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Abstract History preserving bisimilarity (hp-bisimilarity) and hered-
itary history preserving bisimilarity (hhp-bisimilarity) are behavioural
equivalences taking into account causal relationships between events of
concurrent systems. Their prominent feature is being preserved under ac-
tion refinement, an operation important for the top-down design of con-
current systems. We show that—unlike hp-bisimilarity—checking hhp-
bisimilarity for finite labelled asynchronous transition systems is not de-
cidable, by a reduction from the halting problem of 2-counter machines.
To make the proof more transparent we introduce an intermediate prob-
lem of checking domino bisimilarity for origin constrained tiling systems,
whose undecidability is interesting in its own right. We also argue that
the undecidability of hhp-bisimilarity holds for finite labelled 1-safe Petri
nets.

1 Introduction

The notion of behavioural equivalence that has attracted most attention in con-
currency theory is bisimilarity, originally introduced by Park [20] and Milner [15];
concurrent programs are considered to have the same meaning if they are bisim-
ilar. The prominent role of bisimilarity is due to many pleasant properties it
enjoys; we mention a few of them here.

A process of checking whether two transition systems are bisimilar can be
seen as a two player game which is in fact an Ehrenfeucht-Fräıssé type of game
for modal logic. More precisely, there is a winning strategy for a player who
wants to show that the systems are bisimilar if and only if the systems cannot
1 Address: BRICS, Department of Computer Science, University of Aarhus, Ny

Munkegade, Building 540, 8000 Aarhus C, Denmark. Email: mju@brics.dk.
2 Basic Research in Computer Science,

Centre of the Danish National Research Foundation.



be distinguished by the formulas of the logic; the result due to Hennessy and
Milner [9].

Another notable property of bisimilarity is its computational feasibility; see
for example the overview note [16]. Let us illustrate this on the examples of fi-
nite transition systems and a class of infinite-state transition systems generated
by context free grammars. For finite transition systems there are very efficient
polynomial time algorithms for checking bisimilarity [13,19], in sharp contrast
to PSPACE-completeness of the classical language equivalence. For transition
systems generated by context free grammars, while language equivalence is un-
decidable, bisimilarity is decidable [3], and if the grammar has no redundant
nonterminals, even in polynomial time [10]. Furthermore, as the results of [8]
indicate, bisimilarity has a very rare status of being a decidable equivalence for
context free grammars: all the other equivalences in the linear/branching time
hierarchy [6] are indeed undecidable. The algorithmic tractability makes bisim-
ilarity especially attractive for automatic verification of concurrent systems.

The essence of bisimilarity, quoting [9], “is that the behaviour of a program is
determined by how it communicates with an observer.” Therefore, the notion of
what can be observed of a behaviour of a system affects the notion of bisimilar-
ity. An abstract definition of bisimilarity for arbitrary categories of models due
to Joyal et al. [12] formalizes this idea. Given a category of models where objects
are behaviours and morphisms correspond to extension of behaviours, and given
a subcategory of observable behaviours, the abstract definition yields a notion of
bisimilarity for all behaviours with respect to observable behaviours. For exam-
ple, for rooted labelled transition systems, taking synchronization trees [15] into
which they unfold as their behaviours, and sequences of actions as the observable
behaviours, we recover the standard strong bisimilarity of Park and Milner [12].

In order to model concurrency more faithfully several models have been in-
troduced (see [23] for a survey) that make explicit the distinction between events
that can occur concurrently, and those that are causally related. Then a natural
choice is to replace sequences, i.e., linear orders as the observable behaviours,
by partial orders of occurrences of events with causality as the ordering rela-
tion. For example, taking unfoldings of labelled asynchronous transition systems
into event structures as the behaviours, and labelled partial orders as the obser-
vations, Joyal et al. [12] obtained from their abstract definition the hereditary
history preserving bisimilarity (hhp-bisimilarity), independently introduced and
studied by Bednarczyk [1].

A similar notion of bisimilarity has been studied before, namely history pre-
serving bisimilarity (hp-bisimilarity), introduced by Rabinovich and Trakhten-
brot [21] and van Glabbeek and Goltz [7]. For the relationship between hp- and
hhp-bisimilarity see for example [1,12,5].

One of the important motivations to study partial order based equivalences
was the discovery that hp-bisimilarity has a rare status of being preserved un-
der action refinement [7], an operation important for the top-down design of
concurrent systems. Bednarczyk [1] has extended this result to hhp-bisimilarity.



There is a natural logical characterization of hhp-bisimilarity checking games
as shown by Nielsen and Clausen [17]: they are characteristic games for an exten-
sion of modal logic with backwards modalities, interpreted over event structures.

Hp-bisimilarity has been shown to be decidable for 1-safe Petri nets by
Vogler [22], and to be DEXP-complete by Jategaonkar, and Meyer [11]; let
us just mention here that 1-safe Petri nets can be regarded as a proper sub-
class of finite asynchronous transition systems (see [23] for details), and that
decidability of hp-bisimilarity can be easily extended to all finite asynchronous
transition systems using the methods of [11].

Hhp-bisimilarity seems to be only a slight strengthening of hp-bisimilarity [12],
and hence many attempts have been made to extend the above mentioned algo-
rithms to the case of hhp-bisimilarity. However, decidability of hhp-bisimilarity
has remained open, despite several attempts over the years [17,18,2,5]. Fröschle
and Hildebrandt [5] have discovered an infinite hierarchy of bisimilarity no-
tions refining hp-bisimilarity, and coarser than hhp-bisimilarity, such that hhp-
bisimilarity is the intersection of all the bisimilarities in the hierarchy. They have
shown all these bisimilarities to be decidable for 1-safe Petri nets. Fröschle [4]
has shown hhp-bisimilarity to be decidable for BPP-processes, a class of infinite
state systems.

In this paper, we finally settle the question of decidability of hhp-bisimilarity
by showing it to be undecidable for finite 1-safe Petri nets. In order to make the
proof more transparent we first introduce an intermediate problem of domino
bisimilarity and show its undecidability by a direct reduction from the halting
problem of 2-counter machines.

2 Hereditary history preserving bisimilarity

Definition 1 (Labelled asynchronous transition system)
A labelled asynchronous transition system is a tuple A = (S, sini, E,→, L, λ, I),
where S is its set of states, sini ∈ S is the initial state, E is the set of events,
→ ⊆ S×E×S is the set of transitions, L is the set of labels, and λ : E → L is the
labelling function, and I ⊆ E2 is the independence relation which is irreflexive
and symmetric. We often write s

e→ s′, instead of (s, e, s′) ∈ →. Moreover, the
following conditions have to be satisfied:

1. if s
e→ s′, and s

e→ s′′, then s′ = s′′,

2. if (e, e′) ∈ I, s
e→ s′, and s′ e′→ t, then s

e′→ s′′, and s′′ e→ t for some s′′ ∈ S.

An asynchronous transition system is coherent if it satisfies one further condition:

3. if (e, e′) ∈ I, s
e→ s′, and s

e′→ s′′, then s′ e′→ t, and s′′ e→ t for some t ∈ S.
[Definition 1] �

Winskel and Nielsen [23,18] give a thorough survey and establish formal rela-
tionships between asynchronous transition systems and other models for con-
currency, such as Petri nets, and event structures. The independence relation is



meant to model concurrency: independent events can occur concurrently, while
those that are not independent are causally related or in conflict.

Let A = (S, sini, E,→, L, λ, I) be a labelled asynchronous transition system.
A sequence of events e = 〈e1, e2, . . . , en〉 ∈ En is a run of A if there are states
s1, s2, . . . , sn+1 ∈ S, such that s1 = sini, and for all i ∈ [n] we have si

ei→ si+1.
We denote the set of runs of A by Runs(A). We extend the labelling function λ
to runs in the standard way. We say that k ∈ [n] is most recent in e, and we
denote it by k ∈ MR(e), if and only if (ek, e�) ∈ I for all � such that k < � ≤ n.
Note that if k ∈ MR(e) then e � k = 〈e1, . . . , ek−1, ek+1, . . . , en〉 ∈ Runs(A).

Definition 2 (Hereditary history preserving bisimulation)
Let Ai = (Si, s

ini
i , Ei,→i, L, λi, Ii) for i ∈ {1, 2} be labelled asynchronous tran-

sition systems. A relation B ⊆ Runs(A1) × Runs(A2) is a hereditary history
preserving (hhp-) bisimulation relating A1 and A2 if the following conditions are
satisfied:

1. (ε, ε) ∈ B,

and if (e1, e2) ∈ B then λ1(e1) = λ2(e2), and:

2. for all e1 ∈ E1, if e1 · e1 ∈ Runs(A1), then there exists e2 ∈ E2, such that
e2 · e2 ∈ Runs(A2), and λ1(e1) = λ2(e2), and (e1 · e1, e2 · e2) ∈ B,

3. for all e2 ∈ E2, if e2 · e2 ∈ Runs(A2), then there exists e1 ∈ E1, such that
e1 · e1 ∈ Runs(A1), and λ1(e1) = λ2(e2), and (e1 · e1, e2 · e2) ∈ B,

4. k ∈ MR(e1), if and only if k ∈ MR(e2),
5. if k ∈ MR(e1) = MR(e2), then (e1 � k, e2 � k) ∈ B. [Definition 2] �

Two asynchronous transition systems A1, and A2 are hereditary history preserv-
ing (hhp-) bisimilar, if there is an hhp-bisimulation relating them.

Remark 1 The term hereditary history preserving bisimulation originates from
the fact that this notion of bisimulation has an alternative definition, which is
formally a small strengthening of the standard definition of history preserving
bisimulation [21,7], based explicitly on partial order behaviours [1,12]. Note that
Definition 2 does not mention partial order behaviours explicitly, but they are
implicit in the notion of most recent occurrences of events. For the proof of
equivalence of our definition and the other ones see [17].

The main result of this paper is the following theorem proved in section 4.

Theorem 3 (Undecidability of hhp-bisimilarity)
Hhp-bisimilarity is undecidable for finite labelled asynchronous transition sys-
tems.



3 Domino bisimilarity is undecidable

3.1 Domino bisimilarity

Definition 4 (Origin constrained tiling system)
An origin constrained tiling system T =

(
D, Dori, (H, H0), (V, V 0), L, λ

)
consists

of a set D of dominoes, its subset Dori ⊆ D called the origin constraint, two hor-
izontal compatibility relations H, H0 ⊆ D2, two vertical compatibility relations
V, V 0 ⊆ D2, a set L of labels, and a labelling function λ : D → L.

[Definition 4] �

A configuration of T is a triple (d, x, y) ∈ D × N × N, such that if x = y = 0
then d ∈ Dori. In other words, in the “origin” position (x, y) = (0, 0) of the non-
negative integer grid only dominoes from the origin constraint Dori are allowed.

Let (d, x, y), and (d′, x′, y′) be configurations of T such that |x′−x|+|y′−y| =
1, i.e., the positions (x, y), and (x′, y′) are neighbours in the non-negative integer
grid. Without loss of generality we may assume that x + y < x′ + y′. We say
that configurations (d, x, y), and (d′, x′, y′) are compatible if either of the two
conditions below holds:

– x′ = x, and y′ = y + 1, and
if y = 0, then (d, d′) ∈ V 0, and if y > 0, then (d, d′) ∈ V , or

– x′ = x + 1, and y′ = y, and
if x = 0, then (d, d′) ∈ H0, and if x > 0, then (d, d′) ∈ H .

Definition 5 (Domino bisimulation)
Let Ti =

(
Di, D

ori
i , (Hi, H

0
i ), (Vi, V

0
i ), Li, λi

)
for i ∈ {1, 2} be origin constrained

tiling systems. A relation B ⊆ D1×D2×N×N is a domino bisimulation relating
T1 and T2, if (d1, d2, x, y) ∈ B implies that λ1(d1) = λ2(d2), and the following
conditions are satisfied for all i ∈ {1, 2}:

1. for all di ∈ Dori
i , there is d3−i ∈ Dori

3−i, so that λ1(d1) = λ2(d2), and
(d1, d2, 0, 0) ∈ B,

2. for all x, y ∈ N, such that (x, y) �= (0, 0), and di ∈ Di, there is d3−i ∈ D3−i,
such that λ1(d1) = λ2(d2), and (d1, d2, x, y) ∈ B,

3. if (d1, d2, x, y) ∈ B, then for all neighbours (x′, y′) ∈ N × N of (x, y), and
d′i ∈ Di, if configurations (di, x, y), and (d′i, x

′, y′) of Ti are compatible, then
there exists d′3−i ∈ D3−i, such that λ1(d′1) = λ2(d′2), and configurations
(d3−i, x, y), and (d′3−i, x

′, y′) of T3−i are compatible, and (d′1, d′2, x′, y′) ∈ B.
[Definition 5] �

We say that two tiling systems are domino bisimilar if and only if there is a
domino bisimulation relating them.

Theorem 6 (Undecidability of domino bisimilarity)
Domino bisimilarity is undecidable for origin constrained tiling systems.



The proof is a reduction from the halting problem for deterministic 2-counter
machines. For a deterministic 2-counter machine M we define in section 3.3 two
origin constrained tiling systems T1, and T2, enjoying the following property.

Proposition 7 Machine M does not halt, if and only if there is a domino bisim-
ulation relating T1 and T2.

3.2 Counter machines

A 2-counter machine M consists of a finite program with the set L of instruction
labels, and instructions of the form:

• �: ci := ci + 1; goto m

• �: if ci = 0 then ci := ci + 1; goto m
else ci := ci - 1; goto n

• halt:

where i = 1, 2; �, m, n ∈ L, and {start, halt} ⊆ L. A configuration of M is a
triple (�, x, y) ∈ L×N×N, where � is the label of the current instruction, and x,
and y are the values stored in counters c1, and c2, respectively; we denote the
set of configurations of M by Confs(M). The semantics of 2-counter machines
is standard: let 	M ⊆ Confs(M) × Confs(M) be the usual one-step derivation
relation on configurations of M ; by 	+

M we denote the reachability (in at least
one step) relation for configurations, i.e., the transitive closure of 	M .

Before we give a reduction from the halting problem of 2-counter machines
to origin constrained domino bisimilarity let us take a look at the directed graph
(Confs(M),	M ), with configurations of M as vertices, and edges denoting deriva-
tion in one step. Since machine M is deterministic, for each configuration there
is at most one outgoing edge; moreover only halting configurations have no out-
going edges. It follows that connected components of the graph (Confs(M), 	M )
are either trees with edges going to the root which is the unique halting configu-
ration in the component, or have no halting configuration at all. This observation
implies the following proposition.

Proposition 8 Let M be a 2-counter machine. The following conditions are
equivalent:

1. machine M halts on input (0, 0), i.e., (start, 0, 0) 	+
M (halt, x, y) for some

x, y ∈ N,
2. (start, 0, 0) ∼M (halt, x, y) for some x, y ∈ N, where the relation ∼M ⊆

Confs(M) × Confs(M) is the symmetric and transitive closure of 	M .

3.3 The reduction

Now we go for a proof of Proposition 7. The idea is to design a tiling system
which “simulates” behaviour of a 2-counter machine.



Let M be a 2-counter machine. We construct a tiling system TM with the
set L of instruction labels of M as the set of dominoes, and the identity function
on L as the labelling function. Note that this implies that all tuples belonging
to a domino bisimulation relating copies of TM are of the form (�, �, x, y), so we
can identify them with configurations of M , i.e., sometimes we will make no
distinction between (�, �, x, y) and (�, x, y) ∈ Confs(M) for � ∈ L.

We define the horizontal compatibility relations HM , H0
M ⊆ L × L of the

tiling system TM as follows:

– (�, m) ∈ HM if and only if either of the instructions below is an instruction
of machine M :
• �: c1 := c1 + 1; goto m
• m: if c1 = 0 then c1 := c1 + 1; goto n

else c1 := c1 - 1; goto �

– (�, m) ∈ H0
M if and only if (�, m) ∈ HM , or the instruction below is an

instruction of machine M :
• �: if c1 = 0 then c1 := c1 + 1; goto m

else c1 := c1 - 1; goto n

Vertical compatibility relations VM , and V 0
M are defined in the same way, with

c1 instructions replaced with c2 instructions. We also take Dori
M = L, i.e., all

dominoes are allowed in position (0, 0). Note that the identity function is a 1-1
correspondence between configurations of M , and configurations of the tiling
system TM ; from now on we will hence identify configurations of M and TM .
It follows immediately from the construction of TM , that two configurations
c, c′ ∈ Confs(M) are compatible as configurations of TM , if and only if c 	M c′,
or c′ 	M c, i.e., compatibility relation of TM coincides with the symmetric
closure of 	M . By ≈M we denote the symmetric and transitive closure of the
compatibility relation of configurations of TM . The following proposition is then
straightforward.

Proposition 9 The two relations ∼M , and ≈M coincide.

Now we are ready to define the two origin constrained tiling systems T1, and
T2, postulated in Proposition 7. The idea is to have two independent and slightly
pruned copies of TM in T2: one without the initial configuration (start, 0, 0),
and the other without any halting configurations (halt, x, y). The other tiling
system T1 is going to have three independent copies of TM : the two of T2, and
moreover, another full copy of TM .

More formally we define D2 =
(
L × {1, 2}) \ {

(halt, 2)
}
, and Dori

2 = D2 \{
(start, 1)

}
, and V2 =

(
(VM ⊗ 1) ∪ (VM ⊗ 2)

) ∩ (D2 × D2), where for a binary
relation R we define R ⊗ i to be the relation

{ (
(a, i), (b, i)

)
: (a, b) ∈ R

}
. The

other compatibility relations V 0
2 , H2, and H0

2 are defined analogously from the
respective compatibility relations of TM .

The tiling system T1 is obtained from T2 by adding yet another independent
copy of TM , this time a complete one: D1 = D2 ∪ (L × {3}), and Dori

1 = Dori
2 ∪



(L×{3}), and V1 = V2 ∪ (VM ⊗ 3), etc. The labelling functions of T1, and T2 are
defined as λi

(
(�, i)

)
= �.

In order to show Proposition 7, and hence conclude the proof of Theorem 6,
it suffices to establish the following two claims.

Claim 10 If machine M halts on input (0, 0), then there is no domino bisimu-
lation relating T1 and T2.

Claim 11 If machine M does not halt on input (0, 0), then there is a domino
bisimulation relating T1 and T2.

4 Hhp-bisimilarity is undecidable

The proof of Theorem 3 is a reduction from the problem of deciding domino
bisimilarity for origin constrained tiling systems. A method of encoding a tiling
system on an infinite grid in the unfolding of a finite asynchronous transition
system is due to Madhusudan and Thiagarajan [14]; we use a modified version of
a gadget invented by them. For each origin constrained tiling system T we define
an asynchronous transition system A(T ), such that the following proposition
holds.

Proposition 12 There is a domino bisimulation relating origin constrained
tiling systems T1 and T2, if and only if there is a hhp-bisimulation relating
the asynchronous transition systems A(T1) and A(T2).

Let T =
(
D, Dori, (H, H0), (V, V 0), L, λ

)
be an origin constrained tiling system.

We define the asynchronous transition system A(T ). The schematic structure of
A(T ) can be seen in Figure 1. The set of events is defined as:

EA(T ) =
{

xi, yi : i ∈ {0, 1, 2, 3} }

∪ {
dij , dij : i, j ∈ {0, 1, 2}, d ∈ D, and d ∈ Dori if (i, j) = (0, 0)

}
.

The rough idea behind the construction of A(T ) is best explained in terms
of its event structure unfolding [23], in which the configurations of x- and y-
transitions simply represent the grid structure of a tiling system, following [14].
Configurations in general consist of such a grid point plus at most two “d”- and
“d”-events, where the vertical (horizontal) compatibility of the tiling system is
represented by the independence between a dij- and a di(j+1)- (d(i+1)j-) event.

Notation: By abuse of notation we sometimes write dxy or dxy for x, y ∈ N;
we always mean by that the events dx̂ŷ or dx̂ŷ, respectively, where for z ∈ N we
define ẑ to be z if z ≤ 2, and 2 for even z, and 1 for odd z if z > 2. [Notation] �

The labelling function replaces dominoes in “d”-, and “d”-events, with their
labels in the tiling system:

λA(T )(e) =

⎧⎪⎨
⎪⎩

e if e ∈ {
xi, yi : i ∈ {0, . . . , 3} }

,

λ(d)ij if e = dij , for some d ∈ D,

λ(d)ij if e = dij , for some d ∈ D.
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(a) The structure of A(T ) in the large.
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(b) The fine structure of the upper-right cube of A(T ).

Figure1. The structure of the asynchronous transition system A(T ).



The states, events, and transitions of A(T ) can be read from Figure 1; we briefly
explain below how to do it.

There are sixteen states in the bottom layer of the structure in Figure 1(a).
Let us identify these sixteen states with pairs of numbers shown on the vertical
macro-arrows originating in these states shown in Figure 1(a). Each of these
macro-arrows denotes a bundle of dij -, and dij -event transitions sticking out of
the state below, arranged in the fashion shown in Figure 1(b). For each state
(i, j), and domino d ∈ D, there are dij -, and dij -event transitions sticking out,
and moreover for each state (i′, j′) from which there is an arrow in Figure 1(a)
to state (i, j), there is a di′j′ -event transition sticking out of (i, j). The state
(0, 0) is exceptional: only dominoes from the origin constraint Dori are allowed
as events of transitions sticking out of it. It is also the initial state of A(T ).

As can be seen in Figure 1(b), from both ends of the dij -event transition
rooted in state (i, j), there is an xi-event transition to the corresponding (bottom,
or top) (i⊕ 1, j) state, and an yi-event transition to the corresponding (i, j ⊕ 1)
state, where i ⊕ 1 = i + 1 if i < 3, and i ⊕ 1 = 2 if i = 3.

For each di′j′ -event transition t sticking out of state (i, j), and each e ∈
D, there can be a pair of transitions which together with t and the eij -event
transition form a “diamond” of transitions; the events of the transitions lying on
the opposite sides of the diamond coincide then. This type of transitions is shown
in Figure 1(b) as dotted arrows. The condition for the two transitions closing the
diamond to exist is that configurations (d, i′, j′) and

(
e, i′ + |i′ − i|, j′ + |j′ − j|)

of T are compatible, or (i′, j′) = (i, j) and e = d. We define the independence
relation IA(T ) ⊆ EA(T ) × EA(T ), to be the symmetric closure of the set:

{
(xi, yj), (xi, dij), (yj , dij) : i, j ∈ {0, . . . , 3}, and d ∈ D

} ∪{
(dij , dij) : i, j ∈ {0, 1, 2}, and d ∈ D

} ∪{
(d0j , e1j) : j ∈ {0, 1, 2}, and (d, e) ∈ H0

} ∪{
(dij , e(i+1)j) : i ∈ {1, 2}, j ∈ {0, 1, 2}, and (d, e) ∈ H

} ∪{
(di0, ei1) : i ∈ {0, 1, 2}, and (d, e) ∈ V 0

} ∪{
(dij , ei(j+1)) : i ∈ {0, 1, 2}, j ∈ {1, 2}, and (d, e) ∈ V

}
.

Note that it follows from the above that all diamonds of transitions in A(T ) are
in fact independence diamonds.

Proof sketch (of Proposition 12): The idea is to show that every domino bisim-
ulation for T1 and T2 gives rise to an hhp-bisimulation for A(T1) and A(T2), and
vice versa. First observe, that a run of A(Ti) for i ∈ {1, 2} consists of a number
of occurrences of xj- and yk-events, x and y of them respectively, and a set of
“d”- and “d”-events, which is of size at most two. In other words, we can map
runs of A(Ti) into triples (Fi, x, y), where Fi ⊆ EA(Ti) contains at most two
“d”- and “d”-events, and x, y ∈ N. Define Confs

(
A(T1), A(T2)

)
to be the set of

quadruples (F1, F2, x, y) where Fi’s are as above and x, y ∈ N. Then it is a mat-
ter of routine verification to see that there exists an hhp-bisimulation between
A(T1) and A(T2), if and only if there exists a relation B ⊆ Confs

(
A(T1), A(T2)

)
,



such that
{

(e1, e2) : (F1, F2, x, y) ∈ B, where ei is mapped to (Fi, x, y)
}

is an
hhp-bisimulation relating A(T1) and A(T2). Hence, in the following we identify
an hhp-bisimulation with such a relation B. The following claim immediately
implies Proposition 12.

Claim 13 1. Let B ⊆ Confs
(
A(T1), A(T2)

)
be an hhp-bisimulation relating

A(T1) and A(T2). Then the set
{

(d, e, x, y) :
({dxy}, {exy}, x, y

) ∈ B
}

is a
domino bisimulation for T1 and T2.

2. Let B ⊆ Confs(T1, T2) be a domino bisimulation relating T1 and T2. Then
the set

{ ({dxy}, {exy}, x, y
)

: (d, e, x, y) ∈ B
}

can be extended to an
hhp-bisimulation for A(T1) and A(T2).

This concludes the proof of Theorem 3. [Proposition 12]

As a corollary of the above proof we get the following strengthening of our main
theorem.

Corollary 14 Hhp-bisimilarity is undecidable for finite labelled 1-safe Petri
nets.

Proof sketch (of Corollary 14): An attentive reader might have noticed, that
the asynchronous transition system A(T ) as described in section 4, and sketched
in Figure 1, is not coherent, while all asynchronous transition systems derived
from (1-safe) Petri nets are [23,18]. It turns out, however, that A(T ) is not far
from being coherent: it suffices to close all the diamonds with events dij , and
xi in positions (i, j ⊕ 1), and with events dij , and yj in positions (i ⊕ 1, j), for
i, j ∈ {0, . . . , 3}; note that runs ending at the top of these diamonds are maximal
runs. This completion of the transition structure of A(T ) does not affect the
arguments used to establish Claim 13, and hence Theorem 3, but since it would
obscure the picture in Figure 1(b), we have decided not to draw it there. It is
laborious but routine to construct a 1-safe Petri net whose derived asynchronous
transition system is isomorphic to the completion of A(T ) mentioned above.

[Corollary 14]
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