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Homogeneous algebraic branching programs

We consider homogeneous algebraic branching programs with linear forms
on edges
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▶ Weight of a path is the product of all labels on this path

▶ The polynomial computed by an ABP is the sum of weights
over all paths from the source to the sink

▶ ABP size is the number of internal vertices
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Algebraic branching programs

▶ Computational power of algebraic branching programs is
intermediate between formulas and circuits

▶ The model is very convenient algebraically because ABPs are
connected to iterated matrix multiplication

▶ Concatenation of paths is the same as matrix multiplication
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Algebraic branching programs in noncommutative setting

▶ Algebraic branching programs were first formally introduced by Nisan
in the noncommutative setting

▶ Noncommutative ABPs are very rigid and have a very nice algebraic
characterization

▶ Nisan computes the noncommutative ABP complexity exactly in
terms of ranks of partial derivative matrices

N. Nisan. Lower Bounds for Non-Commutative Computation: Extended Abstract. STOC’91
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Algebraic branching programs in commutative setting

▶ Commutative algebraic branching programs are more complicated

▶ A quadratic lower bound for homogeneous ABPs was proven by
Kumar

Theorem (Kumar)

homABP-size(xd1 + xd2 + · · ·+ xdn ) ≥ (d − 1)⌈n2⌉

▶ Chatterjee, She, Kumar and Volk extend this bound to
non-homogeneous ABPs

M. Kumar. A Quadratic Lower Bound for Homogeneous Algebraic Branching Programs. CCC 2017 / comput. complex. 28(3)
P. Chatterjee, M. Kumar, A. She, and B. L. Volk. A Quadratic Lower Bound for Algebraic Branching Programs. CCC 2020
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Algebraic branching programs and decompositions

▶ A path from the source to the sink contains a vertex in layer k
▶ This gives a decomposition of the form

F =
r∑

j=1

GjHj

▶ Gj ,Hj are homogeneous, degGj = k , degHj = d − k
▶ Number of summands is equal to the number of vertices in layer k
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F =

(x2 + 5yz) · x + 2y2 · y + (10xz − 5z2) · (2x + z)
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Rank decompositions in noncommutative case

▶ In the noncommutative case: write

F =
∑

fab (xa1 ⊗ · · · ⊗ xak )⊗
(
xb1 ⊗ · · · ⊗ xbd−k

)
▶ Construct a matrix Fk = (fab)

▶ F =
∑r

j=1 Gj ⊗ Hj correspond to rank decompositions of this matrix

▶ This proves a lower bound part of Nisan’s result
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Strength decompositions

▶ In the commutative case:

▶ Decompositions F =
∑r

j=1 GjHj with homogeneous Gj and Hj were
studied before in algebra and algebraic geometry

▶ The minimal number of summands in such a decomposition is called
the strength str(F )

Theorem

homABP-size(F ) ≥ (d − 1) · str(F )

▶ We define k-restricted strength strk(F ) as the minimal number of
summands in a strength decomposition with degGj = k

Theorem

homABP-size(F ) ≥
∑d−1

k=1 strk(F )

▶ A special case is the slice rank of a polynomial str1(F )
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Strength and singular locus

Definition

The singular locus Sing(F ) is the variety defined by equations ∂F
∂xi

= 0.

▶ If F =
∑r

j=1 GjHj , then
∂F
∂xi

=
∑r

j=1

[
Gj

∂Hj

∂xi
+ Hj

∂Gj

∂xi

]
▶ If all Gj = Hj = 0, then all ∂F

∂xi
= 0

▶ 2r ≥ codimSing(F )

Theorem

str(F ) ≥ 1
2 codimSing(F )

▶ This is the essence of Kumar’s lower bound

▶ This cannot give bounds better than str(F ) ≥ ⌈N2 ⌉,
where N is the number of variables

▶ Can we do better?
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Degree-restricted strength and subvarieties

▶ Suppose F =
∑r

j=1 GjHj .

▶ Let Z be the hypersurface defined by F = 0.

▶ Z contains the variety X = {G1 = · · · = Gr = 0}
▶ If degGj = k , then the degree of X is at most k r

(essentially by Bezout theorem)

Theorem

If Z does not contain linear subspaces of codimension c, then
str1(F ) ≥ c + 1

If Z does not contain subvarieties of codimension c and degree < s, then
strk(F ) ≥ min{c + 1, logk s}
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Result for explicit polynomials

▶ Consider the polynomials

Pn,d = xd0 + x1x
d−1
2 + x3x

d−1
4 + · · ·+ x2n−1x

d−1
2n

▶ The number of variables is N = 2n + 1

▶ Singular locus lower bound gives str(Pn,d) ≥ ⌈n+1
2 ⌉ ≈ N

4

Theorem

str1(Pn,d) = n + 1 ≈ N

2
strk(Pn,d) ≥ min{n + 1, logk d}

▶ This improves Kumar’s lower bound ≈ (d + 1)N4 by additive term

≈ N

2
+

N

2
· dconst /N
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Intersection theory

▶ We use intersection theory to prove the result on Pn,d

▶ For a variety Z , the Chow group CHa(Z ) consists of formal linear
combinations of dimension a irreducible subvarieties modulo an
equivalence relation called rational equivalence

▶ Rational equivalence can be though of as an existence of a certain
kind of deformation from one collection of varieties to another

[conic] = 2[line] in CH1(P2)
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Shioda polynomials and slice rank

▶ Consider the polynomials

Sn,d = x0x
d−1
1 + x1x

d−1
2 + · · ·+ xn−1x

d−1
n + xnx

d−1
0 + xdn+1

▶ The number of variables is N = n + 2

▶ We call them Shioda polynomials because they were studied by
Shioda in intersection theory

▶ The singular locus lower bound is str(Sn,d) ≥ ⌈N2 ⌉
▶ For S4,d we have str(S4,d) ≥ 3

Theorem

str1(S4,d) = 4

▶ This is the first lower bound better than ⌈N2 ⌉ for an explicit
polynomial

▶ This improves the Kumar’s lower bound on hom. ABP size by +2
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Open questions

▶ Is analysis of subvarieties useful for other complexity questions?

▶ Can we determine the exact complexity of Pn,d and Sn,d?

▶ Can we at least prove str1(Sn,d) =
n+1
2 + 1 for all even n?

▶ Is computing strength NP-hard?

▶ Does existence of explicit polynomials with high strength have
complexity implications?
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