2 once and progresses to round i + 1. The
strategy σ ensures player 1 a limit-average reward of value
10 and is an optimal strategy.

However, there is no finite-memory optimal strategy for
player 1 in this game. Consider any finite-memory strat-
egy such that the size of the memory M is k. The syn-
chronous product of the game graph with the memory M
has 3k vertices. In the product graph consider any mem-
oryless strategy σ′ that satisfies the parity objective. The
mean-payoff value of a play given the strategy σ ′ is at most
(3k−1)·10+2

3k = 10 + 8
3k . Hence, for any finite k, there is

an ε with 0 < ε < 8
3k such that no finite-memory strat-

egy with memory of size k can ensure a reward that lies
within ε of the optimal value. Hence, achieving the value of

1 0

Rewards

0vv v

10 10 2

1

1 2

Priorities

Figure 1. A mean-payoff parity game.

a mean-payoff parity game with arbitrary precision in gen-
eral requires infinite-memory strategies.

We prove that, as in the above example, infinite-memory
optimal player-1 strategies exist for all mean-payoff parity
games. However, as the above example shows, an opti-
mal player-1 strategy may require infinite memory. How-
ever, for player 2 finite-memory optimal strategies exist
for all mean-payoff parity games. The results are in sharp
contrast to parity games as well as to mean-payoff games,
where memoryless optimal strategies exist for both players
[11, 10]. While in the case of more general class of con-
current games (where the players choose their moves si-
multaneously) infinite-memory strategies are required even
for simple qualitative objectives such as Büchi [7], in our
setting of perfect-information games the requirement of in-
finite memory arises due to the combination of quantitative
and qualitative objectives.

Our main result is an algorithm for solving mean-payoff
parity games. The running time of the algorithm is O(nd ·
(m + MP + Parity)), where n and m denote the number
of vertices and edges of the game graph, respectively, d is
the number of priorities of the parity objective, and MP and
Parity denote the complexities required for solving mean-
payoff games and parity games, respectively. Our algo-
rithm for combined mean-payoff and parity objectives re-
cursively solves smaller subgames based on the following
insight. While in general infinite-memory strategies are re-
quired, the infinite-memory strategies are well-structured.
Informally, an optimal strategy follows a mean-payoff strat-
egy for a sufficiently long time, followed by a finite strategy
to ensure that the parity objective is not violated; and this
alternation of mean-payoff and parity strategies is repeated
infinitely often. The longer the mean-payoff strategies are
played, the closer the resulting reward will be to the optimal
value. This observation allows us to identify the least and
greatest value classes of a mean-payoff parity game by a re-
cursive decomposition. The corresponding algorithms are
described in Section 3. Using these algorithms recursively,
we compute the values of a mean-payoff parity game in Sec-
tion 4. As a corollary, it follows that the values are always
rational (provided all rewards are rational).

2. Mean-Payoff Parity Games

Notation. For d ∈ N, by [d] we denote the set
{0, 1, 2, . . . , d − 1}, and by [d]+ we denote the set

2

{1, 2, . . . , d}. If (V, E) is a directed graph and W ⊆ V ,
then by (V, E) � W we denote the subgraph (W, F) of
(V, E), where F = E ∩ (W × W).

Definition 1 (Parity, mean-payoff, and mean-payoff par-
ity games). A game graph G =

(
(V, E), (V1, V2)

)
con-

sists of a directed graph (V, E) and a partition (V1, V2) of
the set V of vertices. All game graphs have the property
that every vertex has at least one out-going edge. A parity
game P =

(G, p
)

consists of a game graph G and a priority
function p: V → [d] or p: V → [d]+, for some d ∈ N,
which maps every vertex to a natural-number-valued prior-
ity. A mean-payoff game M =

(G, r
)

consists of a game
graph G and a reward function r: V → R, which maps ev-
ery vertex to a real-valued reward. A mean-payoff parity
game MP =

(G, p, r
)

consists of a game graph G, a pri-
ority function p: V → [d] or p : V → [d]+, and a reward
function r: V → R. We denote by n and m the number of
vertices and edges, respectively, i.e., n = |V | and m = |E|.

Special cases of mean-payoff parity games are mean-payoff
Büchi and mean-payoff coBüchi games, where the priority
function p is defined as p: V → [2] and p: V → [2]+,
respectively. A game is played by two players: player 1
and player 2, who form an infinite path in the game graph
by moving a token along edges. They start by placing the
token on an initial vertex and then they take moves indefi-
nitely in the following way. If the token is on a vertex in V 1,
then player 1 moves the token along one of the edges go-
ing out of the vertex. If the token is on a vertex in V 2,
then player 2 does likewise. The result is an infinite path
ω = 〈v1, v2, v3, . . .〉 in the game graph; we refer to such
infinite paths as plays. The value of a play is determined by
the priorities and rewards of the vertices in the play.

Parity payoff. For a play ω = 〈v1, v2, v3, . . .〉 let Inf(ω)
denote the set of priorities that occur infinitely often in
〈p(v1), p(v2), p(v3), . . .〉. In a parity game, the play ω is
parity winning for player 1 if min(Inf(ω)) is even; other-
wise it is parity winning for player 2.

Mean payoff. Informally, in a mean-payoff game player 1
wins and player 2 loses a payoff that is the “long-run aver-
age” of the rewards of the play. Formally, the payoffs for
players 1 and 2 of the play ω = 〈v1, v2, v3, . . .〉 are M1(ω)
and M2(ω), respectively, defined as follows: M1(ω) =
lim infn→∞ 1

n

∑n
i=1 r(vi) and M2(ω) = −M1(ω). The

objective of each player is to maximize her own payoff.

Mean payoff and parity. Informally, in a mean-payoff par-
ity game player 1 wins the “long-run average” reward if the
parity objective is satisfied, else player 1 is penalized in-
finitely. Intuitively this captures the notion that player 1
has a mean-payoff objective under a parity constraint, and
player 1 wins her “long-run average” reward only if she sat-
isfies her parity objective. Formally, given the play ω, the

values MP1(ω) and MP2(ω) for both players are defined
as follows:

MP1(ω) =

⎧⎪⎨⎪⎩
M1(ω) if min(Inf(ω))

is even

−∞ otherwise

and M2(ω) = −M1(ω). Note that if the play ω is parity
winning for player 1, then the value of the play is finite for
both players, whereas if the play ω is parity winning for
player 2, then the value of the play is −∞ for player 1 and
+∞ for player 2.

Given k ∈ N \ { 0 }, and a play ω = 〈v1, v2, v3, . . .〉, we
denote by ωk the sequence 〈vk, vk+1, . . .〉 of vertices, i.e.,
the play ω without the prefix of length k−1. Note that mean
payoff and parity are infinitary objectives and the value of
a play ω remains unaffected if a finite prefix is deleted. It
follows that for every play ω and every k ∈ N \ { 0 }, we
have MP1(ω) = MP1(ωk) and MP2(ω) = MP2(ωk).
This observation will be used in the later sections.

Definition 2 (Strategies). A strategy for player 1 maps
each finite prefix of a play which ends in V1 to a succes-
sor vertex, which player 1 chooses to extend the play if she
follows the strategy. Formally, a strategy for player 1 is a
function σ: V ∗ · V1 → V such that

(
v, σ(x · v)

) ∈ E for
all x ∈ V ∗ and v ∈ V1. The player-2 strategies are de-
fined analogously. We denote by Σ and Π the sets of all
strategies for players 1 and 2, respectively. A strategy is
memoryless if the strategy is independent of the history of
the play. Hence, a player-1 memoryless strategy can be ex-
pressed as function σ: V1 → V . Let M be a set called
memory. A player-1 strategy σ with memory can be de-
scribed as a pair of functions: (a) a memory update func-
tion σu: V × M → M, and (b) a next-move function σm:
V1 × M → V . The strategy σ = (σu, σm) is finite memory
if the memory M is finite; otherwise it is infinite memory.

A play ω = 〈v1, v2, v3, . . .〉 is consistent with a strategy
σ for player 1 if v�+1 = σ(〈v1, v2, . . . , v�〉) for all � ∈ N

with v� ∈ V1. A strategy σ is parity winning for player 1
from a set U ⊆ V of vertices if every play starting from
a vertex in U and consistent with σ is parity winning for
player 1. Symmetric definitions apply to player 2. Given a
strategy σ for player 1, a strategy π for player 2, and a start-
ing vertex v ∈ V , there is a unique play, denoted ωσ,π(v),
which starts at v and is consistent with both σ and π.

Definition 3 (Values; optimal and ε-optimal strategies).
The value of players 1 and 2 at a vertex v ∈ V in a mean-
payoff parity game are denoted MP 1(v) and MP2(v), re-
spectively, defined as follows:

MP1(v) = sup
σ∈Σ

inf
π∈Π

MP1(ωσ,π(v));

3

MP2(v) = sup
π∈Π

inf
σ∈Σ

MP2(ωσ,π(v)).

For a real-valued constant ε ≥ 0, a player-1 strategy σ is
ε-optimal if infπ∈Π MP1(ωσ,π(v)) ≥ MP1(v) − ε for all
v ∈ V , that is, the strategy achieves a payoff that lies within
ε of the value, against all player-2 strategies. A player-1
strategy σ is optimal if it is ε-optimal for ε = 0. The optimal
strategies and ε-optimal strategies for player 2 are defined
symmetrically.

In a mean-payoff game, the value functions M1(v) and
M2(v) are obtained by replacing MP 1 and MP2 with M1

and M2, respectively. The optimal strategies are defined
accordingly.

Theorem 1 (Memoryless determinacy of parity and of
mean-payoff games).

1. [11, 16] For every parity game P , there is a unique
partition (W1, W2) of the set of vertices such that there
is a memoryless parity-winning strategy for player 1
from W1, and a memoryless parity-winning strategy
for player 2 from W2.

2. [10] For every mean-payoff game M, memoryless op-
timal strategies exist for both players 1 and 2.

We call the sets W1 and W2 the parity-winning sets
of players 1 and 2, respectively. A game is called parity
winning for player 1 if every vertex is parity winning for
player 1, that is, W2 = ∅.

Theorem 2 (Determinacy of mean-payoff parity games).
For every mean-payoff parity gameMP and every vertex v,
either MP 1(v) = −∞ and MP 2(v) = ∞; or MP1(v) +
MP2(v) = 0.

Proof. The result follows from the fact that the mean-
payoff parity condition is Borel measurable, and from the
determinacy of Borel games [15].

Note that the determinacy theorem implies the existence
of ε-optimal strategies in mean-payoff parity games, for
every ε > 0. We will show that in mean-payoff parity
games optimal strategies exist, and that optimal strategies
in general require infinite memory (recall Example 1). To
solve a mean-payoff parity game is to determine MP 1(v)
for every vertex v of the game. The value MP 1(v) is −∞
for every vertex v ∈ W2 and it is finite for every vertex
v ∈ W1. Hence by computing the sets W1 and W2, the
value MP1(v) is known for every vertex v ∈ W2. The
sets W1 and W2 can be computed by any algorithm to solve
parity games. For the remainder of the paper we focus on
computing the value MP 1(v) for vertices v ∈ W1.

3. Closed Subsets of Least and Greatest Value
Classes

In this section we present algorithms to identify closed
subsets of vertices in the least and greatest value classes
of a mean-payoff parity game. In the next section we will
present an algorithm for solving mean-payoff parity games
using the algorithms of this section as subroutines.

Given a mean-payoff parity game MP, let � be the
least finite value for player 1 in the game MP, i.e., � =
min{MP1(v) : v ∈ W1}. We denote by LV the least
value class of MP, i.e., LV = {v ∈ W1 : MP1(v) = �}.
Similarly, we denote by g the greatest value for player 1
in the game MP , i.e., g = max{MP 1(v) : v ∈ W1},
and we denote by GV the greatest value class of MP , i.e.,
GV = {v ∈ W1 : MP1(v) = g}. A subset U ⊆ V of ver-
tices is 1-closed if for all vertices u ∈ U∩V1, if (u, w) ∈ E,
then w ∈ U . In other words, every successor of a player-1
vertex in U belongs again to U . Similarly, a subset U ⊆ V
of vertices is 2-closed if for all vertices u ∈ U ∩ V2, if
(u, w) ∈ E, then w ∈ U . We now define several terms that
are useful to understand the algorithms.

Definition 4 (Attractor sets). We inductively define the
set Attr1(T,G) of vertices from which player 1 has a strat-
egy to reach a given set T ⊆ V of vertices in a game
graph G. Set R0 = T , and for k ≥ 0, set

Rk+1 = Rk ∪ { v ∈ V1 : (v, u) ∈ E for some u ∈ Rk }
∪ { v ∈ V2 : u ∈ Rk for all (v, u) ∈ E }.

Let Attr1(T,G) =
⋃

k Rk. The set Attr2(T,G) is defined
symmetrically.

Definition 5 (Universal-reach sets). We inductively de-
fine the set U nivReach(T,G) of vertices from which ev-
ery path in a game graph G reaches a given set T ⊆ V of
vertices. Set U0 = T , and for k ≥ 0, set

Uk+1 = Uk ∪ { v ∈ V : u ∈ Uk for all (v, u) ∈ E }.

Let U nivReach(T,G) =
⋃

k Uk.

Proposition 1 Let G be a game graph, and let T ⊆ V
be a set of vertices of G. Then the complement H = G �
(V \ Attr1(T,G)) of the attractor set and the complement
H′ = G � (V \ U nivReach(T,G)) of the universal-reach
set are again game graphs; that is, there is an outgoing edge
for every vertex in H and in H′.

Consider a mean-payoff parity game MP such that the
game is parity winning for player 1. We assume without
loss of generality that p−1(0) ∪ p−1(1) �= ∅, as otherwise,
it would be possible to reduce every priority by 2 and con-
tinue. In Subsection 3.1 we will present a recursive algo-
rithm to identify a 1-closed subset ofLV where p−1(0) �= ∅.

4

In Subsection 3.2 we will present a recursive algorithm to
identify a 2-closed subset of GV where p−1(0) = ∅ and
p−1(1) �= ∅.

3.1 A 1-closed subset of LV

Consider a mean-payoff parity game MP = (G, p, r),
where G = ((V, E), (V1, V2)), such that the game is par-
ity winning for player 1 and p−1(0) �= ∅. Let F =
Attr1(p−1(0),G) and H = V \ F . Consider the subgame
H induced by the vertex set H , i.e., H = G � H . In se-
quel, we often use game graphs as superscripts of value
functions to make the context of the game clear. For a ver-
tex v ∈ H , we denote by MPH

1 (v) the mean-payoff parity
game value in the subgame H. We construct a mean-payoff
game M̃ = (G̃, r̃), where G̃ = ((Ṽ , Ẽ), (Ṽ1, Ṽ2)), from the
mean-payoff parity game MP as follows:

• Ṽ = V ∪ {ṽ : v ∈ H}.

• Ṽ1 = V1 ∪ (Ṽ \ V) and Ṽ2 = Ṽ \ Ṽ1.

• Ẽ = E ∪ {(v, ṽ) : v ∈ H} ∪ {(ṽ, ṽ) : v ∈ H}.

• r̃(v) = r(v) for v ∈ V , and r̃(ṽ) = MPH
1 (v) for

v ∈ H .

Lemma 1 For every vertex v ∈ H , M eG
1 (v) ≤ MPH

1 (v).

Proof. For every vertex v ∈ H ∩ V2, player 2 can choose

an edge (v, ṽ) such that M eG
1 (ṽ) = MPH

1 (v). The desired
result is an easy consequence.

Let l̃ be the value of the least value class in the game G̃,
and let l̂ be the value of the least value class in the game H.
It follows from Lemma 1 that l̂ ≥ l̃. We denote by LV

eG the

least value class in the game graph G̃. Let ñ = |Ṽ |.

Lemma 2 There is an optimal strategy σ̃ for player 1 in G̃
such that for every k > 0, for every strategy π of player 2
in G̃, for every vertex v, if ω

eσ,π(v) = 〈v1, v2, v3, . . .〉, then∑k
i=1 r(vi) ≥ (k − ñ) · l̃.

Proof. Any memoryless optimal strategy in G̃ satisfies the
desired condition. Theorem 1 [10] guarantees existence of
memoryless optimal strategies in mean-payoff games.

Lemma 3 For all ε > 0, there is a strategy σ∗ for player
1 in the game G such that for every vertex v ∈ LV

eG ∩ V ,

we have infπ∈Π MPG
1 (ωσ∗,π(v)) ≥ l̃ − ε.

Proof. For ε > 0, we construct the desired strategy σ ∗

as follows: the strategy σ∗ is played in rounds numbered

1, 2, 3, Let a0 = 0; then in round i the strategy is de-
fined as follows:

σ∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Phase 1. Play σ̃ of Lemma 2 for (ai−1 + 2ñ) · l̃ · 2i

steps, where ai−1 is the number of steps

the play was in Phase 2 in round i − 1.

Phase 2. While the game is in H , play σ̂

(an ε-optimal strategy in H).
Phase 3. When the game reaches F , play a

strategy to reach p−1(0) and goto

Phase 1 of round i + 1.

Consider any strategy π for player 2. We consider two cases
to prove the desired result.

1. Case 1: If Inf(ωσ∗,π(v)) ∩ F = ∅ (i.e., the play visits
F finitely often), then the game stays in H forever after
a finite number of steps. Thus the strategy σ∗ behaves
like σ̂ after a finite number of steps, and the value of
the play is also determined by the infinite suffix. Hence

MPG
1 (ωσ∗,π(v)) ≥ minv∈H MPH

1 (v) − ε

= l̂ − ε ≥ l̃ − ε,

by ε-optimality of σ̂. Observe that if σ̂ is optimal in H,
then the inequality holds with ε = 0.

2. Case 2: Else Inf(ωσ∗,π(v))∩F �= ∅. Then the Phase 3
of strategy σ∗ ensures that Inf(ωσ∗,π(v)) ∩ p−1(0) �=
∅. Hence min(Inf(ωσ∗,π(v))) is even, and the play
is parity winning for player 1. Consider the segment
of play starting at Phase 2 of round i and ending at
Phase 1 of round i + 1. We denote by bi+1 the number
of steps that Phase 1 is played in round i + 1. From
the properties of the strategies in Phase 1 and Phase 2
(from Lemma 2) a lower bound on the average reward
for the considered segment of the play can be derived
as follows:

(bi+1−en)·el
bi+1+ai+en = l̃ − (ai+2en)·el

bi+1+ai+en

≥ l̃ − (ai+2en)·el
bi+1

= l̃ − 1
2i ,

because bi+1 = (ai+2ñ)· l̃·2i. Hence for all strategies
π, MP1(ωσ∗,π(v)) ≥ limi→∞(l̃−∑∞

j=i
1
2j) = l̃. This

gives us the desired inequality.

Lemma 4 For all ε > 0, there is a strategy π∗ for player
2 in the game G such that for every vertex v ∈ LV

eG ∩ V ,

we have supσ∈Σ MPG
1 (ωσ,π∗(v)) ≤ l̃ + ε.

Proof. For ε > 0, we construct the desired strategy π ∗

as follows: for a finite sequence �w = 〈v1, v2, . . . , vk〉 of

5

vertices and v ∈ V2, the strategy π∗ is defined as follows:

π∗(�w·v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π̃(�w · v) if for all 1 ≤ i ≤ k if vi ∈ V2,

then π̃(〈v1, v2, . . . , vi〉) ∈ V,

(π̃ is an optimal strategy in G̃).
π̂(�w · v) otherwise; (π̂ is ε-optimal in H).

Informally, the strategy π∗ follows an optimal strategy π̃
in G̃ as long as π̃ does not choose an edge in Ṽ \ V ; if
this happens, it switches to an ε-optimal strategy π̂ in the
game H. Consider any strategy σ for player 1.

1. If Inf(ωσ,eπ(v)) ⊆ V in the game G̃, then the play
ωσ,π∗(v) in the game graph G is same as the play
ωσ,eπ(v) in the game graph G̃. Since π̃ is an opti-
mal strategy in the mean-payoff game G̃, we have

MPG
1 (ωσ,π∗(v)) = M eG

1 (ωσ,eπ(v)) ≤ l̃.

2. Else ωσ,eπ(v) = 〈v1, v2, . . .〉 reaches a vertex ṽ� in the
game G̃. Let j be the least index such that vj = ṽ�.
Since π̃ is an optimal strategy in G̃ and v ∈ LV

eG , it fol-

lows that MPH
1 (ṽ�) = l̃. The strategy π∗ then switches

to the ε-optimal strategy π̂ of the game H. The follow-
ing inequality is a consequence of ε-optimality of π̂ in
H:

MPG
1 (ωσ,π∗(v)) = MPG

1 (ωj
σ,π∗(v)) = MPH

1 (ωj
σ,π̂(v))

≤ MPH
1 (ṽ�) + ε = l̃ + ε.

The lemma follows from the above inequalities.

Proposition 2 The set LV
eG∩V of least values is 1-closed.

Observe that if the strategies σ̂ and π̂ in Lemma 3 and
Lemma 4 are optimal in the sub-game H, then the strate-
gies σ∗ and π∗ are optimal for all vertices in LV

eG∩V in the
game G. Also note that the strategy π∗ is finite-memory if π̂
is finite-memory, whereas the strategy σ∗ requires infinite-
memory to count the steps in the Phase 1 of the rounds. The
following Lemma follows from Lemma 3, Lemma 4, and
Proposition 2.

Lemma 5 Let MP = (G, p, r) be a mean-payoff parity
game such that p−1(0) �= ∅ and the game is parity winning
for player 1. Then Algorithm 1 identifies a 1-closed subset
of the least value class of MP .

3.2 A 2-closed subset of GV

Consider a mean-payoff parity game MP = (G, p, r)
such that the game is parity winning for player 1 and
p−1(0) = ∅ and p−1(1) �= ∅. We present an algorithm
to identify a 2-closed subset of the greatest value class
in MP. The algorithm is different from Algorithm 1, as

in the present case the least priority of a vertex is 1, which
is odd. Let F = Attr2(p−1(1),G) and H = V \ F .
Consider the subgame H induced by the vertex set H , i.e.,
H = G � H . Let ĝ be the value of the greatest value class
in the game H.

Lemma 6 For every vertex v ∈ GVH, MPG
1 (v) =

MPH
1 (v).

Proof. Let σ̂ be an ε-optimal strategy for player 1 in the
sub-game H. For every strategy π of player 2 and every
vertex v ∈ H , we have MPG

1 (ωσ̂,π(v)) ≥ MPH
1 (v) − ε.

Hence MPG
1 (v) ≥ MPH

1 (v), for every vertex v ∈ H . Ob-
serve that if σ̂ is optimal in H, then σ̂ is optimal for all
vertices in GVH in the game G. We construct a strategy π
for player 2 as follows:

π =

{
in F the strategy is a strategy to reach p−1(1)
in H the strategy is an ε-optimal strategy π̂ in H

Consider any strategy σ for player 1. There are two cases:

1. If the play ωσ,π(v) visits F infinitely often, then by the
property of π in F we have Inf(ωσ,π(v)) ∩ p−1(1) �=
∅. Since p−1(0) = ∅, the minimum priority occurring
infinitely often is odd, and hence the play is not parity
winning for player 1.

2. Else the play ωσ,π(v) visits F only finitely often.
Choose a finite integer k such that every vertex in the
path ωk

σ,π(v) is a vertex in H . Then

MPG
1 (ωσ,π(v)) = MPG

1 (ωk
σ,π(v))

= MPH
1 (ωk

σ,π̂(v)) ≤ ĝ + ε,

by ε-optimality of π̂. Observe that if π̂ is optimal in H,
then the strategy π is optimal for all vertices in GVH
in the game G. The strategy π is finite-memory if π̂ is
finite-memory.

It follows that for every vertex v ∈ GVH, we have
MPG

1 (v) = MPH
1 (v).

Proposition 3 The set GVH of greatest values is 2-closed.

Lemma 6 and Proposition 3 gives us the next Lemma.

Lemma 7 Let MP = (G, p, r) be a mean-payoff parity
game such that p−1(0) = ∅ and p−1(1) �= ∅, and the game
is parity winning for player 1. Then Algorithm 2 identifies
a 2-closed subset of the greatest value class of MP.

4. Solving Mean-Payoff Parity Games

In this section we present an algorithm to compute the
values of a mean-payoff parity game. We first give an infor-
mal description of the algorithm; the detailed description is
shown in Algorithm 3.

6

Algorithm 1 ComputeLeastValueClass

Input: a mean-payoff parity game MP = (G, p, r) such that p−1(0) �= ∅
and the game is parity winning for player 1.

Output: a nonempty 1-closed subset of LV, and MP 1(v) for all v ∈ LV .
1. F = Attr1(p−1(0),G).
2. H = V \ F and H = G � H .
3. MeanPayoffParitySolve(H) (Algorithm 3).
4. Construct the mean-payoff game G̃ as described in Subsection 3.1 and Solve the mean-payoff game G̃.
5. Let LV

eG be the least value class in G̃ and l̃ be the least value.

6. LV = LV
eG ∩ V , and MP 1(v) = l̃ for all v ∈ LV .

7. return (LV , l̃).

Algorithm 2 ComputeGreatestValueClass

Input: a mean-payoff parity game MP = (G, p, r) such that p−1(0) = ∅ and p−1(1) �= ∅,
and the game is parity winning for player 1.

Output: a nonempty 2-closed subset GV , and MP 1(v) for all v ∈ GV .
1. F = Attr2(p−1(1),G).
2. H = V \ F and H = G � H .
3. MeanPayoffParitySolve(H) (Algorithm 3).
4. Let GVH be the greatest value class in H and ĝ be the greatest value.
5. GV = GVH, and MP 1(v) = ĝ for all v ∈ GV .
6. return (GV , ĝ).

Informal description of Algorithm 3. The algorithm it-
eratively computes the values of vertices of a mean-payoff
parity game. We focus on computing the values in the parity
winning set W1 for player 1. Throughout the computation,
the vertices whose values have been determined are denoted
by the set W0.

Step 6.2.a. If at any iteration i of Algorithm 3 the subgame
induced by the vertex set W1 \W0 is not parity winning for
player 1, then let W i

2 be the nonempty parity winning set
for player 2. Let w be a vertex with the maximum value for
player 1 in W0 to which a vertex v ∈ W i

2 ∩ V1 has an edge.
For every vertex v ∈ W i

2 ∩V1 which has an edge to a vertex
w′ ∈ W0 that has value equal to w, the value of v is set to
the value of w, and v is included in W0.

Step 6.2.b. Otherwise, the subgame induced by the vertex
set W1 \ W0 is parity winning for player 1. If p−1(0) ∩
(W1 \ W0) �= ∅, then the least value class Li with value
li is computed using Algorithm 1 (Step 6.2.b.1); else the
greatest value class Gi is computed using Algorithm 2
(Step 6.2.b.2). Suppose that there is a vertex v ∈ L i ∩ V1

such that there is an edge (v, w) such that w ∈ W0 and
the value of w is greater than li. Let w be a vertex with
the maximum value for player 1 in W0 to which a vertex
v ∈ Li ∩ V1 has an edge. For every vertex v ∈ W i

2 ∩ V1

which has an edge to a vertex w ′ ∈ W0 that has value equal
to w, the value of v is set to the value of w, and v is included

in W0. A similar procedure is applied to vertices v ∈ Li∩V2

with the max operator replaced by min. Otherwise, for all
vertices in Li the value is set to li. A similar procedure is
applied to Gi in Step 6.2.b.2. The correctness of the Algo-
rithm is proved in the following lemma. We use the notation
p− 2: V → [d] for the function with (p− 2)(v) = p(v)− 2
for all vertices v ∈ V .

Lemma 8 For every mean-payoff parity game MP, Algo-
rithm 3 correctly computes the value function MP 1.

Proof. We prove by induction that for every vertex v ∈
W0, we have Val(v) = MP 1(v). The base case follows
from the correctness of Algorithms 1 and 2 for games with
only one priority. To prove the inductive case, we show the
following two claims.

Claim 1. Let Li be the least value class in the subgame
Gi, and let li be the least value. Let W0 be the set of
vertices of the i-th iteration. Let g = max{Val(w) :
w ∈ W0 and ∃v ∈ Li ∩ V1. (v, w) ∈ E}, and let l =
min{Val(w) : w ∈ W0 and ∃v ∈ Li ∩ V2. (v, w) ∈ E}.

1. If g > li, then for every vertex v ∈ T1, where T1 =
{ v ∈ Li ∩ V1 : ∃w ∈ W0. Val(w) = g and (v, w) ∈
E }, we have MP 1(v) = g.

2. If l < li, then for every vertex v ∈ T2, where T2 =
{ v ∈ Li ∩ V2 : ∃w ∈ W0.Val(w) = l and (v, w) ∈
E }, we have MP 1(v) = l.

7

Algorithm 3 MeanPayoffParitySolve

Input: a mean-payoff party game MP. Output: the value function MP 1.
1. Compute W1 and W2 by any algorithm for solving parity games.
2. For every vertex v ∈ W2, set Val(v) = −∞. 3. W0 = ∅. 4. G0 = G � W1 and V 0 = W1. 5. i = 0.
6. repeat

6.1. while (p−1(0) ∪ p−1(1)) ∩ Vi = ∅ do set p = p − 2. end while
6.2. Let (W i

1 , W
i
2) be the partition of the parity winning sets in Gi.

6.2.a. if W i
2 �= ∅ then

6.2.a.1. g = max{Val(w) : w ∈ W0 and ∃v ∈ W i
2 ∩ V1. (v, w) ∈ E}.

6.2.a.2. T1 = {v ∈ Li ∩ V1 : ∃w ∈ W0. Val(w) = g and (v, w) ∈ E}.
6.2.a.3. W0 = W0 ∪ U nivReach(T1).
6.2.a.4. For every vertex v ∈ U nivReach(T1), set Val(v) = g.
goto Step. 6.3.

6.2.b. else
6.2.b.1. if p−1(0) ∩ Vi �= ∅ then let (Li, li) = ComputeLeastValueClass(Gi).

6.2.b.1.a. Subroutine SetValues(L i, li)
6.2.b.1.b. W0 = W0 ∪ Li, and for every vertex v ∈ Li, set Val(v) = li.

6.2.b.2. else (Gi, gi) = ComputeGreatestValueClass(Gi).
6.2.b.2.a. Subroutine SetValues(G i, gi)
6.2.b.2.b. W0 = W0 ∪ Gi, and for every vertex v ∈ Gi, set Val(v) = gi.

6.3. V i+1 = V i \ W0 and Gi = G � V i.
6.4. i = i + 1.

until Vi = ∅ (end repeat)
7. MP1 = Val .

3. If g ≤ li and l ≥ li, then for every vertex v ∈ Li, we
have MP 1(v) = li.

Proof of Claim 1:

1. For ε > 0, fix an ε-optimal strategy π for player 2 as
follows: play an ε-optimal strategy π i in the subgame
Gi, and switch to an ε-optimal strategy πw from the
set W0 once the game reaches W0. Consider a ver-
tex v ∈ T1 and a strategy σ for player 1. If the play
ωσ,π(v) stays in Gi forever, then MP 1(ωσ,π(v)) =
MP1(ωσ,πi(v)) ≤ li + ε, by ε-optimality of πi. By
the inductive hypothesis, for all vertices w ∈ W0, we
have MP 1(w) = Val(w). Note that g is the maxi-
mum value that player 1 can ensure escaping to any
vertex in W0. If the play ωσ,πi(v) reaches W0, then
player 2 follows an ε-optimal strategy πw to ensure
that MP1(ωσ,π(v)) ≤ g + ε. Since li ≤ g, for all
player-1 strategies σ, we have MP 1(ωσ,π(v)) ≤ g+ε.
On the other hand, from all vertices in T1, player 1
can chose a vertex w ∈ W0 such that (v, w) ∈ E and
Val(w) = MP1(w) = g, and play ε-optimal strate-
gies σw from w to ensure that MP 1(v) ≥ g. Thus for
all vertices v ∈ T1, MP1(v) = g. Observe that if πi

is optimal in Gi and πw is optimal from W0, then the
strategy π is optimal for all vertices v ∈ T1.

2. The argument is similar to the previous case.

3. For ε > 0, fix an ε-optimal strategy σ for player 1 as

follows: play an ε-optimal strategy σ i in the subgame
Gi, and switch to an ε-optimal strategy σw from the
set W0 once the game reaches W0. Consider a ver-
tex v ∈ Li and a strategy π for player 2. If the play
ωσ,π(v) stays in Gi forever, then ε-optimality of σ i

implies MP1(ωσ,π(v)) = MP1(ωσi,π(v)) ≥ li − ε.
Since for all edges (v, w) such that v ∈ Li ∩ V2 and
w ∈ W0, we have Val(w) = MP 1(w) ≥ li, if the play
reaches W0, then ε-optimality of σw from W0 implies
MP1(ωσ,π(v)) ≥ li−ε. Hence, for all vertices v ∈ Li,
we have MP 1(v) ≥ li. By a symmetric argument for
player 2, it follows that MP 1(v) ≤ li, for all vertices
v ∈ Li. Again if σi is optimal in Gi and σw is optimal
from W0, then σ is optimal from all vertices v ∈ Li.

Claim 2. Let Gi be the greatest value class in the sub-
game Gi, and let gi be the greatest value. Let W0 be the
set of vertices of the i-th iteration. Let g = max{Val(w) :
w ∈ W0 and ∃v ∈ Gi ∩ V1. (v, w) ∈ E}, and let l =
min{Val(w) : w ∈ W0 and ∃v ∈ Gi ∩ V2. (v, w) ∈ E}.

1. If g > gi, then for every vertex v ∈ T1, where T1 =
{ v ∈ Gi ∩ V1 : ∃w ∈ W0. Val(w) = g and (v, w) ∈
E }, we have MP 1(v) = g.

2. If l < gi, then for every vertex v ∈ T2, where T2 =
{ v ∈ Gi ∩ V2 : ∃w ∈ W0. Val(w) = l and (v, w) ∈
E }, we have MP 1(v) = l.

8

Subroutine SetValues(Ji, ji)
1. g = max{Val(w) : w ∈ W0 and ∃v ∈ Ji ∩ V1. (v, w) ∈ E}.
2.1 if g > ji then

2.2 T1 = {v ∈ Ji ∩ V1 : ∃w ∈ W0. Val(w) = g and (v, w) ∈ E}; and W0 = W0 ∪U nivReach(T1).
2.3 For every vertex v ∈ U nivReach(T1), set Val(v) = g.
2.4 goto Step 6.3. of MeanPayoffParitySolve.

3. l = min{Val(w) : w ∈ W0 and ∃v ∈ Ji ∩ V2. (v, w) ∈ E}.
4.1 if l < ji then

4.2 T2 = {v ∈ Ji ∩ V2 : ∃w ∈ W0. Val(w) = l and (v, w) ∈ E}; and W0 = W0 ∪ U nivReach(T2).
4.3 For every vertex v ∈ U nivReach(T2), set Val(v) = l.
4.4 goto Step 6.3. of MeanPayoffParitySolve.

3. If g ≤ gi and l ≥ gi, then for all vertices v ∈ Gi, we
have MP 1(v) = gi.

The proof of Claim 2 is similar to the proof of Claim 1. We
can now prove the correctness of Algorithm 3.

1. Correctness of Step 6.2.a. follows from Claim 1, be-
cause for every vertex v ∈ W i

2 , we have MPGi
1 (v) =

−∞. Also observe that for every vertex w ∈ W0, we
have Val(w) = MP 1(w) > −∞. Since the game
MP is parity winning for player 1, there is a vertex
v ∈ W i

2 ∩ V1 such that there is a vertex w ∈ W0 and
(v, w) ∈ E.

2. Correctness of Steps 6.2.b.1 and 6.2.b.2 follows from
Claims 1 and 2.

The correctness of Algorithm 3 follows.

The following theorem gives the complexity of Algo-
rithm 3. Recall that n is the number of vertices of the game
graph, m is the number of edges, d is the number of prior-
ities of the parity objective, and MP and Parity denote the
complexities required for solving mean-payoff games and
parity games, respectively (by any algorithm).

Theorem 3 (Solution of mean-payoff parity games). Al-
gorithm 3 solves mean-payoff parity games in time O(nd ·
(m + MP + Parity)).

Proof. Let T (n, m, d) denote the time complexity of Algo-
rithm 3 to solve a mean-payoff parity game with n vertices,
m edges and d priorities. Step 6.2. involves solving a parity
game, and Step 6.2.b. recursively solves a smaller sub-game
using Algorithm 1 and Algorithm 2. The time complexity
of Algorithm 1 and Algorithm 2 are T (n − 1, m − 1, d −
1) + O(m + MP) and T (n− 1, m− 1, d− 1) + O(m), re-
spectively. Thus each iteration of Step 6 can be computed in
time T (n−1, m−1, d−1)+O(m+MP+Parity). In every
iteration of Step 6, the value of at least one vertex is fixed.
Hence, Step 6 is iterated at most n times. The following
recurrence describes the running time of Algorithm 3:

T (n, m, d) = n·(T (n−1, m−1, d−1)+O(m+MP+Parity))

The desired time complexity satisfies the recurrence.

Mean-payoff games can be solved in time O(n3 ·m ·W),
where W is the input size for the reward function r [21].
Parity games can be solved in time O

(
d ·m · (n

�d/2�)
�d/2�),

where d is the number of priorities [13]. Moreover,
subexponential-time algorithms are known to solve mean-
payoff and parity games [3, 2]. The exact time complexity
of mean-payoff parity games remains as open as the com-
plexities of mean-payoff games and of parity games.

Theorem 4 (Rationality of mean-payoff parity games).
Let MP = (G, p, r) be a mean-payoff parity game such
that the reward r(v) is rational for all vertices v ∈ V . Then
the value MP 1(v) is rational for all vertices v ∈ W1.

Proof. The proof is by induction on the number of priori-
ties. If there is only one priority, then the value is either −∞
(the priority is odd) and W1 = ∅, or else it reduces to a
mean-payoff game. The recursive characterization of the
value function by Algorithm 3 proves the inductive case.

Theorem 5 (Optimal strategies).

1. Memoryless optimal strategies exist for player 1 in
mean-payoff coBüchi games. Optimal strategies re-
quire infinite memory for player 1 in mean-payoff
Büchi games.

2. Infinite-memory optimal strategies exist for player 1
in mean-payoff parity games. Finite-memory opti-
mal strategies exist for player 2 in mean-payoff parity
games.

Proof. (sketch)

1. In mean-payoff coBüchi games Algorithm 2 reduces
to solving a mean-payoff game. It follows from The-
orem 1 that memoryless optimal strategies exist in
mean-payoff games. The result follows from the re-
cursive characterization of Algorithm 3 and induction
on the size of the game graph. The result for the mean-
payoff Büchi games follows from Example 1.

9

2. The result follows by induction on the number of prior-
ities and size of the game graph. The base case consists
of games with only one priority. The result then fol-
lows from the existence of memoryless optimal strate-
gies in mean-payoff games. The inductive case fol-
lows from the recursive characterization of the optimal
strategies in mean-payoff parity games from the opti-
mal strategies in sub-games, by Lemma 3, Lemma 4,
Lemma 6 and Lemma 8. The infinite-memory require-
ment of optimal strategies for player 1 follows from
the special case of mean-payoff Büchi games.

5. Conclusion

We studied perfect-information games with a combina-
tion of mean-payoff and parity objectives. The determinacy
of these games guarantees the existence of ε-optimal strate-
gies, for all ε > 0. We proved the existence of optimal (not
only ε-optimal) strategies for mean-payoff parity games,
and our characterization of optimal strategies enabled us
to present an algorithm for solving these games. We also
showed that unlike in the cases of pure mean-payoff or pure
parity games, optimal strategies of the combined games
in general require infinite memory. The exact complexity
of mean-payoff parity games, and the study of combining
other classes of quantitative and qualitative objectives, are
directions for future research. Such combinations of ob-
jectives are interesting for the synthesis of reactive systems
with both fairness (qualitative) and resource (quantitative)
constraints [5].

Acknowledgments. This research was supported in part
by the ONR grant N00014-02-1-0671, the AFOSR MURI
grant F49620-00-1-0327, and the NSF ITR grant CCR-
0225610.

References

[1] R. Alur, T. A. Henzinger, and O. Kupferman.
Alternating-time temporal logic. JACM, 49:672–713,
2002.

[2] H. Bjorklund, S. Sandberg, and S. Vorobyov. A
discrete subexponential algorithms for parity games.
In STACS’03, pages 663–674. LNCS 2607, Springer,
2003.

[3] H. Bjorklund, S. Sandberg, and S. Vorobyov. A com-
binatorial strongly subexponential strategy improve-
ment algorithm for mean payoff games. In MFCS’04,
pages 673–685. LNCS 3153, Springer, 2004.

[4] J.R. Büchi and L.H. Landweber. Solving sequential
conditions by finite-state strategies. Transactions of
the AMS, 138:295–311, 1969.

[5] A. Chakrabarti, L. de Alfaro, T.A. Henzinger, and
M. Stoelinga. Resource interfaces. In EMSOFT
03: Embedded Software, pages 117–133. LNCS 2855,
Springer, 2003.

[6] A. Condon. The complexity of stochastic games. In-
formation and Computation, 96:203–224, 1992.

[7] L. de Alfaro and T. A. Henzinger. Concurrent ω-
regular games. In LICS’00, pages 141–154. IEEE
Computer Society Press, 2000.

[8] L. de Alfaro and T.A. Henzinger. Interface theories
for component-based design. In EMSOFT 01: Embed-
ded Software, pages 148–165. LNCS 2211, Springer,
2001.

[9] D.L. Dill. Trace Theory for Automatic Hierarchical
Verification of Speed-independent Circuits. The MIT
Press, 1989.

[10] A. Ehrenfeucht and J. Mycielski. Positional strategies
for mean payoff games. Int. Journal of Game Theory,
8(2):109–113, 1979.

[11] E. A. Emerson and C. S. Jutla. Tree automata, mu-
calculus and determinacy. In FOCS’91, pages 368–
377. IEEE Computer Society Press, 1991.

[12] T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair
simulation. Information and Computation, 173:64–
81, 2002.

[13] M. Jurdziński. Small progress measures for solving
parity games. In STACS’00, pages 290–301. LNCS
1770, Springer, 2000.

[14] Z. Manna and A. Pnueli. The Temporal Logic of Reac-
tive and Concurrent Systems: Specification. Springer-
Verlag, 1992.

[15] D. Martin. Borel determinacy. Annals of Mathematics,
102:363–371, 1975.

[16] A. W. Mostowski. Games with forbidden positions.
Technical Report 78, University of Gdańsk, 1991.

[17] A. Pnueli and R. Rosner. On the synthesis of a reactive
module. In POPL’89, pages 179–190. ACM Press,
1989.

[18] P.J. Ramadge and W.M. Wonham. Supervisory control
of a class of discrete-event processes. SIAM Journal
of Control and Optimization, 25(1):206–230, 1987.

[19] W. Thomas. Languages, automata, and logic. In
G. Rozenberg and A. Salomaa, editors, Handbook of
Formal Languages, volume 3, Beyond Words, chap-
ter 7, pages 389–455. Springer, 1997.

[20] J. Vöge and M. Jurdziński. A discrete strategy im-
provement algorithm for solving parity games. In
CAV’00, pages 202–215. LNCS 1855, Springer, 2000.

[21] U. Zwick and M. Paterson. The complexity of mean
payoff games on graphs. TCS, 158:343–359, 1996.

10

