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Algebraic/Arithmetic circuits

An Arithmetic Circuit is a directed acyclic

14 x7)?
( J graph where

- leaf nodes: labelled by constants or
variables,

- internal nodes: labelled by either x or

AN +,

X1 1 - edges: labelled by constants.
(2% 4+ X3) X X3 Circuit size: number of nodes present in it.
[Measure of complexity]
Circuit depth: length of the longest leaf to
root path. [Measure of parallelizability]
2

Formulas: circuits where computations are
X1 X, Xz not reused, i.e., directed tree.



Best known general lower bounds

» Existential circuit size lower bound: Q ( (Ngd))
[Folklore].

» Explicit circuit size lower bound: Q(NlogN) [Baur and
Strassen, TCS 1983].

» Explicit formula size lower bound: Q(N?) [Kalorkoti,
SICOMP 1985].

Circuit size lower bounds are known for
restricted arithmetic circuits.



Simplifications considered

General arithmetic

circuits/formulas
Bounded
individual
degree
Bounded Constant Small / Multi-r-
Multilinear Homogeneous

fan-in depth depth ic



Functional lower bounds

Functionally equivalent (denoted by =£)

P=B Q if P(a)=0Q(a)VaceBX.

=fn

Functional Lower Bounds
The evaluation table (over BN) of any circuit in € of size at
most s, is not equal to that of P.

Further, if P =B Q then

=fn

P & ASIZE(s) =  Q¢&m ASIZE(s).
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Previously known functional lower bounds

> All the lower bounds known in the (set-)multilinear
setting.

> Over Fq(q), eXxponential bounds against XITX circuits

» [Grigoriev and Karpinski, STOC 1998],
» [Grigoriev and Razborov, FOCS 1998], and
» [C. and Mukhopadhyay, Inf&Comp. 2017].

» Exponential bound against homogeneous ZITXTTE circuits
over Fp(qy [Kumar and Saptharishi, CCC 2016].

» Restricted depth four and depth three circuits [Forbes,
Kumar and Saptharishi, CCC 2016].
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Boolean part of a polynomial

For a polynomial P, let BP(P) be the Boolean function that
simulates the evaluations of P over {0, 1}N.

Boolean part of a class €

For a circuit C € G, let BP(C) be the boolean circuit that
simulates the evaluation of C over {0, 1}N.

BP(¢) ={BP(C) | C € C}.



Path to boolean lower bounds

Theorem [Burgisser, TCS 2000]
1. (GRH) Over large fields,
— FNC'/ poly € BP(VP) C FNC?/ poly and
— #P/poly C BP(VNP) C FP#P/ poly

2. For fixed size finite fields,
— FNC'/ poly C BP(VP) C FNC?/ poly and
— #P/poly = BP(VNP)



Constant depth Boolean circuits

ACC®
Constant depth circuits with AND, OR, NOT and MOD gates.



Constant depth Boolean circuits
ACC°

Constant depth circuits with AND, OR, NOT and MOD gates.

Theorem [Allender and Gore, SICOMP 1994]

Perm ¢ Uniform-ACC°.



Constant depth Boolean circuits

ACC®
Constant depth circuits with AND, OR, NOT and MOD gates.

Theorem [Allender and Gore, SICOMP 1994]

Perm ¢ Uniform-ACC°.

Theorem [Williams, ], ACM 2014]

NEXP ¢ Non-uniform-ACC®.



Constant depth Boolean circuits

ACC®
Constant depth circuits with AND, OR, NOT and MOD gates.

Theorem [Allender and Gore, SICOMP 1994]

Perm ¢ Uniform-ACC°.

Theorem [Williams, ], ACM 2014]
NEXP ¢ Non-uniform-ACC®.
Theorem [Murray and Williams, SICOMP 2020]

NQP ¢ Non-uniform-ACC°.



Characterization for ACC°

Theorem [Yao, FOCS 1985;
Beigel-Tarui, CC 1994]

Every language L in the class
ACC® can be recognized by a
family of depth two deterministic
circuits with a symmetric
function gate at the root and
21oe°'n many AND gates of fan-in




Observation

Observation [Forbes, Kumar and Saptharishi, CCC 2016]

over {0, 1}V, any function F in ACCP can also be computed
algebraically as follows.

S

F(X) =) (Q(x)®

i=1

where s and each d; are at most 2log®!'n . Further, monomials
of Qj’s are supported on at most log ) n variables.
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Observation [Forbes, Kumar and Saptharishi, CCC 2016]

over {0, 1}V, any function F in ACCP can also be computed
algebraically as follows.

S

F(X) =) (Q(x)®

i=1

where s and each d; are at most 2log®!'n . Further, monomials
of Qj’s are supported on at most log ) n variables.

We denote such expressions by ZAZTT.
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Show that there exists a function F such that
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LALIT expressions, and
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An approach towards ACC® lower bounds
A strategy

Show that there exists a function F such that

» the evaluation table of F # evaluation table of any “small”
LALIT expressions, and

» Fis computable in a class that is not “much larger” than
ACCP.

Our result
There is a function F such that
» F is computable in GaplL, and

» the evaluation table of F is not equal to the evaluation
table of any “small” and “bounded individual degree”
XAZXZIT expressions.
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Our results

Main result
There is a function F such that

» Fis computable in GaplL, and

» the evaluation table of F # evaluation table of any “small”
and “bounded individual degree” ZALIT expressions.

This result is obtained by proving “functional” size lower
bounds against restricted arithmetic circuits of depth four.
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Bird’s eye view of proof

Step 1

There is an explicit polynomial P such that it is not
functionally equivalent to polynomials of bounded individual
degree that are computed by “small” ZAXIT circuits.

Step 2

Show that there is a function F € GapL that simulates the
evaluation of P over {0, 1}".



[terated Matrix Multiplication polynomial
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IMMy, g4 is the (1,1) entry in the product of adjacency matrices
X1, Xa, - - -, X4
{IMMy,q}, 450 € VP and has a depth four circuit of size n°va.



Step 1: Broad theme of the proof

Define a suitable complexity measure I' : F[X] — R such
that the following holds:

— For any polynomial f that is computed by a “small”
circuit, I'(f) is “small”.

— For the target polynomial P, I'(P) is “large”.
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Define a suitable complexity measure I' : F[X] — R such
that the following holds:

— For any polynomial f that is computed by a “small”
circuit, I'(f) is “small”.

— For the target polynomial P, I'(P) is “large”.

Multilinear Shifted Evaluation Dimension (denoted by
mSED,’” (P(Y,Z)))

dim (Evaly, e {mutt (2= - F-span {P(a,2) |a € (0,15 } ) })

Based on the measure of Shifted Evaluation Dimension, of [Forbes, Kumar,
and Saptharishi, CCC 2016]



Evaluation Dimension

Let p: X +— Y LU Z be a partitioning function.
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Evaluation Dimension

Let p: X +— Y LU Z be a partitioning function.

a

. |
Mp(P) : {0)1}Y P(ay,ay)

M
0,1}

Evaluation Dimension of P wrt p is rank(M, (P)).

Further,

ranki (M, (P)) = dim (Eval , i (F-span {P(a,2) | a € {0, 1} }))



Partial derivatives as a proxy

» For a set-multilinear polynomial P and a € {0, 1}2{!‘,

okp
oYa

=P(a,Z).

» For a polynomial Q of individual-degree at most r,

F-span {Q(a, Z)|ae{0, 1}2{}'{} C FF-span {(a@kQ)lY:o} .



Evolved measures

» Shifted Evaluation Dimension [Forbes, Kumar and
Saptharishi, CCC 2016]:

dim (Eval{o’l}m {Z:z - F-span {P(a, Z) | a e {0, 1}2{}'{}})
» Multilinear Shifted Evaluation Dimension [Our work]:

dim (Eval{oyl}‘z‘ {mult (Z:z . F-span {P(a, Z)|ae {O,l}QL}) })



Formal statement

Main Theorem
Let n be a large integer and d, k and r be such that

» w(log’n) < d < n%°and

d
>r< 1201k *

Any depth four ZAZIT circuit of bounded individual
degree r computing a function equivalent to IMM, 4 on

{0, 11"? must have size at least n@®).



Step 2

Theorem [Vinay, CCC 1991]

Evaluation of IMMy, 4 over {0, 1}nzd can be simulated in GapL.



Our result

Main Theorem
Let n be a large integer and d, k and r be such that

» w(logn) < d < n°and

d

>r< 1201ke *

Any depth four ZAZIT circuit of bounded individual
degree r computing a function equivalent to IMM,, 4 on

{0, 11™? must have size at least n@®).

“Improving” this result could lead us to a
separation of ACC® from GaplL.



Other results and related work

Circuit o Poly Lower Bound Range of param-
model eters
w(log‘2 n) < d <
This n%% and r <
(EATMS | yorie | MMaa | 020 a

1201k?

— 2
(ZMEM S, | [FKS16] | NWiq | 20(Alesma) | 70 = B(d), and

[<dl ’ r<O(1).
. w(log2 n) < d <
This o(Vi) 0.01
< r - <
(ZMEM Syl work | ™MMna n i and r <

12 -

[FKS16] = [Forbes, Kumar and Saptharishi, CCC 2016].



Further observations

At least one of the following is true.

» There exists a multilinear polynomial which is “hard” for
YAXIT circuits but can be evaluated using a “small” AZTT
circuits.

» ACC® C GapL.



Thank you!



