
A Quadratic Lower Bound against Homogeneous

Non-Commutative Circuits

Prerona Chatterjee [joint work with Pavel Hrubeš (Institute of Mathematics, CAS)]

Tel Aviv University

March, 31, 2023

Algebraic Circuits

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C

α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

Objects of Study

Polynomials over n variables of degree d .

Central Question: Find explicit polynomials that

cannot be computed by efficient circuits.

[Baur-Strassen]: Any algebraic circuit computing∑n
i=1 x

d
i requires Ω(n log d) wires.

1

Algebraic Circuits

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

Objects of Study

Polynomials over n variables of degree d .

Central Question: Find explicit polynomials that

cannot be computed by efficient circuits.

[Baur-Strassen]: Any algebraic circuit computing∑n
i=1 x

d
i requires Ω(n log d) wires.

1

Algebraic Circuits

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

Objects of Study

Polynomials over n variables of degree d .

Central Question: Find explicit polynomials that

cannot be computed by efficient circuits.

[Baur-Strassen]: Any algebraic circuit computing∑n
i=1 x

d
i requires Ω(n log d) wires.

1

Algebraic Circuits

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

Objects of Study

Polynomials over n variables of degree d .

Central Question: Find explicit polynomials that

cannot be computed by efficient circuits.

[Baur-Strassen]: Any algebraic circuit computing∑n
i=1 x

d
i requires Ω(n log d) wires.

1

Algebraic Circuits

+

× ×

+ + +

x1 x2 x3 α

α1

α2

C α1(x1 + x2)(x3 + α) + (x1 + x2)(α2x2 + α)

Objects of Study

Polynomials over n variables of degree d .

Central Question: Find explicit polynomials that

cannot be computed by efficient circuits.

[Baur-Strassen]: Any algebraic circuit computing∑n
i=1 x

d
i requires Ω(n log d) wires.

1

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?

[Nisan]

VBPnc ⊊ VPnc

[Tavenas-Limaye-Srinivasan]

VFnc, hom ⊊ VBPnc, hom.

[Carmossino-Impagliazzo-Lovett-Mihajlin]

Ω(nω+ε) for fn,c =⇒ Ω(2n) for f ′n,n.

2

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?

[Nisan]

VBPnc ⊊ VPnc

[Tavenas-Limaye-Srinivasan]

VFnc, hom ⊊ VBPnc, hom.

[Carmossino-Impagliazzo-Lovett-Mihajlin]

Ω(nω+ε) for fn,c =⇒ Ω(2n) for f ′n,n.

2

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?

[Nisan]

VBPnc ⊊ VPnc

[Tavenas-Limaye-Srinivasan]

VFnc, hom ⊊ VBPnc, hom.

[Carmossino-Impagliazzo-Lovett-Mihajlin]

Ω(nω+ε) for fn,c =⇒ Ω(2n) for f ′n,n.

2

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?

[Nisan]

VBPnc ⊊ VPnc

[Tavenas-Limaye-Srinivasan]

VFnc, hom ⊊ VBPnc, hom.

[Carmossino-Impagliazzo-Lovett-Mihajlin]

Ω(nω+ε) for fn,c =⇒ Ω(2n) for f ′n,n.

2

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?

[Nisan]

VBPnc ⊊ VPnc

[Tavenas-Limaye-Srinivasan]

VFnc, hom ⊊ VBPnc, hom.

[Carmossino-Impagliazzo-Lovett-Mihajlin]

Ω(nω+ε) for fn,c =⇒ Ω(2n) for f ′n,n.

2

The Non-Commutative Setting

f (x , y) = (x + y)× (x + y) = x2 + xy + yx + y2 ̸= x2 + 2xy + y2

Non-Commutative Circuits: The multiplication gates, additionally, respect the order.

Can we do something better in this setting?

[Nisan]

VBPnc ⊊ VPnc

[Tavenas-Limaye-Srinivasan]

VFnc, hom ⊊ VBPnc, hom.

[Carmossino-Impagliazzo-Lovett-Mihajlin]

Ω(nω+ε) for fn,c =⇒ Ω(2n) for f ′n,n.

2

Our Result

The best lower bound against NC circuits continues to be Ω(n log d).

Can we do better at least in the homogeneous case?

Theorem: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 .The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(n log2 n) that computes OSymn,n/2(x).

3

Our Result

The best lower bound against NC circuits continues to be Ω(n log d).

Can we do better at least in the homogeneous case?

Theorem: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 .The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(n log2 n) that computes OSymn,n/2(x).

3

Our Result

The best lower bound against NC circuits continues to be Ω(n log d).

Can we do better at least in the homogeneous case?

Theorem: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 .

The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(n log2 n) that computes OSymn,n/2(x).

3

Our Result

The best lower bound against NC circuits continues to be Ω(n log d).

Can we do better at least in the homogeneous case?

Theorem: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 .The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(n log2 n) that computes OSymn,n/2(x).

3

Our Result

The best lower bound against NC circuits continues to be Ω(n log d).

Can we do better at least in the homogeneous case?

Theorem: Any homogeneous non-commutative circuit computing

OSymn,d(x) =
∑

1≤i1<···<id≤n

xi1 · · · xid

has size Ω(nd) for d ≤ n
2 .The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(n log2 n) that computes OSymn,n/2(x).

3

Our Measure

f : Hom. non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

Example: f = x1 · · · xd + xd · · · x1 =⇒ f (1) = x1x2 + xdxd−1.

µ(f) = rank
(
spanF

({
f (0), f (1), . . . , f (d)

}))
.

Main Observation: For any f that is computable by a homogeneous non-commutative circuit

of size s,

µ(f) ≤ s + 1.

4

Our Measure

f : Hom. non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

Example: f = x1 · · · xd + xd · · · x1 =⇒ f (1) = x1x2 + xdxd−1.

µ(f) = rank
(
spanF

({
f (0), f (1), . . . , f (d)

}))
.

Main Observation: For any f that is computable by a homogeneous non-commutative circuit

of size s,

µ(f) ≤ s + 1.

4

Our Measure

f : Hom. non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

Example: f = x1 · · · xd + xd · · · x1

=⇒ f (1) = x1x2 + xdxd−1.

µ(f) = rank
(
spanF

({
f (0), f (1), . . . , f (d)

}))
.

Main Observation: For any f that is computable by a homogeneous non-commutative circuit

of size s,

µ(f) ≤ s + 1.

4

Our Measure

f : Hom. non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

Example: f = x1 · · · xd + xd · · · x1 =⇒ f (1) = x1x2 + xdxd−1.

µ(f) = rank
(
spanF

({
f (0), f (1), . . . , f (d)

}))
.

Main Observation: For any f that is computable by a homogeneous non-commutative circuit

of size s,

µ(f) ≤ s + 1.

4

Our Measure

f : Hom. non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

Example: f = x1 · · · xd + xd · · · x1 =⇒ f (1) = x1x2 + xdxd−1.

µ(f) = rank
(
spanF

({
f (0), f (1), . . . , f (d)

}))
.

Main Observation: For any f that is computable by a homogeneous non-commutative circuit

of size s,

µ(f) ≤ s + 1.

4

Our Measure

f : Hom. non-commutative polynomial of degree d .

f (i): Polynomial got from f by setting variables in positions other than i , i + 1 to 1.

Example: f = x1 · · · xd + xd · · · x1 =⇒ f (1) = x1x2 + xdxd−1.

µ(f) = rank
(
spanF

({
f (0), f (1), . . . , f (d)

}))
.

Main Observation: For any f that is computable by a homogeneous non-commutative circuit

of size s,

µ(f) ≤ s + 1.

4

A simple proof of an obvious fact

C: Homogeneous non-commutative circuit.

µ(C) = rank

spanF

⋃
g∈C

{
g (0), g (1), . . . , g (d)

} .

µ(C) ≤ size(C) + 1

Idea: Use induction

+

g1 g2

×

g1 g2

{
g
(0)
1

, . . . , g
(d1)
1

} {
g
(0)
2

, . . . , g
(d2)
2

}

{
g(0), . . . , g(d1−1), g(d1), g(d1+1), . . . , g(d1+d2)

}
µ(fC) ≤ µ(C)

f = x1 · · · xn

⇓

µ(f) = n + 1.

Therefore, µ(Cf) ≥ n.

5

A simple proof of an obvious fact

C: Homogeneous non-commutative circuit.

µ(C) = rank

spanF

⋃
g∈C

{
g (0), g (1), . . . , g (d)

} .

µ(C) ≤ size(C) + 1

Idea: Use induction

+

g1 g2

×

g1 g2

{
g
(0)
1

, . . . , g
(d1)
1

} {
g
(0)
2

, . . . , g
(d2)
2

}

{
g(0), . . . , g(d1−1), g(d1), g(d1+1), . . . , g(d1+d2)

}
µ(fC) ≤ µ(C)

f = x1 · · · xn

⇓

µ(f) = n + 1.

Therefore, µ(Cf) ≥ n.

5

A simple proof of an obvious fact

C: Homogeneous non-commutative circuit.

µ(C) = rank

spanF

⋃
g∈C

{
g (0), g (1), . . . , g (d)

} .

µ(C) ≤ size(C) + 1

Idea: Use induction

+

g1 g2

×

g1 g2

{
g
(0)
1

, . . . , g
(d1)
1

} {
g
(0)
2

, . . . , g
(d2)
2

}

{
g(0), . . . , g(d1−1), g(d1), g(d1+1), . . . , g(d1+d2)

}
µ(fC) ≤ µ(C)

f = x1 · · · xn

⇓

µ(f) = n + 1.

Therefore, µ(Cf) ≥ n.

5

A simple proof of an obvious fact

C: Homogeneous non-commutative circuit.

µ(C) = rank

spanF

⋃
g∈C

{
g (0), g (1), . . . , g (d)

} .

µ(C) ≤ size(C) + 1

Idea: Use induction

+

g1 g2

×

g1 g2

{
g
(0)
1

, . . . , g
(d1)
1

} {
g
(0)
2

, . . . , g
(d2)
2

}

{
g(0), . . . , g(d1−1), g(d1), g(d1+1), . . . , g(d1+d2)

}
µ(fC) ≤ µ(C)

f = x1 · · · xn

⇓

µ(f) = n + 1.

Therefore, µ(Cf) ≥ n.

5

A simple proof of an obvious fact

C: Homogeneous non-commutative circuit.

µ(C) = rank

spanF

⋃
g∈C

{
g (0), g (1), . . . , g (d)

} .

µ(C) ≤ size(C) + 1

Idea: Use induction

+

g1 g2

×

g1 g2

{
g
(0)
1

, . . . , g
(d1)
1

} {
g
(0)
2

, . . . , g
(d2)
2

}

{
g(0), . . . , g(d1−1), g(d1), g(d1+1), . . . , g(d1+d2)

}

µ(fC) ≤ µ(C)

f = x1 · · · xn

⇓

µ(f) = n + 1.

Therefore, µ(Cf) ≥ n.

5

A simple proof of an obvious fact

C: Homogeneous non-commutative circuit.

µ(C) = rank

spanF

⋃
g∈C

{
g (0), g (1), . . . , g (d)

} .

µ(C) ≤ size(C) + 1

Idea: Use induction

+

g1 g2

×

g1 g2

{
g
(0)
1

, . . . , g
(d1)
1

} {
g
(0)
2

, . . . , g
(d2)
2

}

{
g(0), . . . , g(d1−1), g(d1), g(d1+1), . . . , g(d1+d2)

}
µ(fC) ≤ µ(C)

f = x1 · · · xn

⇓

µ(f) = n + 1.

Therefore, µ(Cf) ≥ n.

5

A simple proof of an obvious fact

C: Homogeneous non-commutative circuit.

µ(C) = rank

spanF

⋃
g∈C

{
g (0), g (1), . . . , g (d)

} .

µ(C) ≤ size(C) + 1

Idea: Use induction

+

g1 g2

×

g1 g2

{
g
(0)
1

, . . . , g
(d1)
1

} {
g
(0)
2

, . . . , g
(d2)
2

}

{
g(0), . . . , g(d1−1), g(d1), g(d1+1), . . . , g(d1+d2)

}
µ(fC) ≤ µ(C)

f = x1 · · · xn

⇓

µ(f) = n + 1.

Therefore, µ(Cf) ≥ n.

5

A simple proof of an obvious fact

C: Homogeneous non-commutative circuit.

µ(C) = rank

spanF

⋃
g∈C

{
g (0), g (1), . . . , g (d)

} .

µ(C) ≤ size(C) + 1

Idea: Use induction

+

g1 g2

×

g1 g2

{
g
(0)
1

, . . . , g
(d1)
1

} {
g
(0)
2

, . . . , g
(d2)
2

}

{
g(0), . . . , g(d1−1), g(d1), g(d1+1), . . . , g(d1+d2)

}
µ(fC) ≤ µ(C)

f = x1 · · · xn

⇓

µ(f) = n + 1.

Therefore, µ(Cf) ≥ n.
5

Using it to prove a “not so obvious” fact

Theorem: There exists an explicit monomial over {x0, x1} of degree d such that any

homogeneous non-commutative circuit computing it must have size Ω
(

d
log d

)
.

The tweak: For a homogeneous non-commutative polynomial f of degree d , define

f (i) by setting, in f , variables in positions other than {i , i + 1, . . . i + log d} to 1.

In this case, if C is a homogeneous non-commutative circuit of size s, then µℓ(C) ≤ O(s log d).

Therefore all we need is a monomial, f , over {x0, x1} of degree d such that µℓ(f) ≥ Ω(d).

6

Using it to prove a “not so obvious” fact

Theorem: There exists an explicit monomial over {x0, x1} of degree d such that any

homogeneous non-commutative circuit computing it must have size Ω
(

d
log d

)
.

The tweak: For a homogeneous non-commutative polynomial f of degree d , define

f (i) by setting, in f , variables in positions other than {i , i + 1, . . . i + log d} to 1.

In this case, if C is a homogeneous non-commutative circuit of size s, then µℓ(C) ≤ O(s log d).

Therefore all we need is a monomial, f , over {x0, x1} of degree d such that µℓ(f) ≥ Ω(d).

6

Using it to prove a “not so obvious” fact

Theorem: There exists an explicit monomial over {x0, x1} of degree d such that any

homogeneous non-commutative circuit computing it must have size Ω
(

d
log d

)
.

The tweak: For a homogeneous non-commutative polynomial f of degree d , define

f (i) by setting, in f , variables in positions other than {i , i + 1, . . . i + log d} to 1.

In this case, if C is a homogeneous non-commutative circuit of size s, then µℓ(C) ≤ O(s log d).

Therefore all we need is a monomial, f , over {x0, x1} of degree d such that µℓ(f) ≥ Ω(d).

6

Using it to prove a “not so obvious” fact

Theorem: There exists an explicit monomial over {x0, x1} of degree d such that any

homogeneous non-commutative circuit computing it must have size Ω
(

d
log d

)
.

The tweak: For a homogeneous non-commutative polynomial f of degree d , define

f (i) by setting, in f , variables in positions other than {i , i + 1, . . . i + log d} to 1.

In this case, if C is a homogeneous non-commutative circuit of size s, then µℓ(C) ≤ O(s log d).

Therefore all we need is a monomial, f , over {x0, x1} of degree d such that µℓ(f) ≥ Ω(d).

6

A monomial with high measure

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0, 1} in which

every string of length log d , occurs exactly once as a substring.

Fact: There is a length-d de Bruijn sequence of order log d .

Therefore, if Bd is the monomial corresponding to this de Bruijn sequence, then µ(Bd) ≥ Ω(d).

How can non-homogeneity possibly help in computing a monomial?

Question: Can we prove the same lower bound against general non-commutative circuits?

7

A monomial with high measure

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0, 1} in which

every string of length log d , occurs exactly once as a substring.

Fact: There is a length-d de Bruijn sequence of order log d .

Therefore, if Bd is the monomial corresponding to this de Bruijn sequence, then µ(Bd) ≥ Ω(d).

How can non-homogeneity possibly help in computing a monomial?

Question: Can we prove the same lower bound against general non-commutative circuits?

7

A monomial with high measure

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0, 1} in which

every string of length log d , occurs exactly once as a substring.

Fact: There is a length-d de Bruijn sequence of order log d .

Therefore, if Bd is the monomial corresponding to this de Bruijn sequence, then µ(Bd) ≥ Ω(d).

How can non-homogeneity possibly help in computing a monomial?

Question: Can we prove the same lower bound against general non-commutative circuits?

7

A monomial with high measure

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0, 1} in which

every string of length log d , occurs exactly once as a substring.

Fact: There is a length-d de Bruijn sequence of order log d .

Therefore, if Bd is the monomial corresponding to this de Bruijn sequence, then µ(Bd) ≥ Ω(d).

How can non-homogeneity possibly help in computing a monomial?

Question: Can we prove the same lower bound against general non-commutative circuits?

7

A monomial with high measure

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0, 1} in which

every string of length log d , occurs exactly once as a substring.

Fact: There is a length-d de Bruijn sequence of order log d .

Therefore, if Bd is the monomial corresponding to this de Bruijn sequence, then µ(Bd) ≥ Ω(d).

How can non-homogeneity possibly help in computing a monomial?

Question: Can we prove the same lower bound against general non-commutative circuits?

7

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• Suppose a similar result was true in the homogeneous non-commutative setting.

• Suppose there is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Then we would have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f = x1Bd(x
(1)
0 , x

(1)
1) + · · ·+ xnBd(x

(n)
0 , x

(n)
1) already (almost) has the required property.

8

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• Suppose a similar result was true in the homogeneous non-commutative setting.

• Suppose there is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Then we would have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f = x1Bd(x
(1)
0 , x

(1)
1) + · · ·+ xnBd(x

(n)
0 , x

(n)
1) already (almost) has the required property.

8

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• Suppose a similar result was true in the homogeneous non-commutative setting.

• Suppose there is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Then we would have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f = x1Bd(x
(1)
0 , x

(1)
1) + · · ·+ xnBd(x

(n)
0 , x

(n)
1) already (almost) has the required property.

8

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• Suppose a similar result was true in the homogeneous non-commutative setting.

• Suppose there is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Then we would have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f = x1Bd(x
(1)
0 , x

(1)
1) + · · ·+ xnBd(x

(n)
0 , x

(n)
1) already (almost) has the required property.

8

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• A similar result is true in the homogeneous non-commutative setting.

• Suppose there is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Then we would have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f = x1Bd(x
(1)
0 , x

(1)
1) + · · ·+ xnBd(x

(n)
0 , x

(n)
1) already (almost) has the required property.

8

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• A similar result is true in the homogeneous non-commutative setting.

• Suppose there is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Then we would have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f = x1Bd(x
(1)
0 , x

(1)
1) + · · ·+ xnBd(x

(n)
0 , x

(n)
1) already (almost) has the required property.

8

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• A similar result is true in the homogeneous non-commutative setting.

• There is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Then we would have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f has a non-homogeneous non-commutative circuit of size O(n log2 d).

8

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• A similar result is true in the homogeneous non-commutative setting.

• There is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Therefore we have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f has a non-homogeneous non-commutative circuit of size O(n log2 d).

8

Getting back to the main result

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

• A similar result is true in the homogeneous non-commutative setting.

• There is an n-variate, degree-d polynomial f such that

µ({∂x1 f , ∂x2 f , . . . , ∂xn f }) ≥ Ω(nd).

Therefore we have an Ω(nd) lower bound against homogeneous non-commutative circuits.

Note: f has a non-homogeneous non-commutative circuit of size O(n log2 d).

8

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Step 1:

f

×

f

x1 x2

f ′

v v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

Step 2: Write each of {∂i f }i using ∂v f
′ and {∂i f ′}i . Add (the ≤ 10 extra) edges accordingly.

9

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Step 1:

f

×

f

x1 x2

f ′

v v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

Step 2: Write each of {∂i f }i using ∂v f
′ and {∂i f ′}i . Add (the ≤ 10 extra) edges accordingly.

9

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Step 1:

f

×

f

x1 x2

f ′

v v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

Step 2: Write each of {∂i f }i using ∂v f
′ and {∂i f ′}i .

Add (the ≤ 10 extra) edges accordingly.

9

Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing f ∈ F[x], then there is a circuit of

size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Step 1:

f

×

f

x1 x2

f ′

v v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

Step 2: Write each of {∂i f }i using ∂v f
′ and {∂i f ′}i . Add (the ≤ 10 extra) edges accordingly.

9

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f ∈ F[x], then there is a

homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Weights: wi = wt(xi). Given w = (w1, . . . ,wn), define w-homogeneous.

Lemma: If there is a w-homogeneous circuit of size s computing f ∈ F[x], then there is a

w-homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

f

×

f

x1

w1

x2

w2

f ′

v

w1 + w2

v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

10

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f ∈ F[x], then there is a

homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Weights: wi = wt(xi).

Given w = (w1, . . . ,wn), define w-homogeneous.

Lemma: If there is a w-homogeneous circuit of size s computing f ∈ F[x], then there is a

w-homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

f

×

f

x1

w1

x2

w2

f ′

v

w1 + w2

v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

10

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f ∈ F[x], then there is a

homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Weights: wi = wt(xi). Given w = (w1, . . . ,wn), define w-homogeneous.

Lemma: If there is a w-homogeneous circuit of size s computing f ∈ F[x], then there is a

w-homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

f

×

f

x1

w1

x2

w2

f ′

v

w1 + w2

v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

10

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f ∈ F[x], then there is a

homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Weights: wi = wt(xi). Given w = (w1, . . . ,wn), define w-homogeneous.

Lemma: If there is a w-homogeneous circuit of size s computing f ∈ F[x], then there is a

w-homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

f

×

f

x1

w1

x2

w2

f ′

v

w1 + w2

v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

10

Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f ∈ F[x], then there is a

homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

Weights: wi = wt(xi). Given w = (w1, . . . ,wn), define w-homogeneous.

Lemma: If there is a w-homogeneous circuit of size s computing f ∈ F[x], then there is a

w-homogeneous circuit of size at most 5s that simultaneously compute {∂x1 f , ∂x2 f , . . . , ∂xn f }.

f

×

f

x1

w1

x2

w2

f ′

v

w1 + w2

v x1 x2

∂v f
′ ∂1 f

′ ∂2 f
′ ∂nf

′· · ·

10

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)

Given a polynomial f and a variable x , f can be uniquely written as

f = x · f0 + f1

where no monomial in f1 contains x in the first position.

We can then define the formal derivative to be ∂1,x f := f0.

Chain rules can be defined formally as well.

Lemma: If there is a homogeneous NC circuit of size s computing f ∈ F[x], then there is a

homogeneous NC circuit of size at most 5s that simultaneously compute {∂1,x1 f , . . . , ∂1,xn f }.

11

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)

Given a polynomial f and a variable x , f can be uniquely written as

f = x · f0 + f1

where no monomial in f1 contains x in the first position.

We can then define the formal derivative to be ∂1,x f := f0.

Chain rules can be defined formally as well.

Lemma: If there is a homogeneous NC circuit of size s computing f ∈ F[x], then there is a

homogeneous NC circuit of size at most 5s that simultaneously compute {∂1,x1 f , . . . , ∂1,xn f }.

11

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)

Given a polynomial f and a variable x , f can be uniquely written as

f = x · f0 + f1

where no monomial in f1 contains x in the first position.

We can then define the formal derivative to be ∂1,x f := f0.

Chain rules can be defined formally as well.

Lemma: If there is a homogeneous NC circuit of size s computing f ∈ F[x], then there is a

homogeneous NC circuit of size at most 5s that simultaneously compute {∂1,x1 f , . . . , ∂1,xn f }.

11

Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)

Given a polynomial f and a variable x , f can be uniquely written as

f = x · f0 + f1

where no monomial in f1 contains x in the first position.

We can then define the formal derivative to be ∂1,x f := f0.

Chain rules can be defined formally as well.

Lemma: If there is a homogeneous NC circuit of size s computing f ∈ F[x], then there is a

homogeneous NC circuit of size at most 5s that simultaneously compute {∂1,x1 f , . . . , ∂1,xn f }.

11

Polynomial with a large measure

x n
2+1x n

2+2 · · · x2x n
2+2 · · · · · · xn−2xn−1 · · · x n

2−1xn−1 xn−1xn · · · x n
2
xn

(1, n
2)
...

(1, 1)
...
...

(n2 − 2, n
2)

...

(n2 − 2, 1)

(n2 − 1, n
2)

...

(n2 − 1, 1)

f = OSymn, n2+1(x) =
∑

1≤i1<···<i n
2
+1≤n

 n
2+1∏
j=1

xij



Defining the matrix M(f)

xkxl

(j , i) coeffxkxl (∂i f
(j))

This matrix is lower triangular with 1s

on the diagonal.

µ(D(f)) ≥ rank(M(f))

= Ω(n2).

12

Polynomial with a large measure

x n
2+1x n

2+2 · · · x2x n
2+2 · · · · · · xn−2xn−1 · · · x n

2−1xn−1 xn−1xn · · · x n
2
xn

(1, n
2)
...

(1, 1)
...
...

(n2 − 2, n
2)

...

(n2 − 2, 1)

(n2 − 1, n
2)

...

(n2 − 1, 1)

f = OSymn, n2+1(x) =
∑

1≤i1<···<i n
2
+1≤n

 n
2+1∏
j=1

xij



Defining the matrix M(f)

xkxl

(j , i) coeffxkxl (∂i f
(j))

This matrix is lower triangular with 1s

on the diagonal.

µ(D(f)) ≥ rank(M(f))

= Ω(n2).

12

Polynomial with a large measure

x n
2+1x n

2+2 · · · x2x n
2+2 · · · · · · xn−2xn−1 · · · x n

2−1xn−1 xn−1xn · · · x n
2
xn

(1, n
2)
...

(1, 1)
...
...

(n2 − 2, n
2)

...

(n2 − 2, 1)

(n2 − 1, n
2)

...

(n2 − 1, 1)

f = OSymn, n2+1(x) =
∑

1≤i1<···<i n
2
+1≤n

 n
2+1∏
j=1

xij



Defining the matrix M(f)

xkxl

(j , i) coeffxkxl (∂i f
(j))

This matrix is lower triangular with 1s

on the diagonal.

µ(D(f)) ≥ rank(M(f))

= Ω(n2).

12

Polynomial with a large measure

x n
2+1x n

2+2 · · · x2x n
2+2 · · · · · · xn−2xn−1 · · · x n

2−1xn−1 xn−1xn · · · x n
2
xn

(1, n
2)
...

(1, 1)
...
...

(n2 − 2, n
2)

...

(n2 − 2, 1)

(n2 − 1, n
2)

...

(n2 − 1, 1)

f = OSymn, n2+1(x) =
∑

1≤i1<···<i n
2
+1≤n

 n
2+1∏
j=1

xij



Defining the matrix M(f)

xkxl

(j , i) coeffxkxl (∂i f
(j))

This matrix is lower triangular with 1s

on the diagonal.

µ(D(f)) ≥ rank(M(f))

= Ω(n2).

12

Polynomial with a large measure

x n
2+1x n

2+2 · · · x2x n
2+2 · · · · · · xn−2xn−1 · · · x n

2−1xn−1 xn−1xn · · · x n
2
xn

(1, n
2)
...

(1, 1)
...
...

(n2 − 2, n
2)

...

(n2 − 2, 1)

(n2 − 1, n
2)

...

(n2 − 1, 1)

f = OSymn, n2+1(x) =
∑

1≤i1<···<i n
2
+1≤n

 n
2+1∏
j=1

xij



Defining the matrix M(f)

xkxl

(j , i) coeffxkxl (∂i f
(j))

This matrix is lower triangular with 1s

on the diagonal.

µ(D(f)) ≥ rank(M(f))

= Ω(n2).

12

Polynomial with a large measure

x n
2+1x n

2+2 · · · x2x n
2+2 · · · · · · xn−2xn−1 · · · x n

2−1xn−1 xn−1xn · · · x n
2
xn

(1, n
2)
...

(1, 1)
...
...

(n2 − 2, n
2)

...

(n2 − 2, 1)

(n2 − 1, n
2)

...

(n2 − 1, 1)

f = OSymn, n2+1(x) =
∑

1≤i1<···<i n
2
+1≤n

 n
2+1∏
j=1

xij



Defining the matrix M(f)

xkxl

(j , i) coeffxkxl (∂i f
(j))

This matrix is lower triangular with 1s

on the diagonal.

µ(D(f)) ≥ rank(M(f)) = Ω(n2).

12

The lower bound is tight

There is a homogeneous non-commutative circuit of size O(n2) that computes OSymn, n2+1(x).

How?

Use the following fact recursively.

OSymn,d(x1, . . . , xn) = OSymn−1,d−1(x1, . . . , xn−1) · xn +OSymn−1,d(x1, . . . , xn−1).

13

The lower bound is tight

There is a homogeneous non-commutative circuit of size O(n2) that computes OSymn, n2+1(x).

How?

Use the following fact recursively.

OSymn,d(x1, . . . , xn) = OSymn−1,d−1(x1, . . . , xn−1) · xn +OSymn−1,d(x1, . . . , xn−1).

13

The lower bound is tight

There is a homogeneous non-commutative circuit of size O(n2) that computes OSymn, n2+1(x).

How?

Use the following fact recursively.

OSymn,d(x1, . . . , xn) = OSymn−1,d−1(x1, . . . , xn−1) · xn +OSymn−1,d(x1, . . . , xn−1).

13

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(n log2 n) that computes all the elementary

symmetric polynomials simultaneously.

How?

OSymn,d(x1, . . . , xn) = coefftd
(∏n

i=1(1 + txi)
)
= coefftd

(∏ n
2

i=1(1 + txi) ·
∏n

i= n
2+1(1 + txi)

)
.

Think of f =
∏ n

2

i=1(1 + txi), g =
∏n

i= n
2+1(1 + txi) ∈ F ⟨x⟩ [t].

Do polynomial multiplication recursively log n times. Note that polynomial multiplication can

be done in time O(n log n) using FFT.

14

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(n log2 n) that computes all the elementary

symmetric polynomials simultaneously.

How?

OSymn,d(x1, . . . , xn) = coefftd
(∏n

i=1(1 + txi)
)
= coefftd

(∏ n
2

i=1(1 + txi) ·
∏n

i= n
2+1(1 + txi)

)
.

Think of f =
∏ n

2

i=1(1 + txi), g =
∏n

i= n
2+1(1 + txi) ∈ F ⟨x⟩ [t].

Do polynomial multiplication recursively log n times. Note that polynomial multiplication can

be done in time O(n log n) using FFT.

14

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(n log2 n) that computes all the elementary

symmetric polynomials simultaneously.

How?

OSymn,d(x1, . . . , xn) = coefftd
(∏n

i=1(1 + txi)
)

= coefftd

(∏ n
2

i=1(1 + txi) ·
∏n

i= n
2+1(1 + txi)

)
.

Think of f =
∏ n

2

i=1(1 + txi), g =
∏n

i= n
2+1(1 + txi) ∈ F ⟨x⟩ [t].

Do polynomial multiplication recursively log n times. Note that polynomial multiplication can

be done in time O(n log n) using FFT.

14

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(n log2 n) that computes all the elementary

symmetric polynomials simultaneously.

How?

OSymn,d(x1, . . . , xn) = coefftd
(∏n

i=1(1 + txi)
)
= coefftd

(∏ n
2

i=1(1 + txi) ·
∏n

i= n
2+1(1 + txi)

)
.

Think of f =
∏ n

2

i=1(1 + txi), g =
∏n

i= n
2+1(1 + txi) ∈ F ⟨x⟩ [t].

Do polynomial multiplication recursively log n times. Note that polynomial multiplication can

be done in time O(n log n) using FFT.

14

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(n log2 n) that computes all the elementary

symmetric polynomials simultaneously.

How?

OSymn,d(x1, . . . , xn) = coefftd
(∏n

i=1(1 + txi)
)
= coefftd

(∏ n
2

i=1(1 + txi) ·
∏n

i= n
2+1(1 + txi)

)
.

Think of f =
∏ n

2

i=1(1 + txi), g =
∏n

i= n
2+1(1 + txi) ∈ F ⟨x⟩ [t].

Do polynomial multiplication recursively log n times. Note that polynomial multiplication can

be done in time O(n log n) using FFT.

14

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(n log2 n) that computes all the elementary

symmetric polynomials simultaneously.

How?

OSymn,d(x1, . . . , xn) = coefftd
(∏n

i=1(1 + txi)
)
= coefftd

(∏ n
2

i=1(1 + txi) ·
∏n

i= n
2+1(1 + txi)

)
.

Think of f =
∏ n

2

i=1(1 + txi), g =
∏n

i= n
2+1(1 + txi) ∈ F ⟨x⟩ [t].

Do polynomial multiplication recursively log n times.

Note that polynomial multiplication can

be done in time O(n log n) using FFT.

14

Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(n log2 n) that computes all the elementary

symmetric polynomials simultaneously.

How?

OSymn,d(x1, . . . , xn) = coefftd
(∏n

i=1(1 + txi)
)
= coefftd

(∏ n
2

i=1(1 + txi) ·
∏n

i= n
2+1(1 + txi)

)
.

Think of f =
∏ n

2

i=1(1 + txi), g =
∏n

i= n
2+1(1 + txi) ∈ F ⟨x⟩ [t].

Do polynomial multiplication recursively log n times. Note that polynomial multiplication can

be done in time O(n log n) using FFT.

14

Open Questions

• Can we show a Ω̃(d) lower bound against general non-commutative circuits?

• Can we show a quadratic lower bound for a constant variate polynomial?

Conjecture: If

f = x1x
d−1
0 f1 + x0x1x

d−2
0 f2 + · · ·+ xd−1

0 x1fd

can be computed by a non-commutative circuit of size s, then {f1, . . . , fd} can be

simultaneously computed by a non-commutative circuit of size O(s + d).

If true, then the answer to the second question is ”yes”.

15

Open Questions

• Can we show a Ω̃(d) lower bound against general non-commutative circuits?

• Can we show a quadratic lower bound for a constant variate polynomial?

Conjecture: If

f = x1x
d−1
0 f1 + x0x1x

d−2
0 f2 + · · ·+ xd−1

0 x1fd

can be computed by a non-commutative circuit of size s, then {f1, . . . , fd} can be

simultaneously computed by a non-commutative circuit of size O(s + d).

If true, then the answer to the second question is ”yes”.

15

Open Questions

• Can we show a Ω̃(d) lower bound against general non-commutative circuits?

• Can we show a quadratic lower bound for a constant variate polynomial?

Conjecture: If

f = x1x
d−1
0 f1 + x0x1x

d−2
0 f2 + · · ·+ xd−1

0 x1fd

can be computed by a non-commutative circuit of size s, then {f1, . . . , fd} can be

simultaneously computed by a non-commutative circuit of size O(s + d).

If true, then the answer to the second question is ”yes”.

15

Open Questions

• Can we show a Ω̃(d) lower bound against general non-commutative circuits?

• Can we show a quadratic lower bound for a constant variate polynomial?

Conjecture: If

f = x1x
d−1
0 f1 + x0x1x

d−2
0 f2 + · · ·+ xd−1

0 x1fd

can be computed by a non-commutative circuit of size s, then {f1, . . . , fd} can be

simultaneously computed by a non-commutative circuit of size O(s + d).

If true, then the answer to the second question is ”yes”.

15

Thank you!

16

