FACTORING, ROOT FINDING, AND SEVERAL

OTHER THINGS

AMIT SINHABABU

CHENNAI MATHEMATICAL INSTITUTE

WACT 2023, Warwick

1/49

OUTLINE OF THE TALK

e Multivariate Polynomial Factoring

® Background and Motivation.
® Factoring Algebraic Branching Programs.

2/ 49

OUTLINE OF THE TALK

e Multivariate Polynomial Factoring

® Background and Motivation.
® Factoring Algebraic Branching Programs.

® Multivariate Factoring and PIT.

2/ 49

Multivariate Polynomial Factoring: Background

3/ 49

FACTORING UNIVARIATES

® \We encounter integer and polynomial factoring in school.

4/ 49

FACTORING UNIVARIATES

® \We encounter integer and polynomial factoring in school.

Polynomials can be factored in polynomial time.

Factor f(z) € Q[x] using LLL algorithm in deterministic
polynomial time.

Factor f(z) € Fy[x] using Berlekamp's algorithm.

4/ 49

POLYNOMIALS VS INTEGERS

® Polynomials are often easier cases than integers.

5/ 49

POLYNOMIALS VS INTEGERS

® Polynomials are often easier cases than integers.

® Squarefree: Test if a given integer or polynomial has a factor
that repeats.

5/ 49

POLYNOMIALS VS INTEGERS

® Polynomials are often easier cases than integers.

® Squarefree: Test if a given integer or polynomial has a factor
that repeats.

® For integers, no polynomial time algorithm for this is known.

5/ 49

POLYNOMIALS VS INTEGERS

Polynomials are often easier cases than integers.

Squarefree: Test if a given integer or polynomial has a factor
that repeats.

® For integers, no polynomial time algorithm for this is known.

Derivatives rescue us in case of polynomials. Test if f(z) and
its derivative are relatively prime.

5/ 49

MULTIVARIATE TO UNIVARIATE

® The focus of today's talk is multivariate polynomial
factorization.

6/ 49

MULTIVARIATE TO UNIVARIATE

® The focus of today's talk is multivariate polynomial
factorization.

e Multivariate factoring can be reduced to univariate factoring.

6/ 49

KRONECKER-SCHUBERT REDUCTION

® Suppose f(x1,...,zn) = g(x1, ..., xn)h(x1, ..., Tp).

7/ 49

KRONECKER-SCHUBERT REDUCTION

® Suppose f(x1,...,zn) = g(x1, ..., xn)h(x1, ..., Tp).

® Degree of each variable in f(z1,...,z,) is < d.

7/ 49

KRONECKER-SCHUBERT REDUCTION

® Suppose f(x1,...,zn) = g(x1, ..., xn)h(x1, ..., Tp).
® Degree of each variable in f(z1,...,z,) is < d.

e Apply Kronecker substitution ¢ : x; — 2D Wwhere
D=d+1.

7/ 49

KRONECKER-SCHUBERT REDUCTION

Suppose f(x1,...,2n) = g(x1, ..., xp)h(x1, ... 2p).

Degree of each variable in f(z1,...,2,) is < d.

Apply Kronecker substitution ¢ : x; — 2D Wwhere
D=d+1.

Each monomial in f uniquely maps to a monomial in ¢(f).
Thus, we can invert the map ¢.

7/ 49

KRONECKER-SCHUBERT REDUCTION

* If f=gh, then ¢(f) = d(g)¢(h).

8/ 49

KRONECKER-SCHUBERT REDUCTION

* If f=gh, then ¢(f) = d(g)¢(h).

® Factorize ¢(f) into univariate irreducible factors.

8/ 49

KRONECKER-SCHUBERT REDUCTION

° If f = gh, then ¢(f) = ¢(g)d(h).
® Factorize ¢(f) into univariate irreducible factors.

® Though g is irreducible, ¢(g) may not be irreducible.

8/ 49

KRONECKER-SCHUBERT REDUCTION

If f = gh, then ¢(f) = &(g)o(h).

® Factorize ¢(f) into univariate irreducible factors.

Though g is irreducible, ¢(g) may not be irreducible.

Product of a subset of the factors of ¢(f) would correspond

to ¢(g).

8/ 49

KRONECKER-SCHUBERT REDUCTION

If f = gh, then ¢(f) = ¢(g)p(h).
® Factorize ¢(f) into univariate irreducible factors.
® Though g is irreducible, ¢(g) may not be irreducible.

® Product of a subset of the factors of ¢(f) would correspond

to ¢(g).

® Try all subsets. Apply inverse Kronecker and test divisibility.

® Time complexity: Exponential in degree in worst-case (even
for bivariates).

8/ 49

EFFICIENT MULTIVARIATE FACTORIZATION

e Kaltofen (1982): Efficient reduction of bivariate to univariate
factoring.

® Tools: Newton iteration/ Hensel lifting, Linear System
Solving.

® We have to define the size of input and output polynomials in
the multivariate setting to talk about time complexity.

9/ 49

REPRESENTING MULTIVARIATE POLYNOMIALS

® Dense: List all the coefficients of (") many monomials up

to degree d.

® Sparse: List only the monomials with nonzero coefficients.
Eg. 2% + zox3 + 5.

e Formula: (1 +21)(1 + z2)z3 — (1 + 21)?. Reuse of
computation not allowed. Structurally, looks like a tree.

® Straight-Line Programs or Arithmetic Circuits.

10 / 49

Arithmetic circuits

Two circuits for computing =2 + 2xy + 3/

11/ 49

Arithmetic circuits

Two circuits for computing =2 + 2xy + 3/

Size: Total number of nodes or edges.

11/ 49

COMPLEXITY OF FACTORS

FACTORIZATION OF A POLYNOMIAL

Let f be a polynomial of degree d that has size s in some model.

f(xla-'-,l'n) :Hfiei

Let f;'s be its irreducible factors over F.

12 / 49

COMPLEXITY OF FACTORS

FACTORIZATION OF A POLYNOMIAL

Let f be a polynomial of degree d that has size s in some model.

f(xla-'-,l'n) :Hfiei

Let f;'s be its irreducible factors over F.

FACTOR SIZE BOUND QUESTION: Do all its factors have
POLY(s, d) size in the same model?

12 / 49

CLOSURE UNDER FACTORING

® let C be a class of polynomials.
® Closure under multiplication: f,ge C = fxgeC.

® Closure under factoring: If f x gisin C, are f,g also in C?

13 / 49

CLOSURE UNDER FACTORING

Let C be a class of polynomials.

Closure under multiplication: f,ge C = f x g€ C.

Closure under factoring: If f x g isin C, are f,g also in C?

® Apriori, it is not obvious. The smallest representation of fg
may not be via computing f and g.

13 / 49

UPPER BOUNDS IN DIFFERENT MODELS

® Factors can be larger in size. For example,
P —1=@-1)1+x+- - +291).

® Sparsity of factors can be superpolynomial wrt input
polynomial’s sparsity.

14 / 49

UPPER BOUNDS IN DIFFERENT MODELS

® Factors can be larger in size. For example,
P —1=@-1)1+x+- - +291).

® Sparsity of factors can be superpolynomial wrt input
polynomial’s sparsity.

e Kaltofen 1986: If size denotes arithmetic circuit size, g | f
= size(g) < poLY (size(f),deg(f)).

14 / 49

UPPER BOUNDS IN DIFFERENT MODELS

® Factors can be larger in size. For example,
P —1=@-1)1+x+- - +291).

® Sparsity of factors can be superpolynomial wrt input
polynomial’s sparsity.

e Kaltofen 1986: If size denotes arithmetic circuit size, g | f
= size(g) < poLY (size(f),deg(f)).

® Goal: Extend Kaltofen's result for factors of formulas,
constant depth circuits, algebraic branching programs (ABPs),
etc.

14 / 49

MOTIVATION

e Multivariate Polynomial Factoring has applications in coding
theory and various other problems.

15 / 49

MOTIVATION

e Multivariate Polynomial Factoring has applications in coding
theory and various other problems.

® Helps to bridge two central questions in algebraic complexity:
VP vs VNP and polynomial identity testing (PIT).

15 / 49

MOTIVATION

e Multivariate Polynomial Factoring has applications in coding
theory and various other problems.

® Helps to bridge two central questions in algebraic complexity:
VP vs VNP and polynomial identity testing (PIT).

e Kabanets and Impagliazzo (2003): Exponential lower bound
for arithmetic circuits = Quasi-poly blackbox deterministic
PIT for circuits.

15 / 49

MOTIVATION

e Multivariate Polynomial Factoring has applications in coding
theory and various other problems.

® Helps to bridge two central questions in algebraic complexity:
VP vs VNP and polynomial identity testing (PIT).

e Kabanets and Impagliazzo (2003): Exponential lower bound
for arithmetic circuits = Quasi-poly blackbox deterministic
PIT for circuits.

® Hardness of multiples: If f is hard for C, all its nonzero
multiples are hard for C.

15 / 49

FacTOR CLOSURE RESULTS

® Oliveira (2015) proved poly(s) factor size bounds for constant
depth circuits assuming the individual degree is constant.

16 / 49

FacTOR CLOSURE RESULTS

® Oliveira (2015) proved poly(s) factor size bounds for constant
depth circuits assuming the individual degree is constant.

® Dutta, Saxena, S (2018): If we take formula/ABP, g | f —
size(g) < poly(size(f), 40008 1)),

® Chou, Kumar, Solomon (2018) showed that VNP is closed
under factors.

16 / 49

Factorization of Arithmetic Branching Programs

17 / 49

ABPs are closed under factors

Theorem (S, Thierauf, 2020)

Let polynomial p(z) over F have ABP-size s.

All factors of p have ABP-size POLY(Ss)

18 / 49

ABPs are closed under factors

Theorem (S, Thierauf, 2020)

Let polynomial p(z) over F have ABP-size s.

All factors of p have ABP-size POLY(Ss)

Algorithm: Factors can be efficiently constructed in randomized
polynomial time.

18 / 49

ABP viA PICTURE

EXAMPLE:

€2
— >e
T I3
2
1427 + 3
— M >0
€2

19 / 49

ABP viA PICTURE

EXAMPLE:

€2
— >e
T I3
2
1427 + 3
— M >0
€2

The polynomial computed by the above ABP is

12223 + xl:l,‘g(l + 56‘3) + (1 + :L‘l):lig(l + :L‘g).

19 / 49

Computational power of ABPs

Arithmetic Formula < ABP < Arithmetic Circuit

20 / 49

Computational power of ABPs

Arithmetic Formula < ABP < Arithmetic Circuit

DET: compute determinant of n X n matrices

20 / 49

Computational power of ABPs

Arithmetic Formula < ABP < Arithmetic Circuit

DET: compute determinant of n X n matrices

e DET € NC? [Csanky-Faddeev-LeVerrier 1976]
[Berkowitz-Samuelson 1985, Chistov 1985]

20 / 49

Computational power of ABPs

Arithmetic Formula < ABP < Arithmetic Circuit

DET: compute determinant of n X n matrices

e DET € NC? [Csanky-Faddeev-LeVerrier 1976]
[Berkowitz-Samuelson 1985, Chistov 1985]

¢ DET by poly(n)-size ABPs [Mahajan-Vinay 1997]

20 / 49

Computational power of ABPs

Arithmetic Formula < ABP < Arithmetic Circuit

DET: compute determinant of n X n matrices

e DET € NC? [Csanky-Faddeev-LeVerrier 1976]
[Berkowitz-Samuelson 1985, Chistov 1985]

¢ DET by poly(n)-size ABPs [Mahajan-Vinay 1997]

Consequence

Poly-size ABPs can compute solutions of linear systems over
F(x1,...,zp).

20 / 49

Computational power of ABPs

Arithmetic Formula < ABP < Arithmetic Circuit

DET: compute determinant of n X n matrices

e DET € NC? [Csanky-Faddeev-LeVerrier 1976]
[Berkowitz-Samuelson 1985, Chistov 1985]

¢ DET by poly(n)-size ABPs [Mahajan-Vinay 1997]

Consequence

Poly-size ABPs can compute solutions of linear systems over
F(x1,...,zp).

® Not known for formulas

20 / 49

Techniques for factorization

Newton lIteration [Oliveira 2016, Dutta, Saxena, S 2018]

21/ 49

Techniques for factorization

Newton lIteration [Oliveira 2016, Dutta, Saxena, S 2018]

Factoring < root approximation in power series

21/ 49

Techniques for factorization

Newton lIteration [Oliveira 2016, Dutta, Saxena, S 2018]

Factoring < root approximation in power series

p(x,y) has factor y — g(x) <= p(x,q(x)) =0

® approximate root via Newton iteration

p(x, yt)

Yt+1 = Yt —
P, yt)

21/ 49

Techniques for factorization

Newton lIteration [Oliveira 2016, Dutta, Saxena, S 2018]

Factoring < root approximation in power series

p(x,y) has factor y — g(x) <= p(x,q(x)) =0

® approximate root via Newton iteration

p(x, yt)

Yt+1 = Yt —
P, yt)

® log d iterations leads to d'°%%-size ABPs

21/ 49

Techniques for factorization

Newton lIteration [Oliveira 2016, Dutta, Saxena, S 2018]

Factoring < root approximation in power series

p(x,y) has factor y — g(x) <= p(x,q(x)) =0

® approximate root via Newton iteration

p(x, yt)
P (T, yt)

Yt+1 = Yt —

® log d iterations leads to d'°%%-size ABPs

Hensel Lifting (Kurt Hensel, 1861 - 1941)

21/ 49

Factoring via Hensel Lifting

After preprocessing: f(x,y), 2-variate, degree d, monic in x
(i.e. highest z-power has constant coefficient)

22 / 49

Factoring via Hensel Lifting

After preprocessing: f(x,y), 2-variate, degree d, monic in x
(i.e. highest z-power has constant coefficient)

Goal: Compute g s.t. f=gh

22 / 49

Factoring via Hensel Lifting

After preprocessing: f(x,y), 2-variate, degree d, monic in x
(i.e. highest z-power has constant coefficient)

Goal: Compute g s.t. f=gh

@ Initial step: Factorize univariate polynomial f(z,0)
* f(,0) = go(x) ho(x)

22 / 49

Factoring via Hensel Lifting

After preprocessing: f(x,y), 2-variate, degree d, monic in x
(i.e. highest z-power has constant coefficient)

Goal: Compute g s.t. f=gh

@ Initial step: Factorize univariate polynomial f(z,0)
* f(,0) = go(x) ho(x)

® Equivalently: f(z,y) = go(x) ho(z) (mod y)

22 / 49

Factoring via Hensel Lifting

After preprocessing: f(x,y), 2-variate, degree d, monic in x
(i.e. highest z-power has constant coefficient)

Goal: Compute g s.t. f=gh

@ Initial step: Factorize univariate polynomial f(z,0)
* f(,0) = go(x) ho(x)

® Equivalently: f(z,y) = go(x) ho(z) (mod y)

@® Lifting: compute g1 (z,y), hi(z,y)
® f=g1h (mod y?)

22 / 49

Factoring via Hensel Lifting

After preprocessing: f(x,y), 2-variate, degree d, monic in x
(i.e. highest z-power has constant coefficient)

Goal: Compute g s.t. f=gh

@ Initial step: Factorize univariate polynomial f(z,0)
* f(,0) = go(x) ho(x)

® Equivalently: f(z,y) = go(x) ho(z) (mod y)

@® Lifting: compute g1 (z,y), hi(z,y)
® f=g1h (mod y?)

Iterate lifting ¢t = O(logd) times: f = g; hy (mod yQt)

22 / 49

Hensel Lifting

gh
gehe (mod ')

— =
1

23 / 49

Hensel Lifting

/
f gt hy (mod y2t>

One can show: for some polynomial k)

g =gih} (mod y*)

23 / 49

Hensel Lifting

gthe (mod y*)

f
f
One can show: for some polynomial k)

g =gih} (mod y*)

® g, known, but g and hj unknown

23 / 49

Hensel Lifting

f t
f gt hy (mod y2)

One can show: for some polynomial k)

g =gih} (mod y*)

® g, known, but g and hj unknown

® Set up linear system in unknown coefficients of g and '’

23 / 49

Hensel Lifting

f t
f gt hy (mod y2)

One can show: for some polynomial k)

g =gih} (mod y*)

® g, known, but g and hj unknown
® Set up linear system in unknown coefficients of g and '’

® Jump Step: Right choice of f = we get g, without any
mod! Can be proved using resultants.

23 / 49

Main difference to earlier liftings

Start with gg, hp monic

24 / 49

Main difference to earlier liftings

Start with gg, hp monic

® standard Hensel Lifting maintains gz, h; monic, for all &

24 / 49

Main difference to earlier liftings

Start with gg, hp monic
® standard Hensel Lifting maintains gz, h; monic, for all &

® simplified version gives up monicness: saves a division

24 / 49

Main difference to earlier liftings

Start with gg, hp monic

® standard Hensel Lifting maintains gz, h; monic, for all &
® simplified version gives up monicness: saves a division

e ABP-size grows by a constant factor in each iteration

24 / 49

Main difference to earlier liftings

Start with gg, hp monic
® standard Hensel Lifting maintains gz, h; monic, for all &
® simplified version gives up monicness: saves a division

e ABP-size grows by a constant factor in each iteration

= overall size poly(c'°6?, s) = poly(s)

24 / 49

Main difference to earlier liftings

Start with gg, hp monic

® standard Hensel Lifting maintains gz, h; monic, for all &
® simplified version gives up monicness: saves a division

e ABP-size grows by a constant factor in each iteration

= overall size poly(c'°6?, s) = poly(s)

® Crucial technical part: Jump Step still works!

24 / 49

HENSEL LIFTING: DEFINITION OF LIFT

® | et R be a commutative ring with 1 and Z C R be an ideal.

e Condition for lift: Let f,g,h,a,b € R such that

25 / 49

HENSEL LIFTING: DEFINITION OF LIFT

® | et R be a commutative ring with 1 and Z C R be an ideal.

e Condition for lift: Let f,g,h,a,b € R such that
® (factorization) f = gh (mod 7)

25 / 49

HENSEL LIFTING: DEFINITION OF LIFT

® | et R be a commutative ring with 1 and Z C R be an ideal.

e Condition for lift: Let f,g,h,a,b € R such that
® (factorization) f = gh (mod 7)

® (pseudo-coprimality) ag + bh = 1 (mod 7).

25 / 49

HENSEL LIFTING: DEFINITION OF LIFT

® | et R be a commutative ring with 1 and Z C R be an ideal.

e Condition for lift: Let f,g,h,a,b € R such that
® (factorization) f = gh (mod 7)

® (pseudo-coprimality) ag + bh = 1 (mod 7).

® Then ¢/, 1/ is lift of g, h w.r.t. f if it satisfy the following.

25 / 49

HENSEL LIFTING: DEFINITION OF LIFT

® | et R be a commutative ring with 1 and Z C R be an ideal.

e Condition for lift: Let f,g,h,a,b € R such that
® (factorization) f = gh (mod 7)

® (pseudo-coprimality) ag + bh = 1 (mod 7).

® Then ¢/, 1/ is lift of g, h w.r.t. f if it satisfy the following.
® (Better factorization) f = ¢g’h’ (mod Z?),

25 / 49

HENSEL LIFTING: DEFINITION OF LIFT

® | et R be a commutative ring with 1 and Z C R be an ideal.

e Condition for lift: Let f,g,h,a,b € R such that
® (factorization) f = gh (mod 7)

® (pseudo-coprimality) ag + bh = 1 (mod 7).

® Then ¢/, 1/ is lift of g, h w.r.t. f if it satisfy the following.
® (Better factorization) f = ¢g’h’ (mod Z?),

® (Lifts) ¢ = ¢ (mod Z) and A’ = h (mod Z), and

25 / 49

HENSEL LIFTING: DEFINITION OF LIFT

® | et R be a commutative ring with 1 and Z C R be an ideal.

e Condition for lift: Let f,g,h,a,b € R such that
® (factorization) f = gh (mod 7)

® (pseudo-coprimality) ag + bh = 1 (mod 7).
® Then ¢/, 1/ is lift of g, h w.r.t. f if it satisfy the following.
® (Better factorization) f = ¢g’h’ (mod Z?),
® (Lifts) ¢ = ¢ (mod Z) and A’ = h (mod Z), and
® (pseudo-coprimality) 3a/,b' € R a’¢g’ +¥'h =1 (mod Z?).

25 / 49

NONMONIC LIFTING IS CHEAPER

® Compute the following.

26 / 49

NONMONIC LIFTING IS CHEAPER

® Compute the following.

*e=f—gh

26 / 49

NONMONIC LIFTING IS CHEAPER

® Compute the following.
*e=f—gh

e g =g+beand i =h+ae

26 / 49

NONMONIC LIFTING IS CHEAPER

Compute the following.
e=f—gh

e g =g+beand i =h+ae

c=ag +bh —1

26 / 49

NONMONIC LIFTING IS CHEAPER

Compute the following.
e=f—gh

e g =g+beand i =h+ae

c=ag +bh —1

e d =a(l—c)and b =b(1—c).

26 / 49

NONMONIC LIFTING IS CHEAPER

Compute the following.
e=f—gh

e g =g+beand i =h+ae

c=ag +bh —1

e d =a(l—c)and b =b(1—c).

If g,h,a,b are small formulas, we have to make 5 copies of
them to compute the next round ¢',h/,d’, V.

26 / 49

MonNICc VERSION OF HENSEL LIFTING

® Assume f, g, h are polynomials monic in x.

27 / 49

MonNICc VERSION OF HENSEL LIFTING

® Assume f, g, h are polynomials monic in x.

® Additionally compute polynomials ¢ and r such that
g — g =qg+r, where deg,(r) < deg,(g).

27 / 49

MonNICc VERSION OF HENSEL LIFTING

® Assume f, g, h are polynomials monic in x.

® Additionally compute polynomials ¢ and r such that
g — g =qg+r, where deg,(r) < deg,(g).

e g=g+rand h= R (1 + ¢) are a monic lift of g, h w.r.t. f.

27 / 49

MonNICc VERSION OF HENSEL LIFTING

® Assume f, g, h are polynomials monic in x.

® Additionally compute polynomials ¢ and r such that
g — g =qg+r, where deg,(r) < deg,(g).

® Gg=g+rand h=h(1+q) are a monic lift of g, h w.r.t. f.

® Advantage: We can avoid the linear system-solving step if we
start monic lifting from g(z,0) and h(z,0)!

® Disadvantage: Implementing it for formulas/ABPs requires
making d? many copies of previous lifts in each round.

27 / 49

LIFTED FACTOR AND ACTUAL FACTOR

Lemma (Actual factor vs lifted factor)

g = g:h; (mod y%') for some polynomial h.

28 / 49

LIFTED FACTOR AND ACTUAL FACTOR

Lemma (Actual factor vs lifted factor)

g = g:h; (mod y%') for some polynomial h.

Proof ldea

Inductively apply Hensel lifting to both f and factor g starting
from f = goho (mod y) and g = goh{, (mod y) respectively.

From the proof, we do not get i} explicitly if we do not know g.

28 / 49

FACTOR RECONSTRUCTION VIA LINEAR SYSTEM

® We want to compute g from the Eqn. g = ¢g:h} (mod yQt).

20 / 49

FACTOR RECONSTRUCTION VIA LINEAR SYSTEM

® We want to compute g from the Eqn. g = ¢g:h} (mod yQt).

® Here g; is known but both g and h} are unknown. We know
the degree upper bounds of g, g, h}.

20 / 49

FACTOR RECONSTRUCTION VIA LINEAR SYSTEM

® We want to compute g from the Eqn. g = ¢g:h} (mod yQt).

® Here g; is known but both g and h} are unknown. We know
the degree upper bounds of g, g, h}.

e Compare the coefficients of each monomial x'37 in LHS and
RHS of Eqn. g = g} (mod).

29 / 49

FACTOR RECONSTRUCTION VIA LINEAR SYSTEM

We want to compute g from the Eqn. g = g;h; (mod yQt).

Here g; is known but both g and k) are unknown. We know
the degree upper bounds of g, g, h}.

Compare the coefficients of each monomial 47 in LHS and
RHS of Eqn. g = g} (mod).

We get a system of linear equations in the unknowns
(coefficients of g and h}).

20 / 49

FACTOR RECONSTRUCTION VIA LINEAR SYSTEM

We want to compute g from the Eqn. g = g;h; (mod yQt).

Here g; is known but both g and k) are unknown. We know
the degree upper bounds of g, g, h}.

Compare the coefficients of each monomial 47 in LHS and
RHS of Eqn. g = g} (mod).

We get a system of linear equations in the unknowns
(coefficients of g and h}).

20 / 49

SOLUTION OF LINEAR SYSTEM GIVES FACTOR

® |et g be a least degree monic polynomial that satisfies
G = gih (mod y?) for some h. We prove that § = g.

30 / 49

SOLUTION OF LINEAR SYSTEM GIVES FACTOR

® |et g be a least degree monic polynomial that satisfies
G = gih (mod 3>) for some h. We prove that § = g.

® First prove that g and the factor g have nontrivial gcd by
showing that their Resultant is zero.

30 / 49

SOLUTION OF LINEAR SYSTEM GIVES FACTOR

® |et g be a least degree monic polynomial that satisfies
G = gih (mod 3>) for some h. We prove that § = g.

® First prove that g and the factor g have nontrivial gcd by
showing that their Resultant is zero.

® As factor g is irreducible, we get g divides g.

30 / 49

SOLUTION OF LINEAR SYSTEM GIVES FACTOR

Let g be a least degree monic polynomial that satisfies
G = gih (mod 3>) for some h. We prove that § = g.

® First prove that g and the factor g have nontrivial gcd by
showing that their Resultant is zero.

As factor g is irreducible, we get g divides g.

As both g and g are monic polynomials of same degree, they
must be equal.

30 / 49

GCD AND RESULTANTS

® The resultant 7(y) = Res;(g, g) is a polynomial (of degree
< 2d?) in y defined via determinant of Sylvester matrix.

31/ 49

GCD AND RESULTANTS

® The resultant 7(y) = Res;(g, g) is a polynomial (of degree
< 2d?) in y defined via determinant of Sylvester matrix.

® Res,;(g9,9) =0 <= g, g share nontrivial gcd.

31/ 49

GCD AND RESULTANTS

® The resultant 7(y) = Res;(g, g) is a polynomial (of degree
< 2d?) in y defined via determinant of Sylvester matrix.

® Res,;(g9,9) =0 <= g, g share nontrivial gcd.

31/ 49

VANISHING OF RESULTANT

® Resultant as linear combination: Ju,v s.t 7(y) = ug + vg.

32/ 49

VANISHING OF RESULTANT

® Resultant as linear combination: Ju,v s.t 7(y) = ug + vg.

® Plug-in g = g;h} (mod y%') and § = g;h (mod y*).

32/ 49

VANISHING OF RESULTANT

® Resultant as linear combination: Ju,v s.t 7(y) = ug + vg.
® Plug-in g = g;h} (mod y%') and § = g;h (mod y*).

* So we get 7(y) = ug + v§ = g;(uh} + vh) (mod y*').

32/ 49

VANISHING OF RESULTANT

Resultant as linear combination: Ju, v s.t r(y) = ug + vg.

Plug-in ¢ = ¢} (mod y2') and § = g:h (mod 2.
t

* So we get 7(y) = ug + v§ = g;(uh} + vh) (mod y*').

Let w denote (uh) + vh). So we have 7(y) = giw (mod y2').

32/ 49

VANISHING OF RESULTANT

Resultant as linear combination: Ju, v s.t r(y) = ug + vg.

Plug-in g = g;h}, (mod y%') and § = g;h (mod y%).

* So we get 7(y) = ug + v§ = g;(uh} + vh) (mod y*').

Let w denote (uh) + vh). So we have 7(y) = giw (mod y2').

Assume for sake of contradiction 7(y) is nonzero.

32/ 49

VANISHING RESULTANT: MONIC VS NONMONIC LIFT

® g, is monic in x and w # 0 = coefficient of highest power
of 2 in gyw (mod y2') is nonzero.

33 /49

VANISHING RESULTANT: MONIC VS NONMONIC LIFT

® g, is monic in x and w # 0 = coefficient of highest power
of 2 in gyw (mod y2') is nonzero.

® On the other hand, r(y) is free of x. That gives a
contradiction. Thus r(y) = 0 (mod 32).

33 /49

VANISHING RESULTANT: MONIC VS NONMONIC LIFT

® g, is monic in x and w # 0 = coefficient of highest power
of 2 in gyw (mod y2') is nonzero.

® On the other hand, r(y) is free of x. That gives a
contradiction. Thus r(y) = 0 (mod 32).

® But here g; is nonmonic. So the coefficient of highest power
of x in g; is a multiple of y.

33 /49

VANISHING RESULTANT: MONIC VS NONMONIC LIFT

® g, is monic in x and w # 0 = coefficient of highest power
of 2 in gyw (mod y2') is nonzero.

® On the other hand, r(y) is free of x. That gives a
contradiction. Thus r(y) = 0 (mod 32).

® But here g; is nonmonic. So the coefficient of highest power
of x in g; is a multiple of y.

® Thus the highest power of x in g;w may vanish modulo yQt.
Can we still save the argument?

33 /49

FINISHING THE PROOF

® |dea: Look at the least power of y in both w and g¢;.

34 / 49

FINISHING THE PROOF

® |dea: Look at the least power of y in both w and g¢;.

® View g; and w as polynomials in y with coefficients in x.
Suppose g; = co(x) + c1(2)y + ... + ca(x)y?.

34 / 49

FINISHING THE PROOF

® |dea: Look at the least power of y in both w and g¢;.

® View g; and w as polynomials in y with coefficients in x.
Suppose g; = co(x) + c1(2)y + ... + ca(x)y?.

® Now, g; = go (mod y), so ¢o(z) = go(x), a nonzero poly in .

34 / 49

FINISHING THE PROOF

Idea: Look at the least power of y in both w and g;.

View g; and w as polynomials in y with coefficients in x.
Suppose g; = co(x) + c1(2)y + ... + ca(x)y?.

® Now, g; = go (mod y), so ¢o(z) = go(x), a nonzero poly in .

The least power of y in g;w has coefficient go(z)w;(x), a
nonzero polynomial in z.

34 / 49

FINISHING THE PROOF

® |dea: Look at the least power of y in both w and g¢;.

® View g; and w as polynomials in y with coefficients in x.
Suppose g; = co(x) + c1(2)y + ... + ca(x)y?.

® Now, g; = go (mod y), so ¢o(z) = go(x), a nonzero poly in .

® The least power of y in g;w has coefficient go(z)w;(x), a
nonzero polynomial in z.

 Thus gsw mod 42 is not free of . Contradiction. Thus, r(y)
must be 0 mod yQt. If 2t > 2d% + 1, then r(y) = 0. QED.

34 / 49

REDUCTION TO BIVARIATE

® Let f(x,21,...,2,) be the given polynomial to be factored

35/ 49

REDUCTION TO BIVARIATE

® Let f(x,21,...,2,) be the given polynomial to be factored

e Create a new polynomial f(z,y,2) = f(x,yz1,...,yzn)

e Consider f as a bivariate in 2 and y with coefficients in F[z].

35 / 49

REDUCTION TO BIVARIATE

Let f(z,z1,...,2,) be the given polynomial to be factored

~

Create a new polynomial f(z,y,2) = f(z,yz1,...,yzn)

Consider f as a bivariate in z and y with coefficients in F|[z].

To get back f from f simply put y to 1 in f

35 / 49

REDUCTION TO BIVARIATE

Let f(z,z1,...,2,) be the given polynomial to be factored

~

Create a new polynomial f(z,y,2) = f(z,yz1,...,yzn)

Consider f as a bivariate in z and y with coefficients in F|[z].

To get back f from f simply put y to 1 in f

Putting v to 0 in f we get univariate f(x)

35 / 49

LINEAR SYSTEM OVER A BIG FIELD

® The reduction to bivariate seems cheap.

36 / 49

LINEAR SYSTEM OVER A BIG FIELD

® The reduction to bivariate seems cheap.

® But we have to pay the price in the jump step. Our linear
system now has coefficients from F(z1,. .., z,).

36 / 49

LINEAR SYSTEM OVER A BIG FIELD

® The reduction to bivariate seems cheap.

® But we have to pay the price in the jump step. Our linear
system now has coefficients from F(z1,. .., z,).

e Using Cramer's rule, the solutions can be expressed via
Determinants/ABPs.

36 / 49

LINEAR SYSTEM OVER A BIG FIELD

The reduction to bivariate seems cheap.

But we have to pay the price in the jump step. Our linear
system now has coefficients from F(z1,. .., z,).

Using Cramer’s rule, the solutions can be expressed via
Determinants/ABPs.

Derandomization of the jump step requires PIT for ABPs.

36 / 49

Factorization and PIT

37 /49

Di1viSIiBILITY TESTING

® Test if g(x1,...,xy,) divides f(z1,...,2y,).

38 / 49

Di1viSIiBILITY TESTING

® Test if g(x1,...,xy,) divides f(z1,...,2y,).

® Reduces to Polynomial ldentity Testing.

38 / 49

Di1viSIiBILITY TESTING

® Test if g(x1,...,xy,) divides f(z1,...,2y,).
® Reduces to Polynomial ldentity Testing.

® We don't know a deterministic poly-time algorithm even when
f, g are sparse.

38 / 49

SPARSE DIVISIBILITY TESTING

® Whether a linear polynomial divides a sparse polynomial can
be tested in polynomial time.

39 / 49

SPARSE DIVISIBILITY TESTING

® Whether a linear polynomial divides a sparse polynomial can
be tested in polynomial time.

® f(x1,...,xy,) is divisible by z1 — £(z2, ..., x,) iff
fll,zo, ..., x,) =0.

39 / 49

SPARSE DIVISIBILITY TESTING

® Whether a linear polynomial divides a sparse polynomial can
be tested in polynomial time.

® f(x1,...,xy,) is divisible by z1 — £(z2, ..., x,) iff
fll,zo, ..., x,) =0.

® Semidiagonal model: ¥m;¢% where m; is a monomial and /¢
are linear polynomials [Saha-Saptharishi-Saxena 2010].

39 / 49

SPARSE DIVISIBILITY TESTING

® Whether a linear polynomial divides a sparse polynomial can
be tested in polynomial time.

® f(x1,...,xy,) is divisible by z1 — £(z2, ..., x,) iff
fll,zo, ..., x,) =0.

® Semidiagonal model: ¥m;¢% where m; is a monomial and /¢
are linear polynomials [Saha-Saptharishi-Saxena 2010].

® Testing if a quadratic polynomial divides a s-sparse
polynomial in s°6¢ time [Forbes 2015]. Reduces to PIT of
sums of monomials times powers of quadratics.

39 / 49

SPARSE DIVISIBILITY TESTING

® Whether a linear polynomial divides a sparse polynomial can
be tested in polynomial time.

® f(x1,...,xy,) is divisible by z1 — £(z2, ..., x,) iff
fll,zo, ..., x,) =0.

® Semidiagonal model: ¥m;¢% where m; is a monomial and /¢
are linear polynomials [Saha-Saptharishi-Saxena 2010].

® Testing if a quadratic polynomial divides a s-sparse
polynomial in s°6¢ time [Forbes 2015]. Reduces to PIT of
sums of monomials times powers of quadratics.

o |f f. g are sparse polynomials with bounded individual degrees,
[Volkovich 2017] gave a poly-time test.

39 / 49

FACTORIZATION TESTING

e Given sparse pOIynomials f7 gi,---,9k, test if f = Hf:l i Or
more generally, f =[], ¢:".

40 / 49

FACTORIZATION TESTING

e Given sparse pOIynomials f7 gi,---,9k, test if f = Hf:l i Or
more generally, f =[], ¢:".

® Testing in deterministic polynomial time open, even when g;
have bounded degree.

40 / 49

FACTORIZATION TESTING

e Given sparse pOIynomials f7 gi,---,9k, test if f = Hf:l i Or
more generally, f =[], ¢:".

® Testing in deterministic polynomial time open, even when g;
have bounded degree.

® More general question: Given sparse polynomials fi,..., fx
. . k
and g1,...,9,, testif [[7_, fi = [gi-

40 / 49

FACTORIZATION TESTING

e Given sparse pOIynomials f7 gi,---,9k, test if f = Hf:l i Or
more generally, f =[], ¢:".

® Testing in deterministic polynomial time open, even when g;
have bounded degree.

® More general question: Given sparse polynomials fi,..., fx
. . k
and g1,...,9,, testif [[7_, fi = [gi-

e Bisht and Volkovich recently solved a related question. They
assume f;, g; are sparse and have bounded individual degrees.

40 / 49

FACTORING-PIT EQUIVALENCE

® Derandomization of Multivariate Factoring over Q reduces to
derandomization of PIT [Kopparty-Saraf-Shpilka 2015].

41 / 49

FACTORING-PIT EQUIVALENCE

® Derandomization of Multivariate Factoring over Q reduces to
derandomization of PIT [Kopparty-Saraf-Shpilka 2015].

® This is known in both black-box and white-box settings.

41/ 49

FACTORING-PIT EQUIVALENCE

® Derandomization of Multivariate Factoring over Q reduces to
derandomization of PIT [Kopparty-Saraf-Shpilka 2015].

® This is known in both black-box and white-box settings.

® Can we derandomize factoring in some special cases, such as
sparse polynomials?

41/ 49

FRONTIER QUESTIONS

® Given an n-variate degree d polynomial of sparsity < s, test if
it is irreducible in deterministic POLY(n, s, d) time.

42 / 49

FRONTIER QUESTIONS

® Given an n-variate degree d polynomial of sparsity < s, test if
it is irreducible in deterministic POLY(n, s, d) time.

® Challenge: Currently, it requires PIT for symbolic
Determinants.

42 / 49

FRONTIER QUESTIONS

® Given an n-variate degree d polynomial of sparsity < s, test if
it is irreducible in deterministic POLY(n, s, d) time.

® Challenge: Currently, it requires PIT for symbolic
Determinants.

® Given two n-variate degree d polynomial of sparsity < s, test
if they are coprime in deterministic POLY(n, s, d) time.

42 / 49

FRONTIER QUESTIONS

® Given an n-variate degree d polynomial of sparsity < s, test if
it is irreducible in deterministic POLY(n, s, d) time.

® Challenge: Currently, it requires PIT for symbolic
Determinants.

® Given two n-variate degree d polynomial of sparsity < s, test
if they are coprime in deterministic POLY(n, s, d) time.

® Challenge: The resultant of two sparse polynomials may not
be sparse.

42 / 49

BLACK-BOX CASE: KALTOFEN AND TRAGER

® Given a black box computing a multivariate polynomial f,
black boxes of the irreducible factors of f can be computed in
randomized polynomial time [Kaltofen-Trager 1991].

43 / 49

BLACK-BOX CASE: KALTOFEN AND TRAGER

® Given a black box computing a multivariate polynomial f,
black boxes of the irreducible factors of f can be computed in
randomized polynomial time [Kaltofen-Trager 1991].

® Dimension reduction: Randomly project to bivariates.

43 / 49

BLACK-BOX CASE: KALTOFEN AND TRAGER

® Given a black box computing a multivariate polynomial f,
black boxes of the irreducible factors of f can be computed in
randomized polynomial time [Kaltofen-Trager 1991].

® Dimension reduction: Randomly project to bivariates.

® This works due to an effective version of Hilbert's
irreducibility theorem.

43 / 49

BLACK-BOX CASE: KALTOFEN AND TRAGER

® Given a black box computing a multivariate polynomial f,
black boxes of the irreducible factors of f can be computed in
randomized polynomial time [Kaltofen-Trager 1991].

® Dimension reduction: Randomly project to bivariates.

® This works due to an effective version of Hilbert's
irreducibility theorem.

o If f(x,21,...,2,) is irreducible, then
flx, p1+ a1y, ..., By + any) is irreducible with high
probability if 5;, a; picked at random.

43 / 49

BLACK-BOX CASE: KALTOFEN AND TRAGER

® Given a black box computing a multivariate polynomial f,
black boxes of the irreducible factors of f can be computed in
randomized polynomial time [Kaltofen-Trager 1991].

® Dimension reduction: Randomly project to bivariates.

® This works due to an effective version of Hilbert's
irreducibility theorem.

o If f(x,21,...,2,) is irreducible, then
flx, p1+ a1y, ..., By + any) is irreducible with high
probability if 5;, a; picked at random.

® Currently, derandomization of this theorem for sparse
polynomials reduces to ABP PIT.

43 / 49

WHITE-BOX CASE

® f(z,z1,...,2,) may not be monic in z.

44 / 49

WHITE-BOX CASE

® f(z,z1,...,2,) may not be monic in z.

® Apply the shift: z; — z; + a;x where «; picked at random.

44 / 49

WHITE-BOX CASE

® f(z,z1,...,2,) may not be monic in z.
® Apply the shift: z; — z; + a;x where «; picked at random.

e Say, factors g(x, z1,...,2y), h(x, 21,...,2,) are coprime. But
g(z,0,...,0) and h(z,0,...,0) are not coprime.

44 / 49

WHITE-BOX CASE

® f(z,z1,...,2,) may not be monic in z.

Apply the shift: z; — z; + a;x where «; picked at random.

Say, factors g(x, z1,...,2n), h(x, 21,. .., 2,) are coprime. But
g(z,0,...,0) and h(z,0,...,0) are not coprime.

If the resultant (determinant of Sylvester matrix) of them is
nonzero at some point a7, ..., ay,, translate by that point.

44 / 49

WHITE-BOX CASE

® f(z,z1,...,2,) may not be monic in z.

Apply the shift: z; — z; + a;x where «; picked at random.

Say, factors g(x, z1,...,2n), h(x, 21,. .., 2,) are coprime. But
g(z,0,...,0) and h(z,0,...,0) are not coprime.

If the resultant (determinant of Sylvester matrix) of them is
nonzero at some point a7, ..., ay,, translate by that point.

We need PIT also in the linear system-solving step.

44 / 49

FACTORING PRODUCT OF LINEAR POLYNOMIALS

¢ Koiran and Ressyare (2018): Test if f(x1,...,x,) is of the
form f(x) = {1 (x)*" - L, (x)*". If yes, output the linear
factors.

® They give three randomized algorithms that are different from
Kaltofen and Trager's algorithm.

45 / 49

FACTORING PRODUCT OF LINEAR POLYNOMIALS

¢ Koiran and Ressyare (2018): Test if f(x1,...,x,) is of the
form f(x) = {1 (x)*" - L, (x)*". If yes, output the linear
factors.

® They give three randomized algorithms that are different from
Kaltofen and Trager's algorithm.

45 / 49

PRODUCT OF LINEAR POLYNOMIALS

® The first one uses the characterization of the Lie algebras of
the polynomials in the orbit of a monomial.

46 / 49

PRODUCT OF LINEAR POLYNOMIALS

® The first one uses the characterization of the Lie algebras of
the polynomials in the orbit of a monomial.

® The second algorithm reconstructs a factorization from several
bivariate projections.

46 / 49

PRODUCT OF LINEAR POLYNOMIALS

® The first one uses the characterization of the Lie algebras of
the polynomials in the orbit of a monomial.

® The second algorithm reconstructs a factorization from several
bivariate projections.

® The third algorithm reconstructs it from the determination of
the zero set of the input polynomial, which is a union of
hyperplanes.

46 / 49

DETERMINISTIC FACTORING IN SPECIAL CASES

® Given a black box computing product of linear/bounded
degree polynomials, output the factors in polynomial time.

47 / 49

DETERMINISTIC FACTORING IN SPECIAL CASES

® Given a black box computing product of linear/bounded
degree polynomials, output the factors in polynomial time.

® QOver Q, this can done.

® Work under progress: Given a black-box computing product of
sparse polynomials with bounded individual degrees, output
factors in polynomial time.

47 / 49

DETERMINISTIC FACTORING IN SPECIAL CASES

® Given a black box computing product of linear/bounded
degree polynomials, output the factors in polynomial time.

® QOver Q, this can done.

® Work under progress: Given a black-box computing product of
sparse polynomials with bounded individual degrees, output
factors in polynomial time.

® Note that we cannot directly use Bhargava-Saraf-Volkovich:
They assume the input is sparse and have bounded individual
degree.

47 / 49

CONCLUSION

® Open: All the factors of size s formulas have size POLY ()
formulas?

48 / 49

CONCLUSION

® Open: All the factors of size s formulas have size POLY ()
formulas?

® |f not, what are the candidate counterexamples?

48 / 49

CONCLUSION

® Open: All the factors of size s formulas have size POLY ()
formulas?

® |f not, what are the candidate counterexamples?

® Hensel lifting/Newton iteration may have further applications
in algebraic complexity.

48 / 49

CONCLUSION

® Open: All the factors of size s formulas have size POLY ()
formulas?

® |f not, what are the candidate counterexamples?

® Hensel lifting/Newton iteration may have further applications
in algebraic complexity.

® Open: Given a black-box that computes product of two sparse
polynomials, output the sparse factors in deterministic
polynomial time.

48 / 49

Thank You!

49 / 49

