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Symmetric Tensor Decomposition
T ∈ Cn ⊗ Cn ⊗ Cn - symmetric tensor, order-3

Can be viewed as a 3-dimensional array (Tijk)i ,j,k∈[n]

Invariant under permutations of indices
3-dimensional generalization of symmetric matrices

Look at decompositions of the form:

T =
r∑

i=1
ui ⊗ ui ⊗ ui (1)

where ui ∈ Cn.
Smallest value of r - symmetric tensor rank of T
NP-hard to compute (Shitov,2016)
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Symmetric Tensor Decomposition

We still look at decompositions of the form:

T =
r∑

i=1
ui ⊗ ui ⊗ ui

where ui ∈ Cn.

Impose two additional conditions:
1 ui ’s are linearly independent.

Decomposition unique (up to permutation and scaling by cube
roots of unity), if it exists.
r ≤ n - undercomplete decompositions

2 r = n - complete decompositions
Definition: Tensor T diagonalisable if it satisfies these
conditions. Matrix U - rows u1, ..., un diagonalises T
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Model of Computation

Finite precision arithmetic:
Machine precision u - function of input size and desired
accuracy.
Input x ∈ C is stored as fl(x) = (1 + ∆)x for some
adversarially chosen ∆ ∈ C where |∆| ≤ u
Bit lengths of numbers stored - remain fixed at log( 1

u ).

Each arithmetic operation ∗ ∈ {+, −, ×, ÷} is guaranteed to
yield an output satisfying

fl(x ∗ y) = (x ∗ y)(1 + ∆) where |∆| ≤ u (2)
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Algorithmic problem

Approximate tensor decomposition:
Input: Diagonalisable tensor T =

∑n
i=1 u⊗3

i , ui ’s linearly
independent, accuracy parameter ϵ
Goal: Find linearly independent vectors u′

1, ..., u′
n such that u′

i are
at ≤ ϵ-distance from ui .

Forward approximation in the sense of numerical analysis - output
solution close to the actual output.
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Condition Number

Matrix A ∈ Cm×n - ||A||F =
√∑

i∈[m],j∈[n] |Ai ,j |2 - Frobenius norm.

A-invertible, κF (A) = ||A||2F + ||A−1||2F .
Related to usual notion of condition number
κ(A) = ||A||||A−1||

Definition: T - diagonalisable tensor over C, U diagonalises T .
Condition number of T (κ(T )) = κF (U)

Lemma: T -diagonalisable tensor. κ(T ) is well-defined (does not
depend on choice of U).
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Results
Input: diagonalisable tensor T , desired accuracy parameter ϵ and
estimate B ≥ κ(T )
Output: ϵ-approximate solution to the tensor decomposition
problem for T
Number of arithmetic operations: O(n3 + TMM(n) log2(nB

ϵ ))
Bits of precision: poly-log(n, B, 1

ϵ )
Probability: 1 − 1

8n

Important conclusions:
Bits of precision required = polylogarithmic in n, B and 1

ϵ .
Running time = O(n3) for all ϵ = 1

poly(n) , i.e., linear in the
size of the input tensor (first such algorithm)
Can provide inverse exponential accuracy, i.e., polynomial
time even when ϵ = 1

exp (n) .
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Related work

Optimized version of Jennrich’s algorithm/simultaneous
diagonalisation.

(Bhaskara et al, 2014)
algorithm runs in polynomial time in the exact arithmetic
computation model (even when input has some noise)
Requires that the diagonalisation operation be done exactly

(Beltrán et al, 2019)
"pencil-based algorithms" for tensor decomposition are
numerically unstable
We can escape this result because our algorithm is randomized.
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Slices
Order-3 tensor T ∈ Cn ⊗ Cn ⊗ Cn can be "cut" into n slices
T1, . . . , Tn ∈ Mn(K) where

(Tk)i ,j = (Tijk)1≤i ,j≤n.

Note: For a symmetric tensor, each slice is a symmetric matrix of
size n.

Let’s look at some examples of slices:
If

T =
n∑

i=1
e⊗3

i ,

then
(Ti)j,k = 1 if i = j = k and 0 otherwise.
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Jennrich’s Algorithm (Symmetric version)

T -diagonalisable tensor, T1, ..., Tn-slices of T
(i) Pick vectors a = (a1, ..., an) and b = (b1, ..., bn) at random
(ii) Compute T (a) =

∑n
i=1 aiTi and T (b) =

∑n
i=1 biTi

(iii) Diagonalise (T (a))−1T (b) = VDV −1.
(iv) Let w1, ..., wn be the rows of V −1.
(v) Solve for αi in T =

∑n
i=1 αiw⊗3

i

(vi) Output (α1) 1
3 w1, ..., (αn) 1

3 wn.
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Why does it work?

Let T =
∑n

i=1 u⊗3
i . U-rows u1, ..., un

Structure of slices: Ti = UT

u1i
. . .

un,i

 U.

Then

T (a) = UT

⟨a, u1⟩
. . .

⟨a, un⟩

 U

Columns of U−1 are eigenvectors of (T (a))−1T (b).

Eigenvalues of (T (a))−1T (b) distinct whp.
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Making modifications
Algorithm for change of basis
Diagonalization

Looking at Step 5

Step 3: Diagonalisation algorithm on (T (a))−1T (b) = VMV −1

V = U−1Λ, Λ = diag(k1, ..., kn) - since eigenvalues distinct
Need to find scaling factors ki in Step 5.

Usual idea: Solve a system of linear equations
System has n variables, n3 equations - cannot achieve O(n3)
even in exact arithmetic
Need a numerically stable algorithm as well

Our idea:
Perform "change of basis" of T by matrix V , Compute the
traces of the slices of new tensor
Requires O(n3) arithmetic operations and is numerically
stable.
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Making modifications
Algorithm for change of basis
Diagonalization

Change of basis

Change of basis operation: Apply map A ⊗ A ⊗ A to a tensor
T . ( A ∈ Mn(C)) - apply A to each of the 3 components/modes of
the input tensor.

T =
∑r

i=1 u⊗3
i =⇒ (A ⊗ A ⊗ A).T =

∑r
i=1(AT ui)⊗3.

Via polynomial-tensor equivalence: Can be thought of as a
change of variables, g(x) = f (Ax).

D =
∑n

i=1 e⊗3
i - diagonal tensor. T - diagonalisable tensor.

Then T = (U ⊗ U ⊗ U).D for U ∈ GLn(C)
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Making modifications
Algorithm for change of basis
Diagonalization

Modified Algorithm

Replaced Step 5:
The algorithm proceeds as follows.
(i) Pick vectors a = (a1, ..., an) and b = (b1, ..., bn) at random
(ii) Compute T (a) =

∑n
i=1 aiTi and T (b) =

∑n
i=1 biTi

(iii) Diagonalise (T (a))−1T (b) = VDV −1.
(iv) Let w1, ..., wn be the rows of V −1.
(v) Let T ′ = (V ⊗ V ⊗ V ).T . Let T ′

1, ..., T ′
n be the slices of

T ′. Define αi = Tr(T ′
i ).

(vi) Output (α1) 1
3 w1, ..., (αn) 1

3 wn.
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Making modifications
Algorithm for change of basis
Diagonalization

Input tensor T =
∑n

t=1 u⊗3
t . U -rows u1, ..., un.

Step (iii) outputs V = U−1Λ where Λ = diag(k1, ..., kn), ki ̸= 0.
Recall that we want to find the scaling factors ki .

Recall that for diagonal tensor D

U diagonalises T =⇒ T = (U ⊗ U ⊗ U).D

T ′ = (U−1Λ ⊗ U−1Λ ⊗ U−1Λ).T = (Λ ⊗ Λ ⊗ Λ).D

So Tr(T ′
i ) = k3

i .
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Making modifications
Algorithm for change of basis
Diagonalization

Change of basis

Algorithmic Problem:
Input: V ∈ Mn(C), symmetric tensor T ∈ Cn ⊗ Cn ⊗ Cn

Output: Tr(S1), ..., Tr(Sn) where S1, ..., Sn-slices of
S = (V ⊗ V ⊗ V ).T , We give an O(n3) algorithm for this problem.
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Making modifications
Algorithm for change of basis
Diagonalization

Idea:
Don’t need to compute entire tensor after change of basis - too
expensive

Lemma
Let S = (V ⊗ V ⊗ V ).T, S1, ..., Sn-slices of S. Then

Si = V T DiV where Di =
n∑

m=1
vm,iTm

Tr(Si) = Tr(V T DiV ) = Tr(V T VDi) = Tr(V T V (
n∑

m=1
vm,iTm))

=
n∑

m=1
vmiTr(V T VTm)
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Let S = (V ⊗ V ⊗ V ).T, S1, ..., Sn-slices of S. Then

Si = V T DiV where Di =
n∑

m=1
vm,iTm

Tr(Si) = Tr(V T DiV ) = Tr(V T VDi) = Tr(V T V (
n∑

m=1
vm,iTm))

=
n∑

m=1
vmiTr(V T VTm)
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Eigenvalue gaps

A - diagonalisable matrix, λ1, ..., λn-eigenvalues of A. Then

gap(A) := min
i ̸=j

|λi − λj |

Step 3: Diagonalise D := (T (a))−1T (b)

Use fast and numerically stable diagonalisation algorithm from
[Banks et al’20]

Lower bounds on gap(D) required for numerically stable
diagonalisation.
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T =
∑n

i=1 u⊗3
i , U ∈ Mn(C), rows u1, ..., un, T1, .., Tn-slices of T

Recall

T (a) = UT

⟨a, u1⟩
. . .

⟨a, un⟩

 U

gap(D) = min
i ̸=j

∣∣∣⟨b, ui⟩
⟨a, ui⟩

−⟨b, uj⟩
⟨a, uj⟩

∣∣∣ = min
i ̸=j

∣∣∣⟨b, ui⟩⟨a, uj⟩ − ⟨b, uj⟩⟨a, ui⟩
⟨a, ui⟩⟨a, uj⟩

∣∣∣
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Looking at polynomials

Pkl(x, y) =
∑

i ,j∈[n]
pkl

ij xiyj

where coefficients pkl
ij = uikujl − uilujk

|Pkl(a, b)| = |⟨b, ui⟩⟨a, uj⟩ − ⟨b, uj⟩⟨a, ui⟩|

lower bds for Pkl(a, b) ∀k, l ∈ [n] =⇒ lower bds for gap(A)
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Probabilistic analysis

Quadratic polynomial Pkl emerges out of analysis for gap(D)
Need to show that for random choices of a, b, Pkl(a, b) is
bounded far away from 0 with high probability.

We follow a two-step process:
First, we assume a and b are drawn from the uniform
distribution on the hypercube [−1, 1)n. Using Carbery-Wright
inequalities, we can show this.
Round the coordinates of a and b to obtain a point (a′, b′)
from the discrete grid. Use multivariate Markov inequality to
show that the function value at (a′, b′) is not too far.

Inspired by construction of robust hitting sets from
[Forbes,Shpilka, 2018]
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Future work

Composition of numerically stable algorithms
Undercomplete decompositions (number of summands r < n)
Overcomplete decompositions (number of summands r > n)
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Thank You!
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