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Talk outline

1. Some connections between graphs and matrix spaces

2. Algorithm: alternating paths and Wong sequences

3. Complexity: graph isomorphism and matrix space equivalence

4. More connections, more problems



* Based on the following joint works: 
• Yinan Li, Youming Qiao, Avi Wigderson, Yuval Wigderson, Chuanqi Zhang: 

Connections between graphs and matrix spaces. CoRR abs/2206.04815 (2022). To 
appear in Israel J Maths

• Joshua A. Grochow, Youming Qiao: On the complexity of isomorphism problems for 
tensors, groups, and polynomials I: Tensor Isomorphism-completeness. ITCS 2021: 
31:1-31:19. 

• Gábor Ivanyos, Youming Qiao, K. V. Subrahmanyam: Constructive non-commutative 
rank computation is in deterministic polynomial time. Comput. Complex. 27(4): 
561-593 (2018). 

• Yinan Li, Youming Qiao: Linear algebraic analogues of the graph isomorphism 
problem and the Erdős-Rényi model. FOCS 2017: 463-474.
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Connections between graphs and matrix spaces

* A classical result of the type: G has property P iff B_G has property Q

* Symbolic determinant identity testing (SDIT) essentially asks to test if a general 
matrix space contains a full-rank matrix: a problem of key importance in algebraic 
complexity [Kabanets-Impagliazzo]

* Quasi-NC algorithm for perfect matching [Fenner-Gurjar-Thierauf]

* We now examine another side of the above observation

Observation. (Tutte, Edmonds, Lovasz)

G has a perfect matching () BGcontains a full-rank matrix



Another correspondence between graph and matrix space structures

*G =(LWR, F) =) BG =spandEij/(i.j)eF) < M(n,#)
L =R =[n]

Obs. G has a perfect matching () BGcontains a full-rank matrix

Prop. (Hall) Ghas assubset() BG has a subspace
S2L, 151> /NIS1I Se#,dim(S)- dim (BG(S1)

NIS) IRis the set B((S) =span) U BIS))
BEBG

ofneighbours of S



Another correspondence between graph and matrix space structures

Non-commutative rational identity testing (NC-RIT) essentially asks to test if a 
general matrix space admits a shrunk subspace [Hrubeš—Wigderson]

* Geometric complexity theory [Mulmuley], polynomial identity testing [Derksen—
Makam], non-commutative algebra [Cohn], analysis [Garg-Gurvits-Oliveira-Wigderson]…

*G =(LWR, F) =) BG =spandEij/(i.j)eF) < M(n,#)
L =R =[n]

Obs. G has a perfect matching () BGcontains a full-rank matrix

Prop. (Hall) G has a shrunk subset() BGhas a shrunk subspace

*



SDIT versus NC-RIT

matrix spaces

bip graphs my full-rank matrices - Sk3 =

~I perfectmatching matrix spaces span? [Is]. [8)
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SDIT versus NC-RIT

* SDIT: in coRP over large fields. A major open problem to derandomise it.

* NC-RIT: in P by [Garg-Gurvits-Oliveira-Wigderson], [Ivanyos-Q-Subrahmanyam], 
[Hadama-Hirai]

matrix spaces

bip graphs my full-rank matrices - Sk3 =

~I perfectmatching matrix spaces span? [Is]. [8)
~/ neither

bip graphs matrixspaces

w/ shrunk subset w/ strunk subspaces [08



Linear algebraic alternating path method

* The Ivanyos-Q-Subrahmanyam algorithm for NC-RIT:
- A linear algebraic alternating path method [Ivanyos-Karpinski-Q-Santha]

   - A “regularity lemma” for matrix space blow-ups (via division algebras)

* Alternating path method on bipartite graphs:
*G =(LUR, E), MCEis a given matching, H =E) M:edges not in M

So L:unmatched vertices W

=>T, IR:neighbours of So viaunmatched edges
-if T, contains an unmatched vertex, an augmenting
path is found

- otherwise...
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Review of alternating paths on bipartite graphs

*G =(LUR, E), MCEis a given matching, H =E) M:edges not in M

So L:unmatched vertices W

Y T, ER:neighbours of So viaunmatched edges
M
E

S,2L:n.b. of T, via matched

edges
*Tz =R:nib. 2) S, via unmatched edges

- Check if Tc contains an unmatched vertex
- Yes:augmenting path. No:continue

"
STOP if T,consistsof matched vertices

and Ti =T,UTzU...UTi-I



Linear algebraic alternating path method

*B =span[B,,...,Bm) MIn, F). C-B

So =Rer)C) =I2
I
"unmatched vertices"



Linear algebraic alternating path method

*B =span[B,, ..., Bm)MIn, F). C-B

->
"neighbors of So via unmatched edges

"

So = RerIC) =F2
T1 =B(So): =span[B,(Sol U... UBm(Sol] =F2



Linear algebraic alternating path method

*B =span[B,, ..., Bm) IMIn, F). C-B

So = RerIC) =F2
T1 =B(So): =span[B,(Sol U... UBm(Sol] =F2

-If T,kim(C), can compute D-B o larger rank

-Otherwise...I "T, contains an unmatched vector"



Linear algebraic alternating path method

So =RerIC)=F2-Baris?
anssuvinslet



Linear algebraic alternating path method

*B =spandB,,...,Bm) MIn, F). C-B

So =RerIC)=F2 T, =B(S0) =

=span [B,(So)U... UBm(Sol) </m/C (
c
- 1

E

5, =c(T): =Gre+2)((u) +T,)

8T =B(s)

- Check if T2 Rim(C).
- Yes:cannotfind D of larger rank in B

1

butdo so in BMIn, #)
"

- No:continue



Linear algebraic alternating path method

*B =spandB,,...,Bm) MIn, F). C-B

So = RerIC) =F2
T1 =B(So): =span[B,(Sol U... UBm(Sol] =F2

-
5, =C

-

(T): =Gre #2)((v) +T,)

8T =B(s)

:
STOPif Ti+1 =Ti =imiC (

Lemma. [Ivanyos - Karpinski-Q-Santha] & has a shrunk subspace of gap crank(a)
iff Ai, Ti+=Ti =im1C)



Recap for the NC-RIT story

* Start with “G has property P iff B_G has property Q”

* Go on to examine the problem of testing “B has property Q”

N.B. This is justone way of arriving at
NC-RIT
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Recap for the NC-RIT story

* Start with “G has property P iff B_G has property Q”

* Go on to examine the problem of testing “B has property Q”

* Inspired by techniques for solving the problem of testing “G has property P”

1. [Garg-Gurvits-Oliveira-Wigderson] Sinkhorn’s scaling algorithm
2. [Ivanyos-Q-Subrahmanyam] the augmenting path algorithm
3. [Hamada-Hirai] submodular optimisation

* The situation is usually more complicated for testing “B has property Q” 

- The discrepancy between “full-rank matrices” and “shrunk subspaces”

nothaving



Graph isomorphism versus matrix space equivalence
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Graph isomorphism versus matrix space equivalence

Def. G, =ILUR, Fi) and G2=(LUR, Fz), L =R =[n], Fr. FzELXR

are isomorphic, if 75, Te Sn, such that(i.j) e F, E) (5/i), i15)) eFz

*As. Azt MIn, I) are equivalent, if IL, ReGLIn, IT, A, =LAzR

Def. Matrix spaces B, B2CMIn, I) are equivalent, if IL, REGLIn, #)
such that B, =LBcR: =(LBR/B =B2)

N.B. adapted from Prop 6.2Prop. [Li-Q-Wigderson - Wigderson - Thang] there
G and H are isomorphic E) BGand BH are equivalent



Matrix space equivalence

* Matrix space equivalence as a proper generalisation of graph isomorphism

* Next step: matrix space equivalence for general matrix spaces

N.B. This gives a poly-time
Prop. [Li-Q-Wigderson-Wigderson - Thang] reduction from Graphiso to

Tensorlso
G and H are isomorphic E) BGand BH are equivalent



Matrix space equivalence

* Matrix space equivalence as a proper generalisation of graph isomorphism

* Next step: matrix space equivalence for general matrix spaces

* Results inspired by the study of graph isomorphism?
  - [Li-Q]: individualisation and refinement as used in [Babai-Erdős-Selkow]

* [Grochow-Q]: a complexity class called Tensor Isomorphism (TI) in analogy with GI
  - A gadget design in analogy with some method from colored graph isomorphism

Prop. [Li-Q-Wigderson - Wigderson - Chang]
G and H are isomorphic E) BGand BH are equivalent



Matrix space equivalence as tensor isomorphism

* [Grochow-Q]: a complexity class called Tensor Isomorphism (TI) in analogy with GI

*B =spandB,,...,Bm) =M(n,#)
A

T=



Matrix space equivalence as tensor isomorphism

* [Grochow-Q]: a complexity class called Tensor Isomorphism (TI) in analogy with GI

*B =spandB,,...,Bm3CMIn, #) B,2, CMIn, I) are equivalent
A #

TB. Te, are isomorphic, i.e.T= in the same orbit under

GL(n,H) xGL(n,IF) xGL(m, I).



Matrix space equivalence as tensor isomorphism

Def. [Grochow-Q] The complexity class TI consists of problems polynomial-time 
reducible to the matrix space equivalence = 3-tensor isomorphism problem.

* Wishful thinking: just as GI captures isomorphism problems for combinatorial 
structures, TI captures isomorphism problems for algebraic structures

*B =spandB,,...,Bm3CMIn, #) B,2, CMIn, I) are equivalent
A #

TB. Te, are isomorphic, i.e.T= in the same orbit under

GL(n,H) xGL(n,IF) xGL(m, I).



Actions on 3-way arrays

* R.S.TEGLln.FI) Rf

A-lai.j.ie/pi.j.kc--n] R
Éi¥
ÉÉT



Actions on 3-way arrays

*R, S, TcGL(n, #) ·Is Tencer

t= uxv xw + F

T#E5
*

Bilinear asp

7: x x x -> W

*H, V, WE FU RIEE
a: x x x -> U

Algebra

R

*

Trilinear toe

c:xxxxy- F



* Under different actions, 3-way arrays encode tensors, bilinear maps, algebras, and 
trilinear forms

* Putting some structural restrictions we get more

3-way arrays are versatile

1. Symmetric bilinear maps f:UxU->V: systems of quadratic forms

2. Skew-symmetric bilinear maps over GF(p): p-groups of class 2 and exponent p

3. Symmetric trilinear forms over F, char(F) not 2 or 3: cubic forms

4. Associativity, Jacobi conditions…: associative algebras or Lie algebras



TI-complete problems

Theorem. [Futorny-Grochow-Sergeichuk, Grochow-Q] 
The following problems are TI-complete: 
- Isomorphism of p-groups of class 2 and exponent p, given by matrix groups
- Isomorphism of systems of quadratic forms, cubic forms
- Isomorphism of associative and Lie algebras



TI-complete problems

Theorem. [Futorny-Grochow-Sergeichuk, Grochow-Q] 
The following problems are TI-complete: 
- Isomorphism of p-groups of class 2 and exponent p, given by matrix groups
- Isomorphism of systems of quadratic forms, cubic forms
- Isomorphism of associative and Lie algebras

* How about d-tensors for d>3? Note that 2-tensor isomorphism (matrix 
equivalence) is easy.

Theorem. [Grochow-Q] k-tensor isomorphism reduces to 3-tensor isomorphism.

* In the spirit that 3SAT is NP-complete, and 2SAT is in P.

d,d > 3

-



Methods for relating the problems

* Two techniques for relating 3-way arrays under different actions: Gelfand-
Panomerav and gadget methods

* The gadgets are reminiscent of those used for colored graph isomorphism

↑



Methods for relating the problems

* Two techniques for relating 3-way arrays under different actions: Gelfand-
Panomerav and gadget methods

* The gadgets are reminiscent of those used for colored graph isomorphism

- Star gadgets: 
Degrees of red vertices 
are large enough so blue 
vertices cannot be 
mapped to them

↑



One example of the reductions

Goal. Given f.g:4xVxW-F, construct I,9: SxS-T, skew-symmetric
such that f-8 under 4L(h) xGL(V) x GL(W) iff I-5 under GL(S) x GLCT)

Construction.

dim(U) =e S =HV

amer =nel = T =W Edim (W) =m

·Entries outside the orange region are 8).



* This construction does not work because 
GL(S) may mix U with V. So we need:

From tensors to bilinear maps
Construction.

dim(U) =e

amer -next
dim (W) =m

A

S =HV

-n
·Entries outside the orange region are 3)



* This construction does not work because 
GL(S) may mix U with V. So we need:

From tensors to bilinear maps
Construction.

dim(U) =e

amer -next
dim (W) =m

A

S =HV

-n
·Entries outside the orange region are 3)



More correspondences, more questions

*Adirected graph G =(V, F) =>BG =spandEij ((i.j)eF] =M(n, #).
V =In], F(VxV

Prop. [Li-Q-Wigderson-Wigderson - Zhang]
G is acyclic ) BG contains only milpotentmatrices

*Not so surprising, but...



More correspondences, more questions

*Adirected graph G =(V, F) =>BG =spandEij ((i.j)eF] =M(n, #).
V =In], F(VxV

Prop. [Li-Q-Wigderson-Wigderson - Zhang]
G is acyclic ) BG contains only milpotentmatrices

Prop. [ibid.) Max size over acyclic subgraphs in G
-Max dim over nilpotentsubspaces in BG

*Generalise Gerstenhaber's result:

max dim of hilpotentmatrix space in MIn, #) =(2)



Matrix space nilpotency testing

Def. (Matrix space nilpotency testing) Given a linear basis of a matrix space B, decide 
if B contains only nilpotent matrices.

* Given a symbolic matrix S of size n, decide if S^n is the zero matrix.

* Reduces to SDIT, which is equivalent to asking whether the (1, 1) entry of S^n is 0

* The naturally associated group action is matrix conjugation (instead of left-right) 
on matrix tuples. The nullcone problem, rank-1 spanned setting, etc. are easier.

* SDIT reduces to computing the nilpotency index [Li-Q-Wigderson-Wigderson-Zhang]



Brief summary

* A pattern of the stories: 
1. Start with “G has property P iff B_G has property Q”
2. Ask the question “B has property Q”
3. Devise linear algebraic analogues of graph-theoretic methods

* Shrunk subset vs shrunk subspace, graph isomorphism vs tensor isomorphism

* Alternating paths vs Wong sequences, graph coloring gadgets vs rank gadgets

* Will matrix space nilpotency test be the next target?



Thank you!

And questions please :) 


