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Objects of Study
Polynomials over n variables of degree d.

Central Question: Find explicit polynomials that
cannot be computed by efficient circuits.

[Baur-Strassen]: Any algebraic circuit computing
7 x? requires Q(nlog d) wires.
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The Non-Commutative Setting

Fx,y) = (x +y) X (x+y) = X2 +xy +yx +y> # X2+ 2xy + y°
Non-Commutative Circuits: The multiplication gates, additionally, respect the order.
Can we do something better in this setting?

[Nisan] [Tavenas-Limaye-Srinivasan] [Carmossino-Impagliazzo-Lovett-Mihajlin]
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Our Result

The best lower bound against NC circuits continues to be Q(nlog d).

Can we do better at least in the homogeneous case?

Theorem: Any homogeneous non-commutative circuit computing

OSym,4(x) = D> X x

1< < <ig<n

has size Q(nd) for d < £.The lower bound is tight for homogeneous non-commutative circuits.

Further, there is a non-commutative circuit of size O(nlog? n) that computes OSym,, /().
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Our Measure

f: Hom. non-commutative polynomial of degree d.

f(): Polynomial got from f by setting variables in positions other than i, i + 1 to 1.

Example: f =xi- - xg+xq---x1 = 0 = xix0 + XgXq_1.

wu(f) = rank (span]F ({f(o), FO f(d)})) .

Main Observation: For any f that is computable by a homogeneous non-commutative circuit
of size s,
u(f) <s+1.
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A simple proof of an obvious fact

C: Homogeneous non-commutative circuit.

u(C) = rank | spang U {g(o),g(l), . ,g(d)}
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Using it to prove a “not so obvious” fact

Theorem: There exists an explicit monomial over {xp, x; } of degree d such that any

homogeneous non-commutative circuit computing it must have size € (@ .

The tweak: For a homogeneous non-commutative polynomial f of degree d, define

£(0) by setting, in f, variables in positions other than {i,i+1,...i+ logd} to 1.

In this case, if C is a homogeneous non-commutative circuit of size s, then py(C) < O(slogd).

Therefore all we need is a monomial, f, over {xo,x1} of degree d such that p,(f) > Q(d).
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A monomial with high measure

de Bruijn Sequence (of order log d): It is a cyclic sequence in the alphabet {0,1} in which
every string of length log d, occurs exactly once as a substring.

Fact: There is a length-d de Bruijn sequence of order log d.
Therefore, if By is the monomial corresponding to this de Bruijn sequence, then u(Bqy) > Q(d).

How can non-homogeneity possibly help in computing a monomial?

Question: Can we prove the same lower bound against general non-commutative circuits?
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[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0, f}.

e A similar result is true in the homogeneous non-commutative setting.

e There is an n-variate, degree-d polynomial f such that

W({O Fr D ., O F1) > Q(nd).

Therefore we have an Q(nd) lower bound against homogeneous non-commutative circuits.

Note: f has a non-homogeneous non-commutative circuit of size O(nlog? d).
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Proof of [Baur-Strassen]

[Baur-Strassen]: If there is a circuit of size s computing f € F[x], then there is a circuit of
size at most 5s that simultaneously compute {0y, f, Oy, f, ..., 0x,f}.

Step 1:
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Step 2: Write each of {9;f}; using 0,f" and {0;f'},. Add (the < 10 extra) edges accordingly.
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Target: If there is a homogeneous circuit of size s computing f € F[x], then there is a
homogeneous circuit of size at most 5s that simultaneously compute {0y, f, Ox,f,...,0x }.
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Making [Baur-Strassen] work in the homogeneous setting

Target: If there is a homogeneous circuit of size s computing f € F[x], then there is a
homogeneous circuit of size at most 5s that simultaneously compute {0y, f, Ox,f,...,0x }.

Weights: w; = wt(x;). Given w = (w, ..., w,), define w-homogeneous.

Lemma: If there is a w-homogeneous circuit of size s computing f € F[x], then there is a
w-homogeneous circuit of size at most 5s that simultaneously compute {0y, f, Ox,f,...,0x,}.
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Making [Baur-Strassen] work in the non-commutative setting

Formal derivatives (with respect to the first position)

Given a polynomial f and a variable x, f can be uniquely written as
f=x-fo+f

where no monomial in f; contains x in the first position.

We can then define the formal derivative to be 0 f = f;.

Chain rules can be defined formally as well.

Lemma: If there is a homogeneous NC circuit of size s computing f € F[x], then there is a
homogeneous NC circuit of size at most 5s that simultaneously compute {01 x,f, ..., 01 x,f }.

11
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This matrix is lower triangular with 1s
on the diagonal.

#(D(F)) = rank(M(f)) = Q(n?).
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The lower bound is tight

There is a homogeneous non-commutative circuit of size O(n?) that computes OSym,, 5 1(x).
How?

Use the following fact recursively.

OSym,, 4(x1,- -, %) = OSym,,_q y_1(x1, .-+, Xn—1) - Xp + OSym,,_; 4(x1,. .., Xa—1)-

13
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Better Upper bound in the non-homogeneous setting

There is a non-commutative circuit of size O(nlog2 n) that computes all the elementary
symmetric polynomials simultaneously.

How?
OSym,, 4(x1, ..., xn) = coeffra (TT7_; (1 + tx;)) = coeff,a (Higzl(l + o) Tl (T + tx,-)).

Think of f =TI (1 + 00), 8 = [Ty (1 + ) € F(x) [2].

Do polynomial multiplication recursively log n times. Note that polynomial multiplication can
be done in time O(nlog n) using FFT.

14
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e Can we show a quadratic lower bound for a constant variate polynomial?

Conjecture: If
f=xix§ M+ xoxxd 2h 4+ afy

can be computed by a non-commutative circuit of size s, then {f1,..., fs} can be
simultaneously computed by a non-commutative circuit of size O(s + d).
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e Can we show a {(d) lower bound against general non-commutative circuits?

e Can we show a quadratic lower bound for a constant variate polynomial?

Conjecture: If
f=xix§ M+ xoxxd 2h 4+ afy

can be computed by a non-commutative circuit of size s, then {f1,..., fs} can be
simultaneously computed by a non-commutative circuit of size O(s + d).

If true, then the answer to the second question is "yes".
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Thank you!
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