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Polynomial Identity Testing

• Polynomial identity testing (PIT): to decide if a given
circuit/ABP/formula computes the zero polynomial.

• Equivalently, to decide whether there exists a nonzero evaluation.

• PIT is of two types: white-box and black-box.

• In black-box PIT, the polynomial is given as an evaluation oracle and the
goal is to find a nonzero evaluation querying the oracle.

• The goal is to output a list of evaluations that works for every polynomial.
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Polynomial Identity Testing

Definition (Hitting Set)
We say ℋ ∈ Q𝑛 is a hitting set for a circuit class 𝒞 ⊆ Q[𝑥1 , . . . , 𝑥𝑛], if for every
nonzero 𝑓 ∈ 𝒞, there exists some (𝑎1 , . . . , 𝑎𝑛) ∈ ℋ s.t. 𝑓 (𝑎1 , . . . , 𝑎𝑛) ≠ 0.

• Polynomial Identity Lemma : A randomized polynomial time black-box
PIT algorithm for commutative circuits. Derandomizing PIT is open.

• Efficient derandomization is known for some special cases, ROABP is of
our particular interest.
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Noncommutative PIT

• Noncommutative PIT: to decide if a given noncommutative
circuit/ABP/formula computes the zero polynomial in the free algebra.

Example
(𝑥1 + 𝑥2)(𝑥1 − 𝑥2) ≠ 𝑥2

1 − 𝑥
2
2 ,

(𝑥1 + 𝑥2)(𝑥1 − 𝑥2) = 𝑥2
1 − 𝑥

2
2 − 𝑥1𝑥2 + 𝑥2𝑥1.

• The black-box PIT is to efficiently find a set of matrix evaluations
(𝑝1 , . . . , 𝑝𝑛) ∈ Mat𝑛

𝑑
(Q) of small size such that for some evaluation

𝑓 (𝑝1 , . . . , 𝑝𝑛) ≠ 0.

• [Forbes and Shpilka (2013)] Quasipolynomial-size hitting set for
noncommutative formulas (and ABPs) s.t. 𝑓 (𝑝1 , . . . , 𝑝𝑛) is nonzero.
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Noncommutative Rational Functions

• Commutative computation with inverses : admits a canonical
representation, each element can be expressed as 𝑓 𝑔−1 for some
𝑓 , 𝑔 ∈ Q[𝑥1 , . . . , 𝑥𝑛].

• Noncommutative computation with inverses: computes noncommutative
rational functions, elements of the universal free skew field.

• Two noncommutative rational expressions compute same rational
function in the free skew-field if they agree on evaluations on every
matrix tuple whenever defined [Amitsur (1966)].

• Unlike commutative setting, it does not have any canonical
representation.

• Inversion height is the maximum number of nested inverses. Bounded by
𝑂(log 𝑠) for a size 𝑠 formula [HW15].
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Rational Identity Testing

• Rational Identity Testing : Given a noncommutative rational formula,
determine if it computes zero in Q⦓𝑥1 , . . . , 𝑥𝑛⦔.

• Equivalently, decide whether there exists a nonzero matrix evaluation or
not.

Example
(𝑥 + 𝑥𝑦−1𝑥)−1 + (𝑥 + 𝑦)−1 − 𝑥−1, known as Hua’s identity [Hua (1949)], is zero
in the free skew-field.
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Known Results

• RIT for rational formulas can be solved in deterministic polynomial time
([GGOW16], [IQS18], [HH21]) in white-box.

• In black-box, randomized polynomial time [DM17].

• Derandomization of black-box RIT is open.

• Can we derandomize even for rational formulas of bounded inversion
height?
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Our Result

Theorem (RIT of inversion height two)
We can construct a quasipolynomial-size hitting set for the class of noncommutative
rational formulas of inversion height two.



A Toy Example

• Let 𝑟(𝑥1 , . . . , 𝑥𝑛) is the input rational formula of size 𝑠 and 𝑟 is defined at
(𝑎1 , . . . , 𝑎𝑛) ∈ Q𝑛 .

• Consider 𝑟(𝑥1 + 𝑎1 , . . . , 𝑥𝑛 + 𝑎𝑛).

• Inverse to power series transformation using Taylor series:
( 𝑓 (𝑥 + 𝑎))−1 = ( 𝑓 (𝑎) + 𝑟𝑒𝑠𝑡)−1.

• 𝑟(𝑥1 + 𝑎1 , . . . , 𝑥𝑛 + 𝑎𝑛) is a recognizable series of size 2𝑠.

• RIT of 𝑟 now reduces to PIT of a noncommutative ABP.

𝑟 may not be defined at any (𝑎1 , . . . 𝑎𝑛) ∈ Q𝑛 , for example, 𝑟 = (𝑥1𝑥2 − 𝑥2𝑥1)−1.
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A Matrix Shift

• There exists (𝑝1 , . . . , 𝑝𝑛) ∈ Mat𝑛
𝑑
(Q) such that 𝑟 is defined at that matrix

tuple.

• Consider 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛) and expand.

• It produces terms 𝑝1𝑥2𝑝3𝑥4, 𝑝1𝑥2𝑥3𝑝4 etc where 𝑝1𝑥1𝑝2𝑥2 and 𝑝1𝑝2𝑥1𝑥2
are two different words.

• These are called generalized monomials and studied by Volčič (2018).
Generalized series and generalized polynomial are defined accordingly.

• We can define a generalized ABP (or an automaton) over Mat𝑚(Q) where
the edge labels are of form

∑
𝑝𝑖𝑥𝑖𝑞𝑖 for some 𝑝𝑖 , 𝑞𝑖 ∈ Mat𝑚(Q).
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are two different words.

• These are called generalized monomials and studied by Volčič (2018).
Generalized series and generalized polynomial are defined accordingly.

• We can define a generalized ABP (or an automaton) over Mat𝑚(Q) where
the edge labels are of form

∑
𝑝𝑖𝑥𝑖𝑞𝑖 for some 𝑝𝑖 , 𝑞𝑖 ∈ Mat𝑚(Q).



A Matrix Shift

• Let 𝑟(𝑥1 , . . . , 𝑥𝑛) is the input rational formula of size 𝑠 and 𝑟 is defined at
(𝑝1 , . . . 𝑝𝑛) ∈ Mat𝑛𝑚(Q).

• Consider 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛).

• 𝑟(𝑥1 + 𝑝1 , . . . , 𝑥𝑛 + 𝑝𝑛) is a generalized recognizable series of size at most
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• Identity testing of a generalized ABP over Mat𝑚(Q) reduces to PIT of
𝑚 × 𝑚 matrix of noncommutative ABPs.
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Strong Hitting Set

• Observe that, 𝑟 is defined on a matrix tuple, if for every inverse gate it
evaluates to an invertible matrix.

Definition
ℋ ∈ Mat𝑛

𝑑
(Q) is a strong hitting set for a circuit class 𝒞 ⊆ Q⦓𝑥1 , . . . , 𝑥𝑛⦔, if for

every nonzero 𝑟 ∈ 𝒞, there exists some (𝑝1 , . . . , 𝑝𝑛) ∈ ℋ s.t. 𝑟(𝑝1 , . . . , 𝑝𝑛)is
invertible.

• The existence follows from the result of Ivanyos, Qiao and
Subrahmanyam (2018).

• Our refined goal is now to construct a strong hitting set for rational
formulas of inversion height one.



Strong Hitting Set

• Observe that, 𝑟 is defined on a matrix tuple, if for every inverse gate it
evaluates to an invertible matrix.

Definition
ℋ ∈ Mat𝑛

𝑑
(Q) is a strong hitting set for a circuit class 𝒞 ⊆ Q⦓𝑥1 , . . . , 𝑥𝑛⦔, if for

every nonzero 𝑟 ∈ 𝒞, there exists some (𝑝1 , . . . , 𝑝𝑛) ∈ ℋ s.t. 𝑟(𝑝1 , . . . , 𝑝𝑛)

is
invertible.

• The existence follows from the result of Ivanyos, Qiao and
Subrahmanyam (2018).

• Our refined goal is now to construct a strong hitting set for rational
formulas of inversion height one.



Strong Hitting Set

• Observe that, 𝑟 is defined on a matrix tuple, if for every inverse gate it
evaluates to an invertible matrix.

Definition
ℋ ∈ Mat𝑛

𝑑
(Q) is a strong hitting set for a circuit class 𝒞 ⊆ Q⦓𝑥1 , . . . , 𝑥𝑛⦔, if for

every nonzero 𝑟 ∈ 𝒞, there exists some (𝑝1 , . . . , 𝑝𝑛) ∈ ℋ s.t. 𝑟(𝑝1 , . . . , 𝑝𝑛)is
invertible.

• The existence follows from the result of Ivanyos, Qiao and
Subrahmanyam (2018).

• Our refined goal is now to construct a strong hitting set for rational
formulas of inversion height one.



Strong Hitting Set

• Observe that, 𝑟 is defined on a matrix tuple, if for every inverse gate it
evaluates to an invertible matrix.

Definition
ℋ ∈ Mat𝑛

𝑑
(Q) is a strong hitting set for a circuit class 𝒞 ⊆ Q⦓𝑥1 , . . . , 𝑥𝑛⦔, if for

every nonzero 𝑟 ∈ 𝒞, there exists some (𝑝1 , . . . , 𝑝𝑛) ∈ ℋ s.t. 𝑟(𝑝1 , . . . , 𝑝𝑛)is
invertible.

• The existence follows from the result of Ivanyos, Qiao and
Subrahmanyam (2018).

• Our refined goal is now to construct a strong hitting set for rational
formulas of inversion height one.



Our Approach

Hitting Set of height 2

Hitting Set of Generalized ABP

Strong Hitting Set of height 1

scaling



Our Approach

• Intuitively, a division algebra is a matrix algebra where we can always do
additions, multiplications and divisions.

• We can define an ABP (or an automaton) over a division algebra 𝐷 where
the edge labels are of form

∑
𝑝𝑖𝑥𝑖𝑞𝑖 for some 𝑝𝑖 , 𝑞𝑖 ∈ 𝐷.

• Constructing a strong hitting set for a division algebra ABP reduces to
PIT of a product of ROABPs.

• A hitting set ℋ is a division algebra hitting set if ℋ ∈ 𝐷𝑛 for some
division algebra 𝐷. Any division algebra hitting set is a strong hitting set.

• Refined goal is to compute a division algebra hitting set for
noncommutative formulas.
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PIT of ROABP
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Figure: a bivariate ROABP

• Hitting set generator : A polynomial map 𝒢 : F𝑡 → F𝑛 is a generator for
a circuit class 𝒞 if for every 𝑛-variate polynomial 𝑓 in 𝒞, 𝑓 ≡ 0 if and only
if the 𝑡-variate polynomial 𝑓 ◦ 𝒢 ≡ 0.
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Noncommutative PIT

• [Forbes and Shpilka (2013)] For a 𝐷-variate ROABP, we can construct a
hitting set generator 𝒢 : Flog𝐷 → F𝐷 , therefore a hitting set of
quasi-polynomial size.

• The main idea is to merge the adjacent layers and reduce the number of
variables.

• Noncommutative ABP PIT via commutative ROABP PIT by the following
matrix substitutions.

𝑀𝑖 =



0 𝑧 𝑖1 0 · · · 0
0 0 𝑧 𝑖2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 𝑧 𝑖
𝑑

0 0 · · · 0 0


, 𝑓 (𝑀1 , . . . , 𝑀𝑛) =


★ .
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Cyclic Division Algebra

𝐹 : Q(𝑧) where 𝑧 is a new commuting indeterminate.

𝐾 : 𝐹(𝜔) where 𝜔 : ℓ 𝑡ℎ primitive roots of unity (𝜔ℓ = 1).
𝜎(𝜔) = 𝜔𝑘 where 𝑘 is relatively prime to ℓ (𝜎 : 𝐾 → 𝐾 is an automorphism
that fixes 𝐹).

𝑀 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
𝑧 0 · · · 0 0


, 𝑁 =


𝜔 0 0 0 0
0 𝜎(𝜔) 0 0 0

0 0
. . . 0 0

0 0 0 𝜎ℓ−2(𝜔) 0
0 0 0 0 𝜎ℓ−1(𝜔)


.

𝐷 : 𝐹-linear combination of 𝑀 𝑖𝑁 𝑗 (wlog 0 ≤ 𝑖 , 𝑗 ≤ ℓ − 1).
𝐷 = (𝐾/𝐹, 𝜎, 𝑧) : Cyclic division algebra of index ℓ .
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Cyclic Division Algebra

𝐹 : Q(𝑧) where 𝑧 is a new commuting indeterminate.
𝐾 : 𝐹(𝜔) where 𝜔 : ℓ 𝑡ℎ primitive roots of unity (𝜔ℓ = 1).
𝜎(𝜔) = 𝜔𝑘 where 𝑘 is relatively prime to ℓ (𝜎 : 𝐾 → 𝐾 is an automorphism
that fixes 𝐹).

𝑀 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
𝑧 0 · · · 0 0


, 𝑁 =
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Division Algebra HS for noncommutative formulas

Matrix representation of a division
algebra element:

0 𝑏 0 · · · 0
0 0 𝜎(𝑏) · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 𝜎ℓ−2(𝑏)
𝑧𝜎ℓ−1(𝑏) 0 · · · 0 0



Matrix representation of
Forbes-Shpilka hitting set:

0 𝑓 𝑖1 (�̄�) 0 · · · 0
0 0 𝑓 𝑖2 (�̄�) · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 𝑓 𝑖
𝐷
(�̄�)

0 0 · · · 0 0


.

The goal is to find 𝜔 and 𝜎 such that each 𝑓𝑗(�̄�) is in 𝐾 = 𝐹(𝜔) and
𝜎( 𝑓𝑗(�̄�)) = 𝑓𝑗+1(�̄�).
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Division Algebra HS for noncommutative formulas

Matrix representation of our hitting set over Q(𝜔, 𝑧):

𝑀(𝑥𝑖) =



0 𝑓 𝑖0 (�̄�) 0 · · · 0 0 · · · 0
0 0 𝑓 𝑖1 (�̄�) · · · 0 0 · · · 0
...

...
. . .

. . .
...

...
. . .

...

0 0 0 · · · 𝑓 𝑖
𝐷−1(�̄�) 0 · · · 0

0 0 0 · · · 0 𝑓 𝑖
𝐷
(�̄�) · · · 0

...
...

. . .
. . .

...
...

. . .
...

0 0 0 · · · 0 0 · · · 𝑓 𝑖
ℓ−2(�̄�)

𝑧 𝑓 𝑖
ℓ−1(�̄�) 0 0 · · · 0 0 · · · 0


.



Strong HS for a division algebra ABP

• Every nonzero generalized ABP over a division algebra has a witness of
form:

𝑀(𝑥𝑘) =


0 𝑝𝑘1 0 · · · 0
0 0 𝑝𝑘2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 𝑝𝑘(𝑑−1)
𝑝𝑘𝑑 0 · · · 0 0


.

• Write each 𝑝𝑘𝑙 =
∑
𝑦𝑖 𝑗𝑘𝑙𝐶𝑖 𝑗 where 𝐶𝑖 𝑗s are the division algebra basis.

• Image will be a block diagonal matrix and for each block, the matrix
entry will be an ROABP over same partition.

• Finding invertible image reduces to ROABP PIT.
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Our Approach

Hitting Set of height 2

Hitting Set of Generalized ABP

Strong Hitting Set of height 1

Strong Hitting Set of DA ABP

Division Algebra Hitting set of height 0

scaling

scaling



Why do we stop at height two?

• Inductively build a hitting set for formulas of height ℎ for every ℎ (need
more).

• Inductively build a strong hitting set for formulas of height ℎ for every ℎ
(don’t know).

• Inductively build a division algebra hitting set for formulas of height ℎ
for every ℎ (don’t know).

• Suffices to find a division algebra hitting set for a division algebra ABP.

Can we embed the strong hitting set inside a larger dimensional division
algebra and continue the induction?
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