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Abstract
We study perfect-information stochastic parity games. These
are two-player nonterminating games which are played on
a graph with turn-based probabilistic transitions. A play
results in an infinite path and the conflicting goals of the
two players are ω-regular path properties, formalized as
parity winning conditions. The qualitative solution of such
a game amounts to computing the set of vertices from which
a player has a strategy to win with probability 1 (or with
positive probability). The quantitative solution amounts
to computing the value of the game in every vertex, i.e.,
the highest probability with which a player can guarantee
satisfaction of his own objective in a play that starts from
the vertex.

For the important special case of one-player stochas-
tic parity games (parity Markov decision processes) we give
polynomial-time algorithms both for the qualitative and the
quantitative solution. The running time of the qualitative
solution is O(d · m3/2) for graphs with m edges and d pri-
orities. The quantitative solution is based on a linear-
programming formulation.

For the two-player case, we establish the existence

of optimal pure memoryless strategies. This has several

important ramifications. First, it implies that the values of

the games are rational. This is in contrast to the concurrent

stochastic parity games of de Alfaro et al.; there, values are

in general algebraic numbers, optimal strategies do not exist,

and ε-optimal strategies have to be mixed and with infinite

memory. Second, the existence of optimal pure memoryless

strategies together with the polynomial-time solution for

one-player case implies that the quantitative two-player

stochastic parity game problem is in NP ∩ co-NP. This

generalizes a result of Condon for stochastic games with

reachability objectives. It also constitutes an exponential

improvement over the best previous algorithm, which is

based on a doubly exponential procedure of de Alfaro

and Majumdar for concurrent stochastic parity games and

provides only ε-approximations of the values.
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1 Introduction

Perfect-information stochastic games [5] are played on
a graph (V,E) by three players —Even, Odd, and
Random— who move a token from vertex to vertex
so that an infinite path is formed. Given a partition
(V�, V♦, V©) of the set V of vertices, player Even moves
if the token is in V�, player Odd if the token is in V♦, and
player Random if the token is in V©. Player Random
always moves by choosing a successor vertex uniformly
at random. Thus his freedom of choice is limited and we
refer to him as a “half player.” Henceforth we refer to
stochastic games as 21/2-player games, and to stochastic
games with V� = ∅ or V♦ = ∅ as 11/2-player games, of-
ten called Markov decision processes [21, 13]. Stochastic
games were introduced by Shapley [23] and have been
studied extensively in several research communities; the
book by Filar and Vrieze [13] provides a unified treat-
ment of the theories of stochastic games and Markov
decision processes [21].

The exact computational complexity of stochastic
games is a fascinating open problem [22, 5]. In prac-
tice, the algorithms known so far are often prohibitively
expensive. In their survey on the complexity of solv-
ing Markov decision processes, Littman et al. [18] call
for investigating subclasses of the general model which
admit efficient solution algorithms and are yet suffi-
ciently expressive for modeling correctness or optimal-
ity objectives found in practice. Raghavan and Fi-
lar [22] list several classes of stochastic games whose
structural properties bear a promise for efficient solu-
tion algorithms. They single out perfect-information
stochastic games as one of the most promising, com-
menting that “despite its obvious appeal, this class has
not been studied from an algorithmic point of view.”
Condon [5] has studied simple stochastic games and she
has proved that they are log-space complete in the class
of logarithmic-space randomized alternating Turing ma-
chines [5]. Condon’s simple stochastic games can be
seen as perfect-information [22, 13] (or “turn-based” [8])
recursive stochastic games [12] with 0-1 payoffs, or alter-
natively, as perfect-information stochastic games with
reachability objectives [8].

We generalize the finitary reachability objectives
of Condon’s model by considering infinitary ω-regular
objectives [25], which are popular for the specification



and verification of temporal properties of computational
systems [14] and subsume reachability objectives as a
very special case. On the other hand, our model of
perfect-information stochastic parity games is a proper
subclass of the general (or “concurrent”) stochastic
games [13, 19, 7, 9]. For brevity, throughout this paper
we will omit the term “perfect information”; whenever
we talk about stochastic parity games, we mean perfect-
information stochastic parity games. We will explicitly
say “concurrent stochastic parity games” when referring
to the more general model of de Alfaro, Henzinger, and
Majumdar [7, 9].

An objective for a player in an infinite path-forming
game is specified by the set of infinite paths that are
winning for the player. A stochastic parity game is given
by a game graph as above and a priority function p:
V → N, which labels every vertex v ∈ V with a priority
p(v). An infinite path is winning for the player Even
if the smallest priority that occurs infinitely often is
even; otherwise the path is winning for the player Odd.
This way of specifying a winning objective is called
the parity (Rabin chain) condition and it is a normal
form for all ω-regular conditions [25]. Two-player parity
games have recently attracted considerable attention
in the computer-aided verification community, because
they can be used to solve model-checking and control
problems for the µ-calculus [1] and its numerous modal
and temporal sublogics [10, 25, 17, 7, 9, 14, 2]. Parity
games are also a powerful theoretical tool for resolving
difficult decidability and expressiveness questions in
mathematical logic and automata theory [15, 10, 25,
28, 3, 1, 14].

The basic algorithmic problems for stochastic games
are that of determining which of the players has a
winning strategy, or more accurately, estimating the
probability of winning that a player can ensure by
following a certain strategy. Several qualitative winning
criteria have been studied, such as almost-sure winning
(i.e., winning with probability 1) or positive-probability
winning [7, 4]. The quantitative solution [9] amounts
to computing the value of a game, i.e., the highest
probability of winning that a player can ensure against
an arbitrary strategy of the opponent. In Section 2
we define stochastic parity games and the algorithmic
problems that we study in this paper. In general, mixed
strategies have to be considered when solving stochastic
games [23], a common phenomenon in non-perfect-
information games [27]. A mixed strategy prescribes
randomized moves, i.e., the player moves the token at
random according to a probability distribution over the
successor vertices. By contrast, a strategy is pure if it
always prescribes deterministic moves, i.e., the player
always moves the token deterministically to one of the

successor vertices. A strategy is memoryless if the
moves it prescribes do not depend on the history of the
play carried out so far, i.e., if it prescribes the same
move at every visit to a vertex.

In Section 3 we give a graph-theoretic characteriza-
tion of the almost-sure and positive-probability winning
sets in 11/2-player parity games, inspired by the work of
Courcoubetis and Yannakakis [6]. From this characteri-
zation we derive the existence of pure memoryless opti-
mal strategies for the qualitative and quantitative crite-
ria in 11/2-player parity games, and we present efficient
polynomial-time algorithms for solving both qualitative
and quantitative 11/2-player parity games.

Theorem 1.1. (Complexity of solving 11/2-
player parity games) Let m be the number of edges
in the graph of a parity game, and let d be the number
of different values assigned to vertices by the priority
function.

1. Qualitative 11/2-player parity games can be solved
in time O(d ·m3/2).

2. Quantitative 11/2-player parity games can be solved
in polynomial time by solving a linear program that
can be constructed from the qualitative solution.

Previously, an efficient O(m3/2) algorithm was known
only for the qualitative solution of the special cases of
11/2-player reachability and Büchi games [4]. A poly-
nomial-time algorithm for the qualitative solution of
11/2-player parity games can also be obtained by modi-
fying a reduction [20, 16] to limiting-average (aka. mean-
payoff [29]) Markov decision processes (MDP’s) [21].
This approach, however, requires the solution of a linear
program for limiting-average MDP’s [21, 13], whereas
we give a direct O(d · m3/2) algorithm which uses the
solution for Büchi MDP’s [4] as a subroutine.

In Section 4 we use the existence of pure mem-
oryless qualitatively optimal strategies in 11/2-player
parity games to give a simplified proof of existence
of pure memoryless qualitatively optimal strategies for
21/2-player parity games [4]. Then, in Section 5, we ap-
ply those results to prove the existence of pure memo-
ryless optimal strategies for the quantitative 21/2-player
games, which generalizes the result of Condon [5] for
stochastic reachability games.

Theorem 1.2. (Quantitative pure memoryless
optimal strategies) Optimal pure memoryless
strategies exist in quantitative 21/2-player parity games.

This result is in sharp contrast with the concurrent
parity games of de Alfaro et al. [8, 7, 9]. Even
for qualitative concurrent games, in general only ε-
optimal strategies exist, and mixed strategies with



infinite memory are necessary. Theorems 1.1 and 1.2
yield an improvement of the computational complexity
for solving quantitative 21/2-player parity games.

Corollary 1.1. (Complexity of solving 21/2-
player parity games) The decision problems for
qualitative and quantitative 21/2-player parity games are
in NP ∩ co-NP, and there is an exponential-time algo-
rithm for computing the exact values. The values of
quantitative 21/2-player parity games are rational.

The latter result is again in contrast to concurrent parity
games. Their values are in general algebraic numbers,
and there are simple examples with irrational values [9].
The previously best complexity for the quantitative so-
lution of 21/2-player parity games was based on a doubly
exponential algorithm [9] for solving concurrent parity
games; so our results yield an exponential improvement.
Moreover, the algorithm of de Alfaro and Majumdar [9],
which uses a decision procedure for the first-order the-
ory of the reals with addition and multiplication [24],
does not compute the exact values of a game but only
ε-approximations.

The existence of polynomial-time algorithms for
non-stochastic parity games [11, 26], for limiting-
average games [22, 29], and for stochastic reachability
games [5] are long-standing open questions. We believe
that the existence of pure memoryless optimal strategies
for stochastic parity games —i.e., Theorem 1.2— makes
it likely that algorithmic techniques that are developed
for any of those classes of games can be carried over also
to stochastic parity games.

2 Stochastic Parity Games

A stochastic game graph (21/2-player game graph) G =
(V,E, (V�, V♦, V©)) consists of a directed graph (V,E)
and a partition (V�, V♦, V©) of the vertex set V . For
technical convenience we assume that every vertex has
at least one and at most two out-going edges.

For a set U ⊆ V of vertices, we write G � U for
the subgraph of the graph (V,E) induced by the set of
vertices U . We say that G � U is a subgame of the
game G if the for all vertices u ∈ U , we have: if u ∈ V©
then (u, w) ∈ E implies that w ∈ U , and if u ∈ V� ∪ V♦

then there is an edge (u, w) ∈ E, such that w ∈ U .
An infinite path in a game graph G is an infinite se-

quence 〈v0, v1, v2, . . .〉 of vertices such that (vk, vk+1) ∈
E, for all k ∈ N. We write Ω for the set of all infinite
paths, and for every vertex s ∈ V we write Ωs for the set
of all infinite paths starting from the vertex s. A non-
terminating stochastic game G is a 21/2-player infinite-
duration path-forming game played on the graph G.
Player Even keeps moving a token along edges of the
game graph from vertices in V�, player Odd keeps mov-

ing the token from vertices in V♦, and player Random
from vertices in V©. Player Random always passes the
token to one of its two successors with probability 1/2.

Stochastic game graphs can be obviously general-
ized to non-binary graphs and the transition probabili-
ties for the random vertices to arbitrary rational num-
bers. All results in this paper easily follow for those
generalizations by minor modifications and hence for
simplicity we stick to the basic simple model without
loss of generality. Moreover, for all algorithmic prob-
lems we consider in this paper there is a straightforward
translation of game graphs with n vertices and m edges
into equivalent binary game graphs with O(m) vertices
and O(m) edges. This yields our main results listed
in Section 1 from the results for binary graphs in the
following sections.

The non-stochastic perfect-information 2-player
game graphs are a special case of the 21/2-player par-
ity game graphs with V© = ∅. The 11/2-player game
graphs (Markov decision processes) are a special case of
the 21/2-player game graphs with V♦ = ∅ or V� = ∅.

Strategies. For a countable set A, a probability distri-
bution on the set A is a function δ : A → [0, 1] such that∑

a∈A δ(a) = 1. We denote the set of probability distri-
butions on the set A by D(A). A strategy for the player
Even is a function σ : V ∗V� → D(V ), assigning a prob-
ability distribution to every finite sequence ~v ∈ V ∗V�

of vertices, representing the history of the play so far.
We say that the player Even uses (or follows) the strat-
egy σ if in each move, given that the current history of
the play is ~v, he chooses the next vertex according to
the probability distribution σ(~v). A strategy must pre-
scribe only available moves, i.e., for all ~w ∈ V ∗, v ∈ V�,
and u ∈ V , if σ(~w · v)(u) 6= 0 then (v, u) ∈ E. A strat-
egy σ is pure if for all ~w ∈ V ∗ and v ∈ V�, there is a
vertex u ∈ V such that σ(~w · v)(u) = 1. Strategies for
player Odd are defined analogously. We write Σ and Π
for the sets of all strategies for players Even and Odd,
respectively. A pure memoryless strategy is a pure strat-
egy which does not depend on the whole history of the
play but only on the current vertex. A pure memoryless
strategy for player Even can be represented as a func-
tion σ : V� → V such that (v, σ(v)) ∈ E, for all v ∈ V�.
Analogously we define pure memoryless strategies for
player Odd.

Given a strategy σ ∈ Σ for the player Even, we
write Gσ for the game played as the game G with the
constraint that the player Even uses the strategy σ.
Note that if σ : V� → V is a pure memoryless strategy
then we can think of Gσ as the subgraph of the game
graph G obtained from G by removing the edges (v, w) ∈
E, such that v ∈ V� and σ(v) 6= w. The definitions for



a strategy π for the player Odd are similar.
Once a starting vertex s ∈ V and strategies σ ∈ Σ

and π ∈ Π for the two players are fixed, the play of the
game is a random path ωσ,π

s for which the probabilities
of events are uniquely defined, where an event A ⊆ Ωs

is a measurable set of paths. For a vertex s ∈ V and
an event A ⊆ Ωs, we write Prσ,π

s (A) for the probability
that a path belongs to A if the game starts from the
vertex s, and the players use the strategies σ and π,
respectively.

Winning objectives. A general way of specifying
objectives of players in nonterminating stochastic games
is by providing the set of winning plays W ⊆ Ω for
the player. In this paper we study only zero-sum
games [22, 13] in which the objectives of the players are
strictly competitive. In other words, it is implicit that
if the objective of a player is a set W then the objective
of the other player is the set Ω \ W. Given a game
graph G and an objective W ⊆ Ω, we write G(W) for
the game played on the graph G with the objective W
for the player Even.

If n ∈ N we write [n] for the set {0, 1, 2, . . . , n} and
[n]+ for the set {1, 2, . . . , n}. In this paper we consider
the following classes of winning objectives.

Reachability. For a set T of target vertices, the
reachability objective is defined as Reach(T ) =
{ 〈v0, v1, v2 . . .〉 ∈ Ω : vk ∈ T , for some k }.
Büchi. For a set T of target vertices, the Büchi (re-
peated reachability) objective is defined as Büchi(T ) =
{ 〈v0, v1, v2 . . .〉 ∈ Ω : vk ∈ T, for infinitely many k }.
Parity. Let p be a function p : V → [d] assigning a
priority p(v) to every vertex v ∈ V , where d ∈ N.
For an infinite path ω = 〈v0, v1, . . .〉 ∈ Ω, we define
Inf(ω) = { v ∈ V : vk = v for infinitely many k ≥ 0 }.
The even parity objective is defined as Even(p) = { ω ∈
Ω : min(p(Inf(ω))) is even}, and the odd parity objective
as Odd(p) = { ω ∈ Ω : min(p(Inf(ω))) is odd }.

For every s ∈ V , we write Reach(T )s (resp.
Büchi(T )s, Even(p)s, and Odd(p)s) for the set
Reach(T )∩Ωs (resp. Büchi(T )∩Ωs, Even(p)∩Ωs, and
Odd(p)∩Ωs). The reachability and Büchi objectives are
special cases of the parity objectives. A Büchi objective
Büchi(T ) can be encoded as an even parity objective for
the priority function p : V → [1] with only two priorities
(0 and 1), such that p(s) = 0 if and only if s ∈ T , for all
s ∈ V . A reachability objective is a special case of the
Büchi objective, where all vertices in the target set T
are absorbing, i.e., if s ∈ T and (s, v) ∈ E then s = v.

A stochastic parity game (21/2-player parity game)
is a stochastic game G with the set Even(p) as the
objective of the player Even, where p : V → [d] is

a priority function. For brevity, we sometimes write
G(p) to denote the game G(Even(p)). Similarly, a parity
Markov decision process (11/2-player parity game) is a
11/2-player game with the objective of the player derived
from a priority function p as above.

Value functions and optimal strategies. Con-
sider a parity game G(p). We define the value
functions Val�G,Val♦G : V → [0, 1] for the players
Even and Odd, respectively, as follows: Val�G(s) =
supσ∈Σ infπ∈Π Prσ,π

s (Even(p))(s), and Val♦G(s) =
supπ∈Π infσ∈Σ Prσ,π

s (Odd(p))(s), for all vertices s ∈ V .
Sometimes, when the objective of a player is not clear
from the context, or if it is different from the objec-
tive of the original parity game G(p) = G(Even(p)),
we make it explicit, e.g., Val�G(Reach(T ))(s) stands for
supσ∈Σ infπ∈Π Prσ,π

s (Reach(T )s). On the other hand,
if the game G is clear from the context, we sometimes
write Val� and Val♦ for the value functions Val�G and
Val♦G, respectively.

Proposition 2.1. (Optimality conditions) For
every v ∈ V , if (v, w) ∈ E then the following hold.

1. If v ∈ V� then Val�G(v) ≥ Val�G(w).

2. If v ∈ V♦ then Val�G(v) ≤ Val�G(w).

3. If v ∈ V© then Val�G(v) = 1
2

( ∑
(v,w)∈E Val�G(w)

)
.

Similar conditions hold for the value function of the
player Odd.

The following is the fundamental determinacy result for
stochastic parity games, due to de Alfaro and Majum-
dar [9]; it can be also derived from the determinacy
result of Martin [19] for the zero-sum stochastic games
with Borel measurable payoffs.

Theorem 2.1. (Determinacy [19, 9]) In every
stochastic parity game we have Val�(s) + Val♦(s) = 1,
for all vertices s ∈ V .

A strategy σ for the player Even is optimal if for all
vertices s ∈ V , we have: Val�G(s) = Val�Gσ

(s) =
infπ∈Π Prσ,π

s (Even(p)s); it is ε-optimal if we have:
Val�G(s)− ε ≤ Val�Gσ

(s) = infπ∈Π Prσ,π
s (Even(p)s); and

it is qualitatively optimal if the following two condi-
tions hold: Val�G(s) = 1 implies Val�Gσ

(s) = 1, and
Val�G(s) > 0 implies Val�Gσ

(s) > 0. Optimal, ε-optimal,
and qualitatively optimal strategies for the player Odd
are defined similarly.

The almost-sure winning set W�
G for the player

Even in a game G is defined by W�
G = { v ∈ V :

Val�(v) = 1} and the almost-sure winning set for player



Odd is W♦
G = { v ∈ V : Val♦(v) = 1 }. The algorithmic

problem of solving qualitative stochastic parity games
is, given a game G(p), to compute the sets W�

G and
W♦

G . The algorithmic problem of solving quantitative
stochastic parity games is to compute the functions
Val�G and Val♦G. The quantitative (resp. qualitative)
decision problem for stochastic parity games is, given
a vertex s ∈ V and a rational number r ∈ (0, 1] as a
part of the input, to determine whether Val�G(s) ≥ r
(resp. whether s ∈ W�

G ).

3 Solving 11/2-Player Parity Games

In this section we study 11/2-player parity games, i.e.,
a subclass of stochastic parity games, such that V♦ =
∅. We establish Theorem 1.1: first we develop an
O(d ·n3/2) algorithm for the qualitative solution of 11/2-
player parity games and we argue that the quantitative
solution then reduces to the quantitative solution of
the simpler 11/2-player reachability stochastic games for
which linear programming formulations are known [6,
5]. We also argue that pure memoryless optimal
strategies exist. Our technique is inspired by the work
of Courcoubetis and Yannakakis [6]. The key concept
underlying the proofs and our algorithm is that of
controllably win recurrent vertices.

For a vertex v ∈ V we define Fv = { U ⊆ V :
v ∈ U and p(v) = min(p(U)) }, i.e., the family of
sets of vertices containing vertex v and in which v
has the smallest priority. For s, v ∈ V , we define
Ωv

s = { ω ∈ Ωs : Inf(ω) ∈ Fv }, and for U ⊆ V we
define ΩU

s = { ω ∈ Ωs : Inf(ω) = U }.

Definition 3.1. (Controllably win recurrent
vertex) A vertex v ∈ V in a 11/2-player game (G, p) is
controllably win recurrent (c.w.r.) if p(v) is even and
there is a strongly connected set of vertices U ⊆ V , such
that U ∈ Fv and there are no random edges out of set
U in graph G (i.e., if u ∈ U ∩V© and (u, w) ∈ E imply
w ∈ U). The set of vertices U as above is a witness
for the vertex v. We write Vcwr for the set of all c.w.r.
vertices.

Lemma 3.1. For every vertex s ∈ V , and for every
set of vertices U ⊆ V , if there is a random edge out
of the set U then for every strategy σ ∈ Σ, we have
Prσ

s (ΩU
s ) = 0.

Proof. Let (u, w) ∈ E be a random edge out of U , i.e.,
u ∈ U ∩V© and w 6∈ U . Each time the random path ωσ

s

visits vertex u it then visits vertex w in the next step
with probability 1/2. Therefore, if ωσ

s visits vertex u
infinitely many times then it visits vertex w infinitely
many times with probability 1. Hence, Inf(ωσ

s ) = U
with probability 0, i.e., Prσ

s (ΩU
s ) = 0.

Lemma 3.2. Let v ∈ V be a c.w.r. vertex and let U ⊆ V
be a witness for v. Then there is a strategy σ ∈ Σ, such
that for every vertex u ∈ U , we have Prσ

u(Ωv
u) = 1.

Proof. For every vertex u ∈ U ∩ V�, we set σ(u) to
be a successor of u with the minimum distance to
vertex v in the subgraph induced by the set U ; the
minimum distance to v is well defined since by definition
of a witness the set U is strongly connected. Every
play starting from a vertex in set U and following
the strategy σ never leaves the set U because by the
definition of a witness no random edges leave the set U .
Moreover, in every step the distance to the vertex v is
decreased with a fixed positive probability and hence
from every vertex in the set U there is a fixed positive
probability of reaching the vertex v in at most |U | − 1
steps. Therefore, the vertex v is visited infinitely many
times with probability 1, and since p(v) is even and by
definition of a witness we have p(v) = min(p(U)), we
obtain Prσ

u(Ωv
u) = 1.

Proposition 3.1. If a vertex v ∈ V is not c.w.r. and
p(v) is even then for all strategies σ ∈ Σ, and for all
starting vertices s ∈ V , we have Prσ

s (Ωv
s) = 0.

Proof. By Lemma 3.1 we have Prσ
s (ΩU

s ) = 0, for every
U ∈ Fv, and for every strategy σ ∈ Σ, because vertex v
is not c.w.r. Observe that Ωv

s =
⋃

U∈Fv
ΩU

s , and hence
Prσ

s (Ωv
s) = 0, since the set Fv is finite.

Lemma 3.3. (Reach the winning set strategy) If
W ⊆ W� then Val� ≥ Val�(Reach(W )).

Proof. Let σ ∈ Σ be a strategy such that
Prσ

w(Even(p)) = 1, for all vertices w ∈ W , and let
σ′ ∈ Σ be a strategy such that Prσ′

v (Reach(W )) =
Val�(Reach(W )), for all vertices v ∈ V . We define a
strategy τ ∈ Σ as follows:

τ(~w) =

{
σ′(~w) if ~w ∈ (V \W )+,

σ(~u) otherwise,

where ~u ∈ V ∗ is the longest suffix of the sequence ~w
starting from a vertex in the set W .

Fix a vertex s ∈ V . Then we have the following:

Prτ
s (Even(p)s) ≥ Prτ

s (Even(p)s ∩ Reach(W )s)
= Prτ

s (Even(p)s | Reach(W )s) · Prτ
s (Reach(W )s)

= Prτ
s (Reach(W )s),

since Prτ
s (Even(p)s |Reach(W )s) = Prσ

s (Even(p)s) = 1.
Hence we get Val�(s) ≥ Val�(Reach(W ))(s).

Lemma 3.4. Let W be a set of vertices such that Vcwr ⊆
W ⊆ W�. Then we have Val� = Val�(Reach(W )).



Proof. Observe that for every vertex s ∈ V , we
have Even(p)s =

⋃
v : p(v) is even Ωv

s . Therefore for
every strategy σ ∈ Σ, we have Prσ

s (Even(p)s) =
Prσ

s (
⋃

v : p(v) is even Ωv
s) = Prσ

s (
⋃

v∈Vcwr
Ωv

s), where
the last equality follows from Proposition 3.1. Note
that for every v ∈ V , we have Ωv

s ⊆ Reach(v)s

and hence
⋃

v∈Vcwr
Ωv

s ⊆ Reach(Vcwr)s. From the
above equalities it then follows that Prσ

s (Even(p)s) ≤
Prσ

s (Reach(Vcwr)s), and hence we have that Val�(s) ≤
Val�(Reach(Vcwr))(s) ≤ Val�(Reach(W ))(s).

On the other hand, by Lemma 3.3 we have that
Val�(s) ≥ Val�(Reach(W ))(s).

Theorem 3.1. (Qualitative pure memoryless
strategies [4]) Player Even in 11/2-player parity
games has pure memoryless strategies for almost-sure
win and for positive-probability win criteria.

Proof. For a vertex v ∈ Vcwr, the strategy σ described
in Lemma 3.2 defines a pure memoryless almost-sure
winning strategy. For other vertices v ∈ V�, we set σ(v)
to be a successor of vertex v with the minimum distance
to the vertex set Vcwr in the graph G. This defines a
pure memoryless winning strategy for almost-sure and
positive-probability win criteria.

Definition 3.2. (Attractor) For a set T ⊆ V
of vertices in the 11/2-player game graph G =
(V,E, (V�, V©)) we inductively define the attractor
Attr©(G, T ) as follows. Set R0 = T , and for k ≥ 0,
set Rk+1 = Rk ∪ { v ∈ V© : (v, u) ∈ E for some u ∈
Rk } ∪ { v ∈ V� : u ∈ Rk for all (v, u) ∈ E }. Then
Attr©(G, T ) =

⋃
k Rk.

It is easy to see that the attractor Attr©(G, T ) is the
set of vertices from which player © has a strategy to
reach set T in the sense of a non-stochastic 2-player
game [28, 25]. For every k ∈ [d]+, define P<k =
p−1([k−1]), i.e., the set of vertices with priorities strictly
smaller than k; Pk = p−1(k), i.e., the set of vertices with
priority equal to k; and P>k = V \ (P<k ∪ Pk), i.e., the
set of vertices with priorities strictly bigger than k.

The following observations lead to efficient algo-
rithms for solving 11/2-player parity games, yielding a
proof of Theorem 1.1.

Proposition 3.2. If a set U ⊆ V is a witness for a
c.w.r. vertex v ∈ U then the set U is disjoint from the
set Attr©(G, P<p(v)).

Proof. By an easy induction on the stages Rk in the
definition of the attractor Attr©(G, T ) one can prove
that if there are no random edges leaving a set U ⊆ V
then u ∈ U∩Attr©(G, T ) implies that U∩T 6= ∅. Hence

if the set U is a witness for the c.w.r. vertex v ∈ V then it
has to be disjoint from the set Attr©(G, P<p(v)), since
otherwise we have U ∩ P<p(v) 6= ∅ contradicting the
p(v) = min(p(U)) condition of a witness.

Lemma 3.5. (If the smallest priority is odd) Let
the smallest priority k in a 11/2-player parity game
G(p) be odd. Then the set of c.w.r. vertices in G(p)
is equal to the set of c.w.r. vertices in the subgame
(G \Attr©(G, Pk))(p).

Proof. Set A = Attr©(G, Pk). No vertex in Pk is c.w.r.
because k is odd. For every vertex v ∈ P>k, (from
p(v) > k) it follows that Pk ⊆ P<p(v), which implies
A ⊆ Attr©(G, P<p(v)), and hence by Proposition 3.2
every c.w.r. vertex in the game G(p) is in the set V \A,
and moreover, all witnesses of c.w.r. vertices are disjoint
from the set A. It follows that if a vertex is c.w.r. in
the game G(p) then it is also c.w.r. in the subgame
(G \ A)(p). Conversely, if a vertex is c.w.r. in the
subgame (G \ A)(p) then it is also c.w.r. in the game
G(p) because by the definition of an attractor there are
no random edges entering the set A, so a witness in the
subgame is also a witness in the game G(p).

Algorithm 3.1. An O(d·n3/2) algorithm for the qual-
itative 11/2-player parity games.

Input : 11/2-player parity game (G, p).

Output: The almost-sure winning set W � for
player Even

1. W := ∅; G0 := G
2. repeat

k := smallest priority of a vertex in G
if k is odd then G := G \ Attr©(G, Pk)
if k is even then

B := Büchi-almost-sure-win(G, Pk)
W := W ∪ B
A := Attr©(G \ B, Pk \ B)
G := G \ (B ∪ A)

until G = ∅
3. W � := Reachability-almost-sure-win(G0, W )

Lemma 3.6. (If the smallest priority is even)
Let the smallest priority k in a 11/2-player parity game
G(p) be even, and let B be the set of almost-sure winning
vertices in the 11/2-player Büchi game G(Pk). Then all
vertices in set B are almost-sure winning in the parity
game G(p) and all c.w.r. vertices of priority k in the
game G(p) are in the set B. Let A = Attr©(G \B,Pk \
B). No vertex in the set A is c.w.r. in the game G(p).
If a vertex in the set V \ (B ∪ A) is c.w.r. in the game
G(p) then it is c.w.r. in the subgame (G \ (B ∪A))(p).

Proof. For the set B of almost-sure winning vertices in
the Büchi game G(Pk) there is a strategy to visit vertices



of priority k infinitely often, and hence it is an almost-
sure winning strategy for player Even in the game G(p).

If a vertex of priority k is c.w.r. then by Lemma 3.2
there is an almost-sure winning strategy from the ver-
tex, i.e., it belongs to the set B. Hence no vertex in
the set Pk \ B is c.w.r. Note that there is no edge
entering the almost-sure winning set B from the set
V� \B since otherwise its source would also be almost-
sure winning and hence in the set B. Therefore, we
have A ⊆ Attr©(G, Pk \ B), which by Proposition 3.2
implies that no vertex in the set A \ Pk is c.w.r. This
concludes the proof that no vertex in the set A is c.w.r.
in the game G(p).

Let a vertex v ∈ V \ (B ∪ A) be c.w.r. in the game
G(p). We have Pk \ B ⊆ P<p(v) because p(v) > k,
and hence A ⊆ Attr©(G, Pk \ B) ⊆ Attr©(G, P<p(v)).
Let a set U ⊆ V be a witness for the vertex v in the
game G(p). Then Proposition 3.2 implies that the set U
is disjoint from the set Attr©(G, P<p(v)), and hence the
set U is disjoint from the set A. The set U is also disjoint
from the set B, since otherwise Lemma 3.2 implies that
v ∈ B. It follows that U ⊆ V \ (B ∪ A), and hence the
vertex v is c.w.r. in the game (G \ (B ∪A))(p) with the
set U as a witness.

Lemma 3.7. The Algorithm 3.1 computes the almost-
sure winning set W� for player Even in O(d ·n3/2) time
for binary 11/2-player parity game graphs with n vertices
and d different priorities. Quantitative solution, i.e.,
the value function can be computed in polynomial time.

Proof. It follows from Lemmas 3.5 and 3.6 that the
set of vertices W computed in Step 2. satisfies that
Vcwr ⊆ W ⊆ W�. Correctness of the algorithm then
follows from Lemma 3.4. The work done in every
iteration is either O(n) if the smallest priority is odd
(attractor computation can be easily implemented in
O(n) time) or O(n3/2) if the smallest priority is even,
using the O(n3/2) time algorithm for solving Büchi 11/2-
player games of Chatterjee et al. [4]. As almost-sure
reachability is a special case of the Büchi almost-sure
reachability (with absorbing target vertices) Step 3. can
also be computed in O(n3/2) time. There are at most
d iterations of the algorithm hence the total complexity
is O(d · n3/2).

It follows from Lemma 3.4 that for every vertex
s ∈ V , we have Val�(s) = Val�(Reach(W�))(s), i.e.,
the value of vertex s in the 11/2-player parity game G(p)
is its value in the reachability game G(Reach(W�)) with
the almost-sure winning set as the target set. The quan-
titative solution then amounts to computing the qualita-
tive solution in time O(d ·n3/2) and then quantitatively
solving the reachability game G(Reach(W�)) for which
linear programming formulations are known [6, 5]; see

also Section 5 for more details, including the linear pro-
gram.

4 Qualitative 21/2-Player Parity Games

In this section we give an alternative, more elementary
proof of our earlier result on solving qualitative stochas-
tic parity games by a reduction to non-stochastic par-
ity games [4]. The key consequence of this solution is
the existence of pure memoryless qualitatively optimal
strategies that we use in the next section to prove exis-
tence of pure memoryless optimal strategies.

Theorem 4.1. (Qualitatively optimal pure
memoryless strategies [4]) In 21/2-player stochastic
parity games both players have qualitatively optimal
pure memoryless strategies.

First we recall the reduction [4]. Given a 21/2-player
parity game (G = (V,E, (V�, V♦, V©)), p : V → [d]), we
construct a 2-player parity game G with the same set
[d] of priorities. For every vertex v ∈ V� ∪ V♦, there
is a vertex v ∈ V with “the same” outgoing edges, i.e.,
(v, u) ∈ E if and only if (v, u) ∈ E. Each random
vertex v ∈ V© is substituted by the gadget presented in
Figure 1. More formally, the players play the following
3-step game in G from vertex v of priority p(v). First,
in vertex v player Odd chooses a successor (ṽ, k), each
of priority p(v), where k ∈ [p(v) + 1] is even. Then
in vertex (ṽ, k) player Even chooses from at most two
successors: vertex (v̂, k − 1) of priority k − 1 if k > 0,
or vertex (v̂, k) of priority k if k ≤ p(v). Finally, in a
vertex (v̂, k) the choice is between all vertices u such
that (v, u) ∈ E, and it belongs to player Even if k is
odd, and to player Odd if k is even.

Let U� and U♦ be the winning sets for players Even
and Odd, respectively, in the 2-player parity game G.
Define sets U� and U♦ of vertices in the 21/2-player
parity game G by U� = { v ∈ V : v ∈ U� }, and
U♦ = { v ∈ V : v ∈ U♦ }. By the determinacy of 2-
player parity games [10] we have that U�∪U♦ = V , and
hence U� ∪ U♦ = V . Therefore, the following lemma
yields the Theorem 4.1.

Lemma 4.1. There are pure memoryless strategies σ
and π in the stochastic game G for the player Even
and Odd, respectively, such that Val�Gσ

(v) = 1, for all
v ∈ U�, and Val♦Gπ

(v) > 0, for all v ∈ U♦.

Proof. For brevity, we say that a cycle (resp. strongly
connected component, or s.c.c.) in a (stochastic) parity
game graph is even (resp. odd) if the minimum priority
of a vertex on the cycle (resp. in the s.c.c.) is even
(resp. odd). By the pure memoryless determinacy of
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Figure 1: The gadget for the reduction of a 21/2-player
parity game to a 2-player parity game.

2-player parity games [10] there are pure memoryless
strategies σ and π in the game G for the player Even and
Odd, respectively, such that all cycles in the subgraph
Gσ � U� are even, and all cycles in the subgraph
Gπ � U♦ are odd [17].

We define a pure memoryless strategy σ for the
player Even in the game G as follows: for all v ∈ V�, if
σ(v) = u then we set σ(v) = u. In a similar fashion we
get a pure memoryless strategy π for the player Odd in
the game G from the pure memoryless strategy π.

Our goal is to establish that the player Even wins
with probability 1 from the set U� in the game G
using strategy σ, and that the player Odd wins with
positive probability from the set U♦ in the game G using
strategy π. By Theorem 3.1 it suffices to prove it for
strategies σ and π only against memoryless strategies.
In other words, it suffices to establish the following.

1. For all pure memoryless strategies π′, every terminal
s.c.c. in the graph Gσ,π′ � U� is even. For every random
vertex v ∈ V© ∩ U�, all of its successors are in the
set U�.
2. For all pure memoryless strategies σ′, every terminal
s.c.c. in the graph Gσ′,π � U♦ is odd. For every random
vertex v ∈ V© ∩ U♦, at least one of its successors is in
the set U♦.

1. We prove that every terminal strongly connected
component in the strategy subgraph Gσ,π′ � U� is
even. We argue that if there is an odd terminal
strongly connected component in Gσ,π′ � U� then we
can construct an odd cycle in the subgraph Gσ � U�,
which is impossible because σ is a winning strategy for
the player Even from the set U� in the 2-player parity
game G.

Let C be an odd terminal strongly connected com-
ponent in Gσ,π′ � U�, and let its minimum priority be
2r − 1, for some r ∈ N. We fix a strategy π for the
player Odd in the game Gσ as follows. For any ver-
tex v ∈ C ∩ V♦ we have π(v) = π′(v). For a vertex
v ∈ C ∩ V© we define the strategy as follows: if the

vertex (ṽ, 2`− 1) for ` < r is in Gσ then the strategy π
chooses at vertex v the successor leading to (ṽ, 2`− 1).
Otherwise the strategy π chooses at vertex v the suc-
cessor leading to (ṽ, 2r), and at vertex (ṽ, 2r) it choses
a successor shortening the distance to the fixed vertex
of priority 2r − 1.

Consider an arbitrary cycle in the subgraph Gσ π �
C, where C is the set of vertices in the gadgets of vertices
in C. There are two cases. If there is at least one
vertex (ṽ, 2` − 1) with ` < r on the cycle then the
minimum priority on the cycle is odd. Otherwise, in
all vertices choices shortening the distance to the vertex
with priority 2r−1 are taken and hence priority 2r−1 is
visited and all other priorities on the cycle are ≥ 2r−1,
so 2r − 1 is the minimum priority on the cycle.

Now we argue that for every random vertex v ∈
V© ∩ U�, all of its successors are in U�. Otherwise,
the player Odd in the vertex v of the game G can
choose the successor (ṽ, 0) and then a successor to its
winning set U♦, which contradicts the assumption that
the strategy σ is a winning strategy for the player Even
in the game G.

2. The proofs for the player Odd are similar. We only
briefly sketch the key steps. Let C be an even terminal
strongly connected component in Gσ′,π � U♦, and let
its minimum priority be 2r, for some r ∈ N. We fix
a strategy σ for the player Even in the game Gπ as
follows. For vertices v ∈ C ∩ V� we have σ(v) = σ′(v).
For vertices v ∈ C ∩ V© we define the strategy as
follows: if at a vertex v the strategy π chooses a vertex
(ṽ, 2`− 2), such that ` ≤ r, then the strategy σ chooses
the successor (v̂, 2` − 2). Otherwise, ` > r and then
the strategy σ chooses a successor which shortens the
distance to a fixed vertex with priority 2r. This will
construct an even cycle in the subgraph Gπ � U♦.

Finally, for every random vertex v ∈ V© ∩ U♦,
at least one successor must be in the set U♦, since
otherwise the strategy π cannot be a winning strategy
for the player Odd in the game G from the vertex v.

5 Quantitative 21/2-Player Parity Games

In this section we prove that pure memoryless optimal
strategies exist for quantitative stochastic parity games,
i.e., we establish Theorem 1.2.

Lemma 5.1. (Subgame strategy) Let G′ = G � U
be a subgame of the game G, and let r < 1. If
Val�G′(u) = 1, for all u ∈ U , and if Val�G(w) ≥ r, for
all edges (u, w) ∈ E going out of the set U , such that
u ∈ V♦, then Val�G(u) ≥ r, for all u ∈ U .

Proof. By the assumption that for all vertices u ∈ U ,
we have Val�G′(u) = 1, so by Theorem 4.1, there is a



pure memoryless strategy σ′ for the player Even in the
game G′, such that infπ∈Π Prσ′,π

u (Even(p)) = 1. Let
σ be an ε-optimal strategy for the player Even in the
game G.

We define a strategy σ for the player Even in the
game G as follows:

σ(~w · v) =

{
σ′(v) if ~w · v ∈ U+,

σ(~u · v) otherwise,

where ~u ∈ V ∗ is the longest suffix of the sequence ~w
starting from a vertex which is not in the set U .

Fix a vertex u ∈ U . Define ΩU = u · Uω, the set
of infinite sequences of vertices in the set U , starting
from the vertex u. Set ΩU = Ωu \ ΩU . Let π ∈ Π
be a strategy for the player Odd in the game G. By
the assumption that infπ∈Π Prσ′,π

u (Even(p)) = 1, we
have that Prσ′,π

u (Even(p) | ΩU ) = 1. For every play
ω = 〈u = v0, v1, v2, . . .〉 ∈ ΩU , there is the smallest
i ∈ N, such that vi 6∈ U . Note that if in the play ω the
player Even uses the strategy σ then by the ε-optimality
of the strategy σ, we have Prσ,π

u (Even(p) |ΩU ) ≥ r− ε.
Therefore, for every strategy π ∈ Π of the player Odd,
we have:

Prσ,π
u (Even(p)) = Prσ,π

u (Even(p) | ΩU ) · Prσ,π
u (ΩU )

+ Prσ,π
u (Even(p) | ΩU ) · Prσ,π

u (ΩU )
≥ Prσ,π

u (ΩU ) + (r − ε) · Prσ,π
u (ΩU )

Note that Prσ,π
u (ΩU ) + Prσ,π

u (ΩU ) = 1, so we get
Prσ,π

u (Even(p)) ≥ r−ε, for all strategies π for the player
Odd. This implies that Val�G(u) ≥ r.

Definition 5.1. (Locally optimal strategy) We
say that a pure memoryless strategy τ for a player
P ∈ {�,♦} (i.e., for player Even and Odd, respectively)
is locally optimal in the game G if for every vertex
v ∈ VP , we have ValPG(τ(v)) = ValPG(v).

We establish the following strengthening of Theorem 4.1

Lemma 5.2. (Locally and qualitatively optimal
strategies) Both players have pure memoryless qual-
itatively optimal strategies that are also locally optimal.

Proof. We prove this and the next lemma for the player
Odd; the proofs for the player Even are similar.

Let G′ be the game obtained from the game G by
removing all the edges (v, w) ∈ E, such that v ∈ V♦, and
Val♦G(v) > Val♦G(w). Observe that the game G′ differs
from the game G only in that in the game G′ the player
Odd can only use the locally optimal strategies in the
game G, while the player Even can use all his strategies
in the game G. Therefore, it suffices to prove for every

vertex v ∈ V , that if Val♦G(v) = 1 then Val♦G′(v) = 1,
and that if Val♦G(v) > 0 then Val♦G′(v) > 0.

By Theorem 4.1 there is a pure memoryless qual-
itatively optimal strategy π for the player Odd in the
game G. Note that there are no edges going out of the
set W♦

G in the strategy subgraph Gπ. Therefore, for
every edge (v, w) ∈ Eπ, such that v ∈ W♦

G , we have
Val♦G(v) = Val♦G(w) = 1, and hence the strategy π is
also a valid strategy in the game G′, and for all vertices
v ∈ W♦

G , we have Val♦G′(v) = Val♦G′
π
(v) = 1.

We now prove the other claim which can be restated
as follows: there is no vertex v ∈ V , such that
Val�G(v) < 1 and Val�G′(v) = 1. Define the number
r = min{ Val�G(v) : Val�G′(v) = 1 }. For the sake of
contradiction assume that r < 1.

By Theorem 4.1 there is a pure memoryless quali-
tatively optimal strategy σ for the player Even in the
game G′. Note that there are no edges going out of
the set W�

G′ in the strategy subgraph G′
σ. It follows

that G � W�
G′ is a subgame of the game G. By def-

inition of the set W�
G′ , we have Val�G′(v) = 1, for all

vertices v ∈ W�
G′ . Moreover, by the optimality condi-

tion for a vertex v ∈ V♦ in the game G we have that
for every edge (v, u) ∈ E going out of the set W�

G′ (and
hence not present in the game graph G′) we must have
Val♦G(v) > Val♦G(u), i.e., Val�G(u) > Val�G(v) ≥ r. Ap-
plying Lemma 5.1 to the subgame G � W�

G′ we get that
Val�G(v) > r, for every vertex v ∈ W�

G′ . This, however
is a contradiction with the assumption that there is a
vertex v ∈ W�

G′ , such that Val�G(v) = r.

Lemma 5.3. (Locally and qualitatively optimal
strategies are optimal) If a pure memoryless strat-
egy is locally optimal and qualitatively optimal then it is
optimal.

Proof. Let π be a pure memoryless strategy for player
Odd that is locally optimal and qualitatively opti-
mal. The strategy subgraph Gπ of the strategy π is
a Markov decision process so by Lemma 3.4 we have
Val�Gπ

(v) = Val�Gπ
(Reach(W�

Gπ
))(v), and those values

are the unique solution to the following linear pro-
gram [6, 5]: minimize

( ∑
v∈V xv

)
, subject to:

xv = 1
2

( ∑
(v,w)∈E xw

)
v ∈ V©

xv = π(xv) v ∈ V♦

xv ≥ xw v ∈ V�, (v, w) ∈ E
xv ≥ 0 v ∈ V
xv = 1 v ∈ W�

Gπ

It follows from the qualitative optimality of the strat-
egy π that W�

Gπ
= W�

G . The local optimality of π im-
plies that for every vertex v ∈ V♦, we have Val�G(v) =



Val�G(π(v)). Therefore, the valuation xv := Val�G(v),
for all v ∈ V , is a feasible solution of the linear pro-
gram, so we have Val�Gπ

≤ Val�G. This implies that π is
an optimal strategy for player Odd in the game G.

Theorem 1.2 follows from Lemmas 5.2 and 5.3.

Proof. [of Corollary 1.1] By Theorem 1.2 both players
have optimal pure memoryless strategies. There are
only exponentially many pure memoryless strategies
and once a strategy for a player is fixed we have a
11/2-player game whose values can be computed in
polynomial time by Theorem 1.1. Hence we get the
NP ∩ co-NP upper bound and an exponential time
algorithm to compute the exact values.

By Theorem 1.2 the values are a solution of a system
of linear equations with rational coefficients [5] and
hence they are rational.
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