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Talk outline

1. Some connections between graphs and matrix spaces

2. Algorithm: alternating paths and Wong sequences

3. Complexity: graph isomorphism and matrix space equivalence

4. More connections, more problems



* Based on the following joint works:
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Connections between graphs and matrix spaces
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Connections between graphs and matrix spaces
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* A classical result of the type: G has property P iff B_G has property Q

* Symbolic determinant identity testing (SDIT) essentially asks to test if a general
matrix space contains a full-rank matrix: a problem of key importance in algebraic
complexity [Kabanets-Impagliazzo]

* Quasi-NC algorithm for perfect matching [Fenner-Gurjar-Thierauf]

* We now examine another side of the above observation



Another correspondence between graph and matrix space structures
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Another correspondence between graph and matrix space structures
x (r=(LUR,F) o Bg=spaniBij | (i.j)eF] € Mn, )
L=R=0C[n]

Obs. hat o pexfect matching <) Bg contains & full-rank matrix

PTOP- (Hall) hat a shrunk subtet =) B hed o shrunk subspoce

¥ Non-commutative rational identity testing (NC-RIT) essentially asks to test if a
general matrix space admits a shrunk subspace [Hrube$s—Wigderson]

* Geometric complexity theory [Mulmuley], polynomial identity testing [Derksen—
Makam], non-commutative algebra [Cohn], analysis [Garg-Gurvits-Oliveira-Wigderson]...



SDIT versus NC-RIT
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SDIT versus NC-RIT
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: in coRP over large fields. A major open problem to derandomise it.

* NC-RIT: in P by [Garg-Gurvits-Oliveira-Wigderson], [Ivanyos-Q-Subrahmanyam],
[Hadama-Hirai]



Linear algebraic alternating path method

* The Ivanyos-Q-Subrahmanyam algorithm for NC-RIT:
-A method [Ivanyos-Karpinski-Q-Santhd]
- A “regularity lemma” for matrix space blow-ups (via division algebras)

* Alternating path method on bipartite graphs:
«t G=(LUR,E) , MSE is « given mardmnt , ) = £\ M : edger notin M

So € L : ummatohed vertites
cCR: ne,‘\ﬁ\\\nm oj; Soe Via Mmo\‘\'df\ﬁdell&%
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Review of alternating paths on bipartite graphs
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Review of alternating paths on bipartite graphs
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Review of alternating paths on bipartite graphs

«+ G=(LUR,E), McE

is o 310&/\ ma*‘dn{n"a_ X = I_:_\ M < edges not in M

So € L : ummatoned vextites

C K neighhoun So via unmetthed edfen
. i f 5. 4
8|§L:Y\~b.0'} Wi matthed
edges c K :nb. c} S, vin wnmatched 2dgen
— Check if

ontains an unmetdned vextex
— Yes: wuc,memiv\ﬁd ?ﬁﬂ\‘ No : tomtinue

: SToP f wm\moa:mo\h)neo\ venH
amd ¢ TWUTLY -V



Linear algebraic alternating path method
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Linear algebraic alternating path method
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Linear algebraic alternating path method

= span{ By, >, B 1 EMIn, F). Ce

So=her(C) ¢ F" = () = span { Bi(So)U-~UBA(S.) ] € "

—F T1¢m(C ), con compute D € (5 of larer vank

— Otherwise .--



Linear algebraic alternating path method
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Linear algebraic alternating path method
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Linear algebraic alternating path method
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Recap for the NC-RIT story

* Start with “G has property P iff B_G has property Q"

* Go on to examine the problem of testing "B has property Q"
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* Inspired by techniques for solving the problem of testing "G has property

1. [Garg-Gurvits-Oliveira-Wigderson] Sinkhorns scaling algorithm
2. [Ivanyos-Q-Subrahmanyam] the augmenting path algorithm
3. [Hamada-Hirai] submodular optimisation



Recap for the NC-RIT story

* Start with "G has property P iff B_G has property Q"

* Go on to examine the problem of testing "B has property Q"

"

* Inspired by techniques for solving the problem of testing "G has property

1. [Garg-Gurvits-Oliveira-Wigderson] Sinkhorns scaling algorithm
2. [Ivanyos-Q-Subrahmanyam] the augmenting path algorithm
3. [Hamada-Hirai] submodular optimisation

* The situation is usually more complicated for testing “B has property Q"

- The discrepancy between “full-rank matrices” and/“\shrunk subspaces”

not hwi ng



Graph isomorphism versus matrix space equivalence

Def G = (LUR, F) amd =(LUR.F), L=R=[n], FR.R cLxR
one isomorpkic, i? 30.Te Sn, such that (1‘.\5)& F, (G(i),Tr(j))eF,_

* Bipartite graph iso is as hard as general graph iso
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Matrix spac ivalenc :
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* Matrix space equivalence as a proper generalisation of graph isomorphism

* Next step: matrix space equivalence for general matrix spaces



Matrix space equivalence
PTDF. [Li-Q- Wiﬂd&ﬁon - Wijdusm\ - Zkamﬁ:l

and | oxe ?SOMOTPWC = Bq ond By are ecluivaLwi‘

* Matrix space equivalence as a proper generalisation of graph isomorphism

* Next step: matrix space equivalence for general matrix spaces

* Results inspired by the study of ?
- [Li-Q]: individualisation and refinement as used in [Babai-Erdés-Selkow]

* [Grochow-Q]: a complexity class called Tensor Isomorphism (TI) in analogy with
- A gadget design in analogy with some method from



Matrix space equivalence as tensor isomorphism

* [Grochow-Q]: a complexity class called Tensor Isomorphism (TI) in analogy with

* 43 = SPO‘M{RI s . BW\'] S M(n, H:)

)

eEFOF®F"




Matrix space equivalence as tensor isomorphism

* [Grochow-Q]: a complexity class called Tensor Isomorphism (TI) in analogy with
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Matrix space equivalence as tensor isomorphism

* 2 =spaniB,, . BmIC M(n, F) B E < MW, F) are equivalent
g
= ol e ForoF™ awe tsomprphic, j.e.
- in the tame orbit wndlea

GLW, F)x GLO,TE) x GL(wm, F).

Def. [Grochow-Q] The complexity class TI consists of problems polynomial-time
reducible to the matrix space equivalence = 3-tensor isomorphism problem.

* Wishful thinking: just as GI captures isomorphism problems for combinatorial
structures, TI captures isomorphism problems for algebraic structures



Actions on 3-way arrays

* R, S, Te GLin. )




Actions on 3-way arrays

* R, S, Te GLin. )

Tencor

t: ux\/"V\’—)F

g’t\\‘V\u«/f MNP

f:uxuU-w

A‘febrm
c: UxU-> U

Trilineawr Fovm

C: Ux U xXU- F



3-way arrays are versatile

* Under different actions, 3-way arrays encode tensors, bilinear maps, algebras, and
trilinear forms

* Putting some structural restrictions we get more

1. bilinear maps f:UxU->V: systems of quadratic forms

2. bilinear maps over GF(p): p-groups of class 2 and exponent p
3. trilinear forms over F, char(F) not 2 or 3: cubic forms

4.

conditions...: associative algebras or Lie algebras



TI-complete problems

Theorem. [Futorny-Grochow-Sergeichuk, Grochow-Q]

The following problems are TI-complete:

- Isomorphism of p-groups of class 2 and exponent p, given by matrix groups
- Isomorphism of systems of quadratic forms, cubic forms

- Isomorphism of associative and Lie algebras



TI-complete problems

Theorem. [Futorny-Grochow-Sergeichuk, Grochow-Q]
The following problems are TI-complete:

- Isomorphism of p-groups of class 2 and exponent p, given by matrix groups
- Isomorphism of systems of quadratic forms, cubic forms
- Isomorphism of associative and Lie algebras

* How about d-tensors for d>3? Note that 2-tensor isomorphism (matrix
equivalence) is easy.

d.,d>2

Theorem. [Grochow-Q])é’rensor isomorphism reduces to 3-tensor isomorphism.

* In the spirit that 3SAT is NP-complete, and 2SAT is in P.



Methods for relating the problems

* Two techniques for relating 3-way arrays under different actions: Gelfand-
Panomerav and gadget methods

* The gadgets are reminiscent of those used for colored graph isomorphism



Methods for relating the problems

* Two techniques for relating 3-way arrays under different actions: Gelfand-
Panomerav and gadget methods

* The gadgets are reminiscent of those used for colored graph isomorphism

- Star gadgets:

Degrees of red vertices
are large enough so blue
vertices cannot be
mapped to them




One example of the reductions

Goul o Given B % UxVXWSTF, tonstruct ;C\ é\ : SxS-T, skew—$\jmme¢vic
Such that I~ % wndor CLUD*GLOV) < GLOW) i T~ wnder GLS)<GLT)

Cometvuction Z_i:—*

dim(UW)= £ S=uevV

dm (V)= n = T=W

dm (W) =wm _

—

(Entvies outtice tha vegon e O ).



From tensors to bilinear maps

Cometvuction

dim(U) = £
CLWV\ (V) =nNn
Ao (W): m

(Cntvies outsice Haa \wjimn eve O).

* This construction does not work because
GL(S) may mix U with V. So we need:



From tensors to bilinear maps

Constvuction * This construction does not work because
dim(W = ¢ GL(S) may mix U with V. So we need:

CLWV\ (V) = nNn

dvm (W) =wmW ‘ 4 Jln;_l

RN A R—
S= uevV 4—— I ; E
Tow S &=
(Cntvies outsice Haa \recjiown eve O). @




More correspondences, more questions
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More correspondences, more questions

* A gragh = (V. F) o B2 cpan{Eij] G.IER] S Min, ).
\/: ]:V\] . FEVXV

Pr op. [Li- Q- \A)iﬂo\e/mm- \A)ijdersa'n- Z}sav\j 3
is agelic = B tontaing only nilpokent watvices

Prop. Livia.) Max size over ocydic subgraphs in
= Max dim over nilpotent subspaces ™ Bg

* (emeralice (rorstenhaber’s fecult :
max dim of nilporent matrix cpaen in M(n, ) = (2 )



Matrix space nilpotency testing

Def. (Matrix space nilpotency testing) Given a linear basis of a matrix space B, decide
if B contains only nilpotent matrices.

* Given a of size n, decide if 5"n is the zero matrix.

* Reduces to SDIT, which is equivalent to asking whether the (1, 1) entry of S"nis O

* The naturally associated group action is matrix conjugation (instead of left-right)
on matrix tuples. The nullcone problem, rank-1 spanned setting, etc. are easier.

* SDIT reduces to computing the nilpotency index [Li-Q-Wigderson-Wigderson-Zhang]



Brief summary

* A pattern of the stories:

Start with “G has property © iff B_G has property Q"

2. Ask the question “B has property Q"

3. Devise linear algebraic analogues of graph-theoretic methods

—
o

* Shrunk subset vs shrunk subspace, graph isomorphism vs tensor isomorphism

* Alternating paths vs Wong sequences, graph coloring gadgets vs rank gadgets

* Will matrix space nilpotency test be the next target?



And questions please :)



