
I
On the Universality of border width-2 ABPs over
characteristic 2

Joint work with Pranjal Dutta, Balagopal Komarath, Harshil Mittal, and Saraswati

Nanoti.

Dhara Thakkar
Indian Institute of Technology Gandhinagar, India.

31st March, 2023

Workshop on Algebraic Complexity Theory 2023

1



I
Table of Contents

I Basic definitions and terminologies

I Background

I Approximation and Allender-Wang polynomial

I Universality of ABPs of width-2 with approximation

2



I
Arithmetic Formula

VF consists of families of polynomial with polynomially bounded formula size.

3



I
Algebraic Branching Programs (ABP)

VBP consists of families of polynomial that have ABPs of polynomially bounded size.

ABPs with restricted edge labels [BIZ, J. ACM, 2016]:

I Weakest ABP: Edges are labeled by variables or constants.

I Weak ABP: Edges are labeled by simple affine linear forms αxi + β, α, β ∈ F .

I We use Weakest ABP.

4



I
Algebraic Branching Programs (ABP)

VBP consists of families of polynomial that have ABPs of polynomially bounded size.

ABPs with restricted edge labels [BIZ, J. ACM, 2016]:

I Weakest ABP: Edges are labeled by variables or constants.

I Weak ABP: Edges are labeled by simple affine linear forms αxi + β, α, β ∈ F .

I We use Weakest ABP.

4



I
Algebraic Branching Programs (ABP)

VBP consists of families of polynomial that have ABPs of polynomially bounded size.

ABPs with restricted edge labels [BIZ, J. ACM, 2016]:

I Weakest ABP: Edges are labeled by variables or constants.

I Weak ABP: Edges are labeled by simple affine linear forms αxi + β, α, β ∈ F .

I We use Weakest ABP.

4



I
Algebraic Branching Programs (ABP)

VBP consists of families of polynomial that have ABPs of polynomially bounded size.

ABPs with restricted edge labels [BIZ, J. ACM, 2016]:

I Weakest ABP: Edges are labeled by variables or constants.

I Weak ABP: Edges are labeled by simple affine linear forms αxi + β, α, β ∈ F .

I We use Weakest ABP.

4



I
Algebraic Branching Programs (ABP)

VBP consists of families of polynomial that have ABPs of polynomially bounded size.

ABPs with restricted edge labels [BIZ, J. ACM, 2016]:

I Weakest ABP: Edges are labeled by variables or constants.

I Weak ABP: Edges are labeled by simple affine linear forms αxi + β, α, β ∈ F .

I We use Weakest ABP.

4



I
Width of an ABP

The width of an ABP is the maximum number of nodes in a layer.

Here, the width is 3.

5



I
Width of an ABP

The width of an ABP is the maximum number of nodes in a layer.

Here, the width is 3.

5



I
ABPs and Matrix Multiplication

(
1 1

)(x1 x1
x4 4

) (
x1 x2
5 x2

) (
1
1

)

This computes the polynomial x2
1 + 2x1x2 + x2x4 + x1x4 + 5x1 + 4x2 + 20.

6



I
ABPs and Matrix Multiplication

(
1 1

)(x1 x1
x4 4

) (
x1 x2
5 x2

) (
1
1

)

This computes the polynomial x2
1 + 2x1x2 + x2x4 + x1x4 + 5x1 + 4x2 + 20.

6



I
Background/Motivation

I ABPs are ‘at least as powerful’ as formulas.
Precisely, VF ⊆ VBP.

I What if we restrict the width of ABPs to some fixed k ≥ 3?
VBPk consists of families that have width-k ABPs of polynomially bounded size.
VBPk = VF [Ben-Or and Cleve, SIAM J. Comp., 1992].

7



I
Background/Motivation

I ABPs are ‘at least as powerful’ as formulas.
Precisely, VF ⊆ VBP.

I What if we restrict the width of ABPs to some fixed k ≥ 3?
VBPk consists of families that have width-k ABPs of polynomially bounded size.
VBPk = VF [Ben-Or and Cleve, SIAM J. Comp., 1992].

7



I
Background/Motivation

I ABPs are ‘at least as powerful’ as formulas.
Precisely, VF ⊆ VBP.

I What if we restrict the width of ABPs to some fixed k ≥ 3?

VBPk consists of families that have width-k ABPs of polynomially bounded size.
VBPk = VF [Ben-Or and Cleve, SIAM J. Comp., 1992].

7



I
Background/Motivation

I ABPs are ‘at least as powerful’ as formulas.
Precisely, VF ⊆ VBP.

I What if we restrict the width of ABPs to some fixed k ≥ 3?
VBPk consists of families that have width-k ABPs of polynomially bounded size.

VBPk = VF [Ben-Or and Cleve, SIAM J. Comp., 1992].

7



I
Background/Motivation

I ABPs are ‘at least as powerful’ as formulas.
Precisely, VF ⊆ VBP.

I What if we restrict the width of ABPs to some fixed k ≥ 3?
VBPk consists of families that have width-k ABPs of polynomially bounded size.
VBPk = VF [Ben-Or and Cleve, SIAM J. Comp., 1992].

7



I
Background/Motivation

I VBP2
?
= VF.

I The polynomial AW =
∑8

i=1 x2i−1x2i cannot be computed by any width-2 ABP
[Allender and Wang, CC, 2016].

I VBP2 ⊊ VF.
That is width-2 ABPs are ‘strictly less powerful’ than formulas.

8



I
Background/Motivation

I VBP2
?
= VF.

I The polynomial AW =
∑8

i=1 x2i−1x2i cannot be computed by any width-2 ABP
[Allender and Wang, CC, 2016].

I VBP2 ⊊ VF.
That is width-2 ABPs are ‘strictly less powerful’ than formulas.

8



I
Background/Motivation

I VBP2
?
= VF.

I The polynomial AW =
∑8

i=1 x2i−1x2i cannot be computed by any width-2 ABP
[Allender and Wang, CC, 2016].

I VBP2 ⊊ VF.

That is width-2 ABPs are ‘strictly less powerful’ than formulas.

8



I
Background/Motivation

I VBP2
?
= VF.

I The polynomial AW =
∑8

i=1 x2i−1x2i cannot be computed by any width-2 ABP
[Allender and Wang, CC, 2016].

I VBP2 ⊊ VF.
That is width-2 ABPs are ‘strictly less powerful’ than formulas.

8



I
Background/Motivation

I VBP2
?
= VF.

I The polynomial AW =
∑8

i=1 x2i−1x2i cannot be computed by any width-2 ABP
[Allender and Wang, CC, 2016].

I VBP2 ⊊ VF.
That is width-2 ABPs are ‘strictly less powerful’ than formulas.

I What if we allow ‘approximation’?
Then, they become ‘at least as powerful’ as formulas1.

1when char(F ) ̸= 2.

9



I
Background/Motivation

I VBP2
?
= VF.

I The polynomial AW =
∑8

i=1 x2i−1x2i cannot be computed by any width-2 ABP
[Allender and Wang, CC, 2016].

I VBP2 ⊊ VF.
That is width-2 ABPs are ‘strictly less powerful’ than formulas.

I What if we allow ‘approximation’?

Then, they become ‘at least as powerful’ as formulas1.

1when char(F ) ̸= 2.

9



I
Background/Motivation

I VBP2
?
= VF.

I The polynomial AW =
∑8

i=1 x2i−1x2i cannot be computed by any width-2 ABP
[Allender and Wang, CC, 2016].

I VBP2 ⊊ VF.
That is width-2 ABPs are ‘strictly less powerful’ than formulas.

I What if we allow ‘approximation’?
Then, they become ‘at least as powerful’ as formulas1.

1when char(F ) ̸= 2.

9



I
Algebraic Approximation

Definition: A polynomial g ∈ F(ϵ)[X ] approximates f ∈ F[X ] with error degree e if
g = f + ϵh1 + ϵ2h2 + · · ·+ ϵehe where each hi ∈ F[X ].

Definition: The approximation closure C(F) consists of families (fn) for which there
exists a family (gn) ∈ C(F(ϵ)) such that gn approximates fn for all n.

In addition, if we restrict the error degree to be polynomialy bounded in n then the
class obtained is called poly-approximation closure, denoted as C

poly
(F).

I AW /∈ VBP2 ⊊ VF.

I Is AW ∈ VBP2?

10



I
Algebraic Approximation

Definition: A polynomial g ∈ F(ϵ)[X ] approximates f ∈ F[X ] with error degree e if
g = f + ϵh1 + ϵ2h2 + · · ·+ ϵehe where each hi ∈ F[X ].

Definition: The approximation closure C(F) consists of families (fn) for which there
exists a family (gn) ∈ C(F(ϵ)) such that gn approximates fn for all n.

In addition, if we restrict the error degree to be polynomialy bounded in n then the
class obtained is called poly-approximation closure, denoted as C

poly
(F).

I AW /∈ VBP2 ⊊ VF.

I Is AW ∈ VBP2?

10



I
Algebraic Approximation

Definition: A polynomial g ∈ F(ϵ)[X ] approximates f ∈ F[X ] with error degree e if
g = f + ϵh1 + ϵ2h2 + · · ·+ ϵehe where each hi ∈ F[X ].

Definition: The approximation closure C(F) consists of families (fn) for which there
exists a family (gn) ∈ C(F(ϵ)) such that gn approximates fn for all n.

In addition, if we restrict the error degree to be polynomialy bounded in n then the
class obtained is called poly-approximation closure, denoted as C

poly
(F).

I AW /∈ VBP2 ⊊ VF.

I Is AW ∈ VBP2?

10



I
Algebraic Approximation

Definition: A polynomial g ∈ F(ϵ)[X ] approximates f ∈ F[X ] with error degree e if
g = f + ϵh1 + ϵ2h2 + · · ·+ ϵehe where each hi ∈ F[X ].

Definition: The approximation closure C(F) consists of families (fn) for which there
exists a family (gn) ∈ C(F(ϵ)) such that gn approximates fn for all n.

In addition, if we restrict the error degree to be polynomialy bounded in n then the
class obtained is called poly-approximation closure, denoted as C

poly
(F).

I AW /∈ VBP2 ⊊ VF.

I Is AW ∈ VBP2?

10



I
Algebraic Approximation

Definition: A polynomial g ∈ F(ϵ)[X ] approximates f ∈ F[X ] with error degree e if
g = f + ϵh1 + ϵ2h2 + · · ·+ ϵehe where each hi ∈ F[X ].

Definition: The approximation closure C(F) consists of families (fn) for which there
exists a family (gn) ∈ C(F(ϵ)) such that gn approximates fn for all n.

In addition, if we restrict the error degree to be polynomialy bounded in n then the
class obtained is called poly-approximation closure, denoted as C

poly
(F).

I AW /∈ VBP2 ⊊ VF.

I Is AW ∈ VBP2?

10



I
Algebraic Approximation

Definition: A polynomial g ∈ F(ϵ)[X ] approximates f ∈ F[X ] with error degree e if
g = f + ϵh1 + ϵ2h2 + · · ·+ ϵehe where each hi ∈ F[X ].

Definition: The approximation closure C(F) consists of families (fn) for which there
exists a family (gn) ∈ C(F(ϵ)) such that gn approximates fn for all n.

In addition, if we restrict the error degree to be polynomialy bounded in n then the
class obtained is called poly-approximation closure, denoted as C

poly
(F).

I AW /∈ VBP2 ⊊ VF.

I Is AW ∈ VBP2?

10



I
Approximation Helps

The polynomial AW =
∑8

i=1 x2i−1x2i can be approximated by width-2 ABP when
char(F) ̸= 2 [BIZ, J.ACM 2018].

Define F (x , y) :=(
1
ϵ
− ϵx

2 − x
2ϵ

ϵ3 ϵ

)(
1
2 (x − 2y)ϵ2 + 1 1

2 (x − 2y)
ϵ2 1

)(
xϵ2

2 + 1 − x
2

−ϵ2 1

)(
x+2y
2ϵ ϵ

ϵ−1 0

)

F (x , y) =

(
xy +O(ϵ) 1 +O(ϵ)

1 +O(ϵ) 0 +O(ϵ)

)
=

(
xy 1
1 0

)
+O(ϵ).

The following sequence approximately computes AW

(
1 0

)
F (x1, x2)

(
0 1
1 0

)
· · ·
(

0 1
1 0

)
F (x15, x16)

(
1
0

)
.

11



I
Approximation Helps

The polynomial AW =
∑8

i=1 x2i−1x2i can be approximated by width-2 ABP when
char(F) ̸= 2 [BIZ, J.ACM 2018].

Define F (x , y) :=(
1
ϵ
− ϵx

2 − x
2ϵ

ϵ3 ϵ

)(
1
2 (x − 2y)ϵ2 + 1 1

2 (x − 2y)
ϵ2 1

)(
xϵ2

2 + 1 − x
2

−ϵ2 1

)(
x+2y
2ϵ ϵ

ϵ−1 0

)

F (x , y) =

(
xy +O(ϵ) 1 +O(ϵ)

1 +O(ϵ) 0 +O(ϵ)

)
=

(
xy 1
1 0

)
+O(ϵ).

The following sequence approximately computes AW

(
1 0

)
F (x1, x2)

(
0 1
1 0

)
· · ·
(

0 1
1 0

)
F (x15, x16)

(
1
0

)
.

11



I
Approximation Helps

The polynomial AW =
∑8

i=1 x2i−1x2i can be approximated by width-2 ABP when
char(F) ̸= 2 [BIZ, J.ACM 2018].

Define F (x , y) :=(
1
ϵ
− ϵx

2 − x
2ϵ

ϵ3 ϵ

)(
1
2 (x − 2y)ϵ2 + 1 1

2 (x − 2y)
ϵ2 1

)(
xϵ2

2 + 1 − x
2

−ϵ2 1

)(
x+2y
2ϵ ϵ

ϵ−1 0

)

F (x , y) =

(
xy +O(ϵ) 1 +O(ϵ)

1 +O(ϵ) 0 +O(ϵ)

)
=

(
xy 1
1 0

)
+O(ϵ).

The following sequence approximately computes AW

(
1 0

)
F (x1, x2)

(
0 1
1 0

)
· · ·
(

0 1
1 0

)
F (x15, x16)

(
1
0

)
.

11



I
Approximation Helps

The polynomial AW =
∑8

i=1 x2i−1x2i can be approximated by width-2 ABP when
char(F) ̸= 2 [BIZ, J.ACM 2018].

Define F (x , y) :=(
1
ϵ
− ϵx

2 − x
2ϵ

ϵ3 ϵ

)(
1
2 (x − 2y)ϵ2 + 1 1

2 (x − 2y)
ϵ2 1

)(
xϵ2

2 + 1 − x
2

−ϵ2 1

)(
x+2y
2ϵ ϵ

ϵ−1 0

)

F (x , y) =

(
xy +O(ϵ) 1 +O(ϵ)

1 +O(ϵ) 0 +O(ϵ)

)
=

(
xy 1
1 0

)
+O(ϵ).

The following sequence approximately computes AW

(
1 0

)
F (x1, x2)

(
0 1
1 0

)
· · ·
(

0 1
1 0

)
F (x15, x16)

(
1
0

)
.

11



I
Approximately computing AW when char(F) = 2

Question: Can AW be computed approximately even when char(F) = 2?
Yes!

Define F (x , y) :=

(
1
ϵ

0
0 1

)(
x 1
1 0

)(
ϵ 1
0 1

)(
1
ϵ

y

−1 1

)(
x 1
1 0

)(
1 0
1 −ϵ

)
.

F (x , y) computes

(
xy 1

1 + ϵy 0

)
.

The following sequence approximately computes AW

(
1 0

)
F (x1, x2)

(
0 1
1 0

)
· · ·
(

0 1
1 0

)
F (x15, x16)

(
1
0

)
.

Note: This is true for arbitrary field.

12



I
Approximately computing AW when char(F) = 2

Question: Can AW be computed approximately even when char(F) = 2?
Yes!

Define F (x , y) :=

(
1
ϵ

0
0 1

)(
x 1
1 0

)(
ϵ 1
0 1

)(
1
ϵ

y

−1 1

)(
x 1
1 0

)(
1 0
1 −ϵ

)
.

F (x , y) computes

(
xy 1

1 + ϵy 0

)
.

The following sequence approximately computes AW

(
1 0

)
F (x1, x2)

(
0 1
1 0

)
· · ·
(

0 1
1 0

)
F (x15, x16)

(
1
0

)
.

Note: This is true for arbitrary field.

12



I
Approximately computing AW when char(F) = 2

Question: Can AW be computed approximately even when char(F) = 2?
Yes!

Define F (x , y) :=

(
1
ϵ

0
0 1

)(
x 1
1 0

)(
ϵ 1
0 1

)(
1
ϵ

y

−1 1

)(
x 1
1 0

)(
1 0
1 −ϵ

)
.

F (x , y) computes

(
xy 1

1 + ϵy 0

)
.

The following sequence approximately computes AW

(
1 0

)
F (x1, x2)

(
0 1
1 0

)
· · ·
(

0 1
1 0

)
F (x15, x16)

(
1
0

)
.

Note: This is true for arbitrary field.

12



I
Approximately computing AW when char(F) = 2

Question: Can AW be computed approximately even when char(F) = 2?
Yes!

Define F (x , y) :=

(
1
ϵ

0
0 1

)(
x 1
1 0

)(
ϵ 1
0 1

)(
1
ϵ

y

−1 1

)(
x 1
1 0

)(
1 0
1 −ϵ

)
.

F (x , y) computes

(
xy 1

1 + ϵy 0

)
.

The following sequence approximately computes AW

(
1 0

)
F (x1, x2)

(
0 1
1 0

)
· · ·
(

0 1
1 0

)
F (x15, x16)

(
1
0

)
.

Note: This is true for arbitrary field.

12



I
Approximately computing AW when char(F) = 2

Question: Can AW be computed approximately even when char(F) = 2?
Yes!

Define F (x , y) :=

(
1
ϵ

0
0 1

)(
x 1
1 0

)(
ϵ 1
0 1

)(
1
ϵ

y

−1 1

)(
x 1
1 0

)(
1 0
1 −ϵ

)
.

F (x , y) computes

(
xy 1

1 + ϵy 0

)
.

The following sequence approximately computes AW

(
1 0

)
F (x1, x2)

(
0 1
1 0

)
· · ·
(

0 1
1 0

)
F (x15, x16)

(
1
0

)
.

Note: This is true for arbitrary field.

12



I
I AW ∈ VBP2

I VF
?
⊆ VBP2.

I If we allow for approximation, it becomes ‘at least as powerful’ as formulas.

Precisely, VF ⊆ VBP2 when char(F) ̸= 2 [BIZ, J. ACM, 2016].

I VF = VBP2 when char(F) ̸= 2 [BIZ, J. ACM, 2016].

13



I
I AW ∈ VBP2

I VF
?
⊆ VBP2.

I If we allow for approximation, it becomes ‘at least as powerful’ as formulas.

Precisely, VF ⊆ VBP2 when char(F) ̸= 2 [BIZ, J. ACM, 2016].

I VF = VBP2 when char(F) ̸= 2 [BIZ, J. ACM, 2016].

13



I
I AW ∈ VBP2

I VF
?
⊆ VBP2.

I If we allow for approximation, it becomes ‘at least as powerful’ as formulas.

Precisely, VF ⊆ VBP2 when char(F) ̸= 2 [BIZ, J. ACM, 2016].

I VF = VBP2 when char(F) ̸= 2 [BIZ, J. ACM, 2016].

13



I
I AW ∈ VBP2

I VF
?
⊆ VBP2.

I If we allow for approximation, it becomes ‘at least as powerful’ as formulas.

Precisely, VF ⊆ VBP2 when char(F) ̸= 2 [BIZ, J. ACM, 2016].

I VF = VBP2 when char(F) ̸= 2 [BIZ, J. ACM, 2016].

13



I
I AW ∈ VBP2

I VF
?
⊆ VBP2.

I If we allow for approximation, it becomes ‘at least as powerful’ as formulas.

Precisely, VF ⊆ VBP2 when char(F) ̸= 2 [BIZ, J. ACM, 2016].

I VF = VBP2 when char(F) ̸= 2 [BIZ, J. ACM, 2016].

13



I
Theorem (BIZ, J. ACM, 2016)

VF ⊂ VBP2
poly when char(F) ̸= 2.

Proof Idea:

I Use induction on the depth to show

depth d- formula =⇒ sequence of 2O(d) matrices.

I Q(f ) :=

(
f 1
1 0

)
.

I Q(f + g) = Q(f )Q(0)Q(g)

I Q(f · g)?

f · g = (f /2 + g)2 + (−(f /2)2) + (−g2)

I Q(f 2 +O(ϵ)) = Q(−ϵ−1) · Q(ϵ) · Q(−ϵ−1) · (Q(f +O(ϵ3))) · Q(1) · Q(−1) ·
Q(1) · Q(−ϵ2) · (Q(f +O(ϵ3))) · Q(−ϵ−1) · Q(ϵ− 1) · Q(1) · Q(ϵ−1 − 1)

Thus, VF = VBP2 when char(F) ̸= 2

14



I
Theorem (BIZ, J. ACM, 2016)

VF ⊂ VBP2
poly when char(F) ̸= 2.

Proof Idea:

I Use induction on the depth to show

depth d- formula =⇒ sequence of 2O(d) matrices.

I Q(f ) :=

(
f 1
1 0

)
.

I Q(f + g) = Q(f )Q(0)Q(g)

I Q(f · g)?

f · g = (f /2 + g)2 + (−(f /2)2) + (−g2)

I Q(f 2 +O(ϵ)) = Q(−ϵ−1) · Q(ϵ) · Q(−ϵ−1) · (Q(f +O(ϵ3))) · Q(1) · Q(−1) ·
Q(1) · Q(−ϵ2) · (Q(f +O(ϵ3))) · Q(−ϵ−1) · Q(ϵ− 1) · Q(1) · Q(ϵ−1 − 1)

Thus, VF = VBP2 when char(F) ̸= 2

14



I
Theorem (BIZ, J. ACM, 2016)

VF ⊂ VBP2
poly when char(F) ̸= 2.

Proof Idea:

I Use induction on the depth to show

depth d- formula =⇒ sequence of 2O(d) matrices.

I Q(f ) :=

(
f 1
1 0

)
.

I Q(f + g) = Q(f )Q(0)Q(g)

I Q(f · g)?

f · g = (f /2 + g)2 + (−(f /2)2) + (−g2)

I Q(f 2 +O(ϵ)) = Q(−ϵ−1) · Q(ϵ) · Q(−ϵ−1) · (Q(f +O(ϵ3))) · Q(1) · Q(−1) ·
Q(1) · Q(−ϵ2) · (Q(f +O(ϵ3))) · Q(−ϵ−1) · Q(ϵ− 1) · Q(1) · Q(ϵ−1 − 1)

Thus, VF = VBP2 when char(F) ̸= 2

14



I
Theorem (BIZ, J. ACM, 2016)

VF ⊂ VBP2
poly when char(F) ̸= 2.

Proof Idea:

I Use induction on the depth to show

depth d- formula =⇒ sequence of 2O(d) matrices.

I Q(f ) :=

(
f 1
1 0

)
.

I Q(f + g) = Q(f )Q(0)Q(g)

I Q(f · g)?

f · g = (f /2 + g)2 + (−(f /2)2) + (−g2)

I Q(f 2 +O(ϵ)) = Q(−ϵ−1) · Q(ϵ) · Q(−ϵ−1) · (Q(f +O(ϵ3))) · Q(1) · Q(−1) ·
Q(1) · Q(−ϵ2) · (Q(f +O(ϵ3))) · Q(−ϵ−1) · Q(ϵ− 1) · Q(1) · Q(ϵ−1 − 1)

Thus, VF = VBP2 when char(F) ̸= 2

14



I
Theorem (BIZ, J. ACM, 2016)

VF ⊂ VBP2
poly when char(F) ̸= 2.

Proof Idea:

I Use induction on the depth to show

depth d- formula =⇒ sequence of 2O(d) matrices.

I Q(f ) :=

(
f 1
1 0

)
.

I Q(f + g) = Q(f )Q(0)Q(g)

I Q(f · g)?

f · g = (f /2 + g)2 + (−(f /2)2) + (−g2)

I Q(f 2 +O(ϵ)) = Q(−ϵ−1) · Q(ϵ) · Q(−ϵ−1) · (Q(f +O(ϵ3))) · Q(1) · Q(−1) ·
Q(1) · Q(−ϵ2) · (Q(f +O(ϵ3))) · Q(−ϵ−1) · Q(ϵ− 1) · Q(1) · Q(ϵ−1 − 1)

Thus, VF = VBP2 when char(F) ̸= 2

14



I
Theorem (BIZ, J. ACM, 2016)

VF ⊂ VBP2
poly when char(F) ̸= 2.

Proof Idea:

I Use induction on the depth to show

depth d- formula =⇒ sequence of 2O(d) matrices.

I Q(f ) :=

(
f 1
1 0

)
.

I Q(f + g) = Q(f )Q(0)Q(g)

I Q(f · g)?

f · g = (f /2 + g)2 + (−(f /2)2) + (−g2)

I Q(f 2 +O(ϵ)) = Q(−ϵ−1) · Q(ϵ) · Q(−ϵ−1) · (Q(f +O(ϵ3))) · Q(1) · Q(−1) ·
Q(1) · Q(−ϵ2) · (Q(f +O(ϵ3))) · Q(−ϵ−1) · Q(ϵ− 1) · Q(1) · Q(ϵ−1 − 1)

Thus, VF = VBP2 when char(F) ̸= 2

14



I
Theorem (BIZ, J. ACM, 2016)

VF ⊂ VBP2
poly when char(F) ̸= 2.

Proof Idea:

I Use induction on the depth to show

depth d- formula =⇒ sequence of 2O(d) matrices.

I Q(f ) :=

(
f 1
1 0

)
.

I Q(f + g) = Q(f )Q(0)Q(g)

I Q(f · g)?

f · g = (f /2 + g)2 + (−(f /2)2) + (−g2)

I Q(f 2 +O(ϵ)) = Q(−ϵ−1) · Q(ϵ) · Q(−ϵ−1) · (Q(f +O(ϵ3))) · Q(1) · Q(−1) ·
Q(1) · Q(−ϵ2) · (Q(f +O(ϵ3))) · Q(−ϵ−1) · Q(ϵ− 1) · Q(1) · Q(ϵ−1 − 1)

Thus, VF = VBP2 when char(F) ̸= 2

14



I
Theorem (BIZ, J. ACM, 2016)

VF ⊂ VBP2
poly when char(F) ̸= 2.

Proof Idea:

I Use induction on the depth to show

depth d- formula =⇒ sequence of 2O(d) matrices.

I Q(f ) :=

(
f 1
1 0

)
.

I Q(f + g) = Q(f )Q(0)Q(g)

I Q(f · g)?

f · g = (f /2 + g)2 + (−(f /2)2) + (−g2)

I Q(f 2 +O(ϵ)) = Q(−ϵ−1) · Q(ϵ) · Q(−ϵ−1) · (Q(f +O(ϵ3))) · Q(1) · Q(−1) ·
Q(1) · Q(−ϵ2) · (Q(f +O(ϵ3))) · Q(−ϵ−1) · Q(ϵ− 1) · Q(1) · Q(ϵ−1 − 1)

Thus, VF = VBP2 when char(F) ̸= 2

14



I
Theorem (BIZ, J. ACM, 2016)

VF ⊂ VBP2
poly when char(F) ̸= 2.

Proof Idea:

I Use induction on the depth to show

depth d- formula =⇒ sequence of 2O(d) matrices.

I Q(f ) :=

(
f 1
1 0

)
.

I Q(f + g) = Q(f )Q(0)Q(g)

I Q(f · g)?

f · g = (f /2 + g)2 + (−(f /2)2) + (−g2)

I Q(f 2 +O(ϵ)) = Q(−ϵ−1) · Q(ϵ) · Q(−ϵ−1) · (Q(f +O(ϵ3))) · Q(1) · Q(−1) ·
Q(1) · Q(−ϵ2) · (Q(f +O(ϵ3))) · Q(−ϵ−1) · Q(ϵ− 1) · Q(1) · Q(ϵ−1 − 1)

Thus, VF = VBP2 when char(F) ̸= 2

14



I

I Is VF ⊂ VBP2 even when char(F) = 2?

We still do not know!

I Is the Model universal? .... (i.e. can every polynomial be approximately
computed using width-2 ABP (or seq. of 2 × 2 matrices?)

Yes!

15



I
I Is VF ⊂ VBP2 even when char(F) = 2?

We still do not know!

I Is the Model universal? .... (i.e. can every polynomial be approximately
computed using width-2 ABP (or seq. of 2 × 2 matrices?)

Yes!

15



I
I Is VF ⊂ VBP2 even when char(F) = 2?

We still do not know!

I Is the Model universal? .... (i.e. can every polynomial be approximately
computed using width-2 ABP (or seq. of 2 × 2 matrices?)

Yes!

15



I
I Is VF ⊂ VBP2 even when char(F) = 2?

We still do not know!

I Is the Model universal? .... (i.e. can every polynomial be approximately
computed using width-2 ABP (or seq. of 2 × 2 matrices?)

Yes!

15



I
I Is VF ⊂ VBP2 even when char(F) = 2?

We still do not know!

I Is the Model universal? .... (i.e. can every polynomial be approximately
computed using width-2 ABP (or seq. of 2 × 2 matrices?)

Yes!

15



I
Showing Universality

Lemma 1
Let f be a polynomial. Suppose that there is a sequence, say σ, of N matrices that
approximately computes Q(f ). Then, for any indeterminate x , there is a sequence of
2N + 4 matrices that approximately computes Q(fx).

Proof Sketch:

Q(fx) +O(ϵ) =

(
1
ϵ

0
0 1

)
σ |ϵ→ϵ2

(
ϵ 1
0 1

)(
1
ϵ

x

−1 1

)
σ |ϵ→ϵ2

(
1 0
1 −ϵ

)
.

I Although not as powerful as multiplying two arbitrary polynomials, this proves
universality.

I However, this is inefficient.

For example, consider xn, we require O(2n) matrices to compute Q(xn).

I We improve this to O(n).

16



I
Showing Universality

Lemma 1
Let f be a polynomial. Suppose that there is a sequence, say σ, of N matrices that
approximately computes Q(f ). Then, for any indeterminate x , there is a sequence of
2N + 4 matrices that approximately computes Q(fx).

Proof Sketch:

Q(fx) +O(ϵ) =

(
1
ϵ

0
0 1

)
σ |ϵ→ϵ2

(
ϵ 1
0 1

)(
1
ϵ

x

−1 1

)
σ |ϵ→ϵ2

(
1 0
1 −ϵ

)
.

I Although not as powerful as multiplying two arbitrary polynomials, this proves
universality.

I However, this is inefficient.

For example, consider xn, we require O(2n) matrices to compute Q(xn).

I We improve this to O(n).

16



I
Showing Universality

Lemma 1
Let f be a polynomial. Suppose that there is a sequence, say σ, of N matrices that
approximately computes Q(f ). Then, for any indeterminate x , there is a sequence of
2N + 4 matrices that approximately computes Q(fx).

Proof Sketch:

Q(fx) +O(ϵ) =

(
1
ϵ

0
0 1

)
σ |ϵ→ϵ2

(
ϵ 1
0 1

)(
1
ϵ

x

−1 1

)
σ |ϵ→ϵ2

(
1 0
1 −ϵ

)
.

I Although not as powerful as multiplying two arbitrary polynomials, this proves
universality.

I However, this is inefficient.

For example, consider xn, we require O(2n) matrices to compute Q(xn).

I We improve this to O(n).

16



I
Showing Universality

Lemma 1
Let f be a polynomial. Suppose that there is a sequence, say σ, of N matrices that
approximately computes Q(f ). Then, for any indeterminate x , there is a sequence of
2N + 4 matrices that approximately computes Q(fx).

Proof Sketch:

Q(fx) +O(ϵ) =

(
1
ϵ

0
0 1

)
σ |ϵ→ϵ2

(
ϵ 1
0 1

)(
1
ϵ

x

−1 1

)
σ |ϵ→ϵ2

(
1 0
1 −ϵ

)
.

I Although not as powerful as multiplying two arbitrary polynomials, this proves
universality.

I However, this is inefficient.

For example, consider xn, we require O(2n) matrices to compute Q(xn).

I We improve this to O(n).

16



I
Showing Universality

Lemma 1
Let f be a polynomial. Suppose that there is a sequence, say σ, of N matrices that
approximately computes Q(f ). Then, for any indeterminate x , there is a sequence of
2N + 4 matrices that approximately computes Q(fx).

Proof Sketch:

Q(fx) +O(ϵ) =

(
1
ϵ

0
0 1

)
σ |ϵ→ϵ2

(
ϵ 1
0 1

)(
1
ϵ

x

−1 1

)
σ |ϵ→ϵ2

(
1 0
1 −ϵ

)
.

I Although not as powerful as multiplying two arbitrary polynomials, this proves
universality.

I However, this is inefficient.

For example, consider xn, we require O(2n) matrices to compute Q(xn).

I We improve this to O(n).

16



I
Improving efficiency

Lemma 2
Let f and g be polynomials. Suppose that there are sequences, say σ and π, of N and
M matrices, that approximately compute Q(f ) and Q(g) respectively. Then, there is a
sequence of N + 2M + 4 matrices that approximately computes Q(fg2).

Proof Sketch:

Q(fg2) +O(ϵ) =

(
−1 0
0 ϵ

)
π |ϵ→ϵ2

(
1 0
0 1

ϵ

)
σ |ϵ→ϵ3

(
−1 0
0 1

ϵ

)
π |ϵ→ϵ2

(
1 0
0 ϵ

)
.

Theorem
Let p be a polynomial with ℓ monomials, each containing at most t indeterminates.
Then, Q(p) can be approximately computed using a sequence of at most
O(ℓ · (2t + degree(p))) matrices.

Observe that xn needs only O(n) matrices.

17



I
Improving efficiency

Lemma 2
Let f and g be polynomials. Suppose that there are sequences, say σ and π, of N and
M matrices, that approximately compute Q(f ) and Q(g) respectively. Then, there is a
sequence of N + 2M + 4 matrices that approximately computes Q(fg2).

Proof Sketch:

Q(fg2) +O(ϵ) =

(
−1 0
0 ϵ

)
π |ϵ→ϵ2

(
1 0
0 1

ϵ

)
σ |ϵ→ϵ3

(
−1 0
0 1

ϵ

)
π |ϵ→ϵ2

(
1 0
0 ϵ

)
.

Theorem
Let p be a polynomial with ℓ monomials, each containing at most t indeterminates.
Then, Q(p) can be approximately computed using a sequence of at most
O(ℓ · (2t + degree(p))) matrices.

Observe that xn needs only O(n) matrices.

17



I
Improving efficiency

Lemma 2
Let f and g be polynomials. Suppose that there are sequences, say σ and π, of N and
M matrices, that approximately compute Q(f ) and Q(g) respectively. Then, there is a
sequence of N + 2M + 4 matrices that approximately computes Q(fg2).

Proof Sketch:

Q(fg2) +O(ϵ) =

(
−1 0
0 ϵ

)
π |ϵ→ϵ2

(
1 0
0 1

ϵ

)
σ |ϵ→ϵ3

(
−1 0
0 1

ϵ

)
π |ϵ→ϵ2

(
1 0
0 ϵ

)
.

Theorem
Let p be a polynomial with ℓ monomials, each containing at most t indeterminates.
Then, Q(p) can be approximately computed using a sequence of at most
O(ℓ · (2t + degree(p))) matrices.

Observe that xn needs only O(n) matrices.

17



I
Improving efficiency

Lemma 2
Let f and g be polynomials. Suppose that there are sequences, say σ and π, of N and
M matrices, that approximately compute Q(f ) and Q(g) respectively. Then, there is a
sequence of N + 2M + 4 matrices that approximately computes Q(fg2).

Proof Sketch:

Q(fg2) +O(ϵ) =

(
−1 0
0 ϵ

)
π |ϵ→ϵ2

(
1 0
0 1

ϵ

)
σ |ϵ→ϵ3

(
−1 0
0 1

ϵ

)
π |ϵ→ϵ2

(
1 0
0 ϵ

)
.

Theorem
Let p be a polynomial with ℓ monomials, each containing at most t indeterminates.
Then, Q(p) can be approximately computed using a sequence of at most
O(ℓ · (2t + degree(p))) matrices.

Observe that xn needs only O(n) matrices.

17



I
Improving efficiency

Lemma 2
Let f and g be polynomials. Suppose that there are sequences, say σ and π, of N and
M matrices, that approximately compute Q(f ) and Q(g) respectively. Then, there is a
sequence of N + 2M + 4 matrices that approximately computes Q(fg2).

Proof Sketch:

Q(fg2) +O(ϵ) =

(
−1 0
0 ϵ

)
π |ϵ→ϵ2

(
1 0
0 1

ϵ

)
σ |ϵ→ϵ3

(
−1 0
0 1

ϵ

)
π |ϵ→ϵ2

(
1 0
0 ϵ

)
.

Theorem
Let p be a polynomial with ℓ monomials, each containing at most t indeterminates.
Then, Q(p) can be approximately computed using a sequence of at most
O(ℓ · (2t + degree(p))) matrices.

Observe that xn needs only O(n) matrices.

17



I
Improving efficiency cont.

Theorem:
Sequence of O(ℓ · (2t + degree(p))) matrices that approxi-
mately computes Q(p) where,
ℓ = no. of monomials in p

t = max no. of indeterminates per monomial

Proof Idea:

I Goal: Compute each monomial using at most O(2t + degree(p)) matrices.

I Let X r1
1 · · ·X rk

k︸ ︷︷ ︸
odd r ′i s

X
rk+1
k+1 · · ·X rm

m︸ ︷︷ ︸
even r ′i s

= (X1 · · ·Xk ) · (X r1−1
1 · · ·X rk−1

k X
rk+1
k+1 · · ·X rm

m )

Corollary: Let p be a univariate polynomial of degree d . Then Q(p) can be
approximately computed using a sequence of at most O(d2) matrices.

Note: However, we can do better!

18



I
Improving efficiency cont.

Theorem:
Sequence of O(ℓ · (2t + degree(p))) matrices that approxi-
mately computes Q(p) where,
ℓ = no. of monomials in p

t = max no. of indeterminates per monomial

Proof Idea:

I Goal: Compute each monomial using at most O(2t + degree(p)) matrices.

I Let X r1
1 · · ·X rk

k︸ ︷︷ ︸
odd r ′i s

X
rk+1
k+1 · · ·X rm

m︸ ︷︷ ︸
even r ′i s

= (X1 · · ·Xk ) · (X r1−1
1 · · ·X rk−1

k X
rk+1
k+1 · · ·X rm

m )

Corollary: Let p be a univariate polynomial of degree d . Then Q(p) can be
approximately computed using a sequence of at most O(d2) matrices.

Note: However, we can do better!

18



I
Improving efficiency cont.

Theorem:
Sequence of O(ℓ · (2t + degree(p))) matrices that approxi-
mately computes Q(p) where,
ℓ = no. of monomials in p

t = max no. of indeterminates per monomial

Proof Idea:

I Goal: Compute each monomial using at most O(2t + degree(p)) matrices.

I Let X r1
1 · · ·X rk

k︸ ︷︷ ︸
odd r ′i s

X
rk+1
k+1 · · ·X rm

m︸ ︷︷ ︸
even r ′i s

= (X1 · · ·Xk ) · (X r1−1
1 · · ·X rk−1

k X
rk+1
k+1 · · ·X rm

m )

Corollary: Let p be a univariate polynomial of degree d . Then Q(p) can be
approximately computed using a sequence of at most O(d2) matrices.

Note: However, we can do better!

18



I
Improving efficiency cont.

Theorem:
Sequence of O(ℓ · (2t + degree(p))) matrices that approxi-
mately computes Q(p) where,
ℓ = no. of monomials in p

t = max no. of indeterminates per monomial

Proof Idea:

I Goal: Compute each monomial using at most O(2t + degree(p)) matrices.

I Let X r1
1 · · ·X rk

k︸ ︷︷ ︸
odd r ′i s

X
rk+1
k+1 · · ·X rm

m︸ ︷︷ ︸
even r ′i s

= (X1 · · ·Xk ) · (X r1−1
1 · · ·X rk−1

k X
rk+1
k+1 · · ·X rm

m )

Corollary: Let p be a univariate polynomial of degree d . Then Q(p) can be
approximately computed using a sequence of at most O(d2) matrices.

Note: However, we can do better!

18



I
Improving efficiency cont.

Theorem:
Sequence of O(ℓ · (2t + degree(p))) matrices that approxi-
mately computes Q(p) where,
ℓ = no. of monomials in p

t = max no. of indeterminates per monomial

Proof Idea:

I Goal: Compute each monomial using at most O(2t + degree(p)) matrices.

I Let X r1
1 · · ·X rk

k︸ ︷︷ ︸
odd r ′i s

X
rk+1
k+1 · · ·X rm

m︸ ︷︷ ︸
even r ′i s

= (X1 · · ·Xk ) · (X r1−1
1 · · ·X rk−1

k X
rk+1
k+1 · · ·X rm

m )

Corollary: Let p be a univariate polynomial of degree d . Then Q(p) can be
approximately computed using a sequence of at most O(d2) matrices.

Note: However, we can do better!

18



I
Improving efficiency cont.

Theorem:
Sequence of O(ℓ · (2t + degree(p))) matrices that approxi-
mately computes Q(p) where,
ℓ = no. of monomials in p

t = max no. of indeterminates per monomial

Proof Idea:

I Goal: Compute each monomial using at most O(2t + degree(p)) matrices.

I Let X r1
1 · · ·X rk

k︸ ︷︷ ︸
odd r ′i s

X
rk+1
k+1 · · ·X rm

m︸ ︷︷ ︸
even r ′i s

= (X1 · · ·Xk ) · (X r1−1
1 · · ·X rk−1

k X
rk+1
k+1 · · ·X rm

m )

Corollary: Let p be a univariate polynomial of degree d . Then Q(p) can be
approximately computed using a sequence of at most O(d2) matrices.

Note: However, we can do better!

18



I
Improving efficiency cont.

Theorem:
Sequence of O(ℓ · (2t + degree(p))) matrices that approxi-
mately computes Q(p) where,
ℓ = no. of monomials in p

t = max no. of indeterminates per monomial

Proof Idea:

I Goal: Compute each monomial using at most O(2t + degree(p)) matrices.

I Let X r1
1 · · ·X rk

k︸ ︷︷ ︸
odd r ′i s

X
rk+1
k+1 · · ·X rm

m︸ ︷︷ ︸
even r ′i s

= (X1 · · ·Xk ) · (X r1−1
1 · · ·X rk−1

k X
rk+1
k+1 · · ·X rm

m )

Corollary: Let p be a univariate polynomial of degree d . Then Q(p) can be
approximately computed using a sequence of at most O(d2) matrices.

Note: However, we can do better!

18



I
Improving efficiency Further for univariate polynomial

Theorem
Consider a degree-d univariate polynomial in x , say
p = adx

d + ad−1x
d−1 + . . . . . .+ a2x2 + a1x + a0. Then, Q(p) can be

approximately computed using a sequence of at most O(d) matrices.

Idea: Use Horner’s rule

Illustration: Consider a polynomial

a4x4 + a3x3 + a2x2 + a1x + a0 = (a4x2 + a3x + a2)x2 + a1x + a0.

Q(a4)
Lemma 2−−−−−−→ Q(a4x2)yappend Q(0)

(
a3 a2

0 1

)(
x 1

a3
1 0

)

Q(a4x2 + a3x + a2)
Lemma 2−−−−−−→ Q((a4x2 + a3x + a2)x2)yappend Q(0)

(
a1 a0

0 1

)(
x 1

a1
1 0

)
Q((a4x2 + a3x + a2)x2 + a1x + a0).

19



I
Improving efficiency Further for univariate polynomial

Theorem
Consider a degree-d univariate polynomial in x , say
p = adx

d + ad−1x
d−1 + . . . . . .+ a2x2 + a1x + a0. Then, Q(p) can be

approximately computed using a sequence of at most O(d) matrices.

Idea: Use Horner’s rule

Illustration: Consider a polynomial

a4x4 + a3x3 + a2x2 + a1x + a0 = (a4x2 + a3x + a2)x2 + a1x + a0.

Q(a4)
Lemma 2−−−−−−→ Q(a4x2)yappend Q(0)

(
a3 a2

0 1

)(
x 1

a3
1 0

)

Q(a4x2 + a3x + a2)
Lemma 2−−−−−−→ Q((a4x2 + a3x + a2)x2)yappend Q(0)

(
a1 a0

0 1

)(
x 1

a1
1 0

)
Q((a4x2 + a3x + a2)x2 + a1x + a0).

19



I
Improving efficiency Further for univariate polynomial

Theorem
Consider a degree-d univariate polynomial in x , say
p = adx

d + ad−1x
d−1 + . . . . . .+ a2x2 + a1x + a0. Then, Q(p) can be

approximately computed using a sequence of at most O(d) matrices.

Idea: Use Horner’s rule

Illustration: Consider a polynomial

a4x4 + a3x3 + a2x2 + a1x + a0 = (a4x2 + a3x + a2)x2 + a1x + a0.

Q(a4)
Lemma 2−−−−−−→ Q(a4x2)yappend Q(0)

(
a3 a2

0 1

)(
x 1

a3
1 0

)

Q(a4x2 + a3x + a2)
Lemma 2−−−−−−→ Q((a4x2 + a3x + a2)x2)yappend Q(0)

(
a1 a0

0 1

)(
x 1

a1
1 0

)
Q((a4x2 + a3x + a2)x2 + a1x + a0).

19



I
Improving efficiency Further for univariate polynomial

Theorem
Consider a degree-d univariate polynomial in x , say
p = adx

d + ad−1x
d−1 + . . . . . .+ a2x2 + a1x + a0. Then, Q(p) can be

approximately computed using a sequence of at most O(d) matrices.

Idea: Use Horner’s rule

Illustration: Consider a polynomial

a4x4 + a3x3 + a2x2 + a1x + a0 = (a4x2 + a3x + a2)x2 + a1x + a0.

Q(a4)
Lemma 2−−−−−−→ Q(a4x2)yappend Q(0)

(
a3 a2

0 1

)(
x 1

a3
1 0

)

Q(a4x2 + a3x + a2)
Lemma 2−−−−−−→ Q((a4x2 + a3x + a2)x2)yappend Q(0)

(
a1 a0

0 1

)(
x 1

a1
1 0

)
Q((a4x2 + a3x + a2)x2 + a1x + a0).

19



I
Improving efficiency Further for univariate polynomial

Theorem
Consider a degree-d univariate polynomial in x , say
p = adx

d + ad−1x
d−1 + . . . . . .+ a2x2 + a1x + a0. Then, Q(p) can be

approximately computed using a sequence of at most O(d) matrices.

Idea: Use Horner’s rule

Illustration: Consider a polynomial

a4x4 + a3x3 + a2x2 + a1x + a0 = (a4x2 + a3x + a2)x2 + a1x + a0.

Q(a4)
Lemma 2−−−−−−→ Q(a4x2)

yappend Q(0)

(
a3 a2

0 1

)(
x 1

a3
1 0

)

Q(a4x2 + a3x + a2)
Lemma 2−−−−−−→ Q((a4x2 + a3x + a2)x2)yappend Q(0)

(
a1 a0

0 1

)(
x 1

a1
1 0

)
Q((a4x2 + a3x + a2)x2 + a1x + a0).

19



I
Improving efficiency Further for univariate polynomial

Theorem
Consider a degree-d univariate polynomial in x , say
p = adx

d + ad−1x
d−1 + . . . . . .+ a2x2 + a1x + a0. Then, Q(p) can be

approximately computed using a sequence of at most O(d) matrices.

Idea: Use Horner’s rule

Illustration: Consider a polynomial

a4x4 + a3x3 + a2x2 + a1x + a0 = (a4x2 + a3x + a2)x2 + a1x + a0.

Q(a4)
Lemma 2−−−−−−→ Q(a4x2)yappend Q(0)

(
a3 a2

0 1

)(
x 1

a3
1 0

)

Q(a4x2 + a3x + a2)

Lemma 2−−−−−−→ Q((a4x2 + a3x + a2)x2)yappend Q(0)

(
a1 a0

0 1

)(
x 1

a1
1 0

)
Q((a4x2 + a3x + a2)x2 + a1x + a0).

19



I
Improving efficiency Further for univariate polynomial

Theorem
Consider a degree-d univariate polynomial in x , say
p = adx

d + ad−1x
d−1 + . . . . . .+ a2x2 + a1x + a0. Then, Q(p) can be

approximately computed using a sequence of at most O(d) matrices.

Idea: Use Horner’s rule

Illustration: Consider a polynomial

a4x4 + a3x3 + a2x2 + a1x + a0 = (a4x2 + a3x + a2)x2 + a1x + a0.

Q(a4)
Lemma 2−−−−−−→ Q(a4x2)yappend Q(0)

(
a3 a2

0 1

)(
x 1

a3
1 0

)

Q(a4x2 + a3x + a2)
Lemma 2−−−−−−→ Q((a4x2 + a3x + a2)x2)

yappend Q(0)

(
a1 a0

0 1

)(
x 1

a1
1 0

)
Q((a4x2 + a3x + a2)x2 + a1x + a0).

19



I
Improving efficiency Further for univariate polynomial

Theorem
Consider a degree-d univariate polynomial in x , say
p = adx

d + ad−1x
d−1 + . . . . . .+ a2x2 + a1x + a0. Then, Q(p) can be

approximately computed using a sequence of at most O(d) matrices.

Idea: Use Horner’s rule

Illustration: Consider a polynomial

a4x4 + a3x3 + a2x2 + a1x + a0 = (a4x2 + a3x + a2)x2 + a1x + a0.

Q(a4)
Lemma 2−−−−−−→ Q(a4x2)yappend Q(0)

(
a3 a2

0 1

)(
x 1

a3
1 0

)

Q(a4x2 + a3x + a2)
Lemma 2−−−−−−→ Q((a4x2 + a3x + a2)x2)yappend Q(0)

(
a1 a0

0 1

)(
x 1

a1
1 0

)
Q((a4x2 + a3x + a2)x2 + a1x + a0).

19



I
Powering Efficiently

Seq. of N matrices that
approximately computes Q(f )

?
=⇒ Seq. of O(rN) matrices that

approximately computes Q(f r )

Q(1) Lemma 2−−−−−−→
2N+4

Q(f 2)
Lemma 2−−−−−−→

2N+4
· · · Lemma 2−−−−−−→

2N+4
Q(f r−2)

Lemma 2−−−−−−→
2N+4

Q(f r )

Q(f )
Lemma 2−−−−−−→

2N+4
Q(f 3)

Lemma 2−−−−−−→
2N+4

· · · Lemma 2−−−−−−→
2N+4

Q(f r−2)
Lemma 2−−−−−−→

2N+4
Q(f r )

20



I
Powering Efficiently

Seq. of N matrices that
approximately computes Q(f )

?
=⇒ Seq. of O(rN) matrices that

approximately computes Q(f r )

Q(1) Lemma 2−−−−−−→
2N+4

Q(f 2)
Lemma 2−−−−−−→

2N+4
· · · Lemma 2−−−−−−→

2N+4
Q(f r−2)

Lemma 2−−−−−−→
2N+4

Q(f r )

Q(f )
Lemma 2−−−−−−→

2N+4
Q(f 3)

Lemma 2−−−−−−→
2N+4

· · · Lemma 2−−−−−−→
2N+4

Q(f r−2)
Lemma 2−−−−−−→

2N+4
Q(f r )

20



I
Powering Efficiently

Seq. of N matrices that
approximately computes Q(f )

?
=⇒ Seq. of O(rN) matrices that

approximately computes Q(f r )

Q(1) Lemma 2−−−−−−→
2N+4

Q(f 2)
Lemma 2−−−−−−→

2N+4
· · · Lemma 2−−−−−−→

2N+4
Q(f r−2)

Lemma 2−−−−−−→
2N+4

Q(f r )

Q(f )
Lemma 2−−−−−−→

2N+4
Q(f 3)

Lemma 2−−−−−−→
2N+4

· · · Lemma 2−−−−−−→
2N+4

Q(f r−2)
Lemma 2−−−−−−→

2N+4
Q(f r )

20



I
Powering Efficiently

Seq. of N matrices that
approximately computes Q(f )

?
=⇒ Seq. of O(rN) matrices that

approximately computes Q(f r )

Q(1) Lemma 2−−−−−−→
2N+4

Q(f 2)
Lemma 2−−−−−−→

2N+4
· · · Lemma 2−−−−−−→

2N+4
Q(f r−2)

Lemma 2−−−−−−→
2N+4

Q(f r )

Q(f )
Lemma 2−−−−−−→

2N+4
Q(f 3)

Lemma 2−−−−−−→
2N+4

· · · Lemma 2−−−−−−→
2N+4

Q(f r−2)
Lemma 2−−−−−−→

2N+4
Q(f r )

20



I

Note that

I Q(f ),Q(g) =⇒ Q(f + g)?

Easy!

I Q(f ) =⇒ Q(f n)?

Easy!

I Why is powering interesting?

Can this compute non-sparse polynomials?

Yes!

Observation: There is an n-variate polynomial over F with 2Ω(n) monomials that can
be approximately computed using a sequence of nO(1) matrices, when char(F) = 2.

21



I
Note that

I Q(f ),Q(g) =⇒ Q(f + g)?

Easy!

I Q(f ) =⇒ Q(f n)?

Easy!

I Why is powering interesting?

Can this compute non-sparse polynomials?

Yes!

Observation: There is an n-variate polynomial over F with 2Ω(n) monomials that can
be approximately computed using a sequence of nO(1) matrices, when char(F) = 2.

21



I
Note that

I Q(f ),Q(g) =⇒ Q(f + g)?

Easy!

I Q(f ) =⇒ Q(f n)?

Easy!

I Why is powering interesting?

Can this compute non-sparse polynomials?

Yes!

Observation: There is an n-variate polynomial over F with 2Ω(n) monomials that can
be approximately computed using a sequence of nO(1) matrices, when char(F) = 2.

21



I
Note that

I Q(f ),Q(g) =⇒ Q(f + g)?

Easy!

I Q(f ) =⇒ Q(f n)?

Easy!

I Why is powering interesting?

Can this compute non-sparse polynomials?

Yes!

Observation: There is an n-variate polynomial over F with 2Ω(n) monomials that can
be approximately computed using a sequence of nO(1) matrices, when char(F) = 2.

21



I
Note that

I Q(f ),Q(g) =⇒ Q(f + g)?

Easy!

I Q(f ) =⇒ Q(f n)?

Easy!

I Why is powering interesting?

Can this compute non-sparse polynomials?

Yes!

Observation: There is an n-variate polynomial over F with 2Ω(n) monomials that can
be approximately computed using a sequence of nO(1) matrices, when char(F) = 2.

21



I
Conclusion and Open Problem

I The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

I Is Q(x1x2 · · · xn) computable efficiently?

I Can we compute Q(fx) using a single Q(f )?

Can we compute Q(fg) using constant many Q(f )’s and Q(g)’s?

Can we show some lower bound for Q(f · g)?

I Can we construct small size width-two ABPs for sparse polynomials?

I Is VF ⊂ VBP2 when char(F) = 2?

Thank you!

22



I
Conclusion and Open Problem

I The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

I Is Q(x1x2 · · · xn) computable efficiently?

I Can we compute Q(fx) using a single Q(f )?

Can we compute Q(fg) using constant many Q(f )’s and Q(g)’s?

Can we show some lower bound for Q(f · g)?

I Can we construct small size width-two ABPs for sparse polynomials?

I Is VF ⊂ VBP2 when char(F) = 2?

Thank you!

22



I
Conclusion and Open Problem

I The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

I Is Q(x1x2 · · · xn) computable efficiently?

I Can we compute Q(fx) using a single Q(f )?

Can we compute Q(fg) using constant many Q(f )’s and Q(g)’s?

Can we show some lower bound for Q(f · g)?

I Can we construct small size width-two ABPs for sparse polynomials?

I Is VF ⊂ VBP2 when char(F) = 2?

Thank you!

22



I
Conclusion and Open Problem

I The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

I Is Q(x1x2 · · · xn) computable efficiently?

I Can we compute Q(fx) using a single Q(f )?

Can we compute Q(fg) using constant many Q(f )’s and Q(g)’s?

Can we show some lower bound for Q(f · g)?

I Can we construct small size width-two ABPs for sparse polynomials?

I Is VF ⊂ VBP2 when char(F) = 2?

Thank you!

22



I
Conclusion and Open Problem

I The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

I Is Q(x1x2 · · · xn) computable efficiently?

I Can we compute Q(fx) using a single Q(f )?

Can we compute Q(fg) using constant many Q(f )’s and Q(g)’s?

Can we show some lower bound for Q(f · g)?

I Can we construct small size width-two ABPs for sparse polynomials?

I Is VF ⊂ VBP2 when char(F) = 2?

Thank you!

22



I
Conclusion and Open Problem

I The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

I Is Q(x1x2 · · · xn) computable efficiently?

I Can we compute Q(fx) using a single Q(f )?

Can we compute Q(fg) using constant many Q(f )’s and Q(g)’s?

Can we show some lower bound for Q(f · g)?

I Can we construct small size width-two ABPs for sparse polynomials?

I Is VF ⊂ VBP2 when char(F) = 2?

Thank you!

22



I
Conclusion and Open Problem

I The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

I Is Q(x1x2 · · · xn) computable efficiently?

I Can we compute Q(fx) using a single Q(f )?

Can we compute Q(fg) using constant many Q(f )’s and Q(g)’s?

Can we show some lower bound for Q(f · g)?

I Can we construct small size width-two ABPs for sparse polynomials?

I Is VF ⊂ VBP2 when char(F) = 2?

Thank you!

22



I
Conclusion and Open Problem

I The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

I Is Q(x1x2 · · · xn) computable efficiently?

I Can we compute Q(fx) using a single Q(f )?

Can we compute Q(fg) using constant many Q(f )’s and Q(g)’s?

Can we show some lower bound for Q(f · g)?

I Can we construct small size width-two ABPs for sparse polynomials?

I Is VF ⊂ VBP2 when char(F) = 2?

Thank you!

22



I
Conclusion and Open Problem

I The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

I Is Q(x1x2 · · · xn) computable efficiently?

I Can we compute Q(fx) using a single Q(f )?

Can we compute Q(fg) using constant many Q(f )’s and Q(g)’s?

Can we show some lower bound for Q(f · g)?

I Can we construct small size width-two ABPs for sparse polynomials?

I Is VF ⊂ VBP2 when char(F) = 2?

Thank you!

22



I
Conclusion and Open Problem

I The model (i.e. width-2 ABPs with approximation) is Universal.

Open Problems

I Is Q(x1x2 · · · xn) computable efficiently?

I Can we compute Q(fx) using a single Q(f )?

Can we compute Q(fg) using constant many Q(f )’s and Q(g)’s?

Can we show some lower bound for Q(f · g)?

I Can we construct small size width-two ABPs for sparse polynomials?

I Is VF ⊂ VBP2 when char(F) = 2?

Thank you! 22


