
Black-box Identity Testing of Noncommutative
Rational Formulas of Inversion Height Two

Abhranil Chatterjee
Joint work with V. Arvind and Partha Mukhopadhyay

Workshop on Algebraic Complexity Theory (WACT), 2023

Polynomial Identity Testing

• Polynomial identity testing (PIT): to decide if a given
circuit/ABP/formula computes the zero polynomial.

• Equivalently, to decide whether there exists a nonzero evaluation.

• PIT is of two types: white-box and black-box.

• In black-box PIT, the polynomial is given as an evaluation oracle and the
goal is to find a nonzero evaluation querying the oracle.

• The goal is to output a list of evaluations that works for every polynomial.

Polynomial Identity Testing

• Polynomial identity testing (PIT): to decide if a given
circuit/ABP/formula computes the zero polynomial.

• Equivalently, to decide whether there exists a nonzero evaluation.

• PIT is of two types: white-box and black-box.

• In black-box PIT, the polynomial is given as an evaluation oracle and the
goal is to find a nonzero evaluation querying the oracle.

• The goal is to output a list of evaluations that works for every polynomial.

Polynomial Identity Testing

• Polynomial identity testing (PIT): to decide if a given
circuit/ABP/formula computes the zero polynomial.

• Equivalently, to decide whether there exists a nonzero evaluation.

• PIT is of two types: white-box and black-box.

• In black-box PIT, the polynomial is given as an evaluation oracle and the
goal is to find a nonzero evaluation querying the oracle.

• The goal is to output a list of evaluations that works for every polynomial.

Polynomial Identity Testing

• Polynomial identity testing (PIT): to decide if a given
circuit/ABP/formula computes the zero polynomial.

• Equivalently, to decide whether there exists a nonzero evaluation.

• PIT is of two types: white-box and black-box.

• In black-box PIT, the polynomial is given as an evaluation oracle and the
goal is to find a nonzero evaluation querying the oracle.

• The goal is to output a list of evaluations that works for every polynomial.

Polynomial Identity Testing

• Polynomial identity testing (PIT): to decide if a given
circuit/ABP/formula computes the zero polynomial.

• Equivalently, to decide whether there exists a nonzero evaluation.

• PIT is of two types: white-box and black-box.

• In black-box PIT, the polynomial is given as an evaluation oracle and the
goal is to find a nonzero evaluation querying the oracle.

• The goal is to output a list of evaluations that works for every polynomial.

Polynomial Identity Testing

Definition (Hitting Set)
We say ℋ ∈ Q𝑛 is a hitting set for a circuit class 𝒞 ⊆ Q[𝑥1 , . . . , 𝑥𝑛], if for every
nonzero 𝑓 ∈ 𝒞, there exists some (𝑎1 , . . . , 𝑎𝑛) ∈ ℋ s.t. 𝑓 (𝑎1 , . . . , 𝑎𝑛) ≠ 0.

• Polynomial Identity Lemma : A randomized polynomial time black-box
PIT algorithm for commutative circuits. Derandomizing PIT is open.

• Efficient derandomization is known for some special cases, ROABP is of
our particular interest.

Polynomial Identity Testing

Definition (Hitting Set)
We say ℋ ∈ Q𝑛 is a hitting set for a circuit class 𝒞 ⊆ Q[𝑥1 , . . . , 𝑥𝑛], if for every
nonzero 𝑓 ∈ 𝒞, there exists some (𝑎1 , . . . , 𝑎𝑛) ∈ ℋ s.t. 𝑓 (𝑎1 , . . . , 𝑎𝑛) ≠ 0.

• Polynomial Identity Lemma : A randomized polynomial time black-box
PIT algorithm for commutative circuits. Derandomizing PIT is open.

• Efficient derandomization is known for some special cases, ROABP is of
our particular interest.

Polynomial Identity Testing

Definition (Hitting Set)
We say ℋ ∈ Q𝑛 is a hitting set for a circuit class 𝒞 ⊆ Q[𝑥1 , . . . , 𝑥𝑛], if for every
nonzero 𝑓 ∈ 𝒞, there exists some (𝑎1 , . . . , 𝑎𝑛) ∈ ℋ s.t. 𝑓 (𝑎1 , . . . , 𝑎𝑛) ≠ 0.

• Polynomial Identity Lemma : A randomized polynomial time black-box
PIT algorithm for commutative circuits. Derandomizing PIT is open.

• Efficient derandomization is known for some special cases, ROABP is of
our particular interest.

Noncommutative PIT

• Noncommutative PIT: to decide if a given noncommutative
circuit/ABP/formula computes the zero polynomial in the free algebra.

Example
(𝑥1 + 𝑥2)(𝑥1 − 𝑥2) ≠ 𝑥2

1 − 𝑥
2
2 ,

(𝑥1 + 𝑥2)(𝑥1 − 𝑥2) = 𝑥2
1 − 𝑥

2
2 − 𝑥1𝑥2 + 𝑥2𝑥1.

• The black-box PIT is to efficiently find a set of matrix evaluations
(𝑝1 , . . . , 𝑝𝑛) ∈ Mat𝑛

𝑑
(Q) of small size such that for some evaluation

𝑓 (𝑝1 , . . . , 𝑝𝑛) ≠ 0.

• [Forbes and Shpilka (2013)] Quasipolynomial-size hitting set for
noncommutative formulas (and ABPs) s.t. 𝑓 (𝑝1 , . . . , 𝑝𝑛) is nonzero.

Noncommutative PIT

• Noncommutative PIT: to decide if a given noncommutative
circuit/ABP/formula computes the zero polynomial in the free algebra.

Example
(𝑥1 + 𝑥2)(𝑥1 − 𝑥2) ≠ 𝑥2

1 − 𝑥
2
2 ,

(𝑥1 + 𝑥2)(𝑥1 − 𝑥2) = 𝑥2
1 − 𝑥

2
2 − 𝑥1𝑥2 + 𝑥2𝑥1.

• The black-box PIT is to efficiently find a set of matrix evaluations
(𝑝1 , . . . , 𝑝𝑛) ∈ Mat𝑛

𝑑
(Q) of small size such that for some evaluation

𝑓 (𝑝1 , . . . , 𝑝𝑛) ≠ 0.

• [Forbes and Shpilka (2013)] Quasipolynomial-size hitting set for
noncommutative formulas (and ABPs) s.t. 𝑓 (𝑝1 , . . . , 𝑝𝑛) is nonzero.

Noncommutative PIT

• Noncommutative PIT: to decide if a given noncommutative
circuit/ABP/formula computes the zero polynomial in the free algebra.

Example
(𝑥1 + 𝑥2)(𝑥1 − 𝑥2) ≠ 𝑥2

1 − 𝑥
2
2 ,

(𝑥1 + 𝑥2)(𝑥1 − 𝑥2) = 𝑥2
1 − 𝑥

2
2 − 𝑥1𝑥2 + 𝑥2𝑥1.

• The black-box PIT is to efficiently find a set of matrix evaluations
(𝑝1 , . . . , 𝑝𝑛) ∈ Mat𝑛

𝑑
(Q) of small size such that for some evaluation

𝑓 (𝑝1 , . . . , 𝑝𝑛) ≠ 0.

• [Forbes and Shpilka (2013)] Quasipolynomial-size hitting set for
noncommutative formulas (and ABPs) s.t. 𝑓 (𝑝1 , . . . , 𝑝𝑛) is nonzero.

Noncommutative PIT

• Noncommutative PIT: to decide if a given noncommutative
circuit/ABP/formula computes the zero polynomial in the free algebra.

Example
(𝑥1 + 𝑥2)(𝑥1 − 𝑥2) ≠ 𝑥2

1 − 𝑥
2
2 ,

(𝑥1 + 𝑥2)(𝑥1 − 𝑥2) = 𝑥2
1 − 𝑥

2
2 − 𝑥1𝑥2 + 𝑥2𝑥1.

• The black-box PIT is to efficiently find a set of matrix evaluations
(𝑝1 , . . . , 𝑝𝑛) ∈ Mat𝑛

𝑑
(Q) of small size such that for some evaluation

𝑓 (𝑝1 , . . . , 𝑝𝑛) ≠ 0.

• [Forbes and Shpilka (2013)] Quasipolynomial-size hitting set for
noncommutative formulas (and ABPs) s.t. 𝑓 (𝑝1 , . . . , 𝑝𝑛) is nonzero.

Noncommutative Rational Functions

• Commutative computation with inverses : admits a canonical
representation, each element can be expressed as 𝑓 𝑔−1 for some
𝑓 , 𝑔 ∈ Q[𝑥1 , . . . , 𝑥𝑛].

• Noncommutative computation with inverses: computes noncommutative
rational functions, elements of the universal free skew field.

• Two noncommutative rational expressions compute same rational
function in the free skew-field if they agree on evaluations on every
matrix tuple whenever defined [Amitsur (1966)].

• Unlike commutative setting, it does not have any canonical
representation.

• Inversion height is the maximum number of nested inverses. Bounded by
𝑂(log 𝑠) for a size 𝑠 formula [HW15].

Noncommutative Rational Functions

• Commutative computation with inverses : admits a canonical
representation, each element can be expressed as 𝑓 𝑔−1 for some
𝑓 , 𝑔 ∈ Q[𝑥1 , . . . , 𝑥𝑛].

• Noncommutative computation with inverses: computes noncommutative
rational functions, elements of the universal free skew field.

• Two noncommutative rational expressions compute same rational
function in the free skew-field if they agree on evaluations on every
matrix tuple whenever defined [Amitsur (1966)].

• Unlike commutative setting, it does not have any canonical
representation.

• Inversion height is the maximum number of nested inverses. Bounded by
𝑂(log 𝑠) for a size 𝑠 formula [HW15].

Noncommutative Rational Functions

• Commutative computation with inverses : admits a canonical
representation, each element can be expressed as 𝑓 𝑔−1 for some
𝑓 , 𝑔 ∈ Q[𝑥1 , . . . , 𝑥𝑛].

• Noncommutative computation with inverses: computes noncommutative
rational functions, elements of the universal free skew field.

• Two noncommutative rational expressions compute same rational
function in the free skew-field if they agree on evaluations on every
matrix tuple whenever defined [Amitsur (1966)].

• Unlike commutative setting, it does not have any canonical
representation.

• Inversion height is the maximum number of nested inverses. Bounded by
𝑂(log 𝑠) for a size 𝑠 formula [HW15].

Noncommutative Rational Functions

• Commutative computation with inverses : admits a canonical
representation, each element can be expressed as 𝑓 𝑔−1 for some
𝑓 , 𝑔 ∈ Q[𝑥1 , . . . , 𝑥𝑛].

• Noncommutative computation with inverses: computes noncommutative
rational functions, elements of the universal free skew field.

• Two noncommutative rational expressions compute same rational
function in the free skew-field if they agree on evaluations on every
matrix tuple whenever defined [Amitsur (1966)].

• Unlike commutative setting, it does not have any canonical
representation.

• Inversion height is the maximum number of nested inverses. Bounded by
𝑂(log 𝑠) for a size 𝑠 formula [HW15].

Noncommutative Rational Functions

• Commutative computation with inverses : admits a canonical
representation, each element can be expressed as 𝑓 𝑔−1 for some
𝑓 , 𝑔 ∈ Q[𝑥1 , . . . , 𝑥𝑛].

• Noncommutative computation with inverses: computes noncommutative
rational functions, elements of the universal free skew field.

• Two noncommutative rational expressions compute same rational
function in the free skew-field if they agree on evaluations on every
matrix tuple whenever defined [Amitsur (1966)].

• Unlike commutative setting, it does not have any canonical
representation.

• Inversion height is the maximum number of nested inverses. Bounded by
𝑂(log 𝑠) for a size 𝑠 formula [HW15].

Rational Identity Testing

• Rational Identity Testing : Given a noncommutative rational formula,
determine if it computes zero in Q⦓𝑥1 , . . . , 𝑥𝑛⦔.

• Equivalently, decide whether there exists a nonzero matrix evaluation or
not.

Example
(𝑥 + 𝑥𝑦−1𝑥)−1 + (𝑥 + 𝑦)−1 − 𝑥−1, known as Hua’s identity [Hua (1949)], is zero
in the free skew-field.

Rational Identity Testing

• Rational Identity Testing : Given a noncommutative rational formula,
determine if it computes zero in Q⦓𝑥1 , . . . , 𝑥𝑛⦔.

• Equivalently, decide whether there exists a nonzero matrix evaluation or
not.

Example
(𝑥 + 𝑥𝑦−1𝑥)−1 + (𝑥 + 𝑦)−1 − 𝑥−1, known as Hua’s identity [Hua (1949)], is zero
in the free skew-field.

Rational Identity Testing

• Rational Identity Testing : Given a noncommutative rational formula,
determine if it computes zero in Q⦓𝑥1 , . . . , 𝑥𝑛⦔.

• Equivalently, decide whether there exists a nonzero matrix evaluation or
not.

Example
(𝑥 + 𝑥𝑦−1𝑥)−1 + (𝑥 + 𝑦)−1 − 𝑥−1, known as Hua’s identity [Hua (1949)], is zero
in the free skew-field.

Known Results

• RIT for rational formulas can be solved in deterministic polynomial time
([GGOW16], [IQS18], [HH21]) in white-box.

• In black-box, randomized polynomial time [DM17].

• Derandomization of black-box RIT is open.

• Can we derandomize even for rational formulas of bounded inversion
height?

Known Results

• RIT for rational formulas can be solved in deterministic polynomial time
([GGOW16], [IQS18], [HH21]) in white-box.

• In black-box, randomized polynomial time [DM17].

• Derandomization of black-box RIT is open.

• Can we derandomize even for rational formulas of bounded inversion
height?

Known Results

• RIT for rational formulas can be solved in deterministic polynomial time
([GGOW16], [IQS18], [HH21]) in white-box.

• In black-box, randomized polynomial time [DM17].

• Derandomization of black-box RIT is open.

• Can we derandomize even for rational formulas of bounded inversion
height?

Known Results

• RIT for rational formulas can be solved in deterministic polynomial time
([GGOW16], [IQS18], [HH21]) in white-box.

• In black-box, randomized polynomial time [DM17].

• Derandomization of black-box RIT is open.

• Can we derandomize even for rational formulas of bounded inversion
height?

Our Result

Theorem (RIT of inversion height two)
We can construct a quasipolynomial-size hitting set for the class of noncommutative
rational formulas of inversion height two.

A Toy Example

• Let 𝑟(𝑥1 , . . . , 𝑥𝑛) is the input rational formula of size 𝑠 and 𝑟 is defined at
(𝑎1 , . . . , 𝑎𝑛) ∈ Q𝑛 .

• Consider 𝑟(𝑥1 + 𝑎1 , . . . , 𝑥𝑛 + 𝑎𝑛).

• Inverse to power series transformation using Taylor series:
(𝑓 (𝑥 + 𝑎))−1 = (𝑓 (𝑎) + 𝑟𝑒𝑠𝑡)−1.

• 𝑟(𝑥1 + 𝑎1 , . . . , 𝑥𝑛 + 𝑎𝑛) is a recognizable series of size 2𝑠.

• RIT of 𝑟 now reduces to PIT of a noncommutative ABP.

𝑟 may not be defined at any (𝑎1 , . . . 𝑎𝑛) ∈ Q𝑛 , for example, 𝑟 = (𝑥1𝑥2 − 𝑥2𝑥1)−1.

A Toy Example

• Let 𝑟(𝑥1 , . . . , 𝑥𝑛) is the input rational formula of size 𝑠 and 𝑟 is defined at
(𝑎1 , . . . , 𝑎𝑛) ∈ Q𝑛 .

• Consider 𝑟(𝑥1 + 𝑎1 , . . . , 𝑥𝑛 + 𝑎𝑛).

• Inverse to power series transformation using Taylor series:
(𝑓 (𝑥 + 𝑎))−1 = (𝑓 (𝑎) + 𝑟𝑒𝑠𝑡)−1.

• 𝑟(𝑥1 + 𝑎1 , . . . , 𝑥𝑛 + 𝑎𝑛) is a recognizable series of size 2𝑠.

• RIT of 𝑟 now reduces to PIT of a noncommutative ABP.

𝑟 may not be defined at any (𝑎1 , . . . 𝑎𝑛) ∈ Q𝑛 , for example, 𝑟 = (𝑥1𝑥2 − 𝑥2𝑥1)−1.

A Toy Example

• Let 𝑟(𝑥1 , . . . , 𝑥𝑛) is the input rational formula of size 𝑠 and 𝑟 is defined at
(𝑎1 , . . . , 𝑎𝑛) ∈ Q𝑛 .

• Consider 𝑟(𝑥1 + 𝑎1 , . . . , 𝑥𝑛 + 𝑎𝑛).

• Inverse to power series transformation using Taylor series:
(𝑓 (𝑥 + 𝑎))−1 = (𝑓 (𝑎) + 𝑟𝑒𝑠𝑡)−1.

• 𝑟(𝑥1 + 𝑎1 , . . . , 𝑥𝑛 + 𝑎𝑛) is a recognizable series of size 2𝑠.

• RIT of 𝑟 now reduces to PIT of a noncommutative ABP.

𝑟 may not be defined at any (𝑎1 , . . . 𝑎𝑛) ∈ Q𝑛 , for example, 𝑟 = (𝑥1𝑥2 − 𝑥2𝑥1)−1.

A Toy Example

• Let 𝑟(𝑥1 , . . . , 𝑥𝑛) is the input rational formula of size 𝑠 and 𝑟 is defined at
(𝑎1 , . . . , 𝑎𝑛) ∈ Q𝑛 .

• Consider 𝑟(𝑥1 + 𝑎1 , . . . , 𝑥𝑛 + 𝑎𝑛).

• Inverse to power series transformation using Taylor series:
(𝑓 (𝑥 + 𝑎))−1 = (𝑓 (𝑎) + 𝑟𝑒𝑠𝑡)−1.

• 𝑟(𝑥1 + 𝑎1 , . . . , 𝑥𝑛 + 𝑎𝑛) is a recognizable series of size 2𝑠.

• RIT of 𝑟 now reduces to PIT of a noncommutative ABP.

𝑟 may not be defined at any (𝑎1 , . . . 𝑎𝑛) ∈ Q𝑛 , for example, 𝑟 = (𝑥1𝑥2 − 𝑥2𝑥1)−1.

A Toy Example

• Let 𝑟(𝑥1 , . . . , 𝑥𝑛) is the input rational formula of size 𝑠 and 𝑟 is defined at
(𝑎1 , . . . , 𝑎𝑛) ∈ Q𝑛 .

• Consider 𝑟(𝑥1 + 𝑎1 , . . . , 𝑥𝑛 + 𝑎𝑛).

• Inverse to power series transformation using Taylor series:
(𝑓 (𝑥 + 𝑎))−1 = (𝑓 (𝑎) + 𝑟𝑒𝑠𝑡)−1.

• 𝑟(𝑥1 + 𝑎1 , . . . , 𝑥𝑛 + 𝑎𝑛) is a recognizable series of size 2𝑠.

• RIT of 𝑟 now reduces to PIT of a noncommutative ABP.

𝑟 may not be defined at any (𝑎1 , . . . 𝑎𝑛) ∈ Q𝑛 , for example, 𝑟 = (𝑥1𝑥2 − 𝑥2𝑥1)−1.

A Toy Example

• Let 𝑟(𝑥1 , . . . , 𝑥𝑛) is the input rational formula of size 𝑠 and 𝑟 is defined at
(𝑎1 , . . . , 𝑎𝑛) ∈ Q𝑛 .

• Consider 𝑟(𝑥1 + 𝑎1 , . . . , 𝑥𝑛 + 𝑎𝑛).

• Inverse to power series transformation using Taylor series:
(𝑓 (𝑥 + 𝑎))−1 = (𝑓 (𝑎) + 𝑟𝑒𝑠𝑡)−1.

• 𝑟(𝑥1 + 𝑎1 , . . . , 𝑥𝑛 + 𝑎𝑛) is a recognizable series of size 2𝑠.

• RIT of 𝑟 now reduces to PIT of a noncommutative ABP.

𝑟 may not be defined at any (𝑎1 , . . . 𝑎𝑛) ∈ Q𝑛 , for example, 𝑟 = (𝑥1𝑥2 − 𝑥2𝑥1)−1.

A Matrix Shift

• There exists (𝑝1 , . . . , 𝑝𝑛) ∈ Mat𝑛
𝑑
(Q) such that 𝑟 is defined at that matrix

tuple.

• Consider 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛) and expand.

• It produces terms 𝑝1𝑥2𝑝3𝑥4, 𝑝1𝑥2𝑥3𝑝4 etc where 𝑝1𝑥1𝑝2𝑥2 and 𝑝1𝑝2𝑥1𝑥2
are two different words.

• These are called generalized monomials and studied by Volčič (2018).
Generalized series and generalized polynomial are defined accordingly.

• We can define a generalized ABP (or an automaton) over Mat𝑚(Q) where
the edge labels are of form

∑
𝑝𝑖𝑥𝑖𝑞𝑖 for some 𝑝𝑖 , 𝑞𝑖 ∈ Mat𝑚(Q).

A Matrix Shift

• There exists (𝑝1 , . . . , 𝑝𝑛) ∈ Mat𝑛
𝑑
(Q) such that 𝑟 is defined at that matrix

tuple.

• Consider 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛) and expand.

• It produces terms 𝑝1𝑥2𝑝3𝑥4, 𝑝1𝑥2𝑥3𝑝4 etc where 𝑝1𝑥1𝑝2𝑥2 and 𝑝1𝑝2𝑥1𝑥2
are two different words.

• These are called generalized monomials and studied by Volčič (2018).
Generalized series and generalized polynomial are defined accordingly.

• We can define a generalized ABP (or an automaton) over Mat𝑚(Q) where
the edge labels are of form

∑
𝑝𝑖𝑥𝑖𝑞𝑖 for some 𝑝𝑖 , 𝑞𝑖 ∈ Mat𝑚(Q).

A Matrix Shift

• There exists (𝑝1 , . . . , 𝑝𝑛) ∈ Mat𝑛
𝑑
(Q) such that 𝑟 is defined at that matrix

tuple.

• Consider 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛) and expand.

• It produces terms 𝑝1𝑥2𝑝3𝑥4, 𝑝1𝑥2𝑥3𝑝4 etc where 𝑝1𝑥1𝑝2𝑥2 and 𝑝1𝑝2𝑥1𝑥2
are two different words.

• These are called generalized monomials and studied by Volčič (2018).
Generalized series and generalized polynomial are defined accordingly.

• We can define a generalized ABP (or an automaton) over Mat𝑚(Q) where
the edge labels are of form

∑
𝑝𝑖𝑥𝑖𝑞𝑖 for some 𝑝𝑖 , 𝑞𝑖 ∈ Mat𝑚(Q).

A Matrix Shift

• There exists (𝑝1 , . . . , 𝑝𝑛) ∈ Mat𝑛
𝑑
(Q) such that 𝑟 is defined at that matrix

tuple.

• Consider 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛) and expand.

• It produces terms 𝑝1𝑥2𝑝3𝑥4, 𝑝1𝑥2𝑥3𝑝4 etc where 𝑝1𝑥1𝑝2𝑥2 and 𝑝1𝑝2𝑥1𝑥2
are two different words.

• These are called generalized monomials and studied by Volčič (2018).
Generalized series and generalized polynomial are defined accordingly.

• We can define a generalized ABP (or an automaton) over Mat𝑚(Q) where
the edge labels are of form

∑
𝑝𝑖𝑥𝑖𝑞𝑖 for some 𝑝𝑖 , 𝑞𝑖 ∈ Mat𝑚(Q).

A Matrix Shift

• There exists (𝑝1 , . . . , 𝑝𝑛) ∈ Mat𝑛
𝑑
(Q) such that 𝑟 is defined at that matrix

tuple.

• Consider 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛) and expand.

• It produces terms 𝑝1𝑥2𝑝3𝑥4, 𝑝1𝑥2𝑥3𝑝4 etc where 𝑝1𝑥1𝑝2𝑥2 and 𝑝1𝑝2𝑥1𝑥2
are two different words.

• These are called generalized monomials and studied by Volčič (2018).
Generalized series and generalized polynomial are defined accordingly.

• We can define a generalized ABP (or an automaton) over Mat𝑚(Q) where
the edge labels are of form

∑
𝑝𝑖𝑥𝑖𝑞𝑖 for some 𝑝𝑖 , 𝑞𝑖 ∈ Mat𝑚(Q).

A Matrix Shift

• Let 𝑟(𝑥1 , . . . , 𝑥𝑛) is the input rational formula of size 𝑠 and 𝑟 is defined at
(𝑝1 , . . . 𝑝𝑛) ∈ Mat𝑛𝑚(Q).

• Consider 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛).

• 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛) is a generalized recognizable series of size at most
2𝑠 [Volčič].

• RIT of 𝑟 now reduces to identity testing of a generalized ABP.

• Identity testing of a generalized ABP over Mat𝑚(Q) reduces to PIT of
𝑚 × 𝑚 matrix of noncommutative ABPs.

A Matrix Shift

• Let 𝑟(𝑥1 , . . . , 𝑥𝑛) is the input rational formula of size 𝑠 and 𝑟 is defined at
(𝑝1 , . . . 𝑝𝑛) ∈ Mat𝑛𝑚(Q).

• Consider 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛).

• 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛) is a generalized recognizable series of size at most
2𝑠 [Volčič].

• RIT of 𝑟 now reduces to identity testing of a generalized ABP.

• Identity testing of a generalized ABP over Mat𝑚(Q) reduces to PIT of
𝑚 × 𝑚 matrix of noncommutative ABPs.

A Matrix Shift

• Let 𝑟(𝑥1 , . . . , 𝑥𝑛) is the input rational formula of size 𝑠 and 𝑟 is defined at
(𝑝1 , . . . 𝑝𝑛) ∈ Mat𝑛𝑚(Q).

• Consider 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛).

• 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛) is a generalized recognizable series of size at most
2𝑠 [Volčič].

• RIT of 𝑟 now reduces to identity testing of a generalized ABP.

• Identity testing of a generalized ABP over Mat𝑚(Q) reduces to PIT of
𝑚 × 𝑚 matrix of noncommutative ABPs.

A Matrix Shift

• Let 𝑟(𝑥1 , . . . , 𝑥𝑛) is the input rational formula of size 𝑠 and 𝑟 is defined at
(𝑝1 , . . . 𝑝𝑛) ∈ Mat𝑛𝑚(Q).

• Consider 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛).

• 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛) is a generalized recognizable series of size at most
2𝑠 [Volčič].

• RIT of 𝑟 now reduces to identity testing of a generalized ABP.

• Identity testing of a generalized ABP over Mat𝑚(Q) reduces to PIT of
𝑚 × 𝑚 matrix of noncommutative ABPs.

A Matrix Shift

• Let 𝑟(𝑥1 , . . . , 𝑥𝑛) is the input rational formula of size 𝑠 and 𝑟 is defined at
(𝑝1 , . . . 𝑝𝑛) ∈ Mat𝑛𝑚(Q).

• Consider 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛).

• 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛) is a generalized recognizable series of size at most
2𝑠 [Volčič].

• RIT of 𝑟 now reduces to identity testing of a generalized ABP.

• Identity testing of a generalized ABP over Mat𝑚(Q) reduces to PIT of
𝑚 × 𝑚 matrix of noncommutative ABPs.

Strong Hitting Set

• Observe that, 𝑟 is defined on a matrix tuple, if for every inverse gate it
evaluates to an invertible matrix.

Definition
ℋ ∈ Mat𝑛

𝑑
(Q) is a strong hitting set for a circuit class 𝒞 ⊆ Q⦓𝑥1 , . . . , 𝑥𝑛⦔, if for

every nonzero 𝑟 ∈ 𝒞, there exists some (𝑝1 , . . . , 𝑝𝑛) ∈ ℋ s.t. 𝑟(𝑝1 , . . . , 𝑝𝑛)is
invertible.

• The existence follows from the result of Ivanyos, Qiao and
Subrahmanyam (2018).

• Our refined goal is now to construct a strong hitting set for rational
formulas of inversion height one.

Strong Hitting Set

• Observe that, 𝑟 is defined on a matrix tuple, if for every inverse gate it
evaluates to an invertible matrix.

Definition
ℋ ∈ Mat𝑛

𝑑
(Q) is a strong hitting set for a circuit class 𝒞 ⊆ Q⦓𝑥1 , . . . , 𝑥𝑛⦔, if for

every nonzero 𝑟 ∈ 𝒞, there exists some (𝑝1 , . . . , 𝑝𝑛) ∈ ℋ s.t. 𝑟(𝑝1 , . . . , 𝑝𝑛)

is
invertible.

• The existence follows from the result of Ivanyos, Qiao and
Subrahmanyam (2018).

• Our refined goal is now to construct a strong hitting set for rational
formulas of inversion height one.

Strong Hitting Set

• Observe that, 𝑟 is defined on a matrix tuple, if for every inverse gate it
evaluates to an invertible matrix.

Definition
ℋ ∈ Mat𝑛

𝑑
(Q) is a strong hitting set for a circuit class 𝒞 ⊆ Q⦓𝑥1 , . . . , 𝑥𝑛⦔, if for

every nonzero 𝑟 ∈ 𝒞, there exists some (𝑝1 , . . . , 𝑝𝑛) ∈ ℋ s.t. 𝑟(𝑝1 , . . . , 𝑝𝑛)is
invertible.

• The existence follows from the result of Ivanyos, Qiao and
Subrahmanyam (2018).

• Our refined goal is now to construct a strong hitting set for rational
formulas of inversion height one.

Strong Hitting Set

• Observe that, 𝑟 is defined on a matrix tuple, if for every inverse gate it
evaluates to an invertible matrix.

Definition
ℋ ∈ Mat𝑛

𝑑
(Q) is a strong hitting set for a circuit class 𝒞 ⊆ Q⦓𝑥1 , . . . , 𝑥𝑛⦔, if for

every nonzero 𝑟 ∈ 𝒞, there exists some (𝑝1 , . . . , 𝑝𝑛) ∈ ℋ s.t. 𝑟(𝑝1 , . . . , 𝑝𝑛)is
invertible.

• The existence follows from the result of Ivanyos, Qiao and
Subrahmanyam (2018).

• Our refined goal is now to construct a strong hitting set for rational
formulas of inversion height one.

Our Approach

Hitting Set of height 2

Hitting Set of Generalized ABP

Strong Hitting Set of height 1

scaling

Our Approach

• Intuitively, a division algebra is a matrix algebra where we can always do
additions, multiplications and divisions.

• We can define an ABP (or an automaton) over a division algebra 𝐷 where
the edge labels are of form

∑
𝑝𝑖𝑥𝑖𝑞𝑖 for some 𝑝𝑖 , 𝑞𝑖 ∈ 𝐷.

• Constructing a strong hitting set for a division algebra ABP reduces to
PIT of a product of ROABPs.

• A hitting set ℋ is a division algebra hitting set if ℋ ∈ 𝐷𝑛 for some
division algebra 𝐷. Any division algebra hitting set is a strong hitting set.

• Refined goal is to compute a division algebra hitting set for
noncommutative formulas.

Our Approach

• Intuitively, a division algebra is a matrix algebra where we can always do
additions, multiplications and divisions.

• We can define an ABP (or an automaton) over a division algebra 𝐷 where
the edge labels are of form

∑
𝑝𝑖𝑥𝑖𝑞𝑖 for some 𝑝𝑖 , 𝑞𝑖 ∈ 𝐷.

• Constructing a strong hitting set for a division algebra ABP reduces to
PIT of a product of ROABPs.

• A hitting set ℋ is a division algebra hitting set if ℋ ∈ 𝐷𝑛 for some
division algebra 𝐷. Any division algebra hitting set is a strong hitting set.

• Refined goal is to compute a division algebra hitting set for
noncommutative formulas.

Our Approach

• Intuitively, a division algebra is a matrix algebra where we can always do
additions, multiplications and divisions.

• We can define an ABP (or an automaton) over a division algebra 𝐷 where
the edge labels are of form

∑
𝑝𝑖𝑥𝑖𝑞𝑖 for some 𝑝𝑖 , 𝑞𝑖 ∈ 𝐷.

• Constructing a strong hitting set for a division algebra ABP reduces to
PIT of a product of ROABPs.

• A hitting set ℋ is a division algebra hitting set if ℋ ∈ 𝐷𝑛 for some
division algebra 𝐷. Any division algebra hitting set is a strong hitting set.

• Refined goal is to compute a division algebra hitting set for
noncommutative formulas.

Our Approach

• Intuitively, a division algebra is a matrix algebra where we can always do
additions, multiplications and divisions.

• We can define an ABP (or an automaton) over a division algebra 𝐷 where
the edge labels are of form

∑
𝑝𝑖𝑥𝑖𝑞𝑖 for some 𝑝𝑖 , 𝑞𝑖 ∈ 𝐷.

• Constructing a strong hitting set for a division algebra ABP reduces to
PIT of a product of ROABPs.

• A hitting set ℋ is a division algebra hitting set if ℋ ∈ 𝐷𝑛 for some
division algebra 𝐷. Any division algebra hitting set is a strong hitting set.

• Refined goal is to compute a division algebra hitting set for
noncommutative formulas.

Our Approach

• Intuitively, a division algebra is a matrix algebra where we can always do
additions, multiplications and divisions.

• We can define an ABP (or an automaton) over a division algebra 𝐷 where
the edge labels are of form

∑
𝑝𝑖𝑥𝑖𝑞𝑖 for some 𝑝𝑖 , 𝑞𝑖 ∈ 𝐷.

• Constructing a strong hitting set for a division algebra ABP reduces to
PIT of a product of ROABPs.

• A hitting set ℋ is a division algebra hitting set if ℋ ∈ 𝐷𝑛 for some
division algebra 𝐷. Any division algebra hitting set is a strong hitting set.

• Refined goal is to compute a division algebra hitting set for
noncommutative formulas.

Our Approach

Hitting Set of height 2

Hitting Set of Generalized ABP

Strong Hitting Set of height 1

Strong Hitting Set of DA ABP

Division Algebra Hitting set of height 0

scaling

scaling

PIT of ROABP

ROABP :

s

1

2

3

4

5

6

t

3

−5

𝑥3
1 + 2𝑥1

−3𝑥2
1 + 4𝑥1 + 1

2𝑥1 − 5

−2𝑥3
2

𝑥2
2 + 7𝑥2

5𝑥3
2 − 𝑥2

−1

2

Figure: a bivariate ROABP

• Hitting set generator : A polynomial map 𝒢 : F𝑡 → F𝑛 is a generator for
a circuit class 𝒞 if for every 𝑛-variate polynomial 𝑓 in 𝒞, 𝑓 ≡ 0 if and only
if the 𝑡-variate polynomial 𝑓 ◦ 𝒢 ≡ 0.

PIT of ROABP

ROABP :

s

1

2

3

4

5

6

t

3

−5

𝑥3
1 + 2𝑥1

−3𝑥2
1 + 4𝑥1 + 1

2𝑥1 − 5

−2𝑥3
2

𝑥2
2 + 7𝑥2

5𝑥3
2 − 𝑥2

−1

2

Figure: a bivariate ROABP

• Hitting set generator : A polynomial map 𝒢 : F𝑡 → F𝑛 is a generator for
a circuit class 𝒞 if for every 𝑛-variate polynomial 𝑓 in 𝒞, 𝑓 ≡ 0 if and only
if the 𝑡-variate polynomial 𝑓 ◦ 𝒢 ≡ 0.

PIT of ROABP

ROABP :

s

1

2

3

4

5

6

t

3

−5

𝑥3
1 + 2𝑥1

−3𝑥2
1 + 4𝑥1 + 1

2𝑥1 − 5

−2𝑥3
2

𝑥2
2 + 7𝑥2

5𝑥3
2 − 𝑥2

−1

2

Figure: a bivariate ROABP

• Hitting set generator : A polynomial map 𝒢 : F𝑡 → F𝑛 is a generator for
a circuit class 𝒞 if for every 𝑛-variate polynomial 𝑓 in 𝒞, 𝑓 ≡ 0 if and only
if the 𝑡-variate polynomial 𝑓 ◦ 𝒢 ≡ 0.

Noncommutative PIT

• [Forbes and Shpilka (2013)] For a 𝐷-variate ROABP, we can construct a
hitting set generator 𝒢 : Flog𝐷 → F𝐷 , therefore a hitting set of
quasi-polynomial size.

• The main idea is to merge the adjacent layers and reduce the number of
variables.

• Noncommutative ABP PIT via commutative ROABP PIT by the following
matrix substitutions.

𝑀𝑖 =



0 𝑧 𝑖1 0 · · · 0
0 0 𝑧 𝑖2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 𝑧 𝑖
𝑑

0 0 · · · 0 0


, 𝑓 (𝑀1 , . . . , 𝑀𝑛) =


★ .

Noncommutative PIT

• [Forbes and Shpilka (2013)] For a 𝐷-variate ROABP, we can construct a
hitting set generator 𝒢 : Flog𝐷 → F𝐷 , therefore a hitting set of
quasi-polynomial size.

• The main idea is to merge the adjacent layers and reduce the number of
variables.

• Noncommutative ABP PIT via commutative ROABP PIT by the following
matrix substitutions.

𝑀𝑖 =



0 𝑧 𝑖1 0 · · · 0
0 0 𝑧 𝑖2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 𝑧 𝑖
𝑑

0 0 · · · 0 0


, 𝑓 (𝑀1 , . . . , 𝑀𝑛) =


★ .

Noncommutative PIT

• [Forbes and Shpilka (2013)] For a 𝐷-variate ROABP, we can construct a
hitting set generator 𝒢 : Flog𝐷 → F𝐷 , therefore a hitting set of
quasi-polynomial size.

• The main idea is to merge the adjacent layers and reduce the number of
variables.

• Noncommutative ABP PIT via commutative ROABP PIT by the following
matrix substitutions.

𝑀𝑖 =



0 𝑧 𝑖1 0 · · · 0
0 0 𝑧 𝑖2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 𝑧 𝑖
𝑑

0 0 · · · 0 0


,

𝑓 (𝑀1 , . . . , 𝑀𝑛) =


★ .

Noncommutative PIT

• [Forbes and Shpilka (2013)] For a 𝐷-variate ROABP, we can construct a
hitting set generator 𝒢 : Flog𝐷 → F𝐷 , therefore a hitting set of
quasi-polynomial size.

• The main idea is to merge the adjacent layers and reduce the number of
variables.

• Noncommutative ABP PIT via commutative ROABP PIT by the following
matrix substitutions.

𝑀𝑖 =



0 𝑧 𝑖1 0 · · · 0
0 0 𝑧 𝑖2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 𝑧 𝑖
𝑑

0 0 · · · 0 0


, 𝑓 (𝑀1 , . . . , 𝑀𝑛) =


★ .

Cyclic Division Algebra

𝐹 : Q(𝑧) where 𝑧 is a new commuting indeterminate.

𝐾 : 𝐹(𝜔) where 𝜔 : ℓ 𝑡ℎ primitive roots of unity (𝜔ℓ = 1).
𝜎(𝜔) = 𝜔𝑘 where 𝑘 is relatively prime to ℓ (𝜎 : 𝐾 → 𝐾 is an automorphism
that fixes 𝐹).

𝑀 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
𝑧 0 · · · 0 0


, 𝑁 =


𝜔 0 0 0 0
0 𝜎(𝜔) 0 0 0

0 0
. . . 0 0

0 0 0 𝜎ℓ−2(𝜔) 0
0 0 0 0 𝜎ℓ−1(𝜔)


.

𝐷 : 𝐹-linear combination of 𝑀 𝑖𝑁 𝑗 (wlog 0 ≤ 𝑖 , 𝑗 ≤ ℓ − 1).
𝐷 = (𝐾/𝐹, 𝜎, 𝑧) : Cyclic division algebra of index ℓ .

Cyclic Division Algebra

𝐹 : Q(𝑧) where 𝑧 is a new commuting indeterminate.
𝐾 : 𝐹(𝜔) where 𝜔 : ℓ 𝑡ℎ primitive roots of unity (𝜔ℓ = 1).

𝜎(𝜔) = 𝜔𝑘 where 𝑘 is relatively prime to ℓ (𝜎 : 𝐾 → 𝐾 is an automorphism
that fixes 𝐹).

𝑀 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
𝑧 0 · · · 0 0


, 𝑁 =


𝜔 0 0 0 0
0 𝜎(𝜔) 0 0 0

0 0
. . . 0 0

0 0 0 𝜎ℓ−2(𝜔) 0
0 0 0 0 𝜎ℓ−1(𝜔)


.

𝐷 : 𝐹-linear combination of 𝑀 𝑖𝑁 𝑗 (wlog 0 ≤ 𝑖 , 𝑗 ≤ ℓ − 1).
𝐷 = (𝐾/𝐹, 𝜎, 𝑧) : Cyclic division algebra of index ℓ .

Cyclic Division Algebra

𝐹 : Q(𝑧) where 𝑧 is a new commuting indeterminate.
𝐾 : 𝐹(𝜔) where 𝜔 : ℓ 𝑡ℎ primitive roots of unity (𝜔ℓ = 1).
𝜎(𝜔) = 𝜔𝑘 where 𝑘 is relatively prime to ℓ (𝜎 : 𝐾 → 𝐾 is an automorphism
that fixes 𝐹).

𝑀 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
𝑧 0 · · · 0 0


, 𝑁 =


𝜔 0 0 0 0
0 𝜎(𝜔) 0 0 0

0 0
. . . 0 0

0 0 0 𝜎ℓ−2(𝜔) 0
0 0 0 0 𝜎ℓ−1(𝜔)


.

𝐷 : 𝐹-linear combination of 𝑀 𝑖𝑁 𝑗 (wlog 0 ≤ 𝑖 , 𝑗 ≤ ℓ − 1).
𝐷 = (𝐾/𝐹, 𝜎, 𝑧) : Cyclic division algebra of index ℓ .

Cyclic Division Algebra

𝐹 : Q(𝑧) where 𝑧 is a new commuting indeterminate.
𝐾 : 𝐹(𝜔) where 𝜔 : ℓ 𝑡ℎ primitive roots of unity (𝜔ℓ = 1).
𝜎(𝜔) = 𝜔𝑘 where 𝑘 is relatively prime to ℓ (𝜎 : 𝐾 → 𝐾 is an automorphism
that fixes 𝐹).

𝑀 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
𝑧 0 · · · 0 0


,

𝑁 =


𝜔 0 0 0 0
0 𝜎(𝜔) 0 0 0

0 0
. . . 0 0

0 0 0 𝜎ℓ−2(𝜔) 0
0 0 0 0 𝜎ℓ−1(𝜔)


.

𝐷 : 𝐹-linear combination of 𝑀 𝑖𝑁 𝑗 (wlog 0 ≤ 𝑖 , 𝑗 ≤ ℓ − 1).
𝐷 = (𝐾/𝐹, 𝜎, 𝑧) : Cyclic division algebra of index ℓ .

Cyclic Division Algebra

𝐹 : Q(𝑧) where 𝑧 is a new commuting indeterminate.
𝐾 : 𝐹(𝜔) where 𝜔 : ℓ 𝑡ℎ primitive roots of unity (𝜔ℓ = 1).
𝜎(𝜔) = 𝜔𝑘 where 𝑘 is relatively prime to ℓ (𝜎 : 𝐾 → 𝐾 is an automorphism
that fixes 𝐹).

𝑀 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
𝑧 0 · · · 0 0


, 𝑁 =


𝜔 0 0 0 0
0 𝜎(𝜔) 0 0 0

0 0
. . . 0 0

0 0 0 𝜎ℓ−2(𝜔) 0
0 0 0 0 𝜎ℓ−1(𝜔)


.

𝐷 : 𝐹-linear combination of 𝑀 𝑖𝑁 𝑗 (wlog 0 ≤ 𝑖 , 𝑗 ≤ ℓ − 1).
𝐷 = (𝐾/𝐹, 𝜎, 𝑧) : Cyclic division algebra of index ℓ .

Cyclic Division Algebra

𝐹 : Q(𝑧) where 𝑧 is a new commuting indeterminate.
𝐾 : 𝐹(𝜔) where 𝜔 : ℓ 𝑡ℎ primitive roots of unity (𝜔ℓ = 1).
𝜎(𝜔) = 𝜔𝑘 where 𝑘 is relatively prime to ℓ (𝜎 : 𝐾 → 𝐾 is an automorphism
that fixes 𝐹).

𝑀 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
𝑧 0 · · · 0 0


, 𝑁 =


𝜔 0 0 0 0
0 𝜎(𝜔) 0 0 0

0 0
. . . 0 0

0 0 0 𝜎ℓ−2(𝜔) 0
0 0 0 0 𝜎ℓ−1(𝜔)


.

𝐷 : 𝐹-linear combination of 𝑀 𝑖𝑁 𝑗 (wlog 0 ≤ 𝑖 , 𝑗 ≤ ℓ − 1).
𝐷 = (𝐾/𝐹, 𝜎, 𝑧) : Cyclic division algebra of index ℓ .

Division Algebra HS for noncommutative formulas

Matrix representation of a division
algebra element:

0 𝑏 0 · · · 0
0 0 𝜎(𝑏) · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 𝜎ℓ−2(𝑏)
𝑧𝜎ℓ−1(𝑏) 0 · · · 0 0



Matrix representation of
Forbes-Shpilka hitting set:

0 𝑓 𝑖1 (�̄�) 0 · · · 0
0 0 𝑓 𝑖2 (�̄�) · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 𝑓 𝑖
𝐷
(�̄�)

0 0 · · · 0 0


.

The goal is to find 𝜔 and 𝜎 such that each 𝑓𝑗(�̄�) is in 𝐾 = 𝐹(𝜔) and
𝜎(𝑓𝑗(�̄�)) = 𝑓𝑗+1(�̄�).

Division Algebra HS for noncommutative formulas

Matrix representation of a division
algebra element:

0 𝑏 0 · · · 0
0 0 𝜎(𝑏) · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 𝜎ℓ−2(𝑏)
𝑧𝜎ℓ−1(𝑏) 0 · · · 0 0



Matrix representation of
Forbes-Shpilka hitting set:

0 𝑓 𝑖1 (�̄�) 0 · · · 0
0 0 𝑓 𝑖2 (�̄�) · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 𝑓 𝑖
𝐷
(�̄�)

0 0 · · · 0 0


.

The goal is to find 𝜔 and 𝜎 such that each 𝑓𝑗(�̄�) is in 𝐾 = 𝐹(𝜔) and
𝜎(𝑓𝑗(�̄�)) = 𝑓𝑗+1(�̄�).

Division Algebra HS for noncommutative formulas

Matrix representation of our hitting set over Q(𝜔, 𝑧):

𝑀(𝑥𝑖) =



0 𝑓 𝑖0 (�̄�) 0 · · · 0 0 · · · 0
0 0 𝑓 𝑖1 (�̄�) · · · 0 0 · · · 0
...

...
. . .

. . .
...

...
. . .

...

0 0 0 · · · 𝑓 𝑖
𝐷−1(�̄�) 0 · · · 0

0 0 0 · · · 0 𝑓 𝑖
𝐷
(�̄�) · · · 0

...
...

. . .
. . .

...
...

. . .
...

0 0 0 · · · 0 0 · · · 𝑓 𝑖
ℓ−2(�̄�)

𝑧 𝑓 𝑖
ℓ−1(�̄�) 0 0 · · · 0 0 · · · 0


.

Strong HS for a division algebra ABP

• Every nonzero generalized ABP over a division algebra has a witness of
form:

𝑀(𝑥𝑘) =


0 𝑝𝑘1 0 · · · 0
0 0 𝑝𝑘2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 𝑝𝑘(𝑑−1)
𝑝𝑘𝑑 0 · · · 0 0


.

• Write each 𝑝𝑘𝑙 =
∑
𝑦𝑖 𝑗𝑘𝑙𝐶𝑖 𝑗 where 𝐶𝑖 𝑗s are the division algebra basis.

• Image will be a block diagonal matrix and for each block, the matrix
entry will be an ROABP over same partition.

• Finding invertible image reduces to ROABP PIT.

Strong HS for a division algebra ABP

• Every nonzero generalized ABP over a division algebra has a witness of
form:

𝑀(𝑥𝑘) =


0 𝑝𝑘1 0 · · · 0
0 0 𝑝𝑘2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 𝑝𝑘(𝑑−1)
𝑝𝑘𝑑 0 · · · 0 0


.

• Write each 𝑝𝑘𝑙 =
∑
𝑦𝑖 𝑗𝑘𝑙𝐶𝑖 𝑗 where 𝐶𝑖 𝑗s are the division algebra basis.

• Image will be a block diagonal matrix and for each block, the matrix
entry will be an ROABP over same partition.

• Finding invertible image reduces to ROABP PIT.

Strong HS for a division algebra ABP

• Every nonzero generalized ABP over a division algebra has a witness of
form:

𝑀(𝑥𝑘) =


0 𝑝𝑘1 0 · · · 0
0 0 𝑝𝑘2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 𝑝𝑘(𝑑−1)
𝑝𝑘𝑑 0 · · · 0 0


.

• Write each 𝑝𝑘𝑙 =
∑
𝑦𝑖 𝑗𝑘𝑙𝐶𝑖 𝑗 where 𝐶𝑖 𝑗s are the division algebra basis.

• Image will be a block diagonal matrix and for each block, the matrix
entry will be an ROABP over same partition.

• Finding invertible image reduces to ROABP PIT.

Our Approach

Hitting Set of height 2

Hitting Set of Generalized ABP

Strong Hitting Set of height 1

Strong Hitting Set of DA ABP

Division Algebra Hitting set of height 0

scaling

scaling

Why do we stop at height two?

• Inductively build a hitting set for formulas of height ℎ for every ℎ (need
more).

• Inductively build a strong hitting set for formulas of height ℎ for every ℎ
(don’t know).

• Inductively build a division algebra hitting set for formulas of height ℎ
for every ℎ (don’t know).

• Suffices to find a division algebra hitting set for a division algebra ABP.

Can we embed the strong hitting set inside a larger dimensional division
algebra and continue the induction?

Why do we stop at height two?

• Inductively build a hitting set for formulas of height ℎ for every ℎ (need
more).

• Inductively build a strong hitting set for formulas of height ℎ for every ℎ
(don’t know).

• Inductively build a division algebra hitting set for formulas of height ℎ
for every ℎ (don’t know).

• Suffices to find a division algebra hitting set for a division algebra ABP.

Can we embed the strong hitting set inside a larger dimensional division
algebra and continue the induction?

Why do we stop at height two?

• Inductively build a hitting set for formulas of height ℎ for every ℎ (need
more).

• Inductively build a strong hitting set for formulas of height ℎ for every ℎ
(don’t know).

• Inductively build a division algebra hitting set for formulas of height ℎ
for every ℎ (don’t know).

• Suffices to find a division algebra hitting set for a division algebra ABP.

Can we embed the strong hitting set inside a larger dimensional division
algebra and continue the induction?

Why do we stop at height two?

• Inductively build a hitting set for formulas of height ℎ for every ℎ (need
more).

• Inductively build a strong hitting set for formulas of height ℎ for every ℎ
(don’t know).

• Inductively build a division algebra hitting set for formulas of height ℎ
for every ℎ (don’t know).

• Suffices to find a division algebra hitting set for a division algebra ABP.

Can we embed the strong hitting set inside a larger dimensional division
algebra and continue the induction?

Why do we stop at height two?

• Inductively build a hitting set for formulas of height ℎ for every ℎ (need
more).

• Inductively build a strong hitting set for formulas of height ℎ for every ℎ
(don’t know).

• Inductively build a division algebra hitting set for formulas of height ℎ
for every ℎ (don’t know).

• Suffices to find a division algebra hitting set for a division algebra ABP.

Can we embed the strong hitting set inside a larger dimensional division
algebra and continue the induction?

Thank You

	Connection to Cyclic Division Algebra

