On the Universality of border width-2 ABPs over
characteristic 2

Joint work with Pranjal Dutta, Balagopal Komarath, Harshil Mittal, and Saraswati

Nanoti.

Dhara Thakkar
Indian Institute of Technology Gandhinagar, India.

31 March, 2023
Workshop on Algebraic Complexity Theory 2023

Table of Contents

* Basic definitions and terminologies
* Background

* Approximation and Allender-Wang polynomial

*

Universality of ABPs of width-2 with approximation

Arithmetic Formula

OO,
& ®® O

;% + 5x,

VF consists of families of polynomial with polynomially bounded formula size.

—_
o
(a1
<
N
[92]
£
©
1~
<T]
o
1S
o
=1)]
£
-
O
c
(]
1SS
(0]
=
©
1™
2
()
oo
<

layer 1

layer 0

VBP consists of families of polynomial that have ABPs of polynomially bounded size.

—_
o
(a1
<
N
[92]
£
©
1~
<T]
o
1S
o
=1)]
£
-
O
c
(]
1SS
(0]
=
©
1™
2
()
oo
<

layer 1

layer 0

VBP consists of families of polynomial that have ABPs of polynomially bounded size.

ABPs with restricted edge labels [BIZ, J. ACM, 2016]:

—_
o
(a1
<
N
[92]
£
©
1~
<T]
o
1S
o
=1)]
£
-
O
c
(]
1SS
(0]
=
©
1™
2
()
oo
<

layer 1

layer 0

VBP consists of families of polynomial that have ABPs of polynomially bounded size.

ABPs with restricted edge labels [BIZ, J. ACM, 2016]:

* Weakest ABP: Edges are labeled by variables or constants.

Algebraic Branching Programs (ABP)

layer 0 layer 1 layer 2 layer 3

VBP consists of families of polynomial that have ABPs of polynomially bounded size.
ABPs with restricted edge labels [BIZ, J. ACM, 2016]:
* Weakest ABP: Edges are labeled by variables or constants.

* Weak ABP: Edges are labeled by simple affine linear forms ax; + 3, a, 8 € F.

Algebraic Branching Programs (ABP)

layer 0 layer 1 layer 2 layer 3

VBP consists of families of polynomial that have ABPs of polynomially bounded size.
ABPs with restricted edge labels [BIZ, J. ACM, 2016]:

* Weakest ABP: Edges are labeled by variables or constants.

* Weak ABP: Edges are labeled by simple affine linear forms ax; + 3, a, 8 € F.

* We use Weakest ABP.

Width of an ABP

(a8
a1
<
c
(]
(¥
o
=
=}
=2

The width of an ABP is the maximum number of nodes in a layer.

layer 3

layer 2

layer 1

layer 0

Here, the width is 3.

ABPs and Matrix Multiplication

c
.2
Ed
©
=
g
=
=
=
X
=
L
©
=
]
=
(1]
(2]
o
o0
<

This computes the polynomial X12 + 2x1x2 + xox4 + x1x4 + 5x1 + 4x2 + 20.

Background/Motivation

Background/Motivation

* ABPs are ‘at least as powerful’ as formulas.
Precisely, VF C VBP.

Background/Motivation

* ABPs are ‘at least as powerful’ as formulas.
Precisely, VF C VBP.

*# What if we restrict the width of ABPs to some fixed k > 37

Background/Motivation

* ABPs are ‘at least as powerful’ as formulas.
Precisely, VF C VBP.

*# What if we restrict the width of ABPs to some fixed k > 37
VBP/ consists of families that have width-k ABPs of polynomially bounded size.

Background/Motivation

* ABPs are ‘at least as powerful’ as formulas.
Precisely, VF C VBP.

*# What if we restrict the width of ABPs to some fixed k > 37
VBP/ consists of families that have width-k ABPs of polynomially bounded size.
VBP, = VF [Ben-Or and Cleve, SIAM J. Comp., 1992].

VBP

VF = VBPk (23)

Background/Motivation

% VBP, = VF.

Background/Motivation

% VBP, = VF.

* The polynomial AW = Z?:l Xpi_1Xp; cannot be computed by any width-2 ABP
[Allender and Wang, CC, 2016].

Background/Motivation

% VBP, = VF.

* The polynomial AW = Z?:l Xpi_1Xp; cannot be computed by any width-2 ABP
[Allender and Wang, CC, 2016].

* VBP, C VF.

Background/Motivation

% VBP, = VF.

* The polynomial AW = Z?:l Xpi_1Xp; cannot be computed by any width-2 ABP
[Allender and Wang, CC, 2016].

* VBP> C VF.
That is width-2 ABPs are ‘strictly less powerful’ than formulas.
VBP

VF = VBPk (23)

VBP,
O

Background/Motivation

% VBP, = VF.

* The polynomial AW = Z?:l Xpi_1Xp; cannot be computed by any width-2 ABP
[Allender and Wang, CC, 2016].

* VBP> C VF.
That is width-2 ABPs are ‘strictly less powerful’ than formulas.

1when char(F) # 2.

Background/Motivation

% VBP, = VF.

* The polynomial AW = Z?:l Xpi_1Xp; cannot be computed by any width-2 ABP
[Allender and Wang, CC, 2016].

* VBP> C VF.
That is width-2 ABPs are ‘strictly less powerful’ than formulas.

* What if we allow ‘approximation’?

1when char(F) # 2.

Background/Motivation

% VBP, = VF.

* The polynomial AW = Z?:l Xpi_1Xp; cannot be computed by any width-2 ABP
[Allender and Wang, CC, 2016].

* VBP> C VF.
That is width-2 ABPs are ‘strictly less powerful’ than formulas.

* What if we allow ‘approximation’?
Then, they become ‘at least as powerful’ as formulas!.

VBP,

VF = VBPk (23)

VBP,
O w

1when char(F) # 2.

Algebraic Approximation

10

Algebraic Approximation

Definition: A polynomial g € F(€)[X] approximates f € F[X] with error degree e if
g=Ff+ehy +ehy + - + e®he where each h; € F[X].

10

Algebraic Approximation

Definition: A polynomial g € F(€)[X] approximates f € F[X] with error degree e if
g=Ff+ehy +ehy + - + e®he where each h; € F[X].

Definition: The approximation closure C(F) consists of families (f,) for which there
exists a family (gn) € C(F(¢)) such that g, approximates f, for all n.

10

Algebraic Approximation

Definition: A polynomial g € F(€)[X] approximates f € F[X] with error degree e if
g=Ff+ehy +ehy + - + e®he where each h; € F[X].

Definition: The approximation closure C(F) consists of families (f,) for which there
exists a family (gn) € C(F(¢)) such that g, approximates f, for all n.

In addition, if we restrict the error degree to be polynomialy bounded in n then the
. . . . —pol
class obtained is called poly-approximation closure, denoted as Cpoy(IF).

10

Algebraic Approximation

Definition: A polynomial g € F(€)[X] approximates f € F[X] with error degree e if
g=Ff+ehy +ehy + - + e®he where each h; € F[X].

Definition: The approximation closure C(F) consists of families (f,) for which there

exists a family (gn) € C(F(¢)) such that g, approximates f, for all n.

In addition, if we restrict the error degree to be polynomialy bounded in n then the
. . . . —pol
class obtained is called poly-approximation closure, denoted as Cpoy(IF).

* AW ¢ VBP, C VF.

10

Algebraic Approximation

Definition: A polynomial g € F(€)[X] approximates f € F[X] with error degree e if
g=Ff+ehy +ehy + - + e®he where each h; € F[X].

Definition: The approximation closure C(F) consists of families (f,) for which there
exists a family (gn) € C(F(¢)) such that g, approximates f, for all n.

In addition, if we restrict the error degree to be polynomialy bounded in n then the
. . . . —pol
class obtained is called poly-approximation closure, denoted as Cpoy(IF).

* AW ¢ VBP, C VF.

* Is AW € VBP2?

10

Approximation Helps

The polynomial AW = Z?:l X2i_1Xp; can be approximated by width-2 ABP when
char(F) # 2 [BIZ, J.ACM 2018].

11

Approximation Helps

The polynomial AW = Z?:l X2i_1Xp; can be approximated by width-2 ABP when
char(F) # 2 [BIZ, J.ACM 2018].

Define F(x,y) :=

2
Loz o) (leen o) (£) (5
3 € €? 1 —e2 1 e 1 0

11

Approximation Helps

The polynomial AW = Z?:l X2i_1Xp; can be approximated by width-2 ABP when
char(F) # 2 [BIZ, J.ACM 2018].

Define F(x,y) :=

2
Loz o) (leen o) (£) (5
3 € €? 1 —e2 1 e 1 0

_(xy+0(e) 1+0(e)) [xy 1
F(X’Y)<1+O(e) O+O(s)><1 o>+0(€)‘

11

Approximation Helps

The polynomial AW = Z?:l X2i_1Xp; can be approximated by width-2 ABP when
char(F) # 2 [BIZ, J.ACM 2018].

Define F(x,y) :=

2
Loz o) (leen o) (£) (5
3 € €? 1 —e2 1 e 1 0

_(xy+0(e) 1+0(e)) [xy 1
F(X’Y)<1+O(e) O+O(s)><1 o>+0(€)‘

The following sequence approximately computes AW

<1 0) F(x1,x2) (2 (1]) <(1) é) F(x15, x16) (é) .

11

Approximately computing AW when char(FF) = 2

Question: Can AW be computed approximately even when char(F) = 27
Yes!

12

Approximately computing AW when char(FF) = 2

Question: Can AW be computed approximately even when char(F) = 27
Yes!

. ._ % 0\ [x 1 e 1 % v (x 1 Lo
Define F(x,y) := <0 1) (1 0> <0 1> (-1 1) (1 0) <1 _€>'

12

Approximately computing AW when char(FF) = 2

Question: Can AW be computed approximately even when char(F) = 27
Yes!

. ._ % 0\ [x 1 e 1 % v (x 1 Lo
Define F(x,y) := <0 1) (1 0> <0 1> (-1 1) (1 0) <1 _€>'

F(x,y) computes <1 —T—ysy (1)> .

12

Approximately computing AW when char(FF) = 2

Question: Can AW be computed approximately even when char(F) = 27
Yes!

. ._ % 0\ [x 1 e 1 % v (x 1 Lo
Define F(x,y) := <0 1) (1 0> <0 1> (-1 1) (1 0) <1 _€>'

F(x,y) computes <1 —T—ysy (1)> .

The following sequence approximately computes AW

<1 O) F(x1,x2) <(1) é) <(1) (1)> F(x15, x16) (é) .

12

Approximately computing AW when char(FF) = 2

Question: Can AW be computed approximately even when char(F) = 27
Yes!

. ._ % 0\ [x 1 e 1 % v (x 1 Lo
Define F(x,y) := <0 1) (1 0> <0 1> (-1 1) (1 0) <1 _€>'

F(x,y) computes <1 —T—ysy (1)> .

The following sequence approximately computes AW

<1 O) F(x1,x2) <(1) é) <(1) (1)> F(x15, x16) (é) .

Note: This is true for arbitrary field.

12

* AW € VBP>

13

* AW € VBP>

?
* VF C VBP,.

13

* AW € VBP>

?
* VF C VBP,.

* If we allow for approximation, it becomes ‘at least as powerful’ as formulas.

13

* AW € VBP,
?
* VF C VBP,.

* If we allow for approximation, it becomes ‘at least as powerful’ as formulas.
Precisely, VF C VBP> when char(F) # 2 [BIZ, J. ACM, 2016].

13

AW € VBP>

?
VF C VBP,.

If we allow for approximation, it becomes ‘at least as powerful’ as formulas.
Precisely, VF C VBP> when char(F) # 2 [BIZ, J. ACM, 2016].

VF = VBP> when char(F) # 2 [BIZ, J. ACM, 2016].

13

Theorem (BIZ, J. ACM, 2016)
VF C VBP,”*” when char(F) # 2.

14

Theorem (BIZ, J. ACM, 2016)
VF C VBP,”*” when char(F) # 2.

Proof Idea:

14

Theorem (BIZ, J. ACM, 2016)
VF C VBP,”*” when char(F) # 2.

Proof Idea:

* Use induction on the depth to show

depth d- formula = sequence of 29(4) matrices.

14

Theorem (BIZ, J. ACM, 2016)
VF C VBP,”*” when char(F) # 2.

Proof Idea:

* Use induction on the depth to show

depth d- formula = sequence of 29(4) matrices.

5 Q) == <§ ;)

14

Theorem (BIZ, J. ACM, 2016)
VF C VBP,”*” when char(F) # 2.

Proof Idea:

* Use induction on the depth to show

depth d- formula = sequence of 29(4) matrices.

5 Q) == <§ ;)

* Q(f +g) = Q(NQ(0)Q(g)

14

Theorem (BIZ, J. ACM, 2016)
VF C VBP,”*” when char(F) # 2.
Proof Idea:

* Use induction on the depth to show

depth d- formula = sequence of 29(4) matrices.

5 Q) == <§ ;)

* Q(f +g) = Q(f)QR(0)Q(g)
Q- g)?

14

Theorem (BIZ, J. ACM, 2016)
VF C VBP,”*” when char(F) # 2.

Proof Idea:

* Use induction on the depth to show

depth d- formula = sequence of 29(4) matrices.

5 Q) == <§ ;)

* Q(f +g) = Q) R(0)Q(g)
*Q(f-g)?

fg=(f/2+g)*+(~(f/2)?) + (-&%)

14

Theorem (BIZ, J. ACM, 2016)
VF C VBP,”*” when char(F) # 2.
Proof Idea:

* Use induction on the depth to show

depth d- formula = sequence of 29(4) matrices.

QF) = <§ ;)

* Q(f +g) = Q) R(0)Q(g)
*Q(f-g)?

L]

fg=(f/2+g)*+(~(f/2)?) + (-&%)

*

Q(f2+0(e)) = Q(—e71) - Q(e) - Q=) - (Q(f + O())) - Q1) - Q(-1) -
Q(1) - Q=€) - (Q(f + O(e%))) - Q(—€¢71) - Qe = 1) - Q(1) - Q(e~* — 1)

14

Theorem (BIZ, J. ACM, 2016)
VF C VBP,”*” when char(F) # 2.
Proof Idea:

* Use induction on the depth to show

depth d- formula = sequence of 29(4) matrices.

QF) = <§ ;)

* Q(f +g) = Q) R(0)Q(g)
*Q(f-g)?

L]

fg=(f/2+g)*+(~(f/2)?) + (-&%)

*

Q(f2+0(e)) = Q(—e71) - Q(e) - Q=) - (Q(f + O())) - Q1) - Q(-1) -
Q(1) - Q=€) - (Q(f + O(e%))) - Q(—€¢71) - Qe = 1) - Q(1) - Q(e~* — 1)

Thus, VF = VBP, when char(F) # 2

14

15

* Is VF C VBP3 even when char(F) = 2?7

15

* Is VF C VBP3 even when char(F) = 2?7
We still do not know!

15

* Is VF C VBP3 even when char(F) = 2?7
We still do not know!

* |s the Model universal? (i.e. can every polynomial be approximately
computed using width-2 ABP (or seq. of 2 x 2 matrices?)

15

* Is VF C VBP3 even when char(F) = 2?7
We still do not know!

* |s the Model universal? (i.e. can every polynomial be approximately
computed using width-2 ABP (or seq. of 2 x 2 matrices?)
Yes!

15

Showing Universality

Lemma 1

Let f be a polynomial. Suppose that there is a sequence, say o, of N matrices that
approximately computes Q(f). Then, for any indeterminate x, there is a sequence of
2N + 4 matrices that approximately computes Q(fx).

16

Showing Universality

Lemma 1

Let f be a polynomial. Suppose that there is a sequence, say o, of N matrices that
approximately computes Q(f). Then, for any indeterminate x, there is a sequence of
2N + 4 matrices that approximately computes Q(fx).

Proof Sketch:

1 c 1\ /1 « 1 0
Q(fx) + O(e) = (6 1) T |eye2 (0 1> <_51 1> 7 lese <1 —e)I

16

Showing Universality

Lemma 1

Let f be a polynomial. Suppose that there is a sequence, say o, of N matrices that
approximately computes Q(f). Then, for any indeterminate x, there is a sequence of
2N + 4 matrices that approximately computes Q(fx).

Proof Sketch:
), e 1\ (1 «x | 1 0
1)% = o 1) 21 1) le=e 1)

Q) +0(e) = (
* Although not as powerful as multiplying two arbitrary polynomials, this proves

Ol

universality.

16

Showing Universality

Lemma 1
Let f be a polynomial. Suppose that there is a sequence, say o, of N matrices that

approximately computes Q(f). Then, for any indeterminate x, there is a sequence of
2N + 4 matrices that approximately computes Q(fx).

Proof Sketch:
), e 1\ (1 «x | 1 0
1)% = o 1) 21 1) le=e 1)

Q(fx) + O(e) = (
* Although not as powerful as multiplying two arbitrary polynomials, this proves
universality.

Ol

¥ However, this is inefficient.

For example, consider x", we require O(2") matrices to compute Q(x").

16

Showing Universality

Lemma 1

Let f be a polynomial. Suppose that there is a sequence, say o, of N matrices that
approximately computes Q(f). Then, for any indeterminate x, there is a sequence of
2N + 4 matrices that approximately computes Q(fx).

Proof Sketch:

Q(A) + O(c) = (

), e 1\ (1 «x | 1 0
o (e .
1) =t lg 1)1 1) le= (1 e

Although not as powerful as multiplying two arbitrary polynomials, this proves
universality.

Ol

*
¥ However, this is inefficient.

For example, consider x", we require O(2") matrices to compute Q(x").

* We improve this to O(n).

16

Improving efficiency

17

Improving efficiency

Lemma 2

Let f and g be polynomials. Suppose that there are sequences, say o and 7, of N and
M matrices, that approximately compute Q(f) and Q(g) respectively. Then, there is a
sequence of N 4 2M 4 4 matrices that approximately computes Q(fg?).

17

Improving efficiency

Lemma 2

Let f and g be polynomials. Suppose that there are sequences, say o and 7, of N and

M matrices, that approximately compute Q(f) and Q(g) respectively. Then, there is a
sequence of N 4 2M 4 4 matrices that approximately computes Q(fg?).

Proof Sketch:
-1 1 0
T eyes 0 T lesye2 0 e

Q) +0(c) = <‘1 °> T lesea (1

alm O

0 0

o= O

17

Improving efficiency

Lemma 2

Let f and g be polynomials. Suppose that there are sequences, say o and 7, of N and

M matrices, that approximately compute Q(f) and Q(g) respectively. Then, there is a
sequence of N 4 2M 4 4 matrices that approximately computes Q(fg?).

Proof Sketch:
-1 0 1 0 -1 0 1 0
Q(fgz) +0(e) = < 0 E) T esye2 (0 1) T eyes < 0) T lesye2 (O E)'

Theorem

m =

Let p be a polynomial with ¢ monomials, each containing at most t indeterminates.

Then, Q(p) can be approximately computed using a sequence of at most
O(€ - (2t + degree(p))) matrices.

17

Improving efficiency

Lemma 2

Let f and g be polynomials. Suppose that there are sequences, say o and 7, of N and

M matrices, that approximately compute Q(f) and Q(g) respectively. Then, there is a
sequence of N 4 2M 4 4 matrices that approximately computes Q(fg?).

Proof Sketch:
-1 0 1 0 -1 0 1 0
Q(fgz) +0(e) = < 0 E) T esye2 (0 1) T eyes < 0) T lesye2 (O E)'

Theorem

m =

Let p be a polynomial with ¢ monomials, each containing at most t indeterminates.

Then, Q(p) can be approximately computed using a sequence of at most
O(€ - (2t + degree(p))) matrices.

Observe that x" needs only O(n) matrices.

17

Improving efficiency cont.

18

Improving efficiency cont.

Theorem:

Sequence of O(£ - (2t + degree(p))) matrices that approxi-
mately computes Q(p) where,

£ = no. of monomials in p

t = max no. of indeterminates per monomial

18

Improving efficiency cont.

Theorem:

Sequence of O(£ - (2t + degree(p))) matrices that approxi-
mately computes Q(p) where,

£ = no. of monomials in p

t = max no. of indeterminates per monomial

Proof Ildea:

* Goal: Compute each monomial using at most O(2f + degree(p)) matrices.

18

Improving efficiency cont.

Theorem:

Sequence of O(£ - (2t + degree(p))) matrices that approxi-
mately computes Q(p) where,

£ = no. of monomials in p

t = max no. of indeterminates per monomial

Proof Ildea:

* Goal: Compute each monomial using at most O(2f + degree(p)) matrices.
*oLet Xpt - XK XHE - X
N ——

odd ris even r's

18

Improving efficiency cont.

Theorem:

Sequence of O(£ - (2t + degree(p))) matrices that approxi-
mately computes Q(p) where,

£ = no. of monomials in p

t = max no. of indeterminates per monomial

Proof Ildea:

* Goal: Compute each monomial using at most O(2f + degree(p)) matrices.

*oLet Xpt - XK XHE - X :(lexk)~(x1’1*1~..xk’k‘1xk’:+;
—_——

odd ris even r's

XY

18

Improving efficiency cont.

Theorem:

Sequence of O(£ - (2t + degree(p))) matrices that approxi-
mately computes Q(p) where,

£ = no. of monomials in p

t = max no. of indeterminates per monomial

Proof Ildea:

* Goal: Compute each monomial using at most O(2f + degree(p)) matrices.

FoLet X[t XK X X = (X X)) - (X XX X
—_——

odd ris even r's

Corollary: Let p be a univariate polynomial of degree d. Then Q(p) can be
approximately computed using a sequence of at most O(d?) matrices.

18

Improving efficiency cont.

Theorem:

Sequence of O(£ - (2t + degree(p))) matrices that approxi-
mately computes Q(p) where,

£ = no. of monomials in p

t = max no. of indeterminates per monomial

Proof Ildea:

* Goal: Compute each monomial using at most O(2f + degree(p)) matrices.

FoLet X[t XK X X = (X X)) - (X XX X
—_——

odd ris even r's

Corollary: Let p be a univariate polynomial of degree d. Then Q(p) can be
approximately computed using a sequence of at most O(d?) matrices.

Note: However, we can do better!

18

Improving efficiency Further for univariate polynomial

19

Improving efficiency Further for univariate polynomial

Theorem

Consider a degree-d univariate polynomial in x, say

p=agx? +ag_1x9L14...... + apx? + a1x + ap. Then, Q(p) can be
approximately computed using a sequence of at most O(d) matrices.

19

Improving efficiency Further for univariate polynomial

Theorem

Consider a degree-d univariate polynomial in x, say

p=agx? +ag_1x9L14...... + apx? + a1x + ap. Then, Q(p) can be
approximately computed using a sequence of at most O(d) matrices.

Idea: Use Horner's rule

19

Improving efficiency Further for univariate polynomial

Theorem

Consider a degree-d univariate polynomial in x, say

p=agx? +ag_1x9L14...... + apx? + a1x + ap. Then, Q(p) can be
approximately computed using a sequence of at most O(d) matrices.

Idea: Use Horner's rule

lllustration: Consider a polynomial

a4x4 + a3x3 + 32X2 + aix+ ap = (34X2 + azx + 32)X2 + ai1x + ag.

19

Improving efficiency Further for univariate polynomial

Theorem

Consider a degree-d univariate polynomial in x, say

p=agx? +ag_1x9L14...... + apx? + a1x + ap. Then, Q(p) can be
approximately computed using a sequence of at most O(d) matrices.

Idea: Use Horner's rule

lllustration: Consider a polynomial
4 3 2 _ 2 2
agx" + az3x> + axx“ + aix + ag = (a4x + azx + az)X + ai1x + ag.

Q(as) L2225 Q(asx?)

19

Improving efficiency Further for univariate polynomial

Theorem

Consider a degree-d univariate polynomial in x, say

p=agx? +ag_1x9L14...... + apx? + a1x + ap. Then, Q(p) can be
approximately computed using a sequence of at most O(d) matrices.

Idea: Use Horner's rule
lllustration: Consider a polynomial
4 3 2 _ 2 2
agx" + az3x> + axx“ + aix + ag = (a4x + azx + az)X + ai1x + ag.

Q(as) L2225 Q(asx?)

1
lappend Q(0) (23 af) (: 3)

Q(asx? + asx + a2)

o8

19

Improving efficiency Further for univariate polynomial

Theorem

Consider a degree-d univariate polynomial in x, say

p=agx? +ag_1x9L14...... + apx? + a1x + ap. Then, Q(p) can be
approximately computed using a sequence of at most O(d) matrices.

Idea: Use Horner's rule
lllustration: Consider a polynomial
4 3 2 _ 2 2
agx" + az3x> + axx“ + aix + ag = (a4x + azx + az)X + ai1x + ag.
Lemma 2
Q(as) — Q(asx?)

1
o3 2) (¢)

Q(a4x2 + a3x + 82) M Q((34X2 + azx + 32)X2)

19

Improving efficiency Further for univariate polynomial

Theorem

Consider a degree-d univariate polynomial in x, say

p=agx? +ag_1x9L14...... + apx? + a1x + ap. Then, Q(p) can be
approximately computed using a sequence of at most O(d) matrices.

Idea: Use Horner's rule
lllustration: Consider a polynomial
4 3 2 _ 2 2
asx* + a3x>® + a2x? + a1x + ag = (aax® + azx + a2)x? + aix + ao.

Q(as) L2225 Q(asx?)

1
lappend Q(0) (‘;3 af) <)1< a(f)

Q(aax® + a3x + a2) ="M 2 Q((aax? + a3x + a2)x?)

lappend Q(0) (aol 310> <)1<

Q((aax? + a3x + a2)x? + a1x + ap).

oR|=

19

Powering Efficiently

20

Powering Efficiently

Seq. of N matrices that 7. Seq. of O(rN) matrices that
approximately computes Q(f) approximately computes Q(f")

20

Powering Efficiently

Seq. of N matrices that 7. Seq. of O(rN) matrices that

approximately computes Q(f) approximately computes Q(f")
Lemma 2 Lemma 2 Lemma 2 _ Lemma 2
Q(1) Q(f?) Q" 72) — == Q(f")
2N+4 2N+4 2N+4 2N+4

20

Powering Efficiently

Seq. of N matrices that 7. Seq. of O(rN) matrices that

approximately computes Q(f) approximately computes Q(f")
Q(l) Lemma 2 Q(fz) Lemma 2~ Lemma 2 Q(f,_z) Lemma 2 Q(fr)
2N+4 2N+4 2N+4 2N+4
Q(f) Lemma 2 Q(f3) Lemma 2 . Lemma 2 Q(f’iz) Lemma 2 Q(f’)

2N+4 2N+4 2N+4 2N+4

20

21

Note that

*Q(F),Qg) = Q(f +g)?
Easy!

21

Note that
*Q(F),Qle) = Q(f +g)?
Easy!

*Q(f) = Q(f")?
Easy!

21

Note that
*Q(f), RQle) = Q(f +g)?
Easy!
Q) = Q(f")?
Easy!

* Why is powering interesting?

Can this compute non-sparse polynomials?

21

Note that
*Q(f), RQle) = Q(f +g)?
Easy!
*Q(f) = Q(f")?
Easy!
* Why is powering interesting?
Can this compute non-sparse polynomials?

Yes!

Observation: There is an n-variate polynomial over F with 22(") monomials that can
be approximately computed using a sequence of n®(1) matrices, when char(F) = 2.

21

Conclusion and Open Problem

22

Conclusion and Open Problem

* The model (i.e. width-2 ABPs with approximation) is Universal.

22

Conclusion and Open Problem

* The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

22

Conclusion and Open Problem

* The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

¥ |s Q(x1x2 - - - xn) computable efficiently?

22

Conclusion and Open Problem

* The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

¥ |s Q(x1x2 - - - xn) computable efficiently?

* Can we compute Q(fx) using a single Q(f)?

22

Conclusion and Open Problem

* The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

¥ |s Q(x1x2 - - - xn) computable efficiently?

* Can we compute Q(fx) using a single Q(f)?

Can we compute Q(fg) using constant many Q(f)’'s and Q(g)'s?

22

Conclusion and Open Problem

* The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

¥ |s Q(x1x2 - - - xn) computable efficiently?

* Can we compute Q(fx) using a single Q(f)?
Can we compute Q(fg) using constant many Q(f)’'s and Q(g)'s?

Can we show some lower bound for Q(f - g)?

22

Conclusion and Open Problem

* The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

¥ |s Q(x1x2 - - - xn) computable efficiently?

* Can we compute Q(fx) using a single Q(f)?
Can we compute Q(fg) using constant many Q(f)’'s and Q(g)'s?

Can we show some lower bound for Q(f - g)?

* Can we construct small size width-two ABPs for sparse polynomials?

22

Conclusion and Open Problem

* The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

¥ |s Q(x1x2 - - - xn) computable efficiently?

* Can we compute Q(fx) using a single Q(f)?
Can we compute Q(fg) using constant many Q(f)’'s and Q(g)'s?

Can we show some lower bound for Q(f - g)?
* Can we construct small size width-two ABPs for sparse polynomials?

* Is VF C VBP2 when char(F) = 27

22

Conclusion and Open Problem

* The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

¥ |s Q(x1x2 - - - xn) computable efficiently?

* Can we compute Q(fx) using a single Q(f)?
Can we compute Q(fg) using constant many Q(f)’'s and Q(g)'s?

Can we show some lower bound for Q(f - g)?
* Can we construct small size width-two ABPs for sparse polynomials?

* Is VF C VBP2 when char(F) = 27

Thank you! 22

