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The GCT approach



Orbit closure membership

o Let W =C", and let P(S¥(W™)) denote the projective space of
homogeneous polynomials of degree d over W.

o GL(W) & P(S%(W™)), a natural action
(F,M) = foMT
e Q= f o GL(W) C P(S9(W™)), the orbit of f, Qr its Zariski closure

Fundamental problem of algebraic complexity

Given f,g € P(SY(W*)) is g € Q¢?

This problem is related to the P vs NP problem in complexity theory.



Actions on polynomials

G = GL(2), V, polynomials of degree 2 in {x1,x2}.

> flzxf.

),
e g - = X1+2X2) = x? + 43 + dxixe.
e g

Qg

> fz = X1X2.

(1 +2x)(3x1 + x) = 3x2 + Txixa + 253



Determinant versus Permanent

o W = (C"Z, f = Determinant(xi1, ..., Xnn) € S"(X11, - ., Xnn)
e The stabilizer of Determinant is S(GL(n) x GL(n)) x Z> C SL(n?),
(A, B) sending X to AXB, Z, sending X to X .
e The stabilizer of Determinant, Gpet, is reductive.

o W = (CmQ, f = Permanent(xi1, ..., Xmm) € S™(x11, ..., Xmm)
e The stabilizer of Permanent: (M,, M,) x Z> C SL(m?), M, being
monomial matrices.
e The stabilizer of Permanent, Gperm, is reductive.

e The holy grail of algebraic complexity Let m < n. Is

Xpn " Permp, € Det,?

e Conjecture: [Valiant 79, Mumuley-Sohoni 02] Not true when n is
subexponential in m



Reductive stabilizers

e Is x;, " Permy, € O(Det,)?
e The GCT approach - rests on the fact that the forms (Det,, Permy,)

have distinctive reductive stabilizers, which characterize the form - any
polynomial with the same stabilizer as Det, is a multiple of Det,.

e Gpe: reductive implies the orbit GL(W)/Gpe: is an affine variety,
[Matsushima].
e The coordinate ring of the orbit of Determinant is C[W/]¢Pe

e The boundary of the closure of an affine variety is empty or has pure
codimension one.

e The symmetries of Det,, Permy,, should help us solve Valiant's
conjecture.

C[O(Det,)] — C[O(xnn "permm)] — 0

Information about x;, " Permp, not being in the orbit closure of Det,
should be present in their coordinate rings



Representation theoretic obstructions

e The 5L(n2) orbit of Det, is closed, we say it is stable.

e The SL(m?) orbit of Perm,, is closed. Perm,, is stable. x/, ™ Permy, is
NOT stable

e Each homogeneous piece of their coordinate rings is a representation of
GL(W).

e GL(W) — GL(C[O(Det,)]4), a group homomorphism.

e GL(W)-representations are characterized by combinatorial data-like how
an integer splits into its prime factors. The prime representations are
called irreducible representations. The number of times one such
irreducible representation occurs is its multiplicity.

e Multiplicities of representations as obstructions

If the multiplicity of an irreducible GL(W) module V\ occurring in
C[O(xnp ™Permm)]q is more than the multiplicity of Vy in C[O(Det,)]a,
Xpn " Permp, is not in the orbit closure of det, [Mulmuley-Sohoni]

e No Occurrence Obstruction Conjecture: When n is subexponential in m,
for infinitely many d, there are irreducible representations which occur in
C[O(xnn ™Permpm)]a but do not occur in C[O(Det,)]4.



No Occurrence obstruction

e [Ilkenmeyer, Panova,17]
e [Biirgisser, lkenmeyer, Panova,18]

e When n > m?®®, every irreducible representation occurring in

C[O(xhn "permm)]a occurs in C[O(det,)]q-

No occurrence as stated is not true.

[Adsul, Sohoni, S,22] A geometric approach to arrive at obstructions.

e Examines the limiting process of y — z
e In the neighbourhood of z a local model with an explicit G-action.

e As a consequence a Lie theoretic version of Luna's slice theorem, which
works even when stabilizer H of z is not reductive.

e Analyses how the Lie algebra C of the stabilizer K of y and the Lie
algebra H of H interact.



Our results: Joint with Adsul, Sohoni

e A conceptual proof of why no occurrence obstruction is not true.
What is needed to refine this?
e A better understanding of the limiting process K — H.

e When z is in the G-closure of y, a more nuanced understanding of

0%%%@[@]%@[@]%0

e How to analyze the kernel %?

e Intermediate G-stable varieties could help to do better book keeping.

e Are there natural G-stable intermediate varieties?

e Two such constructions when z is the limit of y under a 1-PS .

W(X), which gives a thickening of O(z) in the direction A and allows a
filtration of the kernel of A, /A;.

Z4(\) which contains all limits z’ which can be obtained a from a point in
the orbit of y as a leading term of degree d.



No occurrence - a simpler proof



Conceptual Proof

e There are forms in the orbit closure of the determinant which are stable
under a large subgroup of GL(W) and have trivial stabilizers.

Definition
A 1-PS of GL(W) is a homomorphism of groups C* — GL(W).

Action of a 1-PS on forms

)\'t%to 't%to
' 0 t e 0 t1)’

A1) (< +y°) = £+ £y
() - (C 4y =07+ 17y
o \(t) drives (x* 4 y?) to zero in Sym*(W™*).
o In PSym?(W*), A(t) fixes x* + y2.
o In PSym?(W*), via u(t) both x* and y? are picked up in the orbit
closure of x* + y?. These forms are leading terms of a 1-PS acting on
X4y



Proof sketch

e Hilbert-Mumford-Kempf criterion f is unstable if is a 1-PS

A C* — SL(W) driving f to zero - there exists A\, 1-PS with leading term
f of weight > 0. Semistable otherwise. Stable if in addition the orbit is
closed - there are both positive and negative weights under every 1-PS.

Lemma

Let B(Y) € Sym?(CY) and B’ € Sym®*(CY) be two forms which are both
stable, i.e., their SL(Y')-orbits are closed. Then the SL(Y')-orbit of the product
B- B’ € Sym"™(CY) is also closed.

Proof:

e Otherwise, by the Hilbert-Mumford-Kempf theory, there exists

A(t) € SL(Y), with wt(BB’) > 0.

e But B and B’ are stable. So wt(B), wt(B’) < 0. Since BB’ = BB’ we
must have wt(BB') = wt(B) + wt(B') < 0. [

10



Proof sketch — continued

en=2m X={Xj[1<ij<n} Y ={Xj|l <ij<m}X=(x;)
e B=det(Y). Let A€ GL(CY) and let B = det(AY).
e BB' is stable within Sym?(CY) C V = Sym?(CX).

o Let X’ be
Y 0

0 AY

o det(X') = BB'.

e There exists g € GL(CX) and a 1-PS p(t) € GL(CX) such that
gdet(X) under p is BB'.

® Ggp' = Gdet,, N Ger(ay) = Gdet,, N (A7 Get,, A).

e There exists A for which the above is trivial, only identity element. -
example A = diag(t?),1 < i < a® - generic matrix in GL(CX)

there is a SL(CY')-stable form with trivial stabilizer in the orbit closure of
Detop.
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Theorem

Let VA((C'"Q) be an irreducible Weyl module with rows not exceeded m?, then
VA(CB™%)) is present in C[Oy(det(X))].

Sketch.

2
e The algebraic Peter Weyl Theorem, tells us that every V,\(C™ ) with at
most m?-parts occurs in the coordinate ring of the orbit of BB’, since its
stabilizer is trivial.

e Every such module occurs in the GL(m?) orbit of BB’ since BB’ is
stable for SL(CY), [MS 01][BMLW, 12].

e Every such module now occurs in the GL((2m)?)-orbit closure of BB’,
(Lifting Lemma)

e So each such module occurs in GL((2m)?)-orbit closure of Det(X)

12



Stabilizer limits




e V is a GL(X)-representation with tid - v = t“v.
e y is a stable form.

o A(t)y = t?yq + t°ye + higher terms. z := § = y, is the leading term
picked up in the projective orbit closure by a 1-PS.

e y. is not in the orbit of z.
e K is the stabilizer of y and H that of z.

e Note that if a form z is an affine projection of y := Det,, then there is a
1-PS acting A such that y = z. Studying limits picked up by 1-PS is
relevant and useful.
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Lie algebras - a quick recap

e G := GL(CX) is a Lie group, it has the structure of a complex manifold.
The tangent space at Id is G:= End(CX). It is a Lie algebra under the
bracket, [A, B] = AB — BA.

e When G acts on V elements of G act as differential operators.

e The exponential map is a diffeomorphism from G — G, A+ e in a
neighbourhood of /d.

e The stabilizers K, H are Zariski-closed subgroups of GL(CX) and they
are submanifolds of GL(CX). Their Lie algebras, IC, H are complex
subspaces of End(CX), and coincide with the tangent spaces at /d to K,
H respectively.

e |f H is the stabilizer of a form f, differential operators in H send f to 0.
eGactsonG, G — GL(G), g+ [ — gog ']

Restricting the above action to A(t) C G,

ADa =Y t'g

e Can talk of leading terms of every element in K.
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o X ={xy,z}, f = (x* + y* + 2°)* € Sym*(X).
e The stabilizer algebra K is given below.

0 a b
K=| -a 0 ¢
—-b —c O
[ )
a g—i—bzg—axg—i—czg—bxg—c 9
Y ox Ox oy Ay 0z Y 8z

e \(t) C GL(X) given by A(x) = x,A\(y) = y and A(z) = tz, as shown
below.

g =Ff=LT((xX*+y’+£2°)) = (x
shown below:

y?)?. The stabilizer H is as
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o K= LT (X, K) is given by the leading terms of

0 a t'b
MOt P =] —a 0 tlc
—tb —tc 0

e This is the Lie algebra of matrices with entries

0
—a

0

CH

O O v
o o o
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Linking IC, H, H,,

Let T,O(z) = G - z, the tangent space to the orbit O(z) = G - z at the
point z. Then V/(T,0(z)) is an H-module. We call this the x-action.
Let H,. be the stabilizer in H of ye € V/(T,0(z)).

Proposition
Let z =y and H = Lie(H) and K = Lie(K), where H, K are as above. Then
i K C M, thereby connecting K, H.
ii Lety =yq+ ye + Z,>e vi be the decomposition of y by degrees, with
z = yq4 and y. as the tangent of approach. Let ¢ € K be given by
€+ tap1.... Thent,, ... tare g1 € H and ;s € Hy,. So, K CH.
Moreover, ¢, -ye =0, so K C H,, CH.
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The 3 x 3 Determinant case

e The two boundary components resolved by Huttenhain in his thesis.

X1 X2 X3
Ql (X) = det X4 X5 X6
X7 Xg —Xs — X1

det3(X) = Qi1(X) + (x1 + x5 + x0)(x1X5 — x2xs)
eSet Y ={x,...,xs} and Z = {x1 + x5 + xo}.
o \(t) € GL(X) as M (t)x; = x; for i = 1,...,8 and \'(t)(z) = tz, where
z=(x1+ x5 + xo).
L)

N(t) - dets(X) = Q1+ t- Q

e d =0,e =1, the limit z' = Q1, the tangent of approach y. := Q.
o Hi= ' & K, where t* = Al(t) and K is the leading term algebra.
o Kl = H,,, the stabilizer of the tangent of approach, and [¢', K =K
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The 3 x 3 Determinant case...

Qa(X) = xaxi + X6X5 + X6X3 + Xrx1X0 + XgXaX3 + XoX1X3
[ ]
Lemma (Hiiettenhain)

Let Y, Z be the generic matrices below and let X =Y & Z.

0 X1 —X2 2X6 X8 X9
Y = —X1 0 X3 Z = X8 2X5 X7
X2 —X3 0 Xo X7 2Xa

Let X*(t) be such that \>(t) - Y = Y and Ma(t) - Z = tZ. Let us define
det®(X) as the determinant of the matrix Y + Z. Then:

det’(\’(t) - X)) = det(Y + tZ) = tQ + > Qs
where:

2 2 2
@Q(X) = xax{ + x5x5 + XoX3 + X7X1X2 + XgXoX3 + XoX1X3
8X4X5X6 — 2X6X72 — 2X4x§ — 2X5X92 + 2x7X8X9

2
X
|
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The 3 x 3 Determinant case...
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The 3 x 3 Determinant case...

e 22 = @, is the limit, d = 1 and e = 3. ye := @5 is the tangent of
approach

o Ho = 2 & K2, where t© = A2(t) and K? is the leading term algebra of
K under \3(t).

o K2 = ’Hi, the stabilizer of the tangent of approach, and [, 162] = K2.
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The 3 x 3 Determinant case...

e z2 = @, is the limit, d =1 and e = 3. y. := Qj is the tangent of
approach

o Ho = 0> & K?, where t*° = M%(t) and K2 is the leading term algebra of
KC under \2(t).

e K2 = H;e, the stabilizer of the tangent of approach, and [/?, I@Z] = K2

e Recipe to get hold of A1, A2?

o K is obtained via the injection SLz — SLs x Sl3, A— Ax AL,

e The reductive part of K! is the sh-module C® @ C*, corresponding the
break-up of X = X’ @ cl, the trace zero matrices X’ and the identity
matrix.

e \;(t) commutes with the reductive part!

e K? is obtained via the injection SL3 — Sl3 x Sl3, A— Ax AT,

e The reductive part of K2 is the diagonal embedding of sk via
(Sym?(C?))* @ Sym*(C3) corresponding to the break-up of X as
symmetric and antisymmetric matrices.

e )\>(t) commutes with the reductive part!
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Intermediate G-stable varieties




Sandwich varieties

e [, ideal of z in C[V], I, ideal of y in C[V]. Both are G-stable and
I, C 1.

e Use the direction of approach, ye to z, to construct (suitable)-derivations
- directional derivatives in the direction gy. at gz for every g € G.

e The first thickening is:

J'(\) = {f € L|D, ,,.(f) =0 for all g € G}
e The higher thickenings are

J(N) = {f € If|Dg, 4. (f) = 0 for all g € G}

e This construction depends only on z and the representative of y. in

T.(V)/T.(0,).
e Set R = lzi/lzi+1, R, = ®R;. Can be used to get a filtration of J = @&;J',
J.

e Get a G-map from R,/J — C[G]" which allows for reasoning about
I./1, and a filtration of it.

21



Sandwich varieties

e Nt) -y =tiz+tye+...+t%p
olety =gyand \N(t)-y =ty +...+tbyl.

e Set Yy ={y' = gyly; =0 for all a < d} — those elements in O(y) for
which deg(y’) > d.

e Let V, be the degree d subspace of V under ), and consider the
projection 7wy : V — Vg

o Let Zd()\) = Wd(yd).

e Every 7/ € Zy isin O(y'), so GZ; C O(y), thus constraining possible y.
There is a natural lower bound on the codimension of O(z) in Zy - based
on H/Hy,, Hy./K.
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Conclusions:

e New proof of why the no occurrence obstructions needs refinement.

e 1-PS subgroups commuting with of large subgroups of K give give us
degree 0 components of K (reductive subalgebras) which go into H.

e The thickening varieties allow us to reason about the filtration /, /.
Modules in the coordinate ring of y which are not related to H are in the
kernel J/I,. Modules are related to H, H,,.

e Construction of the variety Z(d) which constrains possible y.
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