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Input 

• An m-variate polynomial  with degree at most (d-1) in each variable over a 
field K, as a list of coefficients 

• N points   

Output 

• Evaluation of  on  

                                                             Input:  ( ) field elements 

f

α1, α2, …,  αN ∈ 𝐊𝐦

f α1, α2, …,  αN

dm + Nm
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Multipoint evaluation

Naïve algorithm 
For i = 1 to N:   
 Evaluate f on  

Roughly  field operations in total  

When quadratic in the input size 

Can we do this faster ?  
In particular, is there an algorithm that runs in linear time in the input size ? 

          

αi

(Nmdm)
N = dm,  
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Why do we care ? 

• A very basic and natural algorithmic question in computational algebra 
• Many direct and natural applications – fast modular composition, univariate 

polynomial factorization over finite fields, generating irreducible 
polynomials, computing minimal polynomials, data structures for polynomial 
evaluation, ….  
• Current fastest algorithms for all these problems go via fast multipoint 

evaluation
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Multipoint evaluation: the univariate case

Input 

• A univariate polynomial  with degree (d-1) over a field K, as a list of 
coefficients 

• N points   

Output 

• Evaluation of  on  

Input is specified via  field elements

f

α1, α2, …,  αN ∈ 𝐊

f α1, α2, …,  αN

(N + d)
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Multipoint evaluation: the univariate case

For structured set of input points  
• when  are all roots of unity of order N  

•  an algorithm with   field operations using Fast Fourier 
Transform  

For an arbitrary set of input points  

• [Borodin-Moenck, 1974] An algorithm with   field 
operations 
• a very clever and neat application of FFT

α1, α2, …,  αN ∈ 𝐊

(N + d)1+o(1)

(N + d)1+o(1)



Multipoint evaluation: the multivariate case



Multipoint evaluation: the multivariate case

For structured set of input points



Multipoint evaluation: the multivariate case

For structured set of input points  
• when  form a product set, i.e., 

, for 
α1, α2, …,  αN ∈ 𝐊

{α1, α2, …,  αN} = S1 × S2 × ⋯ × Sm Si ⊆ 𝐊



Multipoint evaluation: the multivariate case

For structured set of input points  
• when  form a product set, i.e., 

, for   

• an easy nearly linear time algorithm – induction on the number of 
variables

α1, α2, …,  αN ∈ 𝐊
{α1, α2, …,  αN} = S1 × S2 × ⋯ × Sm Si ⊆ 𝐊



Multipoint evaluation: the multivariate case

For structured set of input points  
• when  form a product set, i.e., 

, for   

• an easy nearly linear time algorithm – induction on the number of 
variables  
• uses the univariate case as the base case  

α1, α2, …,  αN ∈ 𝐊
{α1, α2, …,  αN} = S1 × S2 × ⋯ × Sm Si ⊆ 𝐊
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Multipoint evaluation: the multivariate case

For an arbitrary set of input points  
• no non-trivial algorithm known till relatively recently (even for the 

bivariate case)   
• Nusken-Ziegler designed a slightly faster (though far from linear time) 

algorithm in 2004 

• based on faster rectangular matrix multiplication  
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The multivariate case: more recent progress

[Umans, 2008] 
A nearly linear time algorithm for multivariate multipoint evaluation when 

1. char(K) is less than  

2. number of variables (m) is less than      

[Kedlaya, Umans, 2008] 
A nearly linear time algorithm for multivariate multipoint evaluation when 

1. K is any finite field 

2. number of variables (m) is less than     

do(1)

do(1)

do(1)



The multivariate case: more recent progress

[Bjorklund, Kaski, Williams, 2019] 
A nearly linear time algorithm for multivariate multipoint evaluation when 

1. |K| is small 
2. |K|-1 has small divisors  



The multivariate case: more recent progress

[Bjorklund, Kaski, Williams, 2019] 
A nearly linear time algorithm for multivariate multipoint evaluation when 

1. |K| is small 
2. |K|-1 has small divisors   

Not a polynomial time algorithm, since the running time depends polynomially 
(and not polylogarithmically) on the field size 
Nevertheless, happens to be very useful for one of our results 
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Multivariate multipoint evaluation

In particular 
No nearly linear time algorithm for multivariate multipoint evaluation when 
• number of variables (m) is not less than , over any (sufficiently large) field 
     

This is the question that we study in our work and focus of rest of the talk.

do(1)
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Our results 

[Bhargava, Ghosh, K., Mohapatra, 2021] 
A nearly linear time algorithm for multivariate multipoint evaluation when 

1. char(K) is less than  
2. K is of size at most exp(exp(exp(…exp(d))))                            (tower of fixed height) 

3. number of variables (m) is less than      

[Bhargava, Ghosh, Guo, K., Umans, 2022] 
A nearly linear time algorithm for multivariate multipoint evaluation when 

1. K is any finite field 

2. number of variables (m) is less than      

                                         (degree d is asymptotically growing)                                                                  

do(1)

do(1)

do(1)
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Multivariate multipoint evaluation

In particular 
No nearly linear time algorithm for multivariate multipoint evaluation when 
• number of variables (m) is not less than , over any (sufficiently large) field 
     

Our results 
Nearly linear time algorithm for multivariate multipoint evaluation over all 
finite fields, for growing d, and all m

do(1)



 
In summary 

 Field Size Characteristic Number of variables Algebraic vs non-
algebraic

Umans Finite char(K) <  m <       Algebraic

Kedlaya-Umans Finite All finite fields m <  Non-algebraic

Bhargava-Ghosh-K-
Mohapatra

      Not-too-large char(K) <         No constraint Algebraic 

Bhargava-Ghosh-
Guo-K-Umans

Finite All finite fields  No constraint Non-algebraic
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Theorem 
A nearly linear time algorithm for multivariate multipoint evaluation when 

1. char(K) is less than  
2. K is of size at most exp(exp(exp(…exp(d))))                            (tower of fixed height)

do(1)
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Input 
• An m-variate polynomial  with degree at most (d-1) in each variable over a field K, 

as a list of coefficients 

• N points   

Two phases of the algorithm 
• Preprocessing phase: independent of the evaluation points  

• Local computation phase: depend on , and earlier computation 

𝑓

α1, α2, …,  αN ∈ 𝐊𝐦

α1, α2, …,  αN

α1, α2, …,  αN
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An outline of the algorithm

Preprocessing phase  

1. Construct a set  such that  

•  is not too large (comparable to the input size)

• S is a product set  

• For every , there is a low degree curve through  which has large 
intersection with S 

2.    Evaluate f on all points of S

S ⊆ 𝐊m

S

α ∈ 𝐊m Cα   α



An outline of the algorithm

Local computation 



An outline of the algorithm

Local computation  

• have an , want to compute  fast, using info from the previous stepα ∈ 𝐊m f(α)



An outline of the algorithm

S

𝛂



An outline of the algorithm

S

𝐂𝛂

𝛂



An outline of the algorithm

Local computation  

• have an , want to compute  fast, using info from the previous step 

• let  be the low degree curve through , with 

large intersection with S; each  is a low degree polynomial

α ∈ 𝐊m f(α)

Cα(y) = (rα,1(y), rα,2(y),  …, rα,m(y))  α
 rα,i(y)



An outline of the algorithm

Local computation  

• have an , want to compute  fast, using info from the previous step 

• let  be the low degree curve through , with 

large intersection with S; each  is a low degree polynomial 

•  passes through , i.e. there exists , such that 

α ∈ 𝐊m f(α)

Cα(y) = (rα,1(y), rα,2(y),  …, rα,m(y))  α
 rα,i(y)

Cα(y) α u ∈ 𝐊 Cα(u) = α



An outline of the algorithm

Local computation  

• have an , want to compute  fast, using info from the previous step 

• let  be the low degree curve through , with 

large intersection with S; each  is a low degree polynomial 

•  passes through , i.e. there exists , such that 

• let  be the restriction of the polynomial f on the 

curve 

α ∈ 𝐊m f(α)

Cα(y) = (rα,1(y), rα,2(y),  …, rα,m(y))  α
 rα,i(y)

Cα(y) α u ∈ 𝐊 Cα(u) = α

g(t) = f(rα,1(y), rα,2(y),  …, rα,m(y))
Cα(y)



An outline of the algorithm

Local computation  

• have an , want to compute  fast, using info from the previous step 

• let  be the low degree curve through , with 

large intersection with S; each  is a low degree polynomial 

•  passes through , i.e. there exists , such that 

• let  be the restriction of the polynomial f on the 

curve   

• g is univariate of degree at most 

α ∈ 𝐊m f(α)

Cα(y) = (rα,1(y), rα,2(y),  …, rα,m(y))  α
 rα,i(y)

Cα(y) α u ∈ 𝐊 Cα(u) = α

g(t) = f(rα,1(y), rα,2(y),  …, rα,m(y))
Cα(y)

(deg(Cα) ⋅ dm)
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Local computation  

• have an , want to compute  fast, using info from the previous step 

• let  be the low degree curve through , with large 

intersection with S; each  is a low degree polynomial 

•  passes through , i.e. there exists , such that 

• let  be the restriction of the polynomial f on the curve 

  

• g is univariate of degree at most  

• if we can efficiently get our hands on g, we can set t = u, to get 

α ∈ 𝐊m f(α)

Cα(y) = (rα,1(y), rα,2(y),  …, rα,m(y))  α

 rα,i(y)
Cα(y) α u ∈ 𝐊 Cα(u) = α

g(t) = f(rα,1(y), rα,2(y),  …, rα,m(y))
Cα(y)

(deg(Cα) ⋅ dm)

f(α)
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Local computation  

• for each of the N input points, we only have sublinear [  time 

• from properties of S, we have that  intersects S at many points, and we have value of f at 
all points in S 

• let be such that  be in S 

• from the preprocessing phase, we have already computed 
 

• so, if , can recover the polynomial g via interpolation  

• once, we have g, can recover 

(N + dm)𝑜(1) ]

Cα

v ∈ 𝐊  Cα(v) = (rα,1(v), rα,2(v),  …, rα,m(v)) 

g(v) = f(rα,1(v), rα,2(v),  …, rα,m(v))

Cα  ∩ S > deg(g)
g(u) =  f(α)
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S

𝐂𝛂

𝛂 Want  
 |𝐂𝛂 ∩ 𝑺 | > 𝐝𝐞𝐠(𝐂𝛂) ⋅ 𝐝𝐦

•  

•  <  

•   

S < (pdm ⋅ log𝐩 𝐊 )
𝐦

 deg(Cα) log𝐩 𝐊

|Cα ∩ 𝑆 | > log𝐩 𝐊 ⋅ dm > deg(Cα) ⋅ dm



The mysterious set S

• ends up being a vector space over a subfield of appropriate size 
• requires the characteristic of the underlying field to be small, else, unclear if 

such a set exists 
• curve property follows from structure of field extensions
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Running time

running time of the first phase – nearly linear in  ~  

N iterations of univariate polynomial interpolation for degree  + 
finding the curves at each input  

overall running time :  

 (dm + |S | ) (pdm ⋅ log𝐩 𝐊 )
𝐦

log𝐩 𝐊 ⋅ dm

(N + (pdm ⋅ log𝐩 𝐊 )
𝐦

) ⋅ poly(log
𝐩

𝐊 ⋅ dm)
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A few more ideas

• Well…what about large m, large fields ?  

• the bottleneck is the size of S 

• if we could work with a smaller set S, then….. 

• to continue the local decoding step, will need to ensure that we have sufficient 
information for univariate interpolation along the curve at each point 

• here, we work with a smaller set S 

• leads to reduced intersection between the curves and the set S 

• to compensate, need stronger preprocessing phase, and a more complicated local 
computation step 
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A few more ideas
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• this additional information lets us proceed with a smaller set S  

(  

• instead of constructing univariate polynomials from just evaluations, we now 
construct them from their evaluations and the evaluations of their derivatives  

• running time -  

S < (pd ⋅ log𝐩 𝐊 )
𝐦

)

(N + (pd ⋅ log𝐩 𝐊 )
𝐦

) ⋅ poly(log
𝐩

𝐊 ⋅ dm)
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Dealing with large fields 

•  the degree of the curve through an input point depends on the degree of the field 
extension that the point lies in 

• on each , there are many points  that lie in much lower degree extensions 

• so, the value of f is easier to  decode on such points  

• instead of computing the restriction of f on , by looking at the values of f 
on we first compute f on easier points of  

• then, use this additional info, together with values of f on S to do 
interpolation

Cα β
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The final inaccurate picture 

S
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𝛂
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• First compute f on curves through simpler 
points  using the previous algorithm 

• Then, use the values of f on S, and curves 
through  to compute f on  

 β,  γ

β,  γ Cα
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Multipoint evaluation over all finite fields 

• two different algorithms  

• both rely on ideas from the previous algorithm + approach of Kedlaya-Umans + 
some more ideas (primes in an AP, algorithm of BKW2019)  

• one completely elementary, but slightly technical to describe, requires the field to 
be not-too-large 

• one simpler and shorter to describe, but not entirely elementary 

• crucially uses a result of Bombieri-Vinogradov about the density of primes in an 
arithmetic progression  

• essentially, both improve some of the bottlenecks in Kedlaya-Umans using ideas 
from the small characteristic case and BKW19 in slightly different ways
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Open Questions

• An algebraic algorithm over finite fields ?  

• An algorithm (or an algebraic circuit) over infinite fields (complex numbers) ?  

• More applications ?  

• What about faster algorithms for other related problems ? e.g. multivariate 
interpolation ?  

• What about the case of constant d ? e.g. multilinear polynomials ?



Thank You!


