
Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Complete Decomposition of Symmetric Tensors
in Linear Time and Polylogarithmic Precision

Subhayan Saha
(joint work with Pascal Koiran)

WACT 2023

LIP, ENS Lyon

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Outline

1 Problem Statement

2 Results

3 Jennrich’s Algorithm

4 Some ingredients for the proof
Making modifications
Algorithm for change of basis
Diagonalization

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Outline

1 Problem Statement

2 Results

3 Jennrich’s Algorithm

4 Some ingredients for the proof
Making modifications
Algorithm for change of basis
Diagonalization

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Symmetric Tensor Decomposition
T ∈ Cn ⊗ Cn ⊗ Cn - symmetric tensor, order-3

Can be viewed as a 3-dimensional array (Tijk)i ,j,k∈[n]

Invariant under permutations of indices
3-dimensional generalization of symmetric matrices

Look at decompositions of the form:

T =
r∑

i=1
ui ⊗ ui ⊗ ui (1)

where ui ∈ Cn.
Smallest value of r - symmetric tensor rank of T
NP-hard to compute (Shitov,2016)

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Symmetric Tensor Decomposition
T ∈ Cn ⊗ Cn ⊗ Cn - symmetric tensor, order-3

Can be viewed as a 3-dimensional array (Tijk)i ,j,k∈[n]

Invariant under permutations of indices
3-dimensional generalization of symmetric matrices

Look at decompositions of the form:

T =
r∑

i=1
ui ⊗ ui ⊗ ui (1)

where ui ∈ Cn.
Smallest value of r - symmetric tensor rank of T
NP-hard to compute (Shitov,2016)

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Symmetric Tensor Decomposition

We still look at decompositions of the form:

T =
r∑

i=1
ui ⊗ ui ⊗ ui

where ui ∈ Cn.

Impose two additional conditions:
1 ui ’s are linearly independent.

Decomposition unique (up to permutation and scaling by cube
roots of unity), if it exists.
r ≤ n - undercomplete decompositions

2 r = n - complete decompositions
Definition: Tensor T diagonalisable if it satisfies these
conditions. Matrix U - rows u1, ..., un diagonalises T

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Symmetric Tensor Decomposition

We still look at decompositions of the form:

T =
r∑

i=1
ui ⊗ ui ⊗ ui

where ui ∈ Cn.
Impose two additional conditions:

1 ui ’s are linearly independent.
Decomposition unique (up to permutation and scaling by cube
roots of unity), if it exists.
r ≤ n - undercomplete decompositions

2 r = n - complete decompositions

Definition: Tensor T diagonalisable if it satisfies these
conditions. Matrix U - rows u1, ..., un diagonalises T

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Symmetric Tensor Decomposition

We still look at decompositions of the form:

T =
r∑

i=1
ui ⊗ ui ⊗ ui

where ui ∈ Cn.
Impose two additional conditions:

1 ui ’s are linearly independent.
Decomposition unique (up to permutation and scaling by cube
roots of unity), if it exists.
r ≤ n - undercomplete decompositions

2 r = n - complete decompositions
Definition: Tensor T diagonalisable if it satisfies these
conditions. Matrix U - rows u1, ..., un diagonalises T

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Model of Computation

Finite precision arithmetic:
Machine precision u - function of input size and desired
accuracy.
Input x ∈ C is stored as fl(x) = (1 + ∆)x for some
adversarially chosen ∆ ∈ C where |∆| ≤ u
Bit lengths of numbers stored - remain fixed at log(1

u).

Each arithmetic operation ∗ ∈ {+, −, ×, ÷} is guaranteed to
yield an output satisfying

fl(x ∗ y) = (x ∗ y)(1 + ∆) where |∆| ≤ u (2)

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Model of Computation

Finite precision arithmetic:
Machine precision u - function of input size and desired
accuracy.
Input x ∈ C is stored as fl(x) = (1 + ∆)x for some
adversarially chosen ∆ ∈ C where |∆| ≤ u
Bit lengths of numbers stored - remain fixed at log(1

u).
Each arithmetic operation ∗ ∈ {+, −, ×, ÷} is guaranteed to
yield an output satisfying

fl(x ∗ y) = (x ∗ y)(1 + ∆) where |∆| ≤ u (2)

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Algorithmic problem

Approximate tensor decomposition:
Input: Diagonalisable tensor T =

∑n
i=1 u⊗3

i , ui ’s linearly
independent, accuracy parameter ϵ
Goal: Find linearly independent vectors u′

1, ..., u′
n such that u′

i are
at ≤ ϵ-distance from ui .

Forward approximation in the sense of numerical analysis - output
solution close to the actual output.

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Outline

1 Problem Statement

2 Results

3 Jennrich’s Algorithm

4 Some ingredients for the proof
Making modifications
Algorithm for change of basis
Diagonalization

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Condition Number

Matrix A ∈ Cm×n - ||A||F =
√∑

i∈[m],j∈[n] |Ai ,j |2 - Frobenius norm.

A-invertible, κF (A) = ||A||2F + ||A−1||2F .
Related to usual notion of condition number
κ(A) = ||A||||A−1||

Definition: T - diagonalisable tensor over C, U diagonalises T .
Condition number of T (κ(T)) = κF (U)

Lemma: T -diagonalisable tensor. κ(T) is well-defined (does not
depend on choice of U).

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Condition Number

Matrix A ∈ Cm×n - ||A||F =
√∑

i∈[m],j∈[n] |Ai ,j |2 - Frobenius norm.

A-invertible, κF (A) = ||A||2F + ||A−1||2F .
Related to usual notion of condition number
κ(A) = ||A||||A−1||

Definition: T - diagonalisable tensor over C, U diagonalises T .
Condition number of T (κ(T)) = κF (U)

Lemma: T -diagonalisable tensor. κ(T) is well-defined (does not
depend on choice of U).

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Results
Input: diagonalisable tensor T , desired accuracy parameter ϵ and
estimate B ≥ κ(T)
Output: ϵ-approximate solution to the tensor decomposition
problem for T
Number of arithmetic operations: O(n3 + TMM(n) log2(nB

ϵ))
Bits of precision: poly-log(n, B, 1

ϵ)
Probability: 1 − 1

8n

Important conclusions:
Bits of precision required = polylogarithmic in n, B and 1

ϵ .
Running time = O(n3) for all ϵ = 1

poly(n) , i.e., linear in the
size of the input tensor (first such algorithm)
Can provide inverse exponential accuracy, i.e., polynomial
time even when ϵ = 1

exp (n) .

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Results
Input: diagonalisable tensor T , desired accuracy parameter ϵ and
estimate B ≥ κ(T)
Output: ϵ-approximate solution to the tensor decomposition
problem for T
Number of arithmetic operations: O(n3 + TMM(n) log2(nB

ϵ))
Bits of precision: poly-log(n, B, 1

ϵ)
Probability: 1 − 1

8n

Important conclusions:
Bits of precision required = polylogarithmic in n, B and 1

ϵ .
Running time = O(n3) for all ϵ = 1

poly(n) , i.e., linear in the
size of the input tensor (first such algorithm)
Can provide inverse exponential accuracy, i.e., polynomial
time even when ϵ = 1

exp (n) .

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Related work

Optimized version of Jennrich’s algorithm/simultaneous
diagonalisation.

(Bhaskara et al, 2014)
algorithm runs in polynomial time in the exact arithmetic
computation model (even when input has some noise)
Requires that the diagonalisation operation be done exactly

(Beltrán et al, 2019)
"pencil-based algorithms" for tensor decomposition are
numerically unstable
We can escape this result because our algorithm is randomized.

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Related work

Optimized version of Jennrich’s algorithm/simultaneous
diagonalisation.
(Bhaskara et al, 2014)

algorithm runs in polynomial time in the exact arithmetic
computation model (even when input has some noise)
Requires that the diagonalisation operation be done exactly

(Beltrán et al, 2019)
"pencil-based algorithms" for tensor decomposition are
numerically unstable
We can escape this result because our algorithm is randomized.

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Related work

Optimized version of Jennrich’s algorithm/simultaneous
diagonalisation.
(Bhaskara et al, 2014)

algorithm runs in polynomial time in the exact arithmetic
computation model (even when input has some noise)
Requires that the diagonalisation operation be done exactly

(Beltrán et al, 2019)
"pencil-based algorithms" for tensor decomposition are
numerically unstable
We can escape this result because our algorithm is randomized.

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Outline

1 Problem Statement

2 Results

3 Jennrich’s Algorithm

4 Some ingredients for the proof
Making modifications
Algorithm for change of basis
Diagonalization

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Slices
Order-3 tensor T ∈ Cn ⊗ Cn ⊗ Cn can be "cut" into n slices
T1, . . . , Tn ∈ Mn(K) where

(Tk)i ,j = (Tijk)1≤i ,j≤n.

Note: For a symmetric tensor, each slice is a symmetric matrix of
size n.

Let’s look at some examples of slices:
If

T =
n∑

i=1
e⊗3

i ,

then
(Ti)j,k = 1 if i = j = k and 0 otherwise.

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Slices
Order-3 tensor T ∈ Cn ⊗ Cn ⊗ Cn can be "cut" into n slices
T1, . . . , Tn ∈ Mn(K) where

(Tk)i ,j = (Tijk)1≤i ,j≤n.

Note: For a symmetric tensor, each slice is a symmetric matrix of
size n.
Let’s look at some examples of slices:

If
T =

n∑
i=1

e⊗3
i ,

then
(Ti)j,k = 1 if i = j = k and 0 otherwise.

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Jennrich’s Algorithm (Symmetric version)

T -diagonalisable tensor, T1, ..., Tn-slices of T
(i) Pick vectors a = (a1, ..., an) and b = (b1, ..., bn) at random
(ii) Compute T (a) =

∑n
i=1 aiTi and T (b) =

∑n
i=1 biTi

(iii) Diagonalise (T (a))−1T (b) = VDV −1.
(iv) Let w1, ..., wn be the rows of V −1.
(v) Solve for αi in T =

∑n
i=1 αiw⊗3

i

(vi) Output (α1) 1
3 w1, ..., (αn) 1

3 wn.

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Why does it work?

Let T =
∑n

i=1 u⊗3
i . U-rows u1, ..., un

Structure of slices: Ti = UT

u1i
. . .

un,i

 U.

Then

T (a) = UT

⟨a, u1⟩
. . .

⟨a, un⟩

 U

Columns of U−1 are eigenvectors of (T (a))−1T (b).

Eigenvalues of (T (a))−1T (b) distinct whp.

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Why does it work?

Let T =
∑n

i=1 u⊗3
i . U-rows u1, ..., un

Structure of slices: Ti = UT

u1i
. . .

un,i

 U.

Then

T (a) = UT

⟨a, u1⟩
. . .

⟨a, un⟩

 U

Columns of U−1 are eigenvectors of (T (a))−1T (b).

Eigenvalues of (T (a))−1T (b) distinct whp.

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Why does it work?

Let T =
∑n

i=1 u⊗3
i . U-rows u1, ..., un

Structure of slices: Ti = UT

u1i
. . .

un,i

 U.

Then

T (a) = UT

⟨a, u1⟩
. . .

⟨a, un⟩

 U

Columns of U−1 are eigenvectors of (T (a))−1T (b).

Eigenvalues of (T (a))−1T (b) distinct whp.

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Why does it work?

Let T =
∑n

i=1 u⊗3
i . U-rows u1, ..., un

Structure of slices: Ti = UT

u1i
. . .

un,i

 U.

Then

T (a) = UT

⟨a, u1⟩
. . .

⟨a, un⟩

 U

Columns of U−1 are eigenvectors of (T (a))−1T (b).

Eigenvalues of (T (a))−1T (b) distinct whp.

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Outline

1 Problem Statement

2 Results

3 Jennrich’s Algorithm

4 Some ingredients for the proof
Making modifications
Algorithm for change of basis
Diagonalization

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Looking at Step 5

Step 3: Diagonalisation algorithm on (T (a))−1T (b) = VMV −1

V = U−1Λ, Λ = diag(k1, ..., kn) - since eigenvalues distinct
Need to find scaling factors ki in Step 5.

Usual idea: Solve a system of linear equations
System has n variables, n3 equations - cannot achieve O(n3)
even in exact arithmetic
Need a numerically stable algorithm as well

Our idea:
Perform "change of basis" of T by matrix V , Compute the
traces of the slices of new tensor
Requires O(n3) arithmetic operations and is numerically
stable.

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Looking at Step 5

Step 3: Diagonalisation algorithm on (T (a))−1T (b) = VMV −1

V = U−1Λ, Λ = diag(k1, ..., kn) - since eigenvalues distinct
Need to find scaling factors ki in Step 5.

Usual idea: Solve a system of linear equations
System has n variables, n3 equations - cannot achieve O(n3)
even in exact arithmetic
Need a numerically stable algorithm as well

Our idea:
Perform "change of basis" of T by matrix V , Compute the
traces of the slices of new tensor
Requires O(n3) arithmetic operations and is numerically
stable.

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Looking at Step 5

Step 3: Diagonalisation algorithm on (T (a))−1T (b) = VMV −1

V = U−1Λ, Λ = diag(k1, ..., kn) - since eigenvalues distinct
Need to find scaling factors ki in Step 5.

Usual idea: Solve a system of linear equations
System has n variables, n3 equations - cannot achieve O(n3)
even in exact arithmetic
Need a numerically stable algorithm as well

Our idea:
Perform "change of basis" of T by matrix V , Compute the
traces of the slices of new tensor
Requires O(n3) arithmetic operations and is numerically
stable.

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Change of basis

Change of basis operation: Apply map A ⊗ A ⊗ A to a tensor
T . (A ∈ Mn(C)) - apply A to each of the 3 components/modes of
the input tensor.

T =
∑r

i=1 u⊗3
i =⇒ (A ⊗ A ⊗ A).T =

∑r
i=1(AT ui)⊗3.

Via polynomial-tensor equivalence: Can be thought of as a
change of variables, g(x) = f (Ax).

D =
∑n

i=1 e⊗3
i - diagonal tensor. T - diagonalisable tensor.

Then T = (U ⊗ U ⊗ U).D for U ∈ GLn(C)

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Change of basis

Change of basis operation: Apply map A ⊗ A ⊗ A to a tensor
T . (A ∈ Mn(C)) - apply A to each of the 3 components/modes of
the input tensor.

T =
∑r

i=1 u⊗3
i =⇒ (A ⊗ A ⊗ A).T =

∑r
i=1(AT ui)⊗3.

Via polynomial-tensor equivalence: Can be thought of as a
change of variables, g(x) = f (Ax).

D =
∑n

i=1 e⊗3
i - diagonal tensor. T - diagonalisable tensor.

Then T = (U ⊗ U ⊗ U).D for U ∈ GLn(C)

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Change of basis

Change of basis operation: Apply map A ⊗ A ⊗ A to a tensor
T . (A ∈ Mn(C)) - apply A to each of the 3 components/modes of
the input tensor.

T =
∑r

i=1 u⊗3
i =⇒ (A ⊗ A ⊗ A).T =

∑r
i=1(AT ui)⊗3.

Via polynomial-tensor equivalence: Can be thought of as a
change of variables, g(x) = f (Ax).

D =
∑n

i=1 e⊗3
i - diagonal tensor. T - diagonalisable tensor.

Then T = (U ⊗ U ⊗ U).D for U ∈ GLn(C)

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Modified Algorithm

Replaced Step 5:
The algorithm proceeds as follows.
(i) Pick vectors a = (a1, ..., an) and b = (b1, ..., bn) at random
(ii) Compute T (a) =

∑n
i=1 aiTi and T (b) =

∑n
i=1 biTi

(iii) Diagonalise (T (a))−1T (b) = VDV −1.
(iv) Let w1, ..., wn be the rows of V −1.
(v) Let T ′ = (V ⊗ V ⊗ V).T . Let T ′

1, ..., T ′
n be the slices of

T ′. Define αi = Tr(T ′
i).

(vi) Output (α1) 1
3 w1, ..., (αn) 1

3 wn.

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Input tensor T =
∑n

t=1 u⊗3
t . U -rows u1, ..., un.

Step (iii) outputs V = U−1Λ where Λ = diag(k1, ..., kn), ki ̸= 0.
Recall that we want to find the scaling factors ki .

Recall that for diagonal tensor D

U diagonalises T =⇒ T = (U ⊗ U ⊗ U).D

T ′ = (U−1Λ ⊗ U−1Λ ⊗ U−1Λ).T = (Λ ⊗ Λ ⊗ Λ).D

So Tr(T ′
i) = k3

i .

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Input tensor T =
∑n

t=1 u⊗3
t . U -rows u1, ..., un.

Step (iii) outputs V = U−1Λ where Λ = diag(k1, ..., kn), ki ̸= 0.
Recall that we want to find the scaling factors ki .

Recall that for diagonal tensor D

U diagonalises T =⇒ T = (U ⊗ U ⊗ U).D

T ′ = (U−1Λ ⊗ U−1Λ ⊗ U−1Λ).T = (Λ ⊗ Λ ⊗ Λ).D

So Tr(T ′
i) = k3

i .

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Change of basis

Algorithmic Problem:
Input: V ∈ Mn(C), symmetric tensor T ∈ Cn ⊗ Cn ⊗ Cn

Output: Tr(S1), ..., Tr(Sn) where S1, ..., Sn-slices of
S = (V ⊗ V ⊗ V).T , We give an O(n3) algorithm for this problem.

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Idea:
Don’t need to compute entire tensor after change of basis - too
expensive

Lemma
Let S = (V ⊗ V ⊗ V).T, S1, ..., Sn-slices of S. Then

Si = V T DiV where Di =
n∑

m=1
vm,iTm

Tr(Si) = Tr(V T DiV) = Tr(V T VDi) = Tr(V T V (
n∑

m=1
vm,iTm))

=
n∑

m=1
vmiTr(V T VTm)

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Idea:
Don’t need to compute entire tensor after change of basis - too
expensive

Lemma
Let S = (V ⊗ V ⊗ V).T, S1, ..., Sn-slices of S. Then

Si = V T DiV where Di =
n∑

m=1
vm,iTm

Tr(Si) = Tr(V T DiV) = Tr(V T VDi) = Tr(V T V (
n∑

m=1
vm,iTm))

=
n∑

m=1
vmiTr(V T VTm)

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Idea:
Don’t need to compute entire tensor after change of basis - too
expensive

Lemma
Let S = (V ⊗ V ⊗ V).T, S1, ..., Sn-slices of S. Then

Si = V T DiV where Di =
n∑

m=1
vm,iTm

Tr(Si) = Tr(V T DiV) = Tr(V T VDi) = Tr(V T V (
n∑

m=1
vm,iTm))

=
n∑

m=1
vmiTr(V T VTm)

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Eigenvalue gaps

A - diagonalisable matrix, λ1, ..., λn-eigenvalues of A. Then

gap(A) := min
i ̸=j

|λi − λj |

Step 3: Diagonalise D := (T (a))−1T (b)

Use fast and numerically stable diagonalisation algorithm from
[Banks et al’20]

Lower bounds on gap(D) required for numerically stable
diagonalisation.

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

T =
∑n

i=1 u⊗3
i , U ∈ Mn(C), rows u1, ..., un, T1, .., Tn-slices of T

Recall

T (a) = UT

⟨a, u1⟩
. . .

⟨a, un⟩

 U

gap(D) = min
i ̸=j

∣∣∣⟨b, ui⟩
⟨a, ui⟩

−⟨b, uj⟩
⟨a, uj⟩

∣∣∣ = min
i ̸=j

∣∣∣⟨b, ui⟩⟨a, uj⟩ − ⟨b, uj⟩⟨a, ui⟩
⟨a, ui⟩⟨a, uj⟩

∣∣∣

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Looking at polynomials

Pkl(x, y) =
∑

i ,j∈[n]
pkl

ij xiyj

where coefficients pkl
ij = uikujl − uilujk

|Pkl(a, b)| = |⟨b, ui⟩⟨a, uj⟩ − ⟨b, uj⟩⟨a, ui⟩|

lower bds for Pkl(a, b) ∀k, l ∈ [n] =⇒ lower bds for gap(A)

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Probabilistic analysis

Quadratic polynomial Pkl emerges out of analysis for gap(D)
Need to show that for random choices of a, b, Pkl(a, b) is
bounded far away from 0 with high probability.

We follow a two-step process:
First, we assume a and b are drawn from the uniform
distribution on the hypercube [−1, 1)n. Using Carbery-Wright
inequalities, we can show this.
Round the coordinates of a and b to obtain a point (a′, b′)
from the discrete grid. Use multivariate Markov inequality to
show that the function value at (a′, b′) is not too far.

Inspired by construction of robust hitting sets from
[Forbes,Shpilka, 2018]

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Probabilistic analysis

Quadratic polynomial Pkl emerges out of analysis for gap(D)
Need to show that for random choices of a, b, Pkl(a, b) is
bounded far away from 0 with high probability.

We follow a two-step process:
First, we assume a and b are drawn from the uniform
distribution on the hypercube [−1, 1)n. Using Carbery-Wright
inequalities, we can show this.
Round the coordinates of a and b to obtain a point (a′, b′)
from the discrete grid. Use multivariate Markov inequality to
show that the function value at (a′, b′) is not too far.

Inspired by construction of robust hitting sets from
[Forbes,Shpilka, 2018]

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Probabilistic analysis

Quadratic polynomial Pkl emerges out of analysis for gap(D)
Need to show that for random choices of a, b, Pkl(a, b) is
bounded far away from 0 with high probability.

We follow a two-step process:
First, we assume a and b are drawn from the uniform
distribution on the hypercube [−1, 1)n. Using Carbery-Wright
inequalities, we can show this.
Round the coordinates of a and b to obtain a point (a′, b′)
from the discrete grid. Use multivariate Markov inequality to
show that the function value at (a′, b′) is not too far.

Inspired by construction of robust hitting sets from
[Forbes,Shpilka, 2018]

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Future work

Composition of numerically stable algorithms
Undercomplete decompositions (number of summands r < n)
Overcomplete decompositions (number of summands r > n)

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

Problem Statement
Results

Jennrich’s Algorithm
Some ingredients for the proof

Making modifications
Algorithm for change of basis
Diagonalization

Thank You!

Subhayan Saha (joint work with Pascal Koiran) Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)

	Problem Statement
	Results
	Jennrich's Algorithm
	Some ingredients for the proof
	Making modifications
	Algorithm for change of basis
	Diagonalization

