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Arithmetic Formula
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VF consists of families of polynomial with polynomially bounded formula size.
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VBP consists of families of polynomial that have ABPs of polynomially bounded size.

ABPs with restricted edge labels [BIZ, J. ACM, 2016]:
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VBP consists of families of polynomial that have ABPs of polynomially bounded size.

ABPs with restricted edge labels [BIZ, J. ACM, 2016]:

* Weakest ABP: Edges are labeled by variables or constants.
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Algebraic Branching Programs (ABP)

layer 0 layer 1 layer 2 layer 3

VBP consists of families of polynomial that have ABPs of polynomially bounded size.
ABPs with restricted edge labels [BIZ, J. ACM, 2016]:

* Weakest ABP: Edges are labeled by variables or constants.

* Weak ABP: Edges are labeled by simple affine linear forms ax; + 3, a, 8 € F.

* We use Weakest ABP.



Width of an ABP
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Here, the width is 3.



ABPs and Matrix Multiplication
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This computes the polynomial X12 + 2x1x2 + xox4 + x1x4 + 5x1 + 4x2 + 20.
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Background/Motivation

* ABPs are ‘at least as powerful’ as formulas.
Precisely, VF C VBP.

*# What if we restrict the width of ABPs to some fixed k > 37
VBP/ consists of families that have width-k ABPs of polynomially bounded size.
VBP, = VF [Ben-Or and Cleve, SIAM J. Comp., 1992].

VBP

VF = VBPk (23)
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Background/Motivation

% VBP, = VF.

* The polynomial AW = Z?:l Xpi_1Xp; cannot be computed by any width-2 ABP
[Allender and Wang, CC, 2016].

* VBP> C VF.
That is width-2 ABPs are ‘strictly less powerful’ than formulas.

* What if we allow ‘approximation’?
Then, they become ‘at least as powerful’ as formulas!.

VBP,

VF = VBPk (23)

VBP,
O w

1when char(F) # 2.



Algebraic Approximation

10



Algebraic Approximation

Definition: A polynomial g € F(€)[X] approximates f € F[X] with error degree e if
g=Ff+ehy +ehy + - + e®he where each h; € F[X].

10



Algebraic Approximation

Definition: A polynomial g € F(€)[X] approximates f € F[X] with error degree e if
g=Ff+ehy +ehy + - + e®he where each h; € F[X].

Definition: The approximation closure C(F) consists of families (f,) for which there
exists a family (gn) € C(F(¢)) such that g, approximates f, for all n.

10



Algebraic Approximation

Definition: A polynomial g € F(€)[X] approximates f € F[X] with error degree e if
g=Ff+ehy +ehy + - + e®he where each h; € F[X].

Definition: The approximation closure C(F) consists of families (f,) for which there
exists a family (gn) € C(F(¢)) such that g, approximates f, for all n.

In addition, if we restrict the error degree to be polynomialy bounded in n then the
. . . . —pol
class obtained is called poly-approximation closure, denoted as Cpoy(IF).

10



Algebraic Approximation

Definition: A polynomial g € F(€)[X] approximates f € F[X] with error degree e if
g=Ff+ehy +ehy + - + e®he where each h; € F[X].

Definition: The approximation closure C(F) consists of families (f,) for which there

exists a family (gn) € C(F(¢)) such that g, approximates f, for all n.

In addition, if we restrict the error degree to be polynomialy bounded in n then the
. . . . —pol
class obtained is called poly-approximation closure, denoted as Cpoy(IF).

* AW ¢ VBP, C VF.

10



Algebraic Approximation

Definition: A polynomial g € F(€)[X] approximates f € F[X] with error degree e if
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In addition, if we restrict the error degree to be polynomialy bounded in n then the
. . . . —pol
class obtained is called poly-approximation closure, denoted as Cpoy(IF).

* AW ¢ VBP, C VF.

* Is AW € VBP2?
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Approximation Helps

The polynomial AW = Z?:l X2i_1Xp; can be approximated by width-2 ABP when
char(F) # 2 [BIZ, J.ACM 2018].

Define F(x,y) :=

2
Loz o) (leen o) (£ ) (5
3 € €? 1 —e2 1 e 1 0

_(xy+0(e) 1+0(e))  [xy 1
F(X’Y)<1+O(e) O+O(s)><1 o>+0(€)‘

The following sequence approximately computes AW

<1 0) F(x1,x2) (2 (1]) <(1) é) F(x15, x16) (é) .
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Approximately computing AW when char(FF) = 2

Question: Can AW be computed approximately even when char(F) = 27
Yes!

. ._ % 0\ [x 1 e 1 % v (x 1 Lo
Define F(x,y) := <0 1) (1 0> <0 1> (-1 1) (1 0) <1 _€>'

F(x,y) computes <1 —T—ysy (1)> .

The following sequence approximately computes AW

<1 O) F(x1,x2) <(1) é) <(1) (1)> F(x15, x16) (é) .

Note: This is true for arbitrary field.

12



* AW € VBP>

13



* AW € VBP>

?
* VF C VBP,.

13



* AW € VBP>

?
* VF C VBP,.

* If we allow for approximation, it becomes ‘at least as powerful’ as formulas.

13



* AW € VBP,
?
* VF C VBP,.

* If we allow for approximation, it becomes ‘at least as powerful’ as formulas.
Precisely, VF C VBP> when char(F) # 2 [BIZ, J. ACM, 2016].

13



AW € VBP>

?
VF C VBP,.

If we allow for approximation, it becomes ‘at least as powerful’ as formulas.
Precisely, VF C VBP> when char(F) # 2 [BIZ, J. ACM, 2016].
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Lemma 1
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Lemma 1

Let f be a polynomial. Suppose that there is a sequence, say o, of N matrices that
approximately computes Q(f). Then, for any indeterminate x, there is a sequence of
2N + 4 matrices that approximately computes Q(fx).

Proof Sketch:

Q(A) + O(c) = (

), e 1\ (1 «x | 1 0
o (e .
1) =t lg 1)1 1) le= (1 e

Although not as powerful as multiplying two arbitrary polynomials, this proves
universality.

Ol

*
¥ However, this is inefficient.

For example, consider x", we require O(2") matrices to compute Q(x").

* We improve this to O(n).
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Theorem

m =

Let p be a polynomial with ¢ monomials, each containing at most t indeterminates.

Then, Q(p) can be approximately computed using a sequence of at most
O(€ - (2t + degree(p))) matrices.

Observe that x" needs only O(n) matrices.
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Corollary: Let p be a univariate polynomial of degree d. Then Q(p) can be
approximately computed using a sequence of at most O(d?) matrices.

Note: However, we can do better!
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oR|=
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Lemma 2 Lemma 2 Lemma 2 _ Lemma 2
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Powering Efficiently

Seq. of N matrices that 7. Seq. of O(rN) matrices that

approximately computes Q(f) approximately computes Q(f")
Q(l) Lemma 2 Q(fz) Lemma 2~ Lemma 2 Q(f,_z) Lemma 2 Q(fr)
2N+4 2N+4 2N+4 2N+4
Q(f) Lemma 2 Q(f3) Lemma 2 . Lemma 2 Q(f’iz) Lemma 2 Q(f’)

2N+4 2N+4 2N+4 2N+4
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Note that
*Q(f), RQle) = Q(f +g)?
Easy!
*Q(f) = Q(f")?
Easy!
* Why is powering interesting?
Can this compute non-sparse polynomials?

Yes!

Observation: There is an n-variate polynomial over F with 22(") monomials that can
be approximately computed using a sequence of n®(1) matrices, when char(F) = 2.
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Conclusion and Open Problem

* The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

¥ |s Q(x1x2 - - - xn) computable efficiently?

* Can we compute Q(fx) using a single Q(f)?
Can we compute Q(fg) using constant many Q(f)’'s and Q(g)'s?

Can we show some lower bound for Q(f - g)?
* Can we construct small size width-two ABPs for sparse polynomials?

* Is VF C VBP2 when char(F) = 27

Thank you! 22



