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Matrix Multiplication

Matrix multiplication is an interesting problem.

The standard algorithm for multiplying two n x n matrices uses O(n?)
operations.

Strasen’s algorithm uses a multiplication scheme for 2 x 2 matrices that needs
only 7 multiplications instead of 8, yielding a complexity of O(n2%!)

Proving upper (or lower) bounds on the rank of specific tensors is hard.
The exact rank is only known for multiplication of 2 x 2 by 2 x n matrices.
Strassen’s algorithm is the only fast algorithm that can be used in practice.

An algorithm found by AlphaTensor can multiply 4 x 4 matricers using only 47
multiplications. Sadly it only works over rings of characteristic 2.
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Matrix Multiplication Schemes

= a1,1b1,1

a,2b2.1
a1,1b1,2
a1,252,2
a2,1b1,1

a2 2b21

= a2,1b1,2

a2,2b2,2

—m1+m2
=m3 + my
= ms + Mg

*m7+m8
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Matrix Multiplication Schemes

mi = 01,161,1
) ai1 + az,2)(b1,1 + b22)
M2 = 41,2021
a1 +ai2)(ba
m3 = a1,1bl,2
my = a1,2b2,2 ’
a1 1)(b1,2 - b2,2

~— ~—  —

ms = as 1b
° 2 as2)(be1 — b1

as1 —ai1)(bi1+b12)

my = (a1,2 — az,2)(bz,1 + ba2)

= (
= (
mg = (a21 + az2,2)(b11
=(
me = a2,2b2 1 E

m7 = a2,1bl,2

mg = a2,2b2,2
C1,1 =M1 — Mg + ms + mry
C1,1 =M1+ mg
C1,2 = M2 + My
C1,2 = M3+ my
C2,1 = M3 + M3
C2,1 = M5 + Mg
C22 =M1 — M3+ my+ Mg

C2,20 = M7 + Mg 2/99



Matrix Multiplication Schemes

mr

a1,1 + az2)(b11 +b22)

as 2)(62 1— 51,1

= (
=
= (
(al,l)(bl 2 —bao
= (
= (az1 —a1,1)(b11 +b1,2)

= (a1,2 —az,2)(ba1 + b22)

01,1:m17m2+m5+m7

C1,2 = Mo + My

C2,1 = M3 + M5

C2,2 =M1 — M3+ myg+mg
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Matrix Multiplication Schemes

= (a1,1+az2)(b1,1 +b22)

= (a11 + a1,2)(ba2)

= (az1 +a22)(b11) (@11 +a22) @ (b1,1 +b2,2) ® (c1,1 + c2.2)+

= (a1,1)(b1,2 — b22) (@11 +a12) @bao® (c12 —c11)+

= (ag,2)(b2,1 —b1,1) (ag,1 +a22) ®b11® (21 — Cc22)+

= (az1 —a1,1)(b11 +b1,2) a1 ® (bia —ba2) ® (c1,2+ c2,2)+
mr = (a1,2 — az,2)(ba1 + b2.2) az2 ® (be,1 —b1,1) ® (c1,1 +c21)+
C1,1 = M1 — M2 +ms + my (a1 —a11) @ (b1 + b12) @ co0+
C1,2 = M2 + My (a1,2+a22) ® (ba1 +b22) ®c11

C2,1 = M3 + M5

C2,2 =M1 — M3+ myg+mg
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Matrix Multiplication Schemes

a1,1 ® b1 ®ci1+
a12®by1 ®cy 1+
a1,1 ® b1 ®cyo+
a1,2 ®bao ®cipt
a1 ®b1,1 ®ca 1+
a22 ®by1 ®coq+
a1 ® b1 2 ®cao+

a2,2 ® bao ®ca 2

(@11 +a22) @ (b1,1 +b22) @
(11 +ai2) ®bao
(ag1 +az2) ® b1
a11® (b1,2 —b22) ®
a22® (be1 —b11) ® (c1,1 + c21)+
(ag1 —a11)® (bi1+b12) ® cao+
(@12 + a22) @ (ba1 +b22) ®c11

(c1,1 4+ c22)+
® (12 —c11)+
® (c2,1 — C2,2)+

( )

(

c12+c22)+
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Matrix Multiplication Schemes

Let n, m,p € N. The matrix multiplication tensor is defined by

n7m7p
Mn,m,p = Z ai,j ® bj,k ® Ck,i = Kn,m ® Km,p ® prn
1,5,k=1

where a4, b, , and c, , refer to the matrices of the respective format that have a
1 at position (z, y) and zeros elsewhere.

Rank-one tensors are non-zero tensors of the form A ® B ® C.

The rank of a tensor T is the smallest number r such that 7 can be written as a
sum of r rank one tensors.

An (n, m,p)-matrix multiplication scheme is a finite set S of rank one tensors,

such that M, ., = > g t. We call S| the rank of the scheme.
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Reductions

Under certain conditions some rank-one tensors can be combined leading to a
reduction in the number of multiplications.

Consider the rank one tensors

a3 1 ®bia®cin

az1 @bip@caq.
Their sum is again a rank one tensor:

az1 ®bi2 ® (c11+c21).

For two rank one tensors such a combination is possible if and only if two of the

factors are constant multiples of each other.
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Reductions

It is sufficient that the second factors are linearly dependent, for example:

a1 @b e
a1,1 @ b1 ®c31

a11 @ (b1 +b12) ®ca0.
These can be combined to

a11 @b ® (c11 +c22)
a11 @bi12 ® (c31 + c22).
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Reductions

Definition

Let n,m,p,r e Nandlet S = {A® @ BO @ C¥ |ie{1,...,r}} be an (n,m,p)-
matrix multiplication scheme. We call S reducible if there is a nonempty set
I C{1,...,r} such that

1. dimK<A(i)>Z’e[ =1and
2. dimK<B(i)>iE[ < |I|,
or analogously with B, Aor A,C or C, Aor B,C or C, B in place of A, B.

Proposition

Letn,m,p,r € N and let S be a reducible (n, m,p)-matrix multiplication scheme
of rankr. Then there exists an (n, m, p)-matrix multiplication scheme of rankr—1.
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Symmetries

The group G = GL,(K) x GLy,(K) x GL,(K) acts on a rank-one tensor
AR B®Ce K" @ K™P @ KP" by

(U, VW) A B C)=UAV '@ VBW teoWwoUu!

The matrix multiplication tensor is invariant under this action.

We call two matrix mutliplication schemes S; and S equivalent if they belong to
the same orbit.

B Since G acts linearly on A, B and C, reducibility is preserved by this action.
B We associate a matrix multiplication scheme with its equivalence class.
B For small matrices we can compute a normal form.
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Flips

A1 ® B ® Cy
A; ® By ® Cy
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Flips

+A41® B ®Cy
A1 ® B ® Cy
A; ® By ® Cy

—A1 ® B ® Cy
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Flips

+A; ® B ® Cy
A1 B1®C A1®Bl®(01+02)
A1 ® By ® Cy A1 ® (B2 — B1) ® Co

—A; ® B ® Cy
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Flips

A @B ®C +A®@By®C) =
A1 ®@(B1+B)®@C1+ (A2 — A1) @ Bo @ Cy =
A1 ® (B —By)®@Cy1+ (A2 + A1) @ By Cy =
(A1 + A) @ By ® C1 + Ay ® (By — B1) ® Cy =
(A1 —A2)®@B1®C1+ Ay ® (By + By) ® Cy
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Flips

Let n,m,k,r € N and let S, S’ be (n, m, p)-matrix multiplication schemes of rank
r. We call S” a flip of S if there are

BT =ABC €S,
BT,=A4A, B ®C, €S and
B7Te{4®B®C,A & B ®C}

such that (S\ {71, L) U{Th + T, T, — T} = 95"
We also call S’ a flip of S if the defintion applies analogously for a permutation of
A,Band C.
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The Flip Graph

Let n,m,p € N and let V be the set of all orbits of (n, m, p)-matrix multiplication
schemes under the symmetry group and define

E; ={(S,8") | S"is aflip of S}
Ey ={(S,5") | S is a reduction of S}.

1. The graph G = (V, E; U E») is called the (n, m, p)-flip graph. The edges in E;
are called flips and the edges in E; are called reductions.

2. Foragiven r € N, the set {S € V : rank(S) = r} is called the rth level of G.
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Flips

If we take Z, as base field then there are only 2 possible flips for every pair of lines.

A1®B1®C1+A2®@ Bo® Cy =
A1 ®(B1+B2)@C1 + (A2 + A1) @By ® Cy =
(Al+A2)®B1®01+A2®(BQ+BI)®CI

The advantage is, that we get matching factors more often and the set of
coefficients doesn’t grow when we do a flip.
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The Flip Graph

Strassen’s
oalgorithm o

standard
algorithm
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The Flip Graph

W 273 vertices

B 1183 edges

B 2 components

B length of the shortest path from the standard algorithm to Strassen: 8
B diameter: 12

B The same procedure is not duable for 3, 3, 3-matrix multiplication

0 At distance 1 from the standard algorithm there is 1 vertex.

0 At distance 2 from the standard algorithm there are about 600 vertices.

0 At distance 3 from the standard algorithm there are about 20 000 vertices.
O At distance 4 from the standard algorithm there are nearly 600 000 vertices.
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Random Search

To find matrix multiplication schemes of lower rank we use the following search
strategy:

Algorithm 1

Input: A matrix multiplication scheme S and a limit ¢ for the path length.
Output: A matrix multiplication scheme with rank decreased by one or 1.

1 if S has no neighbours, return |

2 fori=1,...,4 do:

O if S is reducible, then return a reduction of S.

4 if one of the neighbours of S is reducible, then return a reduction of it.
5 Set S to a randomly selected neighbour of S.

6 return L
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3 x 3 Matrices

B We can do a completion of the graph at the 23 multiplication level.

B In total we so find over 64 000 non-equivalent multiplication schemes.
B We identify 584 connected components.

B The smallest components are 40 isolated vertices.

B The largest component contains 6630 vertices.

B On average every vertex has 17 neighbours.
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3 x 3 Matrices

.“\\ X——on
Vane Y
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3 x 3 Matrices
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3 x 3 Matrices
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Search Strategy

Algorithm 2
Input: A set P of schemes of a certain rank, a path length limit ¢, a pool size
limit s, and a target rank r
Output: A set ) of s schemes of rank r
if P consists of schemes of rank r, return P.
Q=10
while |Q| < s do:
apply Alg. 1 to a random element of P and ¢.
if Alg. 1 returns a scheme, add it to Q).
call the algorithm recursively with Q in place of P.

D O A WO N =
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Summary of Results

Size Best known Our
algorithm algorithm

(2,2,2) 7 7
(2,2,3) 11 11
(2,2,4) 14 14
(2,2,5) 18 18
(2,3,3) 15 15
(2,3,4) 20 20
(2,3,5) 25 25
(2,4,4) 26 26
(2,4,5) 33 33
(2,5,5) 40 40
(3,3,3) 23 23
(3,3,4) 29 29
(3,3,5) 36 36
(3,4,4) 38 38
(3,4,5) 47 47
(3,5,5) 58 58
(4,4,4) mod 2 47 47
(4,4,4) 49 49
(4,4,5) mod 2 63 60
(4,4,5) 63 62
(4,5,5) 76 76
(5,5,5) mod 2 96 95
(5,5,5) 98 97

Size Best known Our
algorithm algorithm

(2,2,6) 21 21
(2,3,6) 30 30
(2,4,6) 39 39
(2,5,6) 48 48
(2,6,6) 57 56
(3,3,6) 40 42
(3,4,6) 56 57
(3,5,6) 70 71
(3,6,6) 80 93
(4,4,6) 75 74
(4,5,6) 93 93
(5,5,6) 116 116
(6,6,6) 160 164
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The Brent Equations

mp = (aﬂam + af%al,z +.. ~)(5§711)b1,1 + 582)51,2 +...)
m, = (aﬂam + agam + .. -)(5&)51,1 + 65251,2 +...)
ci = (it m)
Cnp = (fY’r(I}I))ml +...+ ’Vr(;,";);mr)
The coefficients need to be such that
Cij = Zai,kbk,]
k=1
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The Brent Equations

T
! l l
Za2(1),i2ﬁj(1),jzryl(cl),k2 = Big,j10i1 ks 5j2,k2
=1
i1,k1 € {1,...,n}
12,71 € {1,...,m}
jQ,kQ (S {1,...,])}

System with r(nm + mp + pn) variables and n?m?p? cubic equations.
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Lifting solutions

To lift solutions modulo 2 to solutions over the integers we apply Hensel lifting.
This allows us to lift a solution modulo 2 to a solution modulo 2.

Assume we have a solution modulo 2*:
(1) (l) _
Z iy 126J1,J2 ki,ke
We make the following ansatz modulo 2++1:

@ kA (D) @ k /() (0 k(D) _
Z( Qi1 io +2%a @) 22)(531 ]2 +2 le»jQ)(fykl’kQ +2 ’Vkl,kg) =0
=1
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Completeness results

The flip graph is weakly connected.

Letn,m,p,r € N and let Sy, So be two irreducible (n,m,p)-matrix multiplication
schemes of rank r over K = Zy. If S; and Sy differ in exactly two elements, then
Sy is a flip of Ss.
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Future work and open questions

Improve search strategy (symmetries, structure, heuristics, machine learning)
Identify good starting points

Flips that modify more than 2 rank-one tensors

Recognize/avoid local minima

Other tensors to decompose

Construct a path between to vertices

Properties of the flip graph

Larger ground fields

Border rank

Quadratic algorithms
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