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Prelims: Circuits, Formulas and ABPs

Algebraic Branching Program

Output: 2x1x0 + x1X4 + XoX3
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foym(X) = foym (Xo(1)s Xo(2) - - - » Xo(n)) UNder any permutation o € S,

f(x1,x) = x1 + xo is symmetric but f(x1,x) = x12 + x2 is not.
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Introduction: Symmetric Polynomials

The elementary symmetric polynomial(ey) is the sum of all
multilinear monomials of degree exactly d.

ed = E Xiy Xip « -+ Xiy

1<ip<...<ig
e (x1,x2) = x1x2

The homogeneous(Complete) symmetric polynomial(hy) is the sum
of all monomials of degree exactly d.

hd = E Xiy Xiy + + - Xiy

1 <i2<...<iy

2 2
ha(x1,x2) = xi + x5 + x1x2



Introduction

[Lipton-Regan '09]  complexity of symmetric polynomials

f

complexity of polynomials in general



Introduction

Fundamental theorem of symmetric polynomials

For any foym € C[x1, X2 ... xp], there exists a unique f € C[zy, 2o, ...

such that foym = f(er, ..., e,)

ed def elementary symmetric poly of deg d

Assumption Complex field

How the complexity of f and fym, are related?
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C(f) L Circuit size of ‘'
n def Number of variables
C(fym) < C(f) 4+ n®Q)
or

C(f) < C(faym) + n°M
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v’ C(fym) < C(f) + n°W
and

(If truel)  C(f) < C(fuym) + n°W

ll

C(f) = C(foym) + nY)

|Blaser-Jindal '18] answers this affirmatively.

only for circuits
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Introduction

v Clfym) < C(F) + n°M)
and

(ftruel)  C(F) < C(fym) + nOD
C(f) = C(f;ym) + nO(l)

[Blaser-Jindal '18] C(f) < O(d2C(fym) + d2n?)  (d 2L deg(f))

Can we prove a similar statement for the ABPs(Formulas)?



Our result for Formulas

|Blaser-Jindal '18] For any polynomial f € C[x] of deg d where
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Our result for Formulas

[Blaser-Jindal '18] For any polynomial f € C[x] of deg d where

foym = f(e1, ..., en),

C(f) < O(d*C(foym) + d*n?)

[This work] There exists b € C", s.t. for any homogeneous
polynomial f € C[x] of deg d, if fyym = f(e1 — b1,...,en— by)
then,

L(F) < O(L{fym)?n)

def

L(f) formula size of ‘f’




Generalized Vandermonde Matrix

Principal Vandermonde Matrix

n—1 n—1 n—1
Xq Xy X,
n—2 n—2 n—2
X1 X5 n
V, =
1 1 1

nxn



Generalized Vandermonde Matrix

Principal Vandermonde Matrix

n—1 n—1 n—1
Xq X X,
n—2 n—2 n—2
X1 %0) n
V, = :
1 1 1

nxn



Generalized Vandermonde Matrix

Generalized Vandermonde Matrix

t1 t1 [51
Xq Xyt Xp

to [%) [
X2 X .. X,

GVt =
n

th th t

X1 X" Xy

nxn

where t; >th > ... >t,>0



Generalized Vandermonde Matrix

Generalized Vandermonde Matrix

t1 t1 t1

X X e X
1 2 n
to [%) [

X2 X Xy,

t o .
GVt =

tn tn th

X X X
1 2 n nxn

where t; >th > ... >t,>0

det(GVf,) = No known closed form expression



Generalized Vandermonde Matrix

Generalized Vandermonde Matrix

t1 t1 t1
Xq Xyt Xp

to [%) [
X2 X .. X,

GVt =
n

th th t

X1 X" Xy

nxn

where t; >th > ... >t,>0

[This work] ~ There are G.V. matrices whose Det. doesn't have a small
small formula if the symbolic Det. does not.
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Schur Polynomial

Schur Polynomial of degree d over its partition A is defined as
det(GV)T?)

Sa(xt, X2, - Xn) = det(V})

where

A+d=(M+n—1do+n—=2... N+n—"(....0)



Schur polynomial

det(GV)*?)

Sa(xi,x2, ..., %p) = det(V,)

,\+5:()\1+n—1,)\2+n—2,...,>\g+n—€,...,0)



Schur polynomial

det(GV)*?)

Sa(x1, X2, Xn) = det(V})

A+d=MN+n—1 +n—=2,...; +n—4,...

t t t
X1 X5 Xp
t2 t2 to
X1 X5 X,
Gv)\—i—& _ : :
n
t t t
X" X5" X"

nxn



Schur polynomial

det(GV)*?)

Sa(x1, X2, Xn) = det(V})

A+d=MN+n—1 +n—=2,...; +n—4,...

t1 t1 51
X1 X5 S X,

to t2 2]
X1 X5 e Xy

Gv)\—i—& _ :
n

t t t

X" X" X"

nxn

where t; >t > ... >t,>0



Schur polynomial

det(GV)*?)

Sa(x1, X2, Xn) = det(V})

A+d=MN+n—1 +n—=2,...; +n—4,...

t1 t1 51
X1 X5 S X,

to t2 2]
X1 X5 e Xy

Gv)\—i—& _ :
n

t t t

X" X5" X"

nxn



Formula complexity of S,

det(GV)T?)

A =550

@. What is the formula complexity of Schur polynomials?



Formula complexity of S,

det(GV)T?)

A =550

@. What is the formula complexity of Schur polynomials?

[This work] There exists A for which Sy is hard for formulas



Formula complexity of S,

i det(GV)T?)
M) = v
@. What is the formula complexity of Schur polynomials?

[This work] There exists A for which Sy is hard for formulas
unless the Determinant has a small formula.



Formula complexity of S,

i det(GV)T?)
M) = v
@. What is the formula complexity of Schur polynomials?

[This work] There exists A for which Sy is hard for formulas
unless the Determinant has a small formula.

M



Formula complexity of S,

i det(GV)T?)
M) = v
@. What is the formula complexity of Schur polynomials?

[This work] There exists A for which Sy is hard for formulas
unless the Determinant has a small formula.

M

There are G.V.Ds which do not have small formulas
if the symbolic Determinant does not.
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Proof idea

Input:

1. g(91,92-..,qk) where g; € C[x1,x2...x,] and g;'s are algebraically
independent.

2. gis a homogeneous poly of degree d where {q1, g2 ... gk} satisfies
some special property.

Output: Find g(z1, 2 .. . z) efficiently.
Our technique: For some a € C”
l Taylor expansion
g(L1(x) + H1(x), L2(X) + Ha(X), . .. Li(x) + Hi(x))
l degree d component
8(L1(x), L2(x); - - - Lk(x))
l linear transformation

g(z1,20. .. zk)



Key lemma

1. g is a homogeneous poly of degree d.

2. g(g1,92...,qk) has a small formula, where
qi € C[x1,x2,...,x,] and g;'s are algebraically independent.

There exists a point ‘a’ s.t.

i gi(a) =0 forall /.
i The rank of the Jacobian matrix of g1, g2, ..., gk when
evaluated at ‘a’ is equal to its symbolic rank.

ﬂ

g(z1,22 ... 2x) has a small formula.



Summary of results

Theorem

db € C" s.t. for any homogeneous polynomial f € C[x] of deg d,
if fym = f(e1 — by, ..., e, — bp) then,

L(F) < O(L(fom)?n)
def c
L(f) = formula size of f

Theorem

There exists a X s.t. Sy does not have a small formula unless the
Determinant has.

Theorem

There are Generalized VVandermonde determinants which do not
have small formulas if the determinant does not.
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Open questions

1. Can we eliminate the homogeneity constraint on g?
2. Can we eliminate the special properties?

3. Can we prove a Blaser & Jindal kind of statement for formulas
and ABPs in general?
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