Simple Stochastic Parity Games*

Krishnendu Chatterjee, Marcin Jurdziriski, and Thomas A. Henzinger

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, USA

Abstract. Many verification, planning, and control problems can be
modeled as games played on state-transition graphs by one or two play-
ers whose conflicting goals are to form a path in the graph satisfying
their own objectives. The focus here is on simple stochastic parity games,
that is, two-player games with turn-based probabilistic transitions and
w-regular objectives formalized as parity (Rabin chain) winning condi-
tions. An efficient translation from simple stochastic parity games to
nonstochastic parity games is given. As many algorithms are known for
solving the latter, the translation yields efficient algorithms for comput-
ing the states of a simple stochastic parity game from which a player can
win with probability 1.

An important special case of simple stochastic parity games are the
Markov decision processes with Biichi objectives. For this special case
a first provably subquadratic algorithm is given for computing the states
from which the single player has a strategy to achieve a Biichi objec-
tive with probability 1. For game graphs with m edges the algorithm
works in time O(m+/m), compared with O(mn) best algorithm known
before. Interestingly, a similar technique sheds light on the important
question of the computational complexity of solving simple Biichi games
and yields the first provably subquadratic algorithm, with a running time
of O(n?/logn) for games with n vertices and O(n) edges.

1 Introduction

Many verification, Al planning, and control problems can be formalized as state-
transition graphs, and solved by finding paths in those graphs that meet certain
criteria. Uncertainty about a process evolution is often modeled by probabilistic
transitions, and then instead of searching for paths we are interested in measur-
ing the probability that a path satisfies a given criterion, or finding controllers
that maximize this probability. For decades there have been several separated
communities studying such problems in the context of stochastic games [13],
Markov decision processes (MDP’s) [9], Al planning, and model checking. Only
recently some unification has been attempted. MDP’s can be naturally viewed
as 1-player stochastic games and the book of Filar and Vrieze [8] provides a

* This research was supported in part by the DARPA grant F33615-C-98-3614, the
ONR grant N00014-02-1-0671, the NSF grants CCR-9988172 and CCR-0225610, and
the Polish KBN grant 7-T11C-027-20.



unified rigorous treatment of the theories of MDP’s and stochastic games. They
coin the term Competitive Markov Decision Processes to encompass both 1- and
2-player stochastic games.

We suggest to cast various games based on state-transition models into a
unified framework. For that purpose we use the following parameters:

— Number of players: “1/”: Markov chains; 1: nondeterministic state-transition
systems; “11/”: Markov decision processes; 2: game graphs; “21/”: stochas-
tic games.

— The players’ knowledge about the course of the game: simple (or turn-based)
games: the state determines who plays next; concurrent games: the play-
ers choose moves simultaneously and independently, without knowing each
other’s choices [13,1,5].

— Winning objectives: qualitative (w-regular) objectives [14]: finite objectives
(reachability and safety), or infinite objectives (liveness, such as Biichi or
general parity conditions); quantitative (reward) objectives [8]: discounted
reward, or limiting average reward, or total reward.

— Winning criteria: qualitative criteria [5]: sure winning, almost-sure winning
(with probability 1), or limit-sure winning (with probability arbitrarily close
to 1); quantitative criteria: exact probability of winning, or expected reward.

We mention a few notable examples of models and problems studied in various
communities that fit into the above categorization.

— Summable MDP’s [9,8]: concurrent 11l/-player games with maximum ex-
pected discounted reward.

— Mean-payoff games [17]: simple 2-player games with maximum limiting av-
erage reward.

— Parity games [12,14]: simple 2-player games with parity objectives.

— Quantitative simple stochastic games [2]: simple 21/>-player games with reach-
ability objectives and exact probability of winning.

— Qualitative concurrent w-regular games [4]: concurrent 2!/-player games
with parity objectives and various qualitative winning criteria.

— Quantitative concurrent w-regular games [6]: concurrent 21/-player games
with parity objectives and exact probability of winning.

In earlier work [4,11] we have studied the complexity of algorithms for solving
concurrent parity games. In particular, we have given efficient reductions from
the problem of solving concurrent Biichi and co-Biichi games (under the almost-
sure winning criterion) to the extensively studied problem of solving turn-based
parity games [15,10,16]. In this paper we focus on the following three types of
games:

— Qualitative simple stochastic parity games: simple 21/-player games with
parity objectives and almost-sure winning criterion.

— Qualitative Biichi MDP’s: simple 11/>-player games with Biichi winning ob-
jectives and almost-sure winning criterion.

— Simple Biichi games: simple 2-player games with Biichi winning objectives.



We use n to denote the number of vertices and m to denote the number of edges
of a parity game graph. Our main results can be summarized as follows.

Theorem 1. Every qualitative simple stochastic parity game with priorities in
the set {0,1,2,...,d—1} can be translated to a simple parity game with the same
set of priorities, with O(dn) vertices, and O(d(m + n)) edges, and hence it can
be solved in time O(d(m + n) - (nd)!4/?1).

Theorem 2 (Pure memoryless determinacy). From every vertez of a sim-
ple stochastic parity game either one player has a pure memoryless strategy to
win with probability 1, or there is a § > 0, such that the other player has a pure
memoryless strategy to win with probability at least §.

Corollary 1. For simple stochastic parity games the almost-sure and limit-sure
winning criteria coincide.

Theorem 3. Qualitative Biichi MDPs can be solved in time O(m+/m).

This implies also a complexity improvement for solving MDP’s with reachability
objectives under the almost-sure winning criterion, for which the best algorithm
so far had O(mn) running time [3]. Interestingly, the novel technique we use for
Biichi MDP’s allows us to shed some light on the important problem of finding
subquadratic algorithms for simple Biichi games.

Theorem 4. Simple Biichi games on graphs with O(n) edges can be solved in
time O(n?/logn).

This result and reductions in [11] prove that concurrent games with constant
number of actions and with reachability and Biichi objectives under the almost-
sure and limit-sure winning criteria can also be solved in subquadratic time (the
best algorithms so far had O(n?) running time [4]).

2 Simple Stochastic Parity Games

Given n € N, we write [n] for the set {0,1,2,...,n} and [n]; for the set
{1,2,...,n}. A 21j-player game (or simple stochastic game, or SSG) G =
(V, E, (Va, Vo, Vo)) consists of a directed graph (V, E) and a partition (Vg, Ve, Vo)
of the vertex set V. For technical convenience we assume that every vertex has
at least one outgoing edge. For simplicity we only consider the case when G is
binary. An infinite path in G is a infinite sequence (vg, vy, v2, .. .) of vertices such
that (v, vg+1) € E for all k € N. We write {2 for the set of all infinite paths. The
game is played with three players that move a token from vertex to vertex so
that an infinite path is formed: from vertices in V, player Even (O) moves the
token along an outgoing edge to a successor vertex; from vertices in Vi, player
0Odd (¢) moves the token; and from vertices in V5, player Random () moves
the token. If there are two outgoing edges, then player Random always moves
the token to one of the two successor vertices with probability 1/2. Since player



Random does not have a proper choice of moves, as the other two players do,
we use the l/-player terminology for player Random. The 2-player games are
the special case of the 21/-player games with Vi = (). The 11/-player games
(or MDP’s) are the special case of the 21/>-player games with Vi, = ). In other
words, in 2-player games, the only players are Even and Odd; and in 11/>-player
games, the only players are Even and Random.

Strategies. For a finite set A, a probability distribution on A is a function
f A — [0,1] such that ) ., f(a) = 1. We denote the set of probability
distributions on A by D(A). A mized strategy for player Even is a function o :
V*Vo — D(V), such that for a finite sequence T € V*V of vertices, representing
the history of the play so far, o(7) is the next move to be chosen by player
Even. A strategy must prescribe only available moves, i.e., (v,u) ¢ E then
o -v)(u) =0 for all w € V* and v € V. A strategy o is pure if for all
w € V* and v € V, there is a vertex u such that (v,u) € E and o(w-v)(u) = 1.
The strategies for player Odd are defined analogously. We write X' and II for
the sets of all strategies for players Even and Odd, respectively. A memoryless
strategy is a strategy which does not depend on the history of the play but
only on the current vertex. A pure memoryless strategy for player Even can be
represented as a function o : Vg — V such that (v,0(v)) € E for all v € V.
For an initial vertex v, and two strategies 0 € X and 7 € I for players Even
and Odd, respectively, we define Qutcome(v,o,7) C 2 to be the set of paths
that can be followed when a play starts from vertex v and the players use the
strategies o and 7. Formally, (vg,v1,v2,...) € Outcome(v,o,7) if vg = v, and
for all £ > 0, we have that v, € V5 implies (vg,vr41) € E, vy € Vg implies
o(vo,v1,...,0)(Vg+1) > 0, and vy € Vi implies 7(vo,v1,...,0)(Vg41) > 0.
Once a starting vertex v and strategies o € X and m € II for the two players
have been chosen, the probabilities of events are uniquely defined, where an event
A C 2 is a measurable set of paths. For a vertex v and an event 4 C (2, we
write Pr{""[A] for the probability that a path belongs to A if the game starts
from v and the players use the strategies o and .

Winning objectives. A winning objective for a SSG G is a set W C 2 of
infinite paths. We consider the following winning objectives.

— Biichi objective. For a set T' C V of target vertices, the Biichi objective is de-
fined as Biichi(T) = {(vo,v1,v2...) € 2 : v}, € T for infinitely many k > 0}.

— Parity objective. Let p : V' — [d] be a function that assigns a priority p(v) to
every vertex v € V, where d € N. For an infinite path T = (vg,v1,...) € (2,
we define Inf(7) = {i € [d] : p(vg) = for infinitely many k& > 0}. The Even
parity objective is defined as Parity(p) = {v € 2 : min (Inf(v)) is even}, and
the Odd parity objective as co-Parity(p) = {v € 2 : min (Inf(v)) is odd }.

Note that for a priority function p : V' — [1] with only two priorities (0
and 1), an even parity objective Parity(p) is equivalent to the Biichi objec-
tive Biichi(p~1(0)), i.e., the target set consists of the vertices with priority 0. A
21/5-player parity game (or parity SSG) is a pair (G, p), where G is a 21/>-player
game and p is a priority function. If G is a 2-player (resp. 1!/>-player) game, then



(G,p) is a 2-player parity game (resp. 11/-player parity game, or parity MDP).
A 2-player Biichi game is a pair (G,T), where G is a 2-player game and T is
a set of target vertices. If G is a 11/-player game, then (G,T) is a 11/-player
Biichi game (or Biichi MDP).

Winning criteria. Consider an SSG G with winning objective W. We say that
a strategy o € X for player Even is

— sure winning from vertex v if for all strategies m € IT of player Odd, we have
Outcome(v,o,m) C W;

— almost-sure winning from vertex v if for all strategies m € IT of player Odd,
we have Pry" W] = 1;

— positive-probability winning from vertex v if there is a 6 > 0, such that for
all strategies m € II of player Odd, we have Pr{ ™ [W] > 4.

The definitions for player Odd are similar. We shall see that player Even has an
almost-sure winning strategy for ¥V from v if and only player Odd does not have
a positive-probability winning strategy for 2\ W from v. For 2-player parity
games all the three above winning criteria coincide, i.e., existence of a positive-
probability winning strategy for a player implies existence of a sure winning
strategy for him. In this paper we consider the dual criteria of almost-sure win-
ning (i.e., winning with probability 1) and positive-probability winning, for 21/-
and 1!/-player games, and the criterion of sure winning for (nonstochastic) 2-
player games:

— The problem of solving a 21/>-player parity game (resp. 11l/-player game)
(G, p) is to compute the set of vertices of G from which the player Even has
an almost-sure winnning strategy for the objective YW = Parity(p).

— The problem of solving a 2-player parity game (G,p) is to compute the set
of vertices of G from which the player Even has a sure winnning strategy for
the objective W = Parity(p).

3 Solving 21/;-player Parity Games

The main result of this section is an algorithm for solving 2!/-player parity
games, which is obtained by an efficient reduction to 2-player parity games, i.e.,
a proof of Theorem 1. As in our earlier work [11], the key technical tool for
the correctness proof of the reduction is the notion of ranking functions, which
witness the existence of winning strategies for the players. Our ranking functions
are closely related to the semantics of the p-calculus formulas that express the
winning sets of concurrent stochastic parity games [4], but due to the lack of
concurrency in our games, the defining conditions for our ranking functions are
considerably simpler. Two corollaries of our proof are of independent interest.
First, we establish the existence of pure memoryless winning strategies for both
players in simple stochastic parity games (Theorem 2.) This is in contrast to
concurrent games, where players need mixed strategies with infinite memory [4].
Second, in simple stochastic parity games the almost-sure and limit-sure winning
criteria coincide (Corollary 1) which is not the case for concurrent games [4].



3.1 Ranking functions

In this subsection we provide a characterization of the “universal” parity MDP
problem. We define certain sufficient conditions for establishing that for all
strategies 7, the Markov chain M, satisfies the parity condition with proba-
bility 1, or with probability at least 6 > 0. These sufficient conditions are then
used in the next subsection to prove correctness of our solution for 21/-player
parity games: a strategy o is winning for a player if and only if the parity MDP
G, is a solution to the universal parity MDP problem.

Consider a parity MDP M = (V,E,(Vs,Vo),p : V = [d]). Without loss
of generality assume that d is even. A ranking function for player Even labels
vertices with (d/2)-tuples of natural numbers: ¢ = (¢!, % ... 0% 1) : V —
[n]4/% U {00}, for some n € N. For succinctness, for all odd k € [d] we write
B¥(v) to denote the tuple (' (v),?(v),...,¢"(v)). We often call ¢(v) the rank
of vertex v, and we call @*(v) the k-th rank of vertex v. A ranking function
for player Odd is a function o = (¢/°,¢2,...,¢%) : V = [n]¥?*1 U {o0}; we use
similar notational conventions as with ranking functions for player Even. For
all v € Vi, we write Pr,[@%] (resp. Pr,[@%]) for the one-step probability of
reaching from vertex v a successor u of v such that @*(u) <iex B*(v) (resp.
B¥(u) <iex B*(v)). In other words, Pr,[@%] is the probability in vertex v of
strictly decreasing the k-th rank in one step, and Pr,[#%] is the probability
of not increasing the k-th rank. Moreover, we write Pr,[¢<oo] (or for notational
convenience Pr, [?zl]) for the one-step probability of reaching from v a successor
u of v such that ¢(u) # co. We always use these notations in the context of
expressions such as Pr,[¢%] = 1 or Pr,[¢%] > . By slight abuse of notation,
for vertices v € Vi we also write Pr,[#*] and Pr,[@%] in such expressions,
and then we mean those expressions to hold if and only if they hold for all
mixed one-step strategies in vertex v. It is easy to verify that if either of the two
expressions above holds for all pure one-step strategies in v, then it also holds
for all mixed one-step strategies.

Definition 1 (Almost-sure ranking). A ranking function ¢ : V — [n]%/? U
{00} for player Even is an almost-sure ranking if there is an € > 0 such that for
every vertex v with p(v) # oo, the following condition C,, holds:

= p(v) even: Voqq ieppoy (ProlBE 7] = LAPL[BL] > o) v (Pr[BL ] = 1),
— p(v) 0dd: g icip(o)](Pro[BE°1 = 1A Pr, [BL] > ¢).

Proposition 1. Let k € [d] be an odd priority. Then for every vertex v with
p(v) # oo the following conditions hold.

(a) If p(v) = k, then in one step from vertex v the k-th rank decreases with
probability at least €.

(b) If p(v) > k, then in one step from vertex v either the k-th rank decreases with
probability at least €, or the k-th rank does not increase (with probability 1).



Proof. If p(v) = k, then a disjunct (Pr, [?’?2"*2] =1A Pr,,[?’g*”] >¢) of Cy
must hold for some ¢ > 0. From Prv[?’?%] > ¢ it follows immediately, however,
that Prv[g_ﬁ’g] > g, which proves (a).

If p(v) > k, then either one of the above disjuncts holds and then the k-th
rank decreases with probability at least ¢, or Pr, [(,_0”?2’] = 1 holds, for some
i > 0, which implies Pr, [?’2] = 1, i.e., the k-th rank does not increase, which
concludes the proof of (b). B

Lemma 1. Let ¢ be an almost-sure ranking for a parity MDP. Then for ev-
ery (mized) strategy of player Odd, the Even parity objective is satisfied with
probability 1 from every vertex v with p(v) # co.

Proof. Once the strategy for player Odd is fixed, a play in the PMDP is an
infinite random walk. We argue that this random walk satisfies the Even parity
objective with probability 1. From our discussion above it follows that the con-
ditions expressed in the definition of an almost-sure ranking hold for all mixed
one-step strategies of player Odd, and since our reasoning below is carried out
using only those conditions, it applies to all mixed strategies for player Odd.

In order to prove that with probability 1, the lowest priority occurring in-
finitely often is even, it suffices to show that for every odd priority k € [d], if
vertices of priority k& keep occurring in the random walk, then with probability 1
eventually a vertex of lower priority occurs. First note that from the definition
of an almost-sure ranking, it follows that all successors of a vertex with finite
rank have finite rank: one of the conditions Pr,[#%] = 1 must hold so the i-th
rank cannot increase in any step and thus the rank stays finite.

Let k € [d] be odd. For the sake of contradiction assume that from some point
on vertices of priority k& keep occurring, but no vertex of a lower priority ever
occurs. In this case Proposition 1 implies that in every step either the k-th rank
does not increase with probability 1, or it decreases with probability at least e,
and moreover, in every step from a vertex of priority k£ the k-th rank decreases
with probability at least . As there are only N = (n + 1)(*+1)/2 different values
of a k-th rank, within at most N visits to a vertex of priority k£ the k-th rank
must decrease to (0,...,0) with probability at least V. Thus with probability 1
a vertex with k-th rank (0,...,0) is eventually reached. This, however, contra-
dicts the assumption that priority k& occurs infinitely often, because no vertex of
priority k can have its k-th rank equal to (0, ...,0), since by Proposition 1(a) a
step from such a vertex has to decrease the k-th rank with positive probability
and (0,...,0) is the smallest existing rank. i

Definition 2 (Positive-probability ranking). A ranking function ¢ : V —
[n)%/?t1U{oo} for player Odd is a positive-probability ranking if there is an e > 0
such that for every verter v with ¢ (v) # oo, the following condition D, holds:

— p(v) even: (Prvg_/))g] >€)V Veven ie[p(u)]Jr(Prv@)i{z] =1A Prv[z’%] >e),
- p(v) Ojdf (Pro[92] > &) V Veven icip(oy, ProlS7] = LAPr[¢L] > e) v
(Pro[$27]=1)



A proof similar to that of Lemma 1 can be used to prove the following Lemma.

Lemma 2. Let ¢ be a positive-probability ranking for a parity MDP. Then there
is a & > 0, such that for every (mized) strategy of player Even, the Odd parity
objective is satisfied with probability at least & from every vertex v with ¥ (v) # oo.

3.2 The reduction

Given a 21/>-player parity game G = (V, E, Vo, Vo, Vo),p : V — [d]), we con-
struct a 2-player parity game G with the same set [d] of priorities. For every
vertex v € VoU Vg, there is a vertex ¥ € V with “the same” outgoing edges, i.e.,
(v,u) € E if and only if (,u) € E. Each random vertex v € Vo is substituted
by the gadget presented in Figure 3.2.

(v, p(v) + 1)

(T, p(v) +1)

Fig. 1. Gadget for reducing 2!/-player parity games to 2-player parity games.

More formally, the players play the following 3-step game in G from vertex ©
of priority p(v). First, in vertex T player Odd chooses a successor (v, k), each
of priority p(v), where k& € [p(v) 4+ 1] is even. Then in vertex (v, k) player Even
chooses from at most two successors: vertex (v, k — 1) of priority &k — 1 if k > 0,
or vertex (U, k) of priority k if k& < p(v). Finally, in a vertex (v, k) the choice is
between all vertices @ such that (v,u) € E, and it belongs to player Even if k is
odd, and to player Odd if & is even.

Lemma 3 (Correctness of the reduction). For every vertex v in G, if player
Even (resp. Odd) has a sure winning strategy from vertex U in G, then player
Even (resp. Odd) has an almost-sure (resp. positive-probability) winning strategy
from v.

Proof. We prove the claim for player Even. The case of player Odd is similar
and is omitted here. If W is the set of vertices from which player Even has a
winning strategy in G, then there is a ranking function (also called a progress
measure [10]) % : V — [n]%? U {oo} (where n < V) such that (w) # oo for
all w € Wq. This ranking function induces a memoryless winning strategy & for
player Even in G [10]. We define a ranking function ¢ and a memoryless strategy



for player Even o for G by setting p(v) = $(7) and o(v) = 7(v) for every v € V.
Taking the strategy subgraph of ¢ in G we obtain a parity MDP M. In order
to prove the claim, by Lemma 1 it suffices to argue that ¢ is an almost-sure
ranking for M.

First we verify that the ranking condition C, holds for all vertices v € V5
with ¢(v) # oo. Then by the definition of a ranking function [10], if (v,u) is
an edge in M, then @P(")(v) >1ex 9P (u) if p(v) is odd, and PP~ (v) >jex
©P(V)=1(y) if p(v) is even. In the former case the disjunct (Pr,[@%" 2] = 1A

Pr, [(,_0)’;(”)] > ¢) holds, and in the latter the disjunct (Pr, [(1—31;(11)71] = 1) holds.

We prove that the ranking condition C, holds for all vertices v € V5 with
p(v) # oo. Let k € [p(v)]+. Since vertex T belongs to player Odd, the edge
leading to vertex (v, k) must be in M. Vertex (v, k) belongs to player Even, so
either the edge leading to vertex (0,k — 1) or the one leading to vertex (v, k)
belongs to M. In the former case, by analyzing the inequalities between p-ranks
of vertices on the path from T to the successor of (v, k — 1) in M which hold by
the definition of a ranking function [10], we can deduce that Pr,[@% '] > 1/2
holds. In the latter case, we get that Prv[ﬁﬂ_l] = 1 holds. Considering all edges
that lead out of vertex v in M, we conclude that the following condition holds:
(Pry[@ <ol = 1) A Agaa icpp(oy] (Pro[F ] = 1V Pr,[FL] > 1/2). This condition
can be shown to imply the ranking condition C, using the two simple properties
that if i,j € [p(v)] are odd and i < j, then Pr,[#Z] = 1 implies Pr,[#L] =1,
and Pr,[@1] > ¢ implies Pr,[@L] >c. 0

4 An O(m+/m) Algorithm for 11/-player Biichi Games

In this section we consider 11/>-player games with Biichi winning objectives,
i.e., Biichi MDP’s. There are two players, Even and Random. We write T" for
the set of target vertices, which player Even attempts to visit infinitely often.
By W we denote the set of vertices from which player Even has an almost-sure
winning strategy, and by Wq the set from which the Biichi objective is violated
with positive probability for all strategies of player Even. We call these sets the
winning sets for player Even and Random, respectively. The main result of this
section is an O(ny/n) algorithm for computing W and Wq, for a 11/-player
Biichi game with n vertices and O(n) edges. This proves Theorem 3 since a game
graph with m edges can be easily converted in O(m + n) time to an equivalent
game graph with O(m) vertices and O(m) edges.

In the rest of the paper we use the following notations for a graph G = (V, E)
and a set S C V of vertices. We write succ(v,G) = {u €V : (v,u) € E} for the
set of immediate successors of vertex v. We define In(S,G) = {(v,u) € E : v &
S and u € S} to be the set of edges that enter set S and Source(S,G) = {v €
V i (v,u) € In(S,G) for some u } is the set of sources of edges that enter S. We
write Reach(S,G) for the set of vertices from which there is a path in graph G
to a vertex in S. Let (Vg, Vi) be a partition of the set V' of vertices of graph G
(player O moves from vertices in V5 and player * moves from vertices in Vi,



where * € {0,(O}). We inductively define the set Attrg(S,G) of vertices from
which player O has a strategy to reach set S in the following way. Set Ry = S,
and for k > 0, set: Rgp1 = Ry U{v € Vg : (v,u) € E for some u € R }U{v €
Vi : u € Ry, for all (v,u) € E}. We set Attrn(S,G) = U, Ri.- We define the set
Attr.(S,G) in a similar way. We fix a graph G until the end of the paper and
by a slight abuse of notation instead of putting graphs as the second parameters
of all the above definitions we will write a subset of vertices of the graph G to
stand for the subgraph of G induced by the set of vertices.

Algorithm 1 Classical algorithm for Biichi MDP’s
Input : 11/-player Biichi game (G, T). Output: W and Wg =V \ Wp.
1.Go:=G; 2. Wo:=0;3.i:=0
4. repeat
4.1 W41 := One-Iteration-Of-The-Classical-Algorithm (V;)
4.2 ‘/H—l = ‘/z \ Wi+1; = Z+1
until W; =0
5. Wo = Uiy Wi

Procedure One-Iteration-Of-The-Classical-Algorithm
Input: set V; C V. Output: set W;+1 C Vi.
1. R; := Reach(T' NV;,V;); 2. Try :=V; \ Ri; 3. Wiy := Attro(Tr, Vi)

The classical algorithm (Algorithm 1 [3]) works as follows. First it finds
the set of vertices R from which the target set 7" is reachable. The rest of the
vertices Tr = V \ R (a “trap” for player Even) are identified as winning for
player Random. Then the set of vertices W, from which player Random has a
strategy to reach its winning set 7, is computed. Set W is identified as a subset
of the winning set for player Random and it is removed from the vertex set.
The algorithm then iterates on the reduced game graph. In every iteration it
performs a backward search from the current target set to find vertices which
can reach the target set. Each iteration takes O(n) time.

Our improved algorithm (Algorithm 2) differs from the classical algorithm
by selectively performing a backward search as the classical algorithm does, or
a cheap forward exploration of edges from vertices that are good candidates to
be included in the winning set of player Random. In Step 4.1 of the improved
algorithm, if the number of edges entering the set of vertices included in the
previous iteration into the winning set of player Random is at least as big as a
constant k, then we run an iteration of the classical algorithm. Otherwise, i.e.,
if this number is smaller than k, then let S be the set of sources of edges that
enter the set of vertices winning for player Random in the previous iteration. The
vertices in S are considered as candidates to be included into the winning set
of player Random in the current iteration. In Step 4.2.2.1 (procedure Dovetail-
Ezplore) a dovetailing exploration of edges is performed from all vertices in S.
From all vertices v € S, up to £ edges are explored in a round-robin fashion.



If the forward exploration of edges from a vertex v € S terminates before ¢
edges are explored, and none of the explored vertices is in the target set, then
the explored subgraph is included in the winning set of player Random. If Step
4.2.2.1 fails to identify a winning set of player Random, then in Step 4.2.4 an
iteration of the classical algorithm is executed. The winning set discovered by
the iteration of the classical algorithm in Step 4.2.4 must contain at least £ edges
as otherwise it would have been discovered in Step 4.2.2.1.

Algorithm 2 Improved Algorithm for Biichi MDPs
Input: 1!/-player Biichi game (G, T). Output: W and Wo =V \ Wp.
1.Go:=G; 2. Wo:=0;3.1:=0
4. repeat
41 if [In(W:, Vi UW:)| > k then
4.1.1 W;41 =: One-Iteration-Of-The-Classical-Algorithm (V;)
4.2 else (|In(W;,V; UW;)| < k)
421U0:=0
4.2.2 repeat
4.2.2.1 Tr; = Dovetail-Explore(V; \ U, Source(W; UU, V; UW;))
4222 U =:UU Attro(Tri, Vi \ U)
until (|In(W; UU,V; UW;)| < k and Tr; # 0)
4.2.3 if Tr; # 0 then W, :== W, UU
4.2.4 else Wit := U U (One-Iteration- Of- The-Classical- Algorithm (V; \ U))
4.3 Vi1 :=Vi\ Wit
4441:=1+1
until W; =0
5 Wo = U;czl Wi

Procedure Dowvetail-Explore
Input: set S C V; and graph G; = (V;, E;). Output: set T'r; C V;.
1. Tri:=0; 2. ec:=¢
3. repeat
3.1 ec:=e—1
3.2 for each vertex v € S
extend the sub-graph R, C V; by exploring a new edge
3.3 if there is v € S, s.t. for all u € R,, succ(u,V;) CR, and R, NT NV, =0
then return Tr; .= R,
until ec =0
4. return TTr;

Lemma 4. Algorithm 2 correctly computes the sets Wo and Wo.
Proof. We prove by induction that W; computed in any iteration of the improved
algorithm satisfies W; C W. Base case: Wy = 0 C Wp.
Inductive case: we argue that W; C W implies W1 C Wo.
1. If Step 4.1 is executed, then W;11 C W by correctness of the classical
algorithm.



2. If Step 4.2.2 is executed, then a nonempty set R, is included in Tr;;; in Step
3.3 of procedure Dowvetail-Ezplore. By the condition in Step 3.3 of Dovetail-
Ezplore, no vertex in R, can reach a vertex outside of R,, and since R, N
T NV; =0, we conclude that T; cannot be reached from any vertex in R,.
Therefore R, C W and Trj11 C Wo. Hence U C W and Wit C We.

3. If Steps 4.2.2 and 4.2.4 are executed, then U C W and the correctness of
an iteration of the classical algorithm imply W;y1 C W .

The other inclusion W C W follows from the correctness of the classical
algorithm, because the termination condition of the loop in Step 4 implies that
Tr; = () holds so the last iteration was an iteration of the classical algorithm. B

Lemma 5. The total work in Step 4.2.2.1 of Algorithm 2 is O(kn).
Proof. Consider the following two cases.

1. If a nonempty set of vertices R, is included in the set Tr; in Step 3.3 of
Dovetail-Explore, and the number of edges in the induced subgraph R, is e;,
then the total work done in Step 3 is O(ke;), because |Source(W; U U, V; U
W;)| < k. Since e; edges are removed from the graph and the number of all
edges in the graph is O(n), the total work over all iterations of Dovetail-
Ezplore when a nonempty set R, is included in a set Tr; is O(kn).

2. If Tr; = B after executing the procedure Dowvetail-Explore, then the work
done there is O(kf). Whenever this happens, the subgraph induced by the set
of vertices Tr; discovered by the following iteration of the classical algorithm
must have more than £ edges. This can happen at most O(n/f) times, because
the number of edges in the graph is O(n). Hence the total work over all
iterations is O((n/€)kl) = O(kn). 0

Lemma 6. The total work in Step 4.2.2.2 of Algorithm 2 is O(n) and in Step
4.2.2 it is O(kn).

Lemma 7. The total work in Step 4.1 of Algorithm 2 is O(n?/k) and in Step
4.2.4 it is O(n?/0).

Lemma 8. Algorithm 2 solves 11/>-player Biichi games with n vertices and O(n)
edges in time O(ny/n).

Proof. Correctness follows from Lemma 4. By Lemmas 6 and 7 the work in Steps
4.1,4.2.2,and 4.2.4 is O(n*/k+kn+n?/(). Take k = ¢ = \/n to get the O(n/n)
bound for the total work. i

5 An O(n?/logn) Algorithm for 2-player Biichi Games

In this section we consider 2-player games of the form (G,T), where T for the
set of target vertices. By W we denote the set of vertices from which player
Even has a strategy to visit a state in 7' infinitely often, and by W, the set
of vertices from which player Odd can avoid visiting 7" infinitely often. These



are the winning sets for player Even and Odd, respectively. By determinacy of
parity games [7] we have W, = V' \Wg. Inspired by the algorithm of the previous
section, we provide an algorithm for computing the set Wy, in time O(n?/logn)
if G has n vertices and O(n) edges, a proof of Theorem 4. A graph is binary if
every vertex has at most two successors. For simplicity we present the algorithm
for the case when the game graph is binary. (Observe that a game graph with
O(n) edges can be easily converted into an equivalent binary game graph with
O(n) vertices and edges.)

The classical algorithm for solving 2-player Biichi games (Algorithm 3 [15]) is
very similar to the classical algorithm of the previous section. The only difference
is that in step 1 of each iteration ¢ we compute set R; to be the set of vertices
from which player Even has a strategy to reach set T', i.e., R; = Attro(T,V;);
and in step 3 the set W,y is the set of vertices from which player Odd has a
strategy to reach set Tr;. Then the winning set of player Even is obtained as the
union of the sets W; over all iterations.

Note that in step 1 of every iteration i an O(n) backward alternating search
is performed to compute the set R;. The key idea of our improved algorithm (Al-
gorithm 4) is to perform a cheap forward exploration of edges in some iterations
in order to discover subsets of the winning set for player Odd. The improved
algorithm for 2-player Biichi games differs from the improved algorithm of the
previous section in the way the forward exploration is performed. In order to de-
tect a trap for player Even in which player Odd has a winning strategy, we need
to consider all successors of every vertex in the forward exploration. Let S be
the set of sources of edges entering the winning set of player Odd discovered in
the previous iteration, and let |S| < k. The vertices in set S are new candidates
to be included in the winning set of player Odd. From these vertices a BFS of
depth log ¢ is performed in Step 4.2.2.1 of Algorithm 4. In step 4.2.2.4 we check
if the explored subgraph contains a trap for player Even in which player Odd has
a winning strategy. If no such trap is detected then one iteration of the classical
algorithm is executed. The key for the subquadratic bound of our algorithm is
the observation that if step 4.2.2 fails to identify a non-empty winning subset
for player Odd, then the set discovered by the following iteration of the classical
algorithm has at least log ¢ vertices.

Algorithm 3 Classical Algorithm for 2-player Biichi Games
Input : 2-player Biichi game (G,T). Output: Wy and W =V \ Wo.
[Steps 1.-4. are the same as in Algorithm 1]

5. Wo :=Up_, Wk

Procedure One-Iteration-Of-The-Classical-Algorithm
Input: set V; C V. Output: set W;+1 C Vi.
1. R; := Attrg(T NV;, V;i); 2. Try := Vi \ Ri; 3. Wiga := Attro(Tri, Vi)




Algorithm 4 Improved Algorithm for 2-player Biichi Games

Input : 2-player Biichi game (G,T). Output: Wy and W =V \ Wy.
[Steps 1.-3. and 4.1 are the same as in Algorithm 2]
4. repeat
4.2 else (|In(W;, Vi UW;)| < k)
42.1 Tri =0
4.2.2 for each vertex v € Source(W;, V; UWj;)
4.2.2.1 Find the reachable subgraph R, by a BFS of depth log ¢
4.2.2.2 Let F, denote the set of vertices at depth log ¢
4223 T, :={veVoNF,:succ(v,G;)NR, =0} U (VaNF,)
4224 R, := Attrg((R.,NTNV;)UT,, Ry)
4.2.2.5 Tr; == Tr; U (R, \ R))
4.2.3 if TT’Z‘ 75 w then Wi+1 = AttT‘Q(T)"i,‘/i)
4.2.4 else Wiy := One-Iteration- Of-The- Classical-Algorithm (V;)
until W; =0
5. Wo :=Up_, Wk

We say that a set of vertices S is an Even trap in a graph G if for all v € S,
we have succ(v,G) C S if v € Vo, and succ(v,G)NS # 0 if v € Vi It is easy
to verify that if P C V then the set V' \ Attrg(P, V), i.e., the complement of an
Even attractor, is always an Even trap in the graph induced by vertices in set V.
Intuitively, player Odd can prevent player Even from leaving an Even trap, and
hence if SNT = () then a trap is included in the winning set of player Odd in
the Biichi game (G, T'); we call such a set an Even trap winning for player Odd.

Lemma 9. Algorithm 4 correctly computes the sets We and Wg.

Proof. We prove by induction that W; computed in any iteration of the improved
algorithm satisfies W; C W,. Base case: W = 0 C W,.

Inductive case: we argue that W; C Wy implies W;; C W,. We consider three
cases as in the proof of Lemma 4.

1. Cases 1 and 3 are similar to those in the proof of Lemma, 4.

2. We argue that if Steps 4.2 and 4.2.3 get executed in iteration i then every
nonempty set R, \ R} included into set Tr;y; is an Even trap winning for
player Odd in the subgraph of G induced by the set of vertices V;. It is an
Even trap because for every vertex u € VoN (R, \ Fy), we have succ(u, V;) C
R,, and as a complement of an Even attractor it is an Even trap in the
subgraph induced by set R,. The set R, \ R) is moreover an Even trap
winning for player Odd since by step 4.2.2.4 all target vertices in set R, are
included in the set R.

The rest of the argument is similar to the proof of Lemma 4.

Lemma 10. Let R, be a set computed in Step 4.2.2.1. Then every Even trap S
winning for player Odd whose all vertices are reachable from vertex v, and such
that v € S, and |S| < log¥, is contained in R, \ R, and hence it is discovered
in Step 4.2.2.



Lemma 11. The total work in Step 4.1 of Algorithm 4 is O(n>/k), in Step 4.2.2
it is O(ken), and in Step 4.2.3 it is O(n).

Lemma 12. Algorithm 4 solves 2-player Biichi games with n vertices and O(n)
edges in time O(n?/logn).

Proof. Correctness follows from Lemma 9. The work of Step 4.2.4 is O(n?/log/)
by Lemma 10. The work of Steps 4.1, 4.2.2, and 4.2.4 is O(n*/k+kfn+n?/log¥)
by Lemma 11. Take £ = n® with 0 < & < 1 and k = logn to get the O(n?/logn)
upper bound for the total work. By Lemma 11 the work in Step 4.2.3 is O(n),
hence the time complexity of Algorithm 4 is O(n?/logn). B

References

1. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49:672-713, 2002.

2. A. Condon. The complexity of stochastic games. Information and Computation,
96:203-224, 1992.

3. L. de Alfaro. Computing minimum and maximum reachability times in proba-
bilistic systems. In CONCUR’99, volume 1664 of LNCS, pages 66-81. Springer,
1999.

4. L. de Alfaro and T. A. Henzinger. Concurrent w-regular games. In LICS’00, pages
141-154. ITEEE Computer Society Press, 2000.

5. L. de Alfaro, T. A. Henzinger, and O. Kupferman. Concurrent reachability games.
In FOCS’98, pages 564-575, 1998.

6. L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular games. In
STOC’01, pages 675—683. ACM Press, 2001.

7. E. A. Emerson and C. Jutla. Tree automata, p-calculus and determinacy. In
FOCS’91, pages 368-377. IEEE Computer Society Press, 1991.

8. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.

9. R. A. Howard. Dynamic Programming and Markov Processes. Wiley, 1960.

10. M. Jurdziriski. Small progress measures for solving parity games. In STACS’00,
volume 1770 of LNCS, pages 290-301. Springer, 2000.

11. M. Jurdzisiski, O. Kupferman, and T. A. Henzinger. Trading probability for fair-
ness. In CSL’02, volume 2471 of LNCS, pages 292-305. Springer, 2002.

12. Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and
Applied Logic, 65(2):149-184, 1993.

13. L. S. Shapley. Stochastic games. Proceedings Nat. Acad. of Science USA, 39:1095—
1100, 1953.

14. W. Thomas. On the synthesis of strategies in infinite games. In STACS’95, volume
900 of LNCS, pages 1-13. Springer, 1995.

15. W. Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3, Beyond Words, chapter 7, pages
389-455. Springer, 1997.

16. J. Vige and M. Jurdzidski. A discrete strategy improvement algorithm for solving
parity games. In CAV’00, volume 1855 of LNCS, pages 202-215. Springer, 2000.

17. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs.
Theoretical Computer Science, 158:343-359, 1996.



