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Abstract

We observe that the problem of deciding the winner in mean payoff
games is in the complexity class UP N co-UP. We also show a simple
reduction from parity games to mean payoff games. From this it follows
that deciding the winner in parity games and the modal u-calculus model
checking are in UP N co-UP.
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1 Introduction

Parity games are infinite duration two-player games played on graphs. From
the results of Emerson, Jutla and Sistla [EJS93] it follows that the problem
of deciding the winner in parity games is equivalent via linear time reductions
to the modal p-calculus model checking. (In fact, they show the equivalence
of the modal p-calculus model checking and the non-emptiness problem for
automata on infinite trees with parity acceptance conditions [Mos84, EJ91]. Tt
is an easy exercise to show the equivalence of the non-emptiness problem for
parity automata and the problem of deciding the winner in parity games.)
The modal p-calculus model checking problem is known to be in the complex-
ity class NP N co-NP [EJS93], so it is considered unlikely to be NP-complete.
On the other hand no polynomial time algorithms for it have been found so far.
The modal u-calculus is a powerful logic for specifying properties of finite state
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distributed and reactive systems. The question of existence of a polynomial
time algorithm for the model checking problem has relevance to the automatic
verification of such systems.

A nondeterministic Turing machine is called unambiguous if for every input
it has at most one accepting computation. The complexity class UP is the
class of problems recognizable by unambiguous polynomial time nondetermin-
istic Turing machines (e.g., see pages 283284 in [Pap94]). In other words, UP
is the class of problems having unique short certificates (where short means “of
length polynomial in the size of the instance of the problem”) checkable in poly-
nomial time. In a standard fashion, by co-UP we denote the class of problems
being the complements of problems in UP.

The main result of this note is that the problem of deciding the winner
in parity games has unique short certificates, i.e., it is in UP. To obtain the
result claimed in the title we proceed in two steps. First we show a polynomial
time reduction of parity games to the mean payoff games of Ehrenfeucht and
Mycielski [EM79]. A polynomial time reduction of parity games to mean payoff
games has been independently obtained by Puri [Pur95] and Jerrum (see [Sti95,
Sti%6]). Next, using results of Zwick and Paterson [ZP96], we argue that the
problem of deciding the winner in mean payoff games is in UP N co-UP.

Before we proceed with the technical part of this note let us comment on the
relationship between the complexity classes UP N co-UP and NP N co-NP.
Obviously P C UP N co-UP C NP N co-NP. There are relatively few (natu-
ral) problems known, which are in NP N co-NP, and are not known to be in P.
Interestingly, to our best knowledge, all problems appearing in literature known
to be in NP N co-NP are in fact in UP N co-UP as well (e.g., primality has
been shown to belong to UP N co-UP by Fellows and Koblitz [FK92]).

2 (Games

We consider infinite duration games played by two players (player 0 and player 1)
on finite graphs called arenas. An arena A = (V,Vy, V1, E) is a directed graph
(V, E) with a partition Vo U V3 = V of the set of vertices V. We require that
the out-degree of each vertex is at least one. This ensures that every finite path
in (V, E) can be prolonged.

A position in a game played on the arena A is a finite path in the under-
lying graph (V, E). Note that although the arena is finite, the set of positions
Pos(V) C V* in the game is infinite, because there are finite paths of arbitrary
length in (V, E). The initial position of a play starting from a vertex vy € V' is
the path consisting only of the vertex vyg. A mowve in a game consists of extend-
ing the current position by one vertex. The result of a move from a position
m = (Vo,v1,V2,...,0;) is a new position w41 = {(Vo, V1, V2, ..., Vi, Vit1), i€
(vi,viy1) € E. Let m; = (vg,v1,v2,...,v;) be the current position in a play.
If v; € Vy then it is the turn of player 0 to make a move, otherwise player 1
moves. The players make their moves indefinitely. Note that a play never gets
“stuck”, because of our assumption that every vertex has at least one outgoing



edge. The result of a play in the game is an infinite path 7 = (vg, v1,va,...) in
the graph (V, E). For brevity, we often just say a play, meaning the result of
the play.

Formally, a game G = (A, W) is an arena A = (V|V}, V4, E), together with
a winning condition W C V¢ specifying the set of winning plays for player 0.
All the other plays are winning for player 1. A strategy for player 0 is a function
¢ : Pos(V) — V, which given the current position in the game specifies what
should be the next move to be made by player 0. A strategy is memoryless
if it does not depend on the whole current position but only on the current
vertex (i.e., the last vertex in the current position). Memoryless strategies are
particularly simple and can be represented as functions o : V. — V| i.e., they
are finite objects. A winning strategy for player 0 from a vertex vy € Vp is a
strategy such that every play starting in vy which is consistent with the strategy
is winning for player 0. (A play is consistent with a strategy if player 0 makes
all her moves along this play according to the strategy.)

The decision problem we are after is: given a game G and a starting vertex vy,
decide if player 0 has a winning strategy in G from the vertex vy.

We deal with three types of infinite duration games played on arenas: parity
games, mean payoff games and discounted mean payoff games. They differ in
the way their winning conditions are represented.

Definition 1 (Parity game) A parity game [EJ91, Mos91] is a pair (4,p)
where A = (V,Vp, V4, E) is an arena and p : V — {0,1,...,|V]|} is a function
assigning a priority to every vertex of the arena. Let m = (vg, v1,v2,...) be a
play in a parity game. We define Inf() to be the set of all numbers appearing
infinitely often in the sequence (p(vg),p(v1),p(v2),...). The play 7 is winning
for player 0 if max (Inf()) is even.

Definition 2 (Mean-payoff game) A mean payoff game [EM79] is a quadru-
ple (A,v,d,w), where A = (V,Vp, Vi, E) is an arena, v and d are natural num-
bers, and w : E — {—d,...,—1,0,1,...,d} is a function assigning an integer
weight to every edge of the arena. A play m = (vg,v1,v2,...) is winning for
player 0 if
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Definition 3 (Discounted mean payoff game) Let G = (A,v,d,w) be a
mean payoff game and 0 < A < 1 be a real number called the discounting factor.
The discounted mean payoff game G has the same arena and weight function
as G. The only difference is the winning condition. A play = = (vg, v1,v2,...)
is winning for player 0 in G, if
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The main aim of this note is to show that deciding the winner in parity games
is in UP N co-UP. We have tried to provide explicit unique short certificates
for winning strategies in parity games. One of the very promising candidates
seemed to be canonical signature assignments studied by Walukiewicz [Wal96].
We have failed, however, to devise a polynomial time algorithm to check that
a signature assignment is indeed canonical. Instead, we relate parity games
to mean payoff games by providing in Section 3 a simple reduction from the
former to the latter. Then in Section 4 we argue that winning strategies for
(discounted) mean payoff games have unique short certificates.

3 The reduction

In this section we show a simple reduction of parity games to mean payoff games.
Essentially the same reduction has been given by Puri [Pur95]. A reduction of
parity games to mean payoff games has been also obtained by Jerrum [Sti96].

Our reduction relies on memoryless determinacy of both parity and mean
payoff games. A game is determined if for every starting vertex exactly one of
the players has a winning strategy. Memoryless determinacy states that if a
winning strategy for one of the players exists, then there is also a memoryless
winning strategy for her. Memoryless determinacy for parity games was shown
by Mostowski [Mos91], and independently by Emerson and Jutla [EJ91], and
for mean payoff games by Ehrenfeucht and Mycielski [EM79], and by Gurvich,
Karzanov, and Khachiyan [GKK88].

Theorem 4
The problem of deciding the winner in a parity game reduces in polynomial time
to the problem of deciding the winner in a mean payoff game.

Proof

Let G = (A, p) be a parity game, where A = (V, Vp, V1, E) is the arena. Given G
and a starting vertex vy € Vp we construct a mean payoff game H = (4, v,d, w),
such that player 0 has a winning strategy from vy in G if and only if she has
a winning strategy from vy in H. Let r = max{ p(v) : v € V }, and m = |V|.
To define the mean payoff game H we set v = 0, d = m” and for every edge
e= (u,v) € E we let w(e) = (—m)P,

Observe that the arenas of the games G and H are the same, hence a (mem-
oryless) strategy in G is at the same time a (memoryless) strategy in H and vice
versa. Let o be a memoryless strategy for player 0 from vertex vy in game G
(H). By G, (H,) we denote the subgame of G (H) obtained by first removing
from the arena A all the edges coming out of vertices in Vj except for those
belonging to ¢, and then by removing all the vertices unreachable from vy via
the edges left. Plays in the game G (H) starting in vy and consistent with the
strategy o correspond exactly to the set of all plays in the game G, (Hy).

Below, by a simple cycle we mean a cycle with no repeating vertices. The fol-
lowing lemma is used to prove that the above construction is indeed a reduction
from parity games to mean payoff games.



Lemma 5 Let o be a memoryless strategy for player 0 in G (H). Then:

1. for every simple cycle ¢ in G, the highest priority of a vertex on c is even
if and only if the sum of the weights of the edges on ¢ is nonnegative,

2. if ¢ is a winning strategy for player 0 from vy in G then for every simple
cycle ¢ in GG, the highest priority of a vertex appearing on c is even,

3. if ¢ is a winning strategy for player 0 from vy in H then for every simple
cycle ¢ in H, the sum of the weights of the edges on ¢ is nonnegative.

Proof: The first clause is straightforward.

We prove the second clause; the proof of the third one is similar. Suppose
that there exists a simple cycle ¢ with the highest priority of a vertex on ¢
being odd. Then player 1 can force the play from vy to ¢ and also to stay in ¢
indefinitely and thus win. This, however, contradicts our assumption that o is
a winning strategy for player 0. [

Suppose that player 0 has a winning strategy from vy in the game G. Due to
memoryless determinacy of parity games it follows that there is also a memory-
less winning strategy o for player 0 from vy in G. We show that the memoryless
strategy o is also a winning strategy for player 0 from vy in H. In order to
do that we have to argue that for every play (vg, v1,v2,...) consistent with the
strategy o the following inequality holds:

1 n
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We show now that every play @ = (vg,v1,v2,...) in H, can be essentially
decomposed into simple cycles. This decomposition allows us to apply Lemma 5
and get the above inequality. Consider the following decomposition process of
the play 7 in H,. We maintain a stack containing a sequence of distinct nodes
forming a finite path wug,u1,...,up in H,, where h is the height of the stack.
Whenever the next vertex from the path 7 to be considered happens to be
already on the stack, we remove the vertices forming the cycle from the top of
the stack. Otherwise we push the new vertex onto the stack. Observe that due
to clauses 1 and 2 of Lemma 5 whenever we remove a cycle from the top of
the stack the sum of the weights of the edges on the cycle is nonnegative. In
this way only the weights of the edges which are on the stack may sum up to a

negative value. Hence:

n h(n)
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because h(n) < |V|, so the absolute value of the sum Zfz(q) w(wi—1,u;) is
bounded by a constant.
In order to finish the proof of the theorem we have to show the reverse, i.e.,

if player 0 has a winning strategy from vg in H, then player 0 has also a winning



strategy from vy in G. Again due to memoryless determinacy of mean payoff
games we can restrict to memoryless strategies. Then it suffices to apply the
same technique of decomposing plays in G, into simple cycles and use clauses
1 and 3 of Lemma 5. O

Remark: In the above reduction the weight function w has values exponential
with respect to the size of the parity game G, but their binary representations
are of polynomial size and can be computed in polynomial time. Note that
having a reduction with polynomial values of the weight function would imply
that parity games are in P, as a polynomial time algorithm for mean payoff
games with polynomial weights is given by Zwick and Paterson [ZP96].

4 The UP N co-UP upper bound

Our aim now is to show that deciding the winner in mean payoff games is in
UP N co-UP. Let G = (4,v,d,w) be a mean payoff game. Ehrenfeucht and
Mycielski [EM79] and independently Gurvich, Karzanov, and Khachiyan [GKK88]
have shown that for every vertex vy of the arena A there exists a number v(vp),
called the value of G in vy, such that the following two conditions hold:

1. player 0 has a memoryless strategy such that for every play (vg, v1,va,...)
consistent with this strategy liminf, o 1/n Y 1 w(vi—1,v;) > v(vo),

2. player 1 has a memoryless strategy such that for every play (vg, v1,ve,...)
consistent with this strategy limsup,, . 1/n > ; w(vi—1,v;) < v(vp).

We call strategies satisfying those conditions optimal. Clearly, given the values
of a game it is straightforward to decide the winner — it suffices to check
whether v(vg) > v. Hence the values of a mean payoff game may seem to be a
plausible candidate for unique short certificates. Unfortunately, we have failed to
devise a polynomial time algorithm to check whether a vector (x,),cv is indeed
the vector of the values of the game. Moreover, whereas it is straightforward
to extract a winning strategy in a parity game from the canonical signature
assignment [Wal96], here it is not at all clear to us how to do it efficiently given
just the values of the mean payoff game.

In order to get the UP N co-UP upper bound on the complexity of mean
payoff games we use the following result of Zwick and Paterson [ZP96].

Theorem 6 (Zwick and Paterson [ZP96])
The problem of deciding the winner in a mean payoff game reduces in polynomial
time to the problem of deciding the winner in a discounted mean payoff game.

Hence it suffices to provide unique short certificates for winning strategies
in discounted mean payoff games. Zwick and Paterson [ZP96] have shown
that optimal memoryless strategies for both players exist also in discounted
mean payoff games. In the two conditions above one has to replace the term
1/nd>  w(vi—q,v;) with (1 —X) Y% A" w(v;—1,v;), and the number v(vy)



with vy (vg), which we call the value of the discounted mean payoff game Gy
m vg.

The vector of the values of a discounted mean payoff game is the unique
certificate we are after. The crucial property which allows us to quickly check
whether some (x,),cy is the vector of the values of a discounted mean payoff
game is the following characterisation due to Zwick and Paterson [ZP96].

Theorem 7 (Zwick and Paterson [ZP96])
The vector 7 = (va(v))yev of the values of the discounted mean payoff game G
is the unique solution of the following system of equations

S max(yper { (1= A) - w(v,u) + Az, }  if v eV,
Y minguyer {(1 =) - w(v,u) + Az} if v € VAL

It only remains to show that the values of a discounted mean payoff games are
short, i.e., can be written using a number of bits polynomial in N = |G|, the
size of the binary representation of the game G,. We prove this by applying
a standard technique; the proof sketch below closely resembles, e.g., the proof
of Lemma 2 in [Con92]. Let T be the only solution of the system of equations
from Theorem 7. Then

T=(01-)\) T+\-Q T

where W is a vector of appropriate weights w(u,v) and @ is a zero-one matrix
with exactly one non-zero element in every row. We assume that the constant
A is a rational included in the binary representation of the game G, hence it
is a number a/b, with a and b being integers satisfying loga,logh < N. The
above equation can be hence rewritten as

AzT=(b—-a)w

where A =b-1—a-Q, and [ is the |V| x |V] identity matrix. Observe that
A is a matrix with at most two non-zero elements in a row, and their absolute
values are not bigger than 2V. It is easy to show by induction on the size of the
matrix that the absolute value of the determinant of A is not bigger than 4VV1.
According to Cramer’s rule we have x, = det A,/ det A, where A, is obtained
from A by replacing the v-th column with the vector (b — a) - w. From this
it follows that the elements of the vector T can be written using a polynomial
number of bits.

This settles the UP upper bound for the problem of deciding the winner in
discounted mean payoff games. The co-UP upper bound follows easily, because
by the existence of optimal strategies [ZP96] player 0 does not have a winning
strategy from a vertex vp in the game G if and only if vy (vg) < v, so it can be
directly read from the vector of the values of the game.

Putting the UP N co-UP upper bound for discounted mean payoff games,
together with the reductions of Theorems 4 and 6, we get our main result.

Theorem 8
The problems of deciding the winner in parity, mean payoff and discounted
mean payoff games are in UP N co-UP.
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