
Factoring, Root finding, and several
other things

Amit Sinhababu

Chennai Mathematical Institute

WACT 2023, Warwick

1 / 49



Outline of the Talk

• Multivariate Polynomial Factoring
• Background and Motivation.
• Factoring Algebraic Branching Programs.

• Multivariate Factoring and PIT.

2 / 49



Outline of the Talk

• Multivariate Polynomial Factoring
• Background and Motivation.
• Factoring Algebraic Branching Programs.

• Multivariate Factoring and PIT.

2 / 49



Multivariate Polynomial Factoring: Background

3 / 49



Factoring Univariates

• We encounter integer and polynomial factoring in school.

• Polynomials can be factored in polynomial time.

• Factor f(x) ∈ Q[x] using LLL algorithm in deterministic
polynomial time.

• Factor f(x) ∈ Fq[x] using Berlekamp’s algorithm.

4 / 49



Factoring Univariates

• We encounter integer and polynomial factoring in school.

• Polynomials can be factored in polynomial time.

• Factor f(x) ∈ Q[x] using LLL algorithm in deterministic
polynomial time.

• Factor f(x) ∈ Fq[x] using Berlekamp’s algorithm.

4 / 49



Polynomials vs Integers

• Polynomials are often easier cases than integers.

• Squarefree: Test if a given integer or polynomial has a factor
that repeats.

• For integers, no polynomial time algorithm for this is known.

• Derivatives rescue us in case of polynomials. Test if f(x) and
its derivative are relatively prime.

5 / 49



Polynomials vs Integers

• Polynomials are often easier cases than integers.

• Squarefree: Test if a given integer or polynomial has a factor
that repeats.

• For integers, no polynomial time algorithm for this is known.

• Derivatives rescue us in case of polynomials. Test if f(x) and
its derivative are relatively prime.

5 / 49



Polynomials vs Integers

• Polynomials are often easier cases than integers.

• Squarefree: Test if a given integer or polynomial has a factor
that repeats.

• For integers, no polynomial time algorithm for this is known.

• Derivatives rescue us in case of polynomials. Test if f(x) and
its derivative are relatively prime.

5 / 49



Polynomials vs Integers

• Polynomials are often easier cases than integers.

• Squarefree: Test if a given integer or polynomial has a factor
that repeats.

• For integers, no polynomial time algorithm for this is known.

• Derivatives rescue us in case of polynomials. Test if f(x) and
its derivative are relatively prime.

5 / 49



Multivariate to Univariate

• The focus of today’s talk is multivariate polynomial
factorization.

• Multivariate factoring can be reduced to univariate factoring.

6 / 49



Multivariate to Univariate

• The focus of today’s talk is multivariate polynomial
factorization.

• Multivariate factoring can be reduced to univariate factoring.

6 / 49



Kronecker-Schubert Reduction

• Suppose f(x1, . . . , xn) = g(x1, . . . , xn)h(x1, . . . , xn).

• Degree of each variable in f(x1, . . . , xn) is ≤ d.

• Apply Kronecker substitution ϕ : xi 7→ zD
i−1

where
D = d+ 1.

• Each monomial in f uniquely maps to a monomial in ϕ(f).
Thus, we can invert the map ϕ.

7 / 49



Kronecker-Schubert Reduction

• Suppose f(x1, . . . , xn) = g(x1, . . . , xn)h(x1, . . . , xn).

• Degree of each variable in f(x1, . . . , xn) is ≤ d.

• Apply Kronecker substitution ϕ : xi 7→ zD
i−1

where
D = d+ 1.

• Each monomial in f uniquely maps to a monomial in ϕ(f).
Thus, we can invert the map ϕ.

7 / 49



Kronecker-Schubert Reduction

• Suppose f(x1, . . . , xn) = g(x1, . . . , xn)h(x1, . . . , xn).

• Degree of each variable in f(x1, . . . , xn) is ≤ d.

• Apply Kronecker substitution ϕ : xi 7→ zD
i−1

where
D = d+ 1.

• Each monomial in f uniquely maps to a monomial in ϕ(f).
Thus, we can invert the map ϕ.

7 / 49



Kronecker-Schubert Reduction

• Suppose f(x1, . . . , xn) = g(x1, . . . , xn)h(x1, . . . , xn).

• Degree of each variable in f(x1, . . . , xn) is ≤ d.

• Apply Kronecker substitution ϕ : xi 7→ zD
i−1

where
D = d+ 1.

• Each monomial in f uniquely maps to a monomial in ϕ(f).
Thus, we can invert the map ϕ.

7 / 49



Kronecker-Schubert Reduction

• If f = gh, then ϕ(f) = ϕ(g)ϕ(h).

• Factorize ϕ(f) into univariate irreducible factors.

• Though g is irreducible, ϕ(g) may not be irreducible.

• Product of a subset of the factors of ϕ(f) would correspond
to ϕ(g).

• Try all subsets. Apply inverse Kronecker and test divisibility.

• Time complexity: Exponential in degree in worst-case (even
for bivariates).

8 / 49



Kronecker-Schubert Reduction

• If f = gh, then ϕ(f) = ϕ(g)ϕ(h).

• Factorize ϕ(f) into univariate irreducible factors.

• Though g is irreducible, ϕ(g) may not be irreducible.

• Product of a subset of the factors of ϕ(f) would correspond
to ϕ(g).

• Try all subsets. Apply inverse Kronecker and test divisibility.

• Time complexity: Exponential in degree in worst-case (even
for bivariates).

8 / 49



Kronecker-Schubert Reduction

• If f = gh, then ϕ(f) = ϕ(g)ϕ(h).

• Factorize ϕ(f) into univariate irreducible factors.

• Though g is irreducible, ϕ(g) may not be irreducible.

• Product of a subset of the factors of ϕ(f) would correspond
to ϕ(g).

• Try all subsets. Apply inverse Kronecker and test divisibility.

• Time complexity: Exponential in degree in worst-case (even
for bivariates).

8 / 49



Kronecker-Schubert Reduction

• If f = gh, then ϕ(f) = ϕ(g)ϕ(h).

• Factorize ϕ(f) into univariate irreducible factors.

• Though g is irreducible, ϕ(g) may not be irreducible.

• Product of a subset of the factors of ϕ(f) would correspond
to ϕ(g).

• Try all subsets. Apply inverse Kronecker and test divisibility.

• Time complexity: Exponential in degree in worst-case (even
for bivariates).

8 / 49



Kronecker-Schubert Reduction

• If f = gh, then ϕ(f) = ϕ(g)ϕ(h).

• Factorize ϕ(f) into univariate irreducible factors.

• Though g is irreducible, ϕ(g) may not be irreducible.

• Product of a subset of the factors of ϕ(f) would correspond
to ϕ(g).

• Try all subsets. Apply inverse Kronecker and test divisibility.

• Time complexity: Exponential in degree in worst-case (even
for bivariates).

8 / 49



Efficient multivariate factorization

• Kaltofen (1982): Efficient reduction of bivariate to univariate
factoring.

• Tools: Newton iteration/ Hensel lifting, Linear System
Solving.

• We have to define the size of input and output polynomials in
the multivariate setting to talk about time complexity.

9 / 49



Representing Multivariate Polynomials

• Dense: List all the coefficients of
(
n+d
d

)
many monomials up

to degree d.

• Sparse: List only the monomials with nonzero coefficients.
Eg. x21 + x2x3 + 5x4.

• Formula: (1 + x1)(1 + x2)x3 − (1 + x1)
2. Reuse of

computation not allowed. Structurally, looks like a tree.

• Straight-Line Programs or Arithmetic Circuits.

10 / 49



Arithmetic circuits

Two circuits for computing x2 + 2xy + y2

x y

× ×

+

2

×

x y

+

×

Size: Total number of nodes or edges.

11 / 49



Arithmetic circuits

Two circuits for computing x2 + 2xy + y2

x y

× ×

+

2

×

x y

+

×

Size: Total number of nodes or edges.

11 / 49



Complexity of Factors

Factorization of a polynomial

Let f be a polynomial of degree d that has size s in some model.

f(x1, . . . , xn) =

m∏
i=1

fei
i

Let fi’s be its irreducible factors over F.

Factor size bound question: Do all its factors have
poly(s, d) size in the same model?

12 / 49



Complexity of Factors

Factorization of a polynomial

Let f be a polynomial of degree d that has size s in some model.

f(x1, . . . , xn) =

m∏
i=1

fei
i

Let fi’s be its irreducible factors over F.

Factor size bound question: Do all its factors have
poly(s, d) size in the same model?

12 / 49



Closure under factoring

• Let C be a class of polynomials.

• Closure under multiplication: f, g ∈ C =⇒ f × g ∈ C.

• Closure under factoring: If f × g is in C, are f, g also in C?

• Apriori, it is not obvious. The smallest representation of fg
may not be via computing f and g.

13 / 49



Closure under factoring

• Let C be a class of polynomials.

• Closure under multiplication: f, g ∈ C =⇒ f × g ∈ C.

• Closure under factoring: If f × g is in C, are f, g also in C?

• Apriori, it is not obvious. The smallest representation of fg
may not be via computing f and g.

13 / 49



Upper bounds in different models

• Factors can be larger in size. For example,
xd − 1 = (x− 1)(1 + x+ · · ·+ xd−1).

• Sparsity of factors can be superpolynomial wrt input
polynomial’s sparsity.

• Kaltofen 1986: If size denotes arithmetic circuit size, g | f
=⇒ size(g) ≤ poly(size(f),deg(f)).

• Goal: Extend Kaltofen’s result for factors of formulas,
constant depth circuits, algebraic branching programs (ABPs),
etc.

14 / 49



Upper bounds in different models

• Factors can be larger in size. For example,
xd − 1 = (x− 1)(1 + x+ · · ·+ xd−1).

• Sparsity of factors can be superpolynomial wrt input
polynomial’s sparsity.

• Kaltofen 1986: If size denotes arithmetic circuit size, g | f
=⇒ size(g) ≤ poly(size(f), deg(f)).

• Goal: Extend Kaltofen’s result for factors of formulas,
constant depth circuits, algebraic branching programs (ABPs),
etc.

14 / 49



Upper bounds in different models

• Factors can be larger in size. For example,
xd − 1 = (x− 1)(1 + x+ · · ·+ xd−1).

• Sparsity of factors can be superpolynomial wrt input
polynomial’s sparsity.

• Kaltofen 1986: If size denotes arithmetic circuit size, g | f
=⇒ size(g) ≤ poly(size(f), deg(f)).

• Goal: Extend Kaltofen’s result for factors of formulas,
constant depth circuits, algebraic branching programs (ABPs),
etc.

14 / 49



Motivation

• Multivariate Polynomial Factoring has applications in coding
theory and various other problems.

• Helps to bridge two central questions in algebraic complexity:
VP vs VNP and polynomial identity testing (PIT).

• Kabanets and Impagliazzo (2003): Exponential lower bound
for arithmetic circuits =⇒ Quasi-poly blackbox deterministic
PIT for circuits.

• Hardness of multiples: If f is hard for C, all its nonzero
multiples are hard for C.

15 / 49



Motivation

• Multivariate Polynomial Factoring has applications in coding
theory and various other problems.

• Helps to bridge two central questions in algebraic complexity:
VP vs VNP and polynomial identity testing (PIT).

• Kabanets and Impagliazzo (2003): Exponential lower bound
for arithmetic circuits =⇒ Quasi-poly blackbox deterministic
PIT for circuits.

• Hardness of multiples: If f is hard for C, all its nonzero
multiples are hard for C.

15 / 49



Motivation

• Multivariate Polynomial Factoring has applications in coding
theory and various other problems.

• Helps to bridge two central questions in algebraic complexity:
VP vs VNP and polynomial identity testing (PIT).

• Kabanets and Impagliazzo (2003): Exponential lower bound
for arithmetic circuits =⇒ Quasi-poly blackbox deterministic
PIT for circuits.

• Hardness of multiples: If f is hard for C, all its nonzero
multiples are hard for C.

15 / 49



Motivation

• Multivariate Polynomial Factoring has applications in coding
theory and various other problems.

• Helps to bridge two central questions in algebraic complexity:
VP vs VNP and polynomial identity testing (PIT).

• Kabanets and Impagliazzo (2003): Exponential lower bound
for arithmetic circuits =⇒ Quasi-poly blackbox deterministic
PIT for circuits.

• Hardness of multiples: If f is hard for C, all its nonzero
multiples are hard for C.

15 / 49



Factor Closure Results

• Oliveira (2015) proved poly(s) factor size bounds for constant
depth circuits assuming the individual degree is constant.

• Dutta, Saxena, S (2018): If we take formula/ABP, g | f =⇒
size(g) ≤ poly(size(f), dO(log d))).

• Chou, Kumar, Solomon (2018) showed that VNP is closed
under factors.

16 / 49



Factor Closure Results

• Oliveira (2015) proved poly(s) factor size bounds for constant
depth circuits assuming the individual degree is constant.

• Dutta, Saxena, S (2018): If we take formula/ABP, g | f =⇒
size(g) ≤ poly(size(f), dO(log d))).

• Chou, Kumar, Solomon (2018) showed that VNP is closed
under factors.

16 / 49



Factorization of Arithmetic Branching Programs

17 / 49



ABPs are closed under factors

Theorem (S, Thierauf, 2020)

Let polynomial p(x̄) over F have ABP-size s.

All factors of p have ABP-size poly(s)

Algorithm: Factors can be efficiently constructed in randomized
polynomial time.

18 / 49



ABPs are closed under factors

Theorem (S, Thierauf, 2020)

Let polynomial p(x̄) over F have ABP-size s.

All factors of p have ABP-size poly(s)

Algorithm: Factors can be efficiently constructed in randomized
polynomial time.

18 / 49



ABP via Picture

Example:

s

•

•

•

•

t

x1

1 + x1

x2

x2

x2

x3

1 + x3

The polynomial computed by the above ABP is

x1x2x3 + x1x2(1 + x3) + (1 + x1)x2(1 + x3).

19 / 49



ABP via Picture

Example:

s

•

•

•

•

t

x1

1 + x1

x2

x2

x2

x3

1 + x3

The polynomial computed by the above ABP is

x1x2x3 + x1x2(1 + x3) + (1 + x1)x2(1 + x3).

19 / 49



Computational power of ABPs

Arithmetic Formula ≤ ABP ≤ Arithmetic Circuit

DET: compute determinant of n× n matrices

• DET ∈ NC2 [Csanky-Faddeev-LeVerrier 1976]
[Berkowitz-Samuelson 1985, Chistov 1985]

• DET by poly(n)-size ABPs [Mahajan-Vinay 1997]

Consequence

Poly-size ABPs can compute solutions of linear systems over
F(x1, . . . , xn).

• Not known for formulas

20 / 49



Computational power of ABPs

Arithmetic Formula ≤ ABP ≤ Arithmetic Circuit

DET: compute determinant of n× n matrices

• DET ∈ NC2 [Csanky-Faddeev-LeVerrier 1976]
[Berkowitz-Samuelson 1985, Chistov 1985]

• DET by poly(n)-size ABPs [Mahajan-Vinay 1997]

Consequence

Poly-size ABPs can compute solutions of linear systems over
F(x1, . . . , xn).

• Not known for formulas

20 / 49



Computational power of ABPs

Arithmetic Formula ≤ ABP ≤ Arithmetic Circuit

DET: compute determinant of n× n matrices

• DET ∈ NC2 [Csanky-Faddeev-LeVerrier 1976]
[Berkowitz-Samuelson 1985, Chistov 1985]

• DET by poly(n)-size ABPs [Mahajan-Vinay 1997]

Consequence

Poly-size ABPs can compute solutions of linear systems over
F(x1, . . . , xn).

• Not known for formulas

20 / 49



Computational power of ABPs

Arithmetic Formula ≤ ABP ≤ Arithmetic Circuit

DET: compute determinant of n× n matrices

• DET ∈ NC2 [Csanky-Faddeev-LeVerrier 1976]
[Berkowitz-Samuelson 1985, Chistov 1985]

• DET by poly(n)-size ABPs [Mahajan-Vinay 1997]

Consequence

Poly-size ABPs can compute solutions of linear systems over
F(x1, . . . , xn).

• Not known for formulas

20 / 49



Computational power of ABPs

Arithmetic Formula ≤ ABP ≤ Arithmetic Circuit

DET: compute determinant of n× n matrices

• DET ∈ NC2 [Csanky-Faddeev-LeVerrier 1976]
[Berkowitz-Samuelson 1985, Chistov 1985]

• DET by poly(n)-size ABPs [Mahajan-Vinay 1997]

Consequence

Poly-size ABPs can compute solutions of linear systems over
F(x1, . . . , xn).

• Not known for formulas

20 / 49



Computational power of ABPs

Arithmetic Formula ≤ ABP ≤ Arithmetic Circuit

DET: compute determinant of n× n matrices

• DET ∈ NC2 [Csanky-Faddeev-LeVerrier 1976]
[Berkowitz-Samuelson 1985, Chistov 1985]

• DET by poly(n)-size ABPs [Mahajan-Vinay 1997]

Consequence

Poly-size ABPs can compute solutions of linear systems over
F(x1, . . . , xn).

• Not known for formulas

20 / 49



Techniques for factorization

Newton Iteration [Oliveira 2016, Dutta, Saxena, S 2018]

Factoring ≤ root approximation in power series

•
p(x, y) has factor y − q(x) ⇐⇒ p(x, q(x)) = 0

• approximate root via Newton iteration

yt+1 = yt −
p(x, yt)

p′(x, yt)

• log d iterations leads to dlog d-size ABPs

Hensel Lifting (Kurt Hensel, 1861 - 1941)
21 / 49



Techniques for factorization

Newton Iteration [Oliveira 2016, Dutta, Saxena, S 2018]

Factoring ≤ root approximation in power series

•
p(x, y) has factor y − q(x) ⇐⇒ p(x, q(x)) = 0

• approximate root via Newton iteration

yt+1 = yt −
p(x, yt)

p′(x, yt)

• log d iterations leads to dlog d-size ABPs

Hensel Lifting (Kurt Hensel, 1861 - 1941)
21 / 49



Techniques for factorization

Newton Iteration [Oliveira 2016, Dutta, Saxena, S 2018]

Factoring ≤ root approximation in power series

•
p(x, y) has factor y − q(x) ⇐⇒ p(x, q(x)) = 0

• approximate root via Newton iteration

yt+1 = yt −
p(x, yt)

p′(x, yt)

• log d iterations leads to dlog d-size ABPs

Hensel Lifting (Kurt Hensel, 1861 - 1941)
21 / 49



Techniques for factorization

Newton Iteration [Oliveira 2016, Dutta, Saxena, S 2018]

Factoring ≤ root approximation in power series

•
p(x, y) has factor y − q(x) ⇐⇒ p(x, q(x)) = 0

• approximate root via Newton iteration

yt+1 = yt −
p(x, yt)

p′(x, yt)

• log d iterations leads to dlog d-size ABPs

Hensel Lifting (Kurt Hensel, 1861 - 1941)
21 / 49



Techniques for factorization

Newton Iteration [Oliveira 2016, Dutta, Saxena, S 2018]

Factoring ≤ root approximation in power series

•
p(x, y) has factor y − q(x) ⇐⇒ p(x, q(x)) = 0

• approximate root via Newton iteration

yt+1 = yt −
p(x, yt)

p′(x, yt)

• log d iterations leads to dlog d-size ABPs

Hensel Lifting (Kurt Hensel, 1861 - 1941)
21 / 49



Factoring via Hensel Lifting

After preprocessing: f(x, y), 2-variate, degree d, monic in x
(i.e. highest x-power has constant coefficient)

Goal: Compute g s.t. f = g h

1 Initial step: Factorize univariate polynomial f(x, 0)
• f(x, 0) = g0(x)h0(x)

• Equivalently: f(x, y) ≡ g0(x)h0(x) (mod y)

2 Lifting: compute g1(x, y), h1(x, y)
• f ≡ g1 h1 (mod y2)

Iterate lifting t = O(log d) times: f ≡ gt ht (mod y2
t
)

22 / 49



Factoring via Hensel Lifting

After preprocessing: f(x, y), 2-variate, degree d, monic in x
(i.e. highest x-power has constant coefficient)

Goal: Compute g s.t. f = g h

1 Initial step: Factorize univariate polynomial f(x, 0)
• f(x, 0) = g0(x)h0(x)

• Equivalently: f(x, y) ≡ g0(x)h0(x) (mod y)

2 Lifting: compute g1(x, y), h1(x, y)
• f ≡ g1 h1 (mod y2)

Iterate lifting t = O(log d) times: f ≡ gt ht (mod y2
t
)

22 / 49



Factoring via Hensel Lifting

After preprocessing: f(x, y), 2-variate, degree d, monic in x
(i.e. highest x-power has constant coefficient)

Goal: Compute g s.t. f = g h

1 Initial step: Factorize univariate polynomial f(x, 0)
• f(x, 0) = g0(x)h0(x)

• Equivalently: f(x, y) ≡ g0(x)h0(x) (mod y)

2 Lifting: compute g1(x, y), h1(x, y)
• f ≡ g1 h1 (mod y2)

Iterate lifting t = O(log d) times: f ≡ gt ht (mod y2
t
)

22 / 49



Factoring via Hensel Lifting

After preprocessing: f(x, y), 2-variate, degree d, monic in x
(i.e. highest x-power has constant coefficient)

Goal: Compute g s.t. f = g h

1 Initial step: Factorize univariate polynomial f(x, 0)
• f(x, 0) = g0(x)h0(x)

• Equivalently: f(x, y) ≡ g0(x)h0(x) (mod y)

2 Lifting: compute g1(x, y), h1(x, y)
• f ≡ g1 h1 (mod y2)

Iterate lifting t = O(log d) times: f ≡ gt ht (mod y2
t
)

22 / 49



Factoring via Hensel Lifting

After preprocessing: f(x, y), 2-variate, degree d, monic in x
(i.e. highest x-power has constant coefficient)

Goal: Compute g s.t. f = g h

1 Initial step: Factorize univariate polynomial f(x, 0)
• f(x, 0) = g0(x)h0(x)

• Equivalently: f(x, y) ≡ g0(x)h0(x) (mod y)

2 Lifting: compute g1(x, y), h1(x, y)
• f ≡ g1 h1 (mod y2)

Iterate lifting t = O(log d) times: f ≡ gt ht (mod y2
t
)

22 / 49



Factoring via Hensel Lifting

After preprocessing: f(x, y), 2-variate, degree d, monic in x
(i.e. highest x-power has constant coefficient)

Goal: Compute g s.t. f = g h

1 Initial step: Factorize univariate polynomial f(x, 0)
• f(x, 0) = g0(x)h0(x)

• Equivalently: f(x, y) ≡ g0(x)h0(x) (mod y)

2 Lifting: compute g1(x, y), h1(x, y)
• f ≡ g1 h1 (mod y2)

Iterate lifting t = O(log d) times: f ≡ gt ht (mod y2
t
)

22 / 49



Hensel Lifting

f = g h

f ≡ gt ht (mod y2
t
)

One can show: for some polynomial h′t

g ≡ gt h
′
t (mod y2

t
)

• gt known, but g and h′t unknown

• Set up linear system in unknown coefficients of g and h′

• Jump Step: Right choice of t =⇒ we get g, without any
mod! Can be proved using resultants.

23 / 49



Hensel Lifting

f = g h

f ≡ gt ht (mod y2
t
)

One can show: for some polynomial h′t

g ≡ gt h
′
t (mod y2

t
)

• gt known, but g and h′t unknown

• Set up linear system in unknown coefficients of g and h′

• Jump Step: Right choice of t =⇒ we get g, without any
mod! Can be proved using resultants.

23 / 49



Hensel Lifting

f = g h

f ≡ gt ht (mod y2
t
)

One can show: for some polynomial h′t

g ≡ gt h
′
t (mod y2

t
)

• gt known, but g and h′t unknown

• Set up linear system in unknown coefficients of g and h′

• Jump Step: Right choice of t =⇒ we get g, without any
mod! Can be proved using resultants.

23 / 49



Hensel Lifting

f = g h

f ≡ gt ht (mod y2
t
)

One can show: for some polynomial h′t

g ≡ gt h
′
t (mod y2

t
)

• gt known, but g and h′t unknown

• Set up linear system in unknown coefficients of g and h′

• Jump Step: Right choice of t =⇒ we get g, without any
mod! Can be proved using resultants.

23 / 49



Hensel Lifting

f = g h

f ≡ gt ht (mod y2
t
)

One can show: for some polynomial h′t

g ≡ gt h
′
t (mod y2

t
)

• gt known, but g and h′t unknown

• Set up linear system in unknown coefficients of g and h′

• Jump Step: Right choice of t =⇒ we get g, without any
mod! Can be proved using resultants.

23 / 49



Main difference to earlier liftings

Start with g0, h0 monic

• standard Hensel Lifting maintains gk, hk monic, for all k

• simplified version gives up monicness: saves a division

• ABP-size grows by a constant factor in each iteration

=⇒ overall size poly(clog d, s) = poly(s)

• Crucial technical part: Jump Step still works!

24 / 49



Main difference to earlier liftings

Start with g0, h0 monic

• standard Hensel Lifting maintains gk, hk monic, for all k

• simplified version gives up monicness: saves a division

• ABP-size grows by a constant factor in each iteration

=⇒ overall size poly(clog d, s) = poly(s)

• Crucial technical part: Jump Step still works!

24 / 49



Main difference to earlier liftings

Start with g0, h0 monic

• standard Hensel Lifting maintains gk, hk monic, for all k

• simplified version gives up monicness: saves a division

• ABP-size grows by a constant factor in each iteration

=⇒ overall size poly(clog d, s) = poly(s)

• Crucial technical part: Jump Step still works!

24 / 49



Main difference to earlier liftings

Start with g0, h0 monic

• standard Hensel Lifting maintains gk, hk monic, for all k

• simplified version gives up monicness: saves a division

• ABP-size grows by a constant factor in each iteration

=⇒ overall size poly(clog d, s) = poly(s)

• Crucial technical part: Jump Step still works!

24 / 49



Main difference to earlier liftings

Start with g0, h0 monic

• standard Hensel Lifting maintains gk, hk monic, for all k

• simplified version gives up monicness: saves a division

• ABP-size grows by a constant factor in each iteration

=⇒ overall size poly(clog d, s) = poly(s)

• Crucial technical part: Jump Step still works!

24 / 49



Main difference to earlier liftings

Start with g0, h0 monic

• standard Hensel Lifting maintains gk, hk monic, for all k

• simplified version gives up monicness: saves a division

• ABP-size grows by a constant factor in each iteration

=⇒ overall size poly(clog d, s) = poly(s)

• Crucial technical part: Jump Step still works!

24 / 49



Hensel Lifting: Definition of Lift

• Let R be a commutative ring with 1 and I ⊆ R be an ideal.

• Condition for lift: Let f, g, h, a, b ∈ R such that
• (factorization) f ≡ gh (mod I)
• (pseudo-coprimality) ag + bh ≡ 1 (mod I).

• Then g′, h′ is lift of g, h w.r.t. f if it satisfy the following.
• (Better factorization) f ≡ g′h′ (mod I2),

• (Lifts) g′ ≡ g (mod I) and h′ ≡ h (mod I), and
• (pseudo-coprimality) ∃a′, b′ ∈ R a′g′ + b′h′ ≡ 1 (mod I2).

25 / 49



Hensel Lifting: Definition of Lift

• Let R be a commutative ring with 1 and I ⊆ R be an ideal.

• Condition for lift: Let f, g, h, a, b ∈ R such that
• (factorization) f ≡ gh (mod I)
• (pseudo-coprimality) ag + bh ≡ 1 (mod I).

• Then g′, h′ is lift of g, h w.r.t. f if it satisfy the following.
• (Better factorization) f ≡ g′h′ (mod I2),

• (Lifts) g′ ≡ g (mod I) and h′ ≡ h (mod I), and
• (pseudo-coprimality) ∃a′, b′ ∈ R a′g′ + b′h′ ≡ 1 (mod I2).

25 / 49



Hensel Lifting: Definition of Lift

• Let R be a commutative ring with 1 and I ⊆ R be an ideal.

• Condition for lift: Let f, g, h, a, b ∈ R such that
• (factorization) f ≡ gh (mod I)
• (pseudo-coprimality) ag + bh ≡ 1 (mod I).

• Then g′, h′ is lift of g, h w.r.t. f if it satisfy the following.
• (Better factorization) f ≡ g′h′ (mod I2),

• (Lifts) g′ ≡ g (mod I) and h′ ≡ h (mod I), and
• (pseudo-coprimality) ∃a′, b′ ∈ R a′g′ + b′h′ ≡ 1 (mod I2).

25 / 49



Hensel Lifting: Definition of Lift

• Let R be a commutative ring with 1 and I ⊆ R be an ideal.

• Condition for lift: Let f, g, h, a, b ∈ R such that
• (factorization) f ≡ gh (mod I)
• (pseudo-coprimality) ag + bh ≡ 1 (mod I).

• Then g′, h′ is lift of g, h w.r.t. f if it satisfy the following.
• (Better factorization) f ≡ g′h′ (mod I2),

• (Lifts) g′ ≡ g (mod I) and h′ ≡ h (mod I), and
• (pseudo-coprimality) ∃a′, b′ ∈ R a′g′ + b′h′ ≡ 1 (mod I2).

25 / 49



Hensel Lifting: Definition of Lift

• Let R be a commutative ring with 1 and I ⊆ R be an ideal.

• Condition for lift: Let f, g, h, a, b ∈ R such that
• (factorization) f ≡ gh (mod I)
• (pseudo-coprimality) ag + bh ≡ 1 (mod I).

• Then g′, h′ is lift of g, h w.r.t. f if it satisfy the following.
• (Better factorization) f ≡ g′h′ (mod I2),

• (Lifts) g′ ≡ g (mod I) and h′ ≡ h (mod I), and
• (pseudo-coprimality) ∃a′, b′ ∈ R a′g′ + b′h′ ≡ 1 (mod I2).

25 / 49



Hensel Lifting: Definition of Lift

• Let R be a commutative ring with 1 and I ⊆ R be an ideal.

• Condition for lift: Let f, g, h, a, b ∈ R such that
• (factorization) f ≡ gh (mod I)
• (pseudo-coprimality) ag + bh ≡ 1 (mod I).

• Then g′, h′ is lift of g, h w.r.t. f if it satisfy the following.
• (Better factorization) f ≡ g′h′ (mod I2),

• (Lifts) g′ ≡ g (mod I) and h′ ≡ h (mod I), and
• (pseudo-coprimality) ∃a′, b′ ∈ R a′g′ + b′h′ ≡ 1 (mod I2).

25 / 49



Hensel Lifting: Definition of Lift

• Let R be a commutative ring with 1 and I ⊆ R be an ideal.

• Condition for lift: Let f, g, h, a, b ∈ R such that
• (factorization) f ≡ gh (mod I)
• (pseudo-coprimality) ag + bh ≡ 1 (mod I).

• Then g′, h′ is lift of g, h w.r.t. f if it satisfy the following.
• (Better factorization) f ≡ g′h′ (mod I2),

• (Lifts) g′ ≡ g (mod I) and h′ ≡ h (mod I), and
• (pseudo-coprimality) ∃a′, b′ ∈ R a′g′ + b′h′ ≡ 1 (mod I2).

25 / 49



Nonmonic Lifting is cheaper

• Compute the following.

• e = f − gh

• g′ = g + be and h′ = h+ ae

• c = ag′ + bh′ − 1

• a′ = a(1− c) and b′ = b(1− c).

• If g, h, a, b are small formulas, we have to make 5 copies of
them to compute the next round g′, h′, a′, b′.

26 / 49



Nonmonic Lifting is cheaper

• Compute the following.

• e = f − gh

• g′ = g + be and h′ = h+ ae

• c = ag′ + bh′ − 1

• a′ = a(1− c) and b′ = b(1− c).

• If g, h, a, b are small formulas, we have to make 5 copies of
them to compute the next round g′, h′, a′, b′.

26 / 49



Nonmonic Lifting is cheaper

• Compute the following.

• e = f − gh

• g′ = g + be and h′ = h+ ae

• c = ag′ + bh′ − 1

• a′ = a(1− c) and b′ = b(1− c).

• If g, h, a, b are small formulas, we have to make 5 copies of
them to compute the next round g′, h′, a′, b′.

26 / 49



Nonmonic Lifting is cheaper

• Compute the following.

• e = f − gh

• g′ = g + be and h′ = h+ ae

• c = ag′ + bh′ − 1

• a′ = a(1− c) and b′ = b(1− c).

• If g, h, a, b are small formulas, we have to make 5 copies of
them to compute the next round g′, h′, a′, b′.

26 / 49



Nonmonic Lifting is cheaper

• Compute the following.

• e = f − gh

• g′ = g + be and h′ = h+ ae

• c = ag′ + bh′ − 1

• a′ = a(1− c) and b′ = b(1− c).

• If g, h, a, b are small formulas, we have to make 5 copies of
them to compute the next round g′, h′, a′, b′.

26 / 49



Nonmonic Lifting is cheaper

• Compute the following.

• e = f − gh

• g′ = g + be and h′ = h+ ae

• c = ag′ + bh′ − 1

• a′ = a(1− c) and b′ = b(1− c).

• If g, h, a, b are small formulas, we have to make 5 copies of
them to compute the next round g′, h′, a′, b′.

26 / 49



Monic Version of Hensel Lifting

• Assume f, g, h are polynomials monic in x.

• Additionally compute polynomials q and r such that
g′ − g = qg + r, where degx(r) < degx(g).

• ĝ = g + r and ĥ = h′(1 + q) are a monic lift of g, h w.r.t. f .

• Advantage: We can avoid the linear system-solving step if we
start monic lifting from g(x, 0) and h(x, 0)!

• Disadvantage: Implementing it for formulas/ABPs requires
making d2 many copies of previous lifts in each round.

27 / 49



Monic Version of Hensel Lifting

• Assume f, g, h are polynomials monic in x.

• Additionally compute polynomials q and r such that
g′ − g = qg + r, where degx(r) < degx(g).

• ĝ = g + r and ĥ = h′(1 + q) are a monic lift of g, h w.r.t. f .

• Advantage: We can avoid the linear system-solving step if we
start monic lifting from g(x, 0) and h(x, 0)!

• Disadvantage: Implementing it for formulas/ABPs requires
making d2 many copies of previous lifts in each round.

27 / 49



Monic Version of Hensel Lifting

• Assume f, g, h are polynomials monic in x.

• Additionally compute polynomials q and r such that
g′ − g = qg + r, where degx(r) < degx(g).

• ĝ = g + r and ĥ = h′(1 + q) are a monic lift of g, h w.r.t. f .

• Advantage: We can avoid the linear system-solving step if we
start monic lifting from g(x, 0) and h(x, 0)!

• Disadvantage: Implementing it for formulas/ABPs requires
making d2 many copies of previous lifts in each round.

27 / 49



Monic Version of Hensel Lifting

• Assume f, g, h are polynomials monic in x.

• Additionally compute polynomials q and r such that
g′ − g = qg + r, where degx(r) < degx(g).

• ĝ = g + r and ĥ = h′(1 + q) are a monic lift of g, h w.r.t. f .

• Advantage: We can avoid the linear system-solving step if we
start monic lifting from g(x, 0) and h(x, 0)!

• Disadvantage: Implementing it for formulas/ABPs requires
making d2 many copies of previous lifts in each round.

27 / 49



Lifted Factor and Actual Factor

Lemma (Actual factor vs lifted factor)

g ≡ gth
′
t (mod y2

t
) for some polynomial h′t.

Proof Idea

Inductively apply Hensel lifting to both f and factor g starting
from f = g0h0 (mod y) and g = g0h

′
0 (mod y) respectively.

From the proof, we do not get h′t explicitly if we do not know g.

28 / 49



Lifted Factor and Actual Factor

Lemma (Actual factor vs lifted factor)

g ≡ gth
′
t (mod y2

t
) for some polynomial h′t.

Proof Idea

Inductively apply Hensel lifting to both f and factor g starting
from f = g0h0 (mod y) and g = g0h

′
0 (mod y) respectively.

From the proof, we do not get h′t explicitly if we do not know g.

28 / 49



Factor Reconstruction via Linear System

• We want to compute g from the Eqn. g ≡ gth
′
t (mod y2

t
).

• Here gt is known but both g and h′t are unknown. We know
the degree upper bounds of g, gt, h

′
t.

• Compare the coefficients of each monomial xiyj in LHS and
RHS of Eqn. g ≡ gth

′
t (mod y2

t
).

• We get a system of linear equations in the unknowns
(coefficients of g and h′t).

29 / 49



Factor Reconstruction via Linear System

• We want to compute g from the Eqn. g ≡ gth
′
t (mod y2

t
).

• Here gt is known but both g and h′t are unknown. We know
the degree upper bounds of g, gt, h

′
t.

• Compare the coefficients of each monomial xiyj in LHS and
RHS of Eqn. g ≡ gth

′
t (mod y2

t
).

• We get a system of linear equations in the unknowns
(coefficients of g and h′t).

29 / 49



Factor Reconstruction via Linear System

• We want to compute g from the Eqn. g ≡ gth
′
t (mod y2

t
).

• Here gt is known but both g and h′t are unknown. We know
the degree upper bounds of g, gt, h

′
t.

• Compare the coefficients of each monomial xiyj in LHS and
RHS of Eqn. g ≡ gth

′
t (mod y2

t
).

• We get a system of linear equations in the unknowns
(coefficients of g and h′t).

29 / 49



Factor Reconstruction via Linear System

• We want to compute g from the Eqn. g ≡ gth
′
t (mod y2

t
).

• Here gt is known but both g and h′t are unknown. We know
the degree upper bounds of g, gt, h

′
t.

• Compare the coefficients of each monomial xiyj in LHS and
RHS of Eqn. g ≡ gth

′
t (mod y2

t
).

• We get a system of linear equations in the unknowns
(coefficients of g and h′t).

29 / 49



Factor Reconstruction via Linear System

• We want to compute g from the Eqn. g ≡ gth
′
t (mod y2

t
).

• Here gt is known but both g and h′t are unknown. We know
the degree upper bounds of g, gt, h

′
t.

• Compare the coefficients of each monomial xiyj in LHS and
RHS of Eqn. g ≡ gth

′
t (mod y2

t
).

• We get a system of linear equations in the unknowns
(coefficients of g and h′t).

29 / 49



Solution of Linear System gives Factor

• Let g̃ be a least degree monic polynomial that satisfies
g̃ = gth̃ (mod y2

t
) for some h̃. We prove that g̃ = g.

• First prove that g̃ and the factor g have nontrivial gcd by
showing that their Resultant is zero.

• As factor g is irreducible, we get g divides g̃.

• As both g̃ and g are monic polynomials of same degree, they
must be equal.

30 / 49



Solution of Linear System gives Factor

• Let g̃ be a least degree monic polynomial that satisfies
g̃ = gth̃ (mod y2

t
) for some h̃. We prove that g̃ = g.

• First prove that g̃ and the factor g have nontrivial gcd by
showing that their Resultant is zero.

• As factor g is irreducible, we get g divides g̃.

• As both g̃ and g are monic polynomials of same degree, they
must be equal.

30 / 49



Solution of Linear System gives Factor

• Let g̃ be a least degree monic polynomial that satisfies
g̃ = gth̃ (mod y2

t
) for some h̃. We prove that g̃ = g.

• First prove that g̃ and the factor g have nontrivial gcd by
showing that their Resultant is zero.

• As factor g is irreducible, we get g divides g̃.

• As both g̃ and g are monic polynomials of same degree, they
must be equal.

30 / 49



Solution of Linear System gives Factor

• Let g̃ be a least degree monic polynomial that satisfies
g̃ = gth̃ (mod y2

t
) for some h̃. We prove that g̃ = g.

• First prove that g̃ and the factor g have nontrivial gcd by
showing that their Resultant is zero.

• As factor g is irreducible, we get g divides g̃.

• As both g̃ and g are monic polynomials of same degree, they
must be equal.

30 / 49



GCD and Resultants

• The resultant r(y) = Resx(g, g̃) is a polynomial (of degree
≤ 2d2) in y defined via determinant of Sylvester matrix.

• Resx(g, g̃) = 0 ⇐⇒ g, g̃ share nontrivial gcd.

31 / 49



GCD and Resultants

• The resultant r(y) = Resx(g, g̃) is a polynomial (of degree
≤ 2d2) in y defined via determinant of Sylvester matrix.

• Resx(g, g̃) = 0 ⇐⇒ g, g̃ share nontrivial gcd.

31 / 49



GCD and Resultants

• The resultant r(y) = Resx(g, g̃) is a polynomial (of degree
≤ 2d2) in y defined via determinant of Sylvester matrix.

• Resx(g, g̃) = 0 ⇐⇒ g, g̃ share nontrivial gcd.

31 / 49



Vanishing of Resultant

• Resultant as linear combination: ∃u, v s.t r(y) = ug + vg̃.

• Plug-in g = gth
′
t (mod y2

t
) and g̃ = gth̃ (mod y2

t
).

• So we get r(y) = ug + vg̃ ≡ gt(uh
′
t + vh̃) (mod y2

t
).

• Let w denote (uh′t + vh̃). So we have r(y) = gtw (mod y2
t
).

• Assume for sake of contradiction r(y) is nonzero.

32 / 49



Vanishing of Resultant

• Resultant as linear combination: ∃u, v s.t r(y) = ug + vg̃.

• Plug-in g = gth
′
t (mod y2

t
) and g̃ = gth̃ (mod y2

t
).

• So we get r(y) = ug + vg̃ ≡ gt(uh
′
t + vh̃) (mod y2

t
).

• Let w denote (uh′t + vh̃). So we have r(y) = gtw (mod y2
t
).

• Assume for sake of contradiction r(y) is nonzero.

32 / 49



Vanishing of Resultant

• Resultant as linear combination: ∃u, v s.t r(y) = ug + vg̃.

• Plug-in g = gth
′
t (mod y2

t
) and g̃ = gth̃ (mod y2

t
).

• So we get r(y) = ug + vg̃ ≡ gt(uh
′
t + vh̃) (mod y2

t
).

• Let w denote (uh′t + vh̃). So we have r(y) = gtw (mod y2
t
).

• Assume for sake of contradiction r(y) is nonzero.

32 / 49



Vanishing of Resultant

• Resultant as linear combination: ∃u, v s.t r(y) = ug + vg̃.

• Plug-in g = gth
′
t (mod y2

t
) and g̃ = gth̃ (mod y2

t
).

• So we get r(y) = ug + vg̃ ≡ gt(uh
′
t + vh̃) (mod y2

t
).

• Let w denote (uh′t + vh̃). So we have r(y) = gtw (mod y2
t
).

• Assume for sake of contradiction r(y) is nonzero.

32 / 49



Vanishing of Resultant

• Resultant as linear combination: ∃u, v s.t r(y) = ug + vg̃.

• Plug-in g = gth
′
t (mod y2

t
) and g̃ = gth̃ (mod y2

t
).

• So we get r(y) = ug + vg̃ ≡ gt(uh
′
t + vh̃) (mod y2

t
).

• Let w denote (uh′t + vh̃). So we have r(y) = gtw (mod y2
t
).

• Assume for sake of contradiction r(y) is nonzero.

32 / 49



Vanishing Resultant: Monic vs Nonmonic lift

• gt is monic in x and w ̸= 0 =⇒ coefficient of highest power
of x in gtw (mod y2

t
) is nonzero.

• On the other hand, r(y) is free of x. That gives a
contradiction. Thus r(y) = 0 (mod y2

t
).

• But here gt is nonmonic. So the coefficient of highest power
of x in gt is a multiple of y.

• Thus the highest power of x in gtw may vanish modulo y2
t
.

Can we still save the argument?

33 / 49



Vanishing Resultant: Monic vs Nonmonic lift

• gt is monic in x and w ̸= 0 =⇒ coefficient of highest power
of x in gtw (mod y2

t
) is nonzero.

• On the other hand, r(y) is free of x. That gives a
contradiction. Thus r(y) = 0 (mod y2

t
).

• But here gt is nonmonic. So the coefficient of highest power
of x in gt is a multiple of y.

• Thus the highest power of x in gtw may vanish modulo y2
t
.

Can we still save the argument?

33 / 49



Vanishing Resultant: Monic vs Nonmonic lift

• gt is monic in x and w ̸= 0 =⇒ coefficient of highest power
of x in gtw (mod y2

t
) is nonzero.

• On the other hand, r(y) is free of x. That gives a
contradiction. Thus r(y) = 0 (mod y2

t
).

• But here gt is nonmonic. So the coefficient of highest power
of x in gt is a multiple of y.

• Thus the highest power of x in gtw may vanish modulo y2
t
.

Can we still save the argument?

33 / 49



Vanishing Resultant: Monic vs Nonmonic lift

• gt is monic in x and w ̸= 0 =⇒ coefficient of highest power
of x in gtw (mod y2

t
) is nonzero.

• On the other hand, r(y) is free of x. That gives a
contradiction. Thus r(y) = 0 (mod y2

t
).

• But here gt is nonmonic. So the coefficient of highest power
of x in gt is a multiple of y.

• Thus the highest power of x in gtw may vanish modulo y2
t
.

Can we still save the argument?

33 / 49



Finishing the Proof

• Idea: Look at the least power of y in both w and gt.

• View gt and w as polynomials in y with coefficients in x.
Suppose gt = c0(x) + c1(x)y + . . .+ cd′(x)y

d′ .

• Now, gt ≡ g0 (mod y), so c0(x) = g0(x), a nonzero poly in x.

• The least power of y in gtw has coefficient g0(x)wj(x), a
nonzero polynomial in x.

• Thus gtw mod y2
t
is not free of x. Contradiction. Thus, r(y)

must be 0 mod y2
t
. If 2t ≥ 2d2 + 1, then r(y) = 0. QED.

34 / 49



Finishing the Proof

• Idea: Look at the least power of y in both w and gt.

• View gt and w as polynomials in y with coefficients in x.
Suppose gt = c0(x) + c1(x)y + . . .+ cd′(x)y

d′ .

• Now, gt ≡ g0 (mod y), so c0(x) = g0(x), a nonzero poly in x.

• The least power of y in gtw has coefficient g0(x)wj(x), a
nonzero polynomial in x.

• Thus gtw mod y2
t
is not free of x. Contradiction. Thus, r(y)

must be 0 mod y2
t
. If 2t ≥ 2d2 + 1, then r(y) = 0. QED.

34 / 49



Finishing the Proof

• Idea: Look at the least power of y in both w and gt.

• View gt and w as polynomials in y with coefficients in x.
Suppose gt = c0(x) + c1(x)y + . . .+ cd′(x)y

d′ .

• Now, gt ≡ g0 (mod y), so c0(x) = g0(x), a nonzero poly in x.

• The least power of y in gtw has coefficient g0(x)wj(x), a
nonzero polynomial in x.

• Thus gtw mod y2
t
is not free of x. Contradiction. Thus, r(y)

must be 0 mod y2
t
. If 2t ≥ 2d2 + 1, then r(y) = 0. QED.

34 / 49



Finishing the Proof

• Idea: Look at the least power of y in both w and gt.

• View gt and w as polynomials in y with coefficients in x.
Suppose gt = c0(x) + c1(x)y + . . .+ cd′(x)y

d′ .

• Now, gt ≡ g0 (mod y), so c0(x) = g0(x), a nonzero poly in x.

• The least power of y in gtw has coefficient g0(x)wj(x), a
nonzero polynomial in x.

• Thus gtw mod y2
t
is not free of x. Contradiction. Thus, r(y)

must be 0 mod y2
t
. If 2t ≥ 2d2 + 1, then r(y) = 0. QED.

34 / 49



Finishing the Proof

• Idea: Look at the least power of y in both w and gt.

• View gt and w as polynomials in y with coefficients in x.
Suppose gt = c0(x) + c1(x)y + . . .+ cd′(x)y

d′ .

• Now, gt ≡ g0 (mod y), so c0(x) = g0(x), a nonzero poly in x.

• The least power of y in gtw has coefficient g0(x)wj(x), a
nonzero polynomial in x.

• Thus gtw mod y2
t
is not free of x. Contradiction. Thus, r(y)

must be 0 mod y2
t
. If 2t ≥ 2d2 + 1, then r(y) = 0. QED.

34 / 49



Reduction to bivariate

• Let f(x, z1, . . . , zn) be the given polynomial to be factored

• Create a new polynomial f̂(x, y,z) = f(x, yz1, . . . , yzn)

• Consider f̂ as a bivariate in x and y with coefficients in F[z].

• To get back f from f̂ , simply put y to 1 in f̂ .

• Putting y to 0 in f̂ , we get univariate f̂(x).

35 / 49



Reduction to bivariate

• Let f(x, z1, . . . , zn) be the given polynomial to be factored

• Create a new polynomial f̂(x, y,z) = f(x, yz1, . . . , yzn)

• Consider f̂ as a bivariate in x and y with coefficients in F[z].

• To get back f from f̂ , simply put y to 1 in f̂ .

• Putting y to 0 in f̂ , we get univariate f̂(x).

35 / 49



Reduction to bivariate

• Let f(x, z1, . . . , zn) be the given polynomial to be factored

• Create a new polynomial f̂(x, y,z) = f(x, yz1, . . . , yzn)

• Consider f̂ as a bivariate in x and y with coefficients in F[z].

• To get back f from f̂ , simply put y to 1 in f̂ .

• Putting y to 0 in f̂ , we get univariate f̂(x).

35 / 49



Reduction to bivariate

• Let f(x, z1, . . . , zn) be the given polynomial to be factored

• Create a new polynomial f̂(x, y,z) = f(x, yz1, . . . , yzn)

• Consider f̂ as a bivariate in x and y with coefficients in F[z].

• To get back f from f̂ , simply put y to 1 in f̂ .

• Putting y to 0 in f̂ , we get univariate f̂(x).

35 / 49



Linear System over a big field

• The reduction to bivariate seems cheap.

• But we have to pay the price in the jump step. Our linear
system now has coefficients from F(z1, . . . , zn).

• Using Cramer’s rule, the solutions can be expressed via
Determinants/ABPs.

• Derandomization of the jump step requires PIT for ABPs.

36 / 49



Linear System over a big field

• The reduction to bivariate seems cheap.

• But we have to pay the price in the jump step. Our linear
system now has coefficients from F(z1, . . . , zn).

• Using Cramer’s rule, the solutions can be expressed via
Determinants/ABPs.

• Derandomization of the jump step requires PIT for ABPs.

36 / 49



Linear System over a big field

• The reduction to bivariate seems cheap.

• But we have to pay the price in the jump step. Our linear
system now has coefficients from F(z1, . . . , zn).

• Using Cramer’s rule, the solutions can be expressed via
Determinants/ABPs.

• Derandomization of the jump step requires PIT for ABPs.

36 / 49



Linear System over a big field

• The reduction to bivariate seems cheap.

• But we have to pay the price in the jump step. Our linear
system now has coefficients from F(z1, . . . , zn).

• Using Cramer’s rule, the solutions can be expressed via
Determinants/ABPs.

• Derandomization of the jump step requires PIT for ABPs.

36 / 49



Factorization and PIT

37 / 49



Divisibility Testing

• Test if g(x1, . . . , xn) divides f(x1, . . . , xn).

• Reduces to Polynomial Identity Testing.

• We don’t know a deterministic poly-time algorithm even when
f, g are sparse.

38 / 49



Divisibility Testing

• Test if g(x1, . . . , xn) divides f(x1, . . . , xn).

• Reduces to Polynomial Identity Testing.

• We don’t know a deterministic poly-time algorithm even when
f, g are sparse.

38 / 49



Divisibility Testing

• Test if g(x1, . . . , xn) divides f(x1, . . . , xn).

• Reduces to Polynomial Identity Testing.

• We don’t know a deterministic poly-time algorithm even when
f, g are sparse.

38 / 49



Sparse Divisibility Testing

• Whether a linear polynomial divides a sparse polynomial can
be tested in polynomial time.

• f(x1, . . . , xn) is divisible by x1 − ℓ(x2, . . . , xn) iff
f(ℓ, x2, . . . , xn) = 0.

• Semidiagonal model: Σmiℓ
ei where mi is a monomial and ℓ

are linear polynomials [Saha-Saptharishi-Saxena 2010].

• Testing if a quadratic polynomial divides a s-sparse
polynomial in slog s time [Forbes 2015]. Reduces to PIT of
sums of monomials times powers of quadratics.

• If f, g are sparse polynomials with bounded individual degrees,
[Volkovich 2017] gave a poly-time test.

39 / 49



Sparse Divisibility Testing

• Whether a linear polynomial divides a sparse polynomial can
be tested in polynomial time.

• f(x1, . . . , xn) is divisible by x1 − ℓ(x2, . . . , xn) iff
f(ℓ, x2, . . . , xn) = 0.

• Semidiagonal model: Σmiℓ
ei where mi is a monomial and ℓ

are linear polynomials [Saha-Saptharishi-Saxena 2010].

• Testing if a quadratic polynomial divides a s-sparse
polynomial in slog s time [Forbes 2015]. Reduces to PIT of
sums of monomials times powers of quadratics.

• If f, g are sparse polynomials with bounded individual degrees,
[Volkovich 2017] gave a poly-time test.

39 / 49



Sparse Divisibility Testing

• Whether a linear polynomial divides a sparse polynomial can
be tested in polynomial time.

• f(x1, . . . , xn) is divisible by x1 − ℓ(x2, . . . , xn) iff
f(ℓ, x2, . . . , xn) = 0.

• Semidiagonal model: Σmiℓ
ei where mi is a monomial and ℓ

are linear polynomials [Saha-Saptharishi-Saxena 2010].

• Testing if a quadratic polynomial divides a s-sparse
polynomial in slog s time [Forbes 2015]. Reduces to PIT of
sums of monomials times powers of quadratics.

• If f, g are sparse polynomials with bounded individual degrees,
[Volkovich 2017] gave a poly-time test.

39 / 49



Sparse Divisibility Testing

• Whether a linear polynomial divides a sparse polynomial can
be tested in polynomial time.

• f(x1, . . . , xn) is divisible by x1 − ℓ(x2, . . . , xn) iff
f(ℓ, x2, . . . , xn) = 0.

• Semidiagonal model: Σmiℓ
ei where mi is a monomial and ℓ

are linear polynomials [Saha-Saptharishi-Saxena 2010].

• Testing if a quadratic polynomial divides a s-sparse
polynomial in slog s time [Forbes 2015]. Reduces to PIT of
sums of monomials times powers of quadratics.

• If f, g are sparse polynomials with bounded individual degrees,
[Volkovich 2017] gave a poly-time test.

39 / 49



Sparse Divisibility Testing

• Whether a linear polynomial divides a sparse polynomial can
be tested in polynomial time.

• f(x1, . . . , xn) is divisible by x1 − ℓ(x2, . . . , xn) iff
f(ℓ, x2, . . . , xn) = 0.

• Semidiagonal model: Σmiℓ
ei where mi is a monomial and ℓ

are linear polynomials [Saha-Saptharishi-Saxena 2010].

• Testing if a quadratic polynomial divides a s-sparse
polynomial in slog s time [Forbes 2015]. Reduces to PIT of
sums of monomials times powers of quadratics.

• If f, g are sparse polynomials with bounded individual degrees,
[Volkovich 2017] gave a poly-time test.

39 / 49



Factorization Testing

• Given sparse polynomials f, g1, . . . , gk, test if f =
∏k

i=1 gi. Or
more generally, f =

∏
i g

ei
i .

• Testing in deterministic polynomial time open, even when gi
have bounded degree.

• More general question: Given sparse polynomials f1, . . . , fk
and g1, . . . , gr, test if

∏r
i=1 fi =

∏k
i=1 gi.

• Bisht and Volkovich recently solved a related question. They
assume fi, gi are sparse and have bounded individual degrees.

40 / 49



Factorization Testing

• Given sparse polynomials f, g1, . . . , gk, test if f =
∏k

i=1 gi. Or
more generally, f =

∏
i g

ei
i .

• Testing in deterministic polynomial time open, even when gi
have bounded degree.

• More general question: Given sparse polynomials f1, . . . , fk
and g1, . . . , gr, test if

∏r
i=1 fi =

∏k
i=1 gi.

• Bisht and Volkovich recently solved a related question. They
assume fi, gi are sparse and have bounded individual degrees.

40 / 49



Factorization Testing

• Given sparse polynomials f, g1, . . . , gk, test if f =
∏k

i=1 gi. Or
more generally, f =

∏
i g

ei
i .

• Testing in deterministic polynomial time open, even when gi
have bounded degree.

• More general question: Given sparse polynomials f1, . . . , fk
and g1, . . . , gr, test if

∏r
i=1 fi =

∏k
i=1 gi.

• Bisht and Volkovich recently solved a related question. They
assume fi, gi are sparse and have bounded individual degrees.

40 / 49



Factorization Testing

• Given sparse polynomials f, g1, . . . , gk, test if f =
∏k

i=1 gi. Or
more generally, f =

∏
i g

ei
i .

• Testing in deterministic polynomial time open, even when gi
have bounded degree.

• More general question: Given sparse polynomials f1, . . . , fk
and g1, . . . , gr, test if

∏r
i=1 fi =

∏k
i=1 gi.

• Bisht and Volkovich recently solved a related question. They
assume fi, gi are sparse and have bounded individual degrees.

40 / 49



Factoring-PIT Equivalence

• Derandomization of Multivariate Factoring over Q reduces to
derandomization of PIT [Kopparty-Saraf-Shpilka 2015].

• This is known in both black-box and white-box settings.

• Can we derandomize factoring in some special cases, such as
sparse polynomials?

41 / 49



Factoring-PIT Equivalence

• Derandomization of Multivariate Factoring over Q reduces to
derandomization of PIT [Kopparty-Saraf-Shpilka 2015].

• This is known in both black-box and white-box settings.

• Can we derandomize factoring in some special cases, such as
sparse polynomials?

41 / 49



Factoring-PIT Equivalence

• Derandomization of Multivariate Factoring over Q reduces to
derandomization of PIT [Kopparty-Saraf-Shpilka 2015].

• This is known in both black-box and white-box settings.

• Can we derandomize factoring in some special cases, such as
sparse polynomials?

41 / 49



Frontier questions

• Given an n-variate degree d polynomial of sparsity ≤ s, test if
it is irreducible in deterministic poly(n, s, d) time.

• Challenge: Currently, it requires PIT for symbolic
Determinants.

• Given two n-variate degree d polynomial of sparsity ≤ s, test
if they are coprime in deterministic poly(n, s, d) time.

• Challenge: The resultant of two sparse polynomials may not
be sparse.

42 / 49



Frontier questions

• Given an n-variate degree d polynomial of sparsity ≤ s, test if
it is irreducible in deterministic poly(n, s, d) time.

• Challenge: Currently, it requires PIT for symbolic
Determinants.

• Given two n-variate degree d polynomial of sparsity ≤ s, test
if they are coprime in deterministic poly(n, s, d) time.

• Challenge: The resultant of two sparse polynomials may not
be sparse.

42 / 49



Frontier questions

• Given an n-variate degree d polynomial of sparsity ≤ s, test if
it is irreducible in deterministic poly(n, s, d) time.

• Challenge: Currently, it requires PIT for symbolic
Determinants.

• Given two n-variate degree d polynomial of sparsity ≤ s, test
if they are coprime in deterministic poly(n, s, d) time.

• Challenge: The resultant of two sparse polynomials may not
be sparse.

42 / 49



Frontier questions

• Given an n-variate degree d polynomial of sparsity ≤ s, test if
it is irreducible in deterministic poly(n, s, d) time.

• Challenge: Currently, it requires PIT for symbolic
Determinants.

• Given two n-variate degree d polynomial of sparsity ≤ s, test
if they are coprime in deterministic poly(n, s, d) time.

• Challenge: The resultant of two sparse polynomials may not
be sparse.

42 / 49



Black-box case: Kaltofen and Trager

• Given a black box computing a multivariate polynomial f ,
black boxes of the irreducible factors of f can be computed in
randomized polynomial time [Kaltofen-Trager 1991].

• Dimension reduction: Randomly project to bivariates.

• This works due to an effective version of Hilbert’s
irreducibility theorem.

• If f(x, z1, . . . , zn) is irreducible, then
f(x, β1 + α1y, . . . , βn + αny) is irreducible with high
probability if βi, αi picked at random.

• Currently, derandomization of this theorem for sparse
polynomials reduces to ABP PIT.

43 / 49



Black-box case: Kaltofen and Trager

• Given a black box computing a multivariate polynomial f ,
black boxes of the irreducible factors of f can be computed in
randomized polynomial time [Kaltofen-Trager 1991].

• Dimension reduction: Randomly project to bivariates.

• This works due to an effective version of Hilbert’s
irreducibility theorem.

• If f(x, z1, . . . , zn) is irreducible, then
f(x, β1 + α1y, . . . , βn + αny) is irreducible with high
probability if βi, αi picked at random.

• Currently, derandomization of this theorem for sparse
polynomials reduces to ABP PIT.

43 / 49



Black-box case: Kaltofen and Trager

• Given a black box computing a multivariate polynomial f ,
black boxes of the irreducible factors of f can be computed in
randomized polynomial time [Kaltofen-Trager 1991].

• Dimension reduction: Randomly project to bivariates.

• This works due to an effective version of Hilbert’s
irreducibility theorem.

• If f(x, z1, . . . , zn) is irreducible, then
f(x, β1 + α1y, . . . , βn + αny) is irreducible with high
probability if βi, αi picked at random.

• Currently, derandomization of this theorem for sparse
polynomials reduces to ABP PIT.

43 / 49



Black-box case: Kaltofen and Trager

• Given a black box computing a multivariate polynomial f ,
black boxes of the irreducible factors of f can be computed in
randomized polynomial time [Kaltofen-Trager 1991].

• Dimension reduction: Randomly project to bivariates.

• This works due to an effective version of Hilbert’s
irreducibility theorem.

• If f(x, z1, . . . , zn) is irreducible, then
f(x, β1 + α1y, . . . , βn + αny) is irreducible with high
probability if βi, αi picked at random.

• Currently, derandomization of this theorem for sparse
polynomials reduces to ABP PIT.

43 / 49



Black-box case: Kaltofen and Trager

• Given a black box computing a multivariate polynomial f ,
black boxes of the irreducible factors of f can be computed in
randomized polynomial time [Kaltofen-Trager 1991].

• Dimension reduction: Randomly project to bivariates.

• This works due to an effective version of Hilbert’s
irreducibility theorem.

• If f(x, z1, . . . , zn) is irreducible, then
f(x, β1 + α1y, . . . , βn + αny) is irreducible with high
probability if βi, αi picked at random.

• Currently, derandomization of this theorem for sparse
polynomials reduces to ABP PIT.

43 / 49



White-box case

• f(x, z1, . . . , zn) may not be monic in x.

• Apply the shift: zi 7→ zi + αix where αi picked at random.

• Say, factors g(x, z1, . . . , zn), h(x, z1, . . . , zn) are coprime. But
g(x, 0, . . . , 0) and h(x, 0, . . . , 0) are not coprime.

• If the resultant (determinant of Sylvester matrix) of them is
nonzero at some point α1, . . . , αn, translate by that point.

• We need PIT also in the linear system-solving step.

44 / 49



White-box case

• f(x, z1, . . . , zn) may not be monic in x.

• Apply the shift: zi 7→ zi + αix where αi picked at random.

• Say, factors g(x, z1, . . . , zn), h(x, z1, . . . , zn) are coprime. But
g(x, 0, . . . , 0) and h(x, 0, . . . , 0) are not coprime.

• If the resultant (determinant of Sylvester matrix) of them is
nonzero at some point α1, . . . , αn, translate by that point.

• We need PIT also in the linear system-solving step.

44 / 49



White-box case

• f(x, z1, . . . , zn) may not be monic in x.

• Apply the shift: zi 7→ zi + αix where αi picked at random.

• Say, factors g(x, z1, . . . , zn), h(x, z1, . . . , zn) are coprime. But
g(x, 0, . . . , 0) and h(x, 0, . . . , 0) are not coprime.

• If the resultant (determinant of Sylvester matrix) of them is
nonzero at some point α1, . . . , αn, translate by that point.

• We need PIT also in the linear system-solving step.

44 / 49



White-box case

• f(x, z1, . . . , zn) may not be monic in x.

• Apply the shift: zi 7→ zi + αix where αi picked at random.

• Say, factors g(x, z1, . . . , zn), h(x, z1, . . . , zn) are coprime. But
g(x, 0, . . . , 0) and h(x, 0, . . . , 0) are not coprime.

• If the resultant (determinant of Sylvester matrix) of them is
nonzero at some point α1, . . . , αn, translate by that point.

• We need PIT also in the linear system-solving step.

44 / 49



White-box case

• f(x, z1, . . . , zn) may not be monic in x.

• Apply the shift: zi 7→ zi + αix where αi picked at random.

• Say, factors g(x, z1, . . . , zn), h(x, z1, . . . , zn) are coprime. But
g(x, 0, . . . , 0) and h(x, 0, . . . , 0) are not coprime.

• If the resultant (determinant of Sylvester matrix) of them is
nonzero at some point α1, . . . , αn, translate by that point.

• We need PIT also in the linear system-solving step.

44 / 49



Factoring Product of linear polynomials

• Koiran and Ressyare (2018): Test if f(x1, . . . , xn) is of the
form f(x) = ℓ1(x)

α1 · · · ℓn(x)αn . If yes, output the linear
factors.

• They give three randomized algorithms that are different from
Kaltofen and Trager’s algorithm.

45 / 49



Factoring Product of linear polynomials

• Koiran and Ressyare (2018): Test if f(x1, . . . , xn) is of the
form f(x) = ℓ1(x)

α1 · · · ℓn(x)αn . If yes, output the linear
factors.

• They give three randomized algorithms that are different from
Kaltofen and Trager’s algorithm.

45 / 49



Product of linear polynomials

• The first one uses the characterization of the Lie algebras of
the polynomials in the orbit of a monomial.

• The second algorithm reconstructs a factorization from several
bivariate projections.

• The third algorithm reconstructs it from the determination of
the zero set of the input polynomial, which is a union of
hyperplanes.

46 / 49



Product of linear polynomials

• The first one uses the characterization of the Lie algebras of
the polynomials in the orbit of a monomial.

• The second algorithm reconstructs a factorization from several
bivariate projections.

• The third algorithm reconstructs it from the determination of
the zero set of the input polynomial, which is a union of
hyperplanes.

46 / 49



Product of linear polynomials

• The first one uses the characterization of the Lie algebras of
the polynomials in the orbit of a monomial.

• The second algorithm reconstructs a factorization from several
bivariate projections.

• The third algorithm reconstructs it from the determination of
the zero set of the input polynomial, which is a union of
hyperplanes.

46 / 49



Deterministic factoring in special cases

• Given a black box computing product of linear/bounded
degree polynomials, output the factors in polynomial time.

• Over Q, this can done.

• Work under progress: Given a black-box computing product of
sparse polynomials with bounded individual degrees, output
factors in polynomial time.

• Note that we cannot directly use Bhargava-Saraf-Volkovich:
They assume the input is sparse and have bounded individual
degree.

47 / 49



Deterministic factoring in special cases

• Given a black box computing product of linear/bounded
degree polynomials, output the factors in polynomial time.

• Over Q, this can done.

• Work under progress: Given a black-box computing product of
sparse polynomials with bounded individual degrees, output
factors in polynomial time.

• Note that we cannot directly use Bhargava-Saraf-Volkovich:
They assume the input is sparse and have bounded individual
degree.

47 / 49



Deterministic factoring in special cases

• Given a black box computing product of linear/bounded
degree polynomials, output the factors in polynomial time.

• Over Q, this can done.

• Work under progress: Given a black-box computing product of
sparse polynomials with bounded individual degrees, output
factors in polynomial time.

• Note that we cannot directly use Bhargava-Saraf-Volkovich:
They assume the input is sparse and have bounded individual
degree.

47 / 49



Conclusion

• Open: All the factors of size s formulas have size poly(s)
formulas?

• If not, what are the candidate counterexamples?

• Hensel lifting/Newton iteration may have further applications
in algebraic complexity.

• Open: Given a black-box that computes product of two sparse
polynomials, output the sparse factors in deterministic
polynomial time.

48 / 49



Conclusion

• Open: All the factors of size s formulas have size poly(s)
formulas?

• If not, what are the candidate counterexamples?

• Hensel lifting/Newton iteration may have further applications
in algebraic complexity.

• Open: Given a black-box that computes product of two sparse
polynomials, output the sparse factors in deterministic
polynomial time.

48 / 49



Conclusion

• Open: All the factors of size s formulas have size poly(s)
formulas?

• If not, what are the candidate counterexamples?

• Hensel lifting/Newton iteration may have further applications
in algebraic complexity.

• Open: Given a black-box that computes product of two sparse
polynomials, output the sparse factors in deterministic
polynomial time.

48 / 49



Conclusion

• Open: All the factors of size s formulas have size poly(s)
formulas?

• If not, what are the candidate counterexamples?

• Hensel lifting/Newton iteration may have further applications
in algebraic complexity.

• Open: Given a black-box that computes product of two sparse
polynomials, output the sparse factors in deterministic
polynomial time.

48 / 49



Thank You!

49 / 49


