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Algebraic/Arithmetic circuits
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An Arithmetic Circuit is a directed acyclic
graph where

- leaf nodes: labelled by constants or
variables,

- internal nodes: labelled by either × or
+,

- edges: labelled by constants.

Circuit size: number of nodes present in it.
[Measure of complexity]

Circuit depth: length of the longest leaf to
root path. [Measure of parallelizability]

Formulas: circuits where computations are
not reused, i.e., directed tree.
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Best known general lower bounds

▶ Existential circuit size lower bound: Ω
(√(N+d

d
))

[Folklore].

▶ Explicit circuit size lower bound: Ω(N logN) [Baur and
Strassen, TCS 1983].

▶ Explicit formula size lower bound: Ω(N2) [Kalorkoti,
SICOMP 1985].

Circuit size lower bounds are known for
restricted arithmetic circuits.
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Simplifications considered

Bounded
fan-in

Constant
depth

Small
depth

Multilinear
Multi-r-
ic

Homogeneous

Bounded
individual
degree

General arithmetic
circuits/formulas
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Functional lower bounds

Functionally equivalent (denoted by ≡B
fn)

P ≡B
fn Q if P(a) = Q(a) ∀ a ∈ B|X| .

Functional Lower Bounds
The evaluation table (over BN) of any circuit in C of size at
most s, is not equal to that of P.

Further, if P ≡B
fn Q then

P /∈fn ASIZE(s) =⇒ Q /∈fn ASIZE(s) .
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Previously known functional lower bounds

▶ All the lower bounds known in the (set-)multilinear
setting.

▶ Over FO(1), exponential bounds against ΣΠΣ circuits

▶ [Grigoriev and Karpinski, STOC 1998],
▶ [Grigoriev and Razborov, FOCS 1998], and
▶ [C. and Mukhopadhyay, Inf&Comp. 2017].

▶ Exponential bound against homogeneous ΣΠΣΠΣ circuits
over FO(1) [Kumar and Saptharishi, CCC 2016].

▶ Restricted depth four and depth three circuits [Forbes,
Kumar and Saptharishi, CCC 2016].
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Boolean parts of polynomials

Boolean part of a polynomial
For a polynomial P, let BP(P) be the Boolean function that
simulates the evaluations of P over {0, 1}N.

Boolean part of a class C
For a circuit C ∈ C, let BP(C) be the boolean circuit that
simulates the evaluation of C over {0, 1}N.

BP(C) = {BP(C) | C ∈ C} .
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Path to boolean lower bounds

Theorem [Bürgisser, TCS 2000]

1. (GRH) Over large fields,

– FNC1
/poly ⊆ BP(VP) ⊆ FNC3

/poly and

– #P/poly ⊆ BP(VNP) ⊆ FP#P/poly

2. For fixed size finite fields,

– FNC1
/poly ⊆ BP(VP) ⊆ FNC2

/poly and

– #P/poly = BP(VNP)
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Constant depth Boolean circuits
ACC0

Constant depth circuits with AND, OR, NOT and MOD gates.

Theorem [Allender and Gore, SICOMP 1994]

Perm /∈ Uniform-ACC0
.

Theorem [Williams, J.ACM 2014]

NEXP ⊈ Non-uniform-ACC0
.

Theorem [Murray and Williams, SICOMP 2020]

NQP ⊈ Non-uniform-ACC0
.
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Characterization for ACC0

Theorem [Yao, FOCS 1985;
Beigel-Tarui, CC 1994]
Every language L in the class
ACC0 can be recognized by a
family of depth two deterministic
circuits with a symmetric
function gate at the root and
2logO(1) n many AND gates of fan-in
logO(1) n.

Fn ∈ ACC0

fsym

∧ ∧. . .

x1 xk x2 xn. . . . . .
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Observation

Observation [Forbes, Kumar and Saptharishi, CCC 2016]
Over {0, 1}N, any function F in ACC0 can also be computed
algebraically as follows.

F(X) =
s∑
i=1

(Qi(X))di .

where s and each di are at most 2logO(1) n. Further, monomials
of Qi’s are supported on at most logO(1) n variables.

We denote such expressions by Σ∧ΣΠ.
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An approach towards ACC0 lower bounds
A strategy
Show that there exists a function F such that

▶ the evaluation table of F 6= evaluation table of any “small”
Σ∧ΣΠ expressions, and

▶ F is computable in a class that is not “much larger” than
ACC0.

Our result
There is a function F such that

▶ F is computable in GapL, and

▶ the evaluation table of F is not equal to the evaluation
table of any “small” and “bounded individual degree”
Σ∧ΣΠ expressions.
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Our results

Main result
There is a function F such that

▶ F is computable in GapL, and

▶ the evaluation table of F 6= evaluation table of any “small”
and “bounded individual degree” Σ∧ΣΠ expressions.

This result is obtained by proving “functional” size lower
bounds against restricted arithmetic circuits of depth four.
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Bird’s eye view of proof

Step 1
There is an explicit polynomial P such that it is not
functionally equivalent to polynomials of bounded individual
degree that are computed by “small” Σ∧ΣΠ circuits.

Step 2
Show that there is a function F ∈ GapL that simulates the
evaluation of P over {0, 1}N.
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Iterated Matrix Multiplication polynomial

s ...
...

...

· · ·

· · ·

· · ·

· · ·

· · ·

...
... t

K1,n

Kn,n Kn,n Kn,n

Kn,1

X1

X2 X3 Xd−1

Xd

IMMn,d =
∑

(s⇝ t) paths π
wt(π)

=
∑

π1,...,πd∈[n]
x(1)
1,π1

· x(2)
π1,π2 · . . . · x

(d)
πd−1,1

IMMn,d is the (1, 1) entry in the product of adjacency matrices
X1,X2, . . . ,Xd.
{IMMn,d}n,d⩾0 ∈ VP and has a depth four circuit of size nO(

√
d).
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Step 1: Broad theme of the proof
Define a suitable complexity measure Γ : F[X] 7→ R such
that the following holds:

– For any polynomial f that is computed by a “small”
circuit, Γ(f) is “small”.

– For the target polynomial P, Γ(P) is “large”.

Multilinear Shifted Evaluation Dimension (denoted by
mSED[Y,Z]

k,ℓ (P(Y,Z)))

dim
(
Eval

{0,1}|Z|
{
mult

(
Z=ℓ · F-span

{
P(a,Z) | a ∈ {0, 1}|Y|⩽k

})})

Based on the measure of Shifted Evaluation Dimension, of [Forbes, Kumar,
and Saptharishi, CCC 2016]
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Evaluation Dimension

Let ρ : X 7→ Y t Z be a partitioning function.

Mρ(P) : {0, 1}|Y|

{0, 1}|Z|

aZ
aY

P(aY, aZ)

Evaluation Dimension of P wrt ρ is rank(Mρ(P)).

Further,

rank(Mρ(P)) = dim
(
Eval

{0,1}|Z|
(
F-span

{
P(a,Z) | a ∈ {0, 1}|Y|

}))
.
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Partial derivatives as a proxy

▶ For a set-multilinear polynomial P and a ∈ {0, 1}||Y||⩽k ,

∂kP
∂Ya = P(a,Z).

▶ For a polynomial Q of individual-degree at most r,

F-span
{
Q(a,Z) | a ∈ {0, 1}|Y|⩽k

}
⊆ F-span

{
(∂⩽r·kQ)|Y=0

}
.
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Evolved measures

▶ Shifted Evaluation Dimension [Forbes, Kumar and
Saptharishi, CCC 2016]:

dim
(
Eval

{0,1}|Z|
{
Z=ℓ · F-span

{
P(a,Z) | a ∈ {0, 1}|Y|⩽k

}})
▶ Multilinear Shifted Evaluation Dimension [Our work]:

dim
(
Eval

{0,1}|Z|
{
mult

(
Z=ℓ · F-span

{
P(a,Z) | a ∈ {0, 1}|Y|⩽k

})})
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Formal statement

Main Theorem
Let n be a large integer and d,k and r be such that

▶ ω(log2 n) ⩽ d ⩽ n0.01 and

▶ r ⩽ d
1201k2 .

Any depth four Σ∧ΣΠ circuit of bounded individual
degree r computing a function equivalent to IMMn,d on
{0, 1}n

2d, must have size at least nΩ(k).
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Step 2

Theorem [Vinay, CCC 1991]
Evaluation of IMMn,d over {0, 1}n

2d can be simulated in GapL.
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Our result

Main Theorem
Let n be a large integer and d,k and r be such that

▶ ω(log2 n) ⩽ d ⩽ n0.01 and

▶ r ⩽ d
1201k2 .

Any depth four Σ∧ΣΠ circuit of bounded individual
degree r computing a function equivalent to IMMn,d on
{0, 1}n

2d, must have size at least nΩ(k).

“Improving” this result could lead us to a
separation of ACC0 from GapL.
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Other results and related work

Circuit
model Work Poly Lower Bound Range of param-

eters

(Σ∧ΣΠ)⩽r
This
work IMMn,d nΩ(k)

ω(log2 n) ⩽ d ⩽
n0.01, and r ⩽

d
1201k2 .

(ΣΠΣΠ)⩽r[⩽d]
[FKS16] NWm,d 2Ω(

√
d log (md)) m = Θ(d2), and

r ⩽ O(1).

(ΣΠΣΠ)⩽r[⩽d]
This
work IMMn,d nΩ

(√
d
r

) ω(log2 n) ⩽ d ⩽
n0.01, and r ⩽
logn
12 .

[FKS16] = [Forbes, Kumar and Saptharishi, CCC 2016].
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Further observations

At least one of the following is true.
▶ There exists a multilinear polynomial which is “hard” for

Σ∧ΣΠ circuits but can be evaluated using a “small” Σ∧ΣΠ

circuits.

▶ ACC0 ⊊ GapL.
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Thank you!
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