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Abstract

Calcium ions are an important second messenger in living cells. Indeed calcium sig-

nals in the form of waves have been the subject of much recent experimental interest.

A fundamental approach for studying cellular signalling is the combination of state of

the art experimental techniques, in particular high resolution fluorescence imaging,

with spatio-temporal mathematical models of intracellular calcium regulation. Exper-

imental findings can be incorporated into mathematical models and, vice versa, model

predictions can be directly tested in experiments. This approach provides a powerful

tool to clarify the very complex mechanisms involved in cellular Ca2+ signalling.

The aim of this thesis is to provide insight into oscillations and waves of cytosolic Ca2+

in both single and multi-cellular systems from a mathematical perspective. We focus

on two models of Ca2+ release for a systematic mathematical and numerical analysis

of Ca2+ dynamics. One of them is a biophysically detailed model which we study

using tools from bifurcation theory, numerical continuation and numerical simulation.

The other is a much simpler minimal model of Ca2+ dynamics that emphasises the

fundamental space and time scales of cellular Ca2+ dynamics and allows for exact

mathematical analysis. For the detailed biophysical model we calculate the speed

and stability of travelling waves as a function of physiologically significant parameters.

The minimal model of Ca2+ dynamics is obtained via a systematic reduction of the

biophysical model and its analytically obtained behaviour is shown to be in excellent

agreement with the original biophysical model. This minimal model is then used to

gain insight into the effects of spatial heterogeneity and biologically realistic sources

of noise on intra- and inter-cellular cell signalling. In particular we pursue issues

of wave propagation, wave propagation failure and the role of noise in generating

coherent whole cell rhythms.
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Chapter 1
Introduction

Many processes in living systems are oscillatory. Biological rhythms occur at all levels

of biological organisation, from unicellular to multi-cellular organisms, with periods

ranging from fractions of a second to years. Besides quite obvious examples of bio-

logical oscillations such as the beating of the heart, lung respiration, the sleep-wake

cycle, central pattern generation and locomotion in animals, there are many instances

of biological oscillations at the cellular level. These rhythms find their roots in the

many regulatory mechanisms that control the dynamics of living cells. For example,

neural and cardiac rhythms at the single cell level are associated with the regulation of

voltage-dependent ion channels, metabolic oscillations originating from the regulation

of enzyme activity, pulsatile intercellular signals and intracellular calcium oscillations

associated with receptor activity, while regulation of gene expression in hypothalamic

neurons underlies circadian rhythms. Although different cell types express markedly

different rhythms a common set of components assembled in a cell-specific manner

can give rise to different spatial and temporal dynamics. Thus, the spatially extended

nature of the cell and the way in which these components are organised into interact-

ing complexes is vitally important for generating physiologically significant cellular

rhythms. In view of the large number of variables involved, the spatially extended

1



CHAPTER 1. INTRODUCTION 2

nature of the cell, and the complexity of nonlinear feedback processes, mathematical

models are vital for a better understanding of how molecular and cellular mechanisms

give rise to oscillations. Importantly a mathematical approach opens up the way to

explore the role of space, heterogeneity and noise in shaping cellular rhythms. Mod-

els are also useful to understand the transition from simple to complex oscillatory

behaviour and for delineating the conditions under which they arise. The strength

of a theoretical approach is that it clarifies the molecular and dynamical mechanisms

for cellular rhythm generation.

One of the most significant findings in the field of intracellular signalling within the

last two decades is the discovery of Ca2+ oscillations. This has radically affected the

way biochemical oscillations are viewed. Ca2+ oscillations are of interest for a variety

of reasons. First, they occur in a large number of cell types, either spontaneously or

as a result of stimulation by an external signal such as a hormone or a neurotrans-

mitter. Second, it is now clear that, besides the rhythms encountered in electrically

excitable cells, they represent the most widespread oscillatory phenomenon at the cel-

lular level. Third, Ca2+ oscillations are often associated with the propagation of Ca2+

waves within the cytosol, and sometimes between adjacent cells. This phenomenon

has become one of the most important examples of spatio-temporal organisation at

the cellular level. Ca2+ is a highly versatile intra- and inter-cellular signal that op-

erates over a wide temporal range that is now known to regulate many different cel-

lular processes, from cell division and differentiation to cell death [11]. Many of the

Ca2+-signalling components are organised into macromolecular complexes in which

Ca2+-signalling functions are carried out within highly localised environments. These

complexes can operate as autonomous units that can be multiplied or mixed and

matched to create larger, more diverse signalling systems, as illustrated by cardiac

Ca2+ signalling. Rapid highly localised Ca2+ spikes regulate fast responses, whereas

repetitive global transients or intracellular Ca2+ waves control slower responses. Cells

respond to such oscillations using sophisticated mechanisms including an ability to
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interpret changes in frequency. Such frequency-modulated signalling can regulate

specific responses such as exocytosis and differential gene transcription.

In this thesis we shall explore oscillations and waves of cytosolic Ca2+ in both single

and multi-cellular systems from a mathematical perspective. More precisely, we focus

on two models of Ca2+ release for a systematic mathematical and numerical analysis

of Ca2+ dynamics. One of them is a biophysically detailed model which we study

using tools from bifurcation theory, numerical continuation and numerical simulation.

The other is a much simpler minimal model of Ca2+ dynamics that emphasises the

fundamental space and time scales of cellular Ca2+ dynamics and allows for exact

mathematical analysis. For the detailed biophysical model we calculate the speed

and stability of travelling waves as a function of physiologically significant parameters.

The minimal model of Ca2+ dynamics is obtained via a systematic reduction of the

biophysical model and its analytically obtained behaviour is shown to be in excellent

agreement with the original biophysical model. This minimal model is then used to

gain insight into the effects of spatial heterogeneity and biologically realistic sources

of noise on intra- and inter-cellular cell signalling. In particular we pursue issues

of wave propagation, wave propagation failure and the role of noise in generating

coherent whole cell rhythms.

1.1 Experimental observations on Ca2+ oscillations

It has been known for a long time that calcium oscillations operate in periodically

contracting muscle cells (e.g. heart cells) and neurons [115]. However, they were

only first discovered in non-excitable cells in the mid-1980s, notably in oocytes upon

fertilisation by Cuthbertson and Cobbold [40] and in hepatocytes subject to hormone

stimulation by Woods et al. [172, 173]. These direct observations of Ca2+ oscillations

followed earlier theoretical predictions [89, 129] and indirect measurements [130].

Later, Ca2+ oscillations were also found in many other animal cells [10, 16, 62, 82,
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142, 157] as well as in plant cells [111]. The progress of the experimental results on

Ca2+ oscillations and the associated propagation of intracellular Ca2+ waves arising

in recent years has been examined in a series of reviews [7, 8, 12, 14, 33, 39, 55, 76,

112, 128, 131, 167, 168]. We briefly recall the main properties of Ca2+ oscillations as

determined from a large number of experimental studies. Cytosolic Ca2+ oscillations

arise either spontaneously [72, 106] or in response to stimulation by extracellular

signals, with period ranging from nearly one second to tens of minutes, depending

on the cell type. Among the most studied cells, with regard to Ca2+ oscillations, are

cardiac cells, oocytes, hepatocytes, endothelial cells, fibroblasts, pancreatic acinar

cells and pituitary cells. The shape of the oscillations is highly variable (see Figure

1.1). In some cases the oscillations are quasi-sinusoidal, while in others they take the

form of abrupt spikes, which are often preceded by a gradual increase reminiscent

of the pacemaker depolarising potential seen in oscillatory neurons or cardiac cells

[45]. It has been repeatedly observed that oscillations occur only in a certain range of

stimulation and that the frequency of Ca2+ spikes increases with the intensity of the

stimulus. Besides the induction of oscillations by external signals, it is often possible

to elicit a train of Ca2+ spikes by increasing the level of extracellular or intracellular

Ca2+, or the level of inositol 1,4,5-trisphosphate (IP3) [121]. The latter messenger is

synthesised in response to external signals and is known to raise the level of cytosolic

Ca2+ through mobilisation from intracellular stores [9, 15].

1.2 Spatial Ca2+ propagation

The spatial propagation of Ca2+ waves mediated by diffusive transport of calcium ions

has long been observed in a variety of egg types after fertilisation [24, 60, 77, 78, 79].

In these cells, waves of Ca2+ propagate over the cortex, from the site of fertilisation.

The wave-like propagation of Ca2+ signals has now also been observed in other cells in

which Ca2+ oscillations were previously characterised (see for example [1, 13] for some
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Figure 1.1: Typical calcium oscillations from a variety of cell types. A: Hepatoc-

tyes stimulated with vasopressin (VP). B: Rat parotid gland stimulated with carbachol

(CCh). C: Gonadotropes stimulated with gonadotropin-releasing hormone (GnRH).

D: Hamster eggs after fertilisation. The time of fertilisation is denoted by the arrow.

E and F: Insulinoma cells stimulated with two different concentrations of carbachol.

(From [14]).
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reviews). Thus, Ca2+ oscillations and waves appear to be closely related phenomena

[15]. The velocity of Ca2+ waves varies in different cells; the wave propagates at a

rate of the order of 10 µm/s on the surface of oocytes [77, 79], 30 µm/s in hepatocytes

[162], and at a rate close to 100 µm/s in the cytoplasm of cardiac cells [160]. The

most complex wave patterns, exhibiting hot spots, spherical, spiral and planar waves

were demonstrated in Xenopus oocytes [94]. As an example, the image of a Ca2+

spiral wave is given in Figure 1.2 . A single mammalian cell of size 10-20 µm is

50 µm

46 µm

Figure 1.2: Confocal image of regenerative spiral waves of free Ca2+ observed in

Xenopus laevis oocytes (From [94]).

not large enough for such complex patterns, although similar patterns have been

observed in larger cardiac cells and in networks of astrocytes and glia [98]. Also other

experiments indicate that in some cell types (for example epithelia [141] and glia

[26, 27]) Ca2+ triggered by mechanical stimulation may propagate from cell to cell.

This intercellular propagation appears to be mediated by the passage of Ca2+ or IP3

through gap junctions [19], although extracellular messengers such as ATP may be

involved.
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Moreover, high-resolution imaging of Ca2+ in a variety of cell types shows that trav-

elling waves can vary in their appearance. For example, the calcium wave that oc-

curs during fertilisation in mature Xenopus eggs appears to be continuous [57, 120],

whereas the calcium wave in immature Xenopus oocytes propagates as a sequence of

bursts [25, 122, 124, 174]. It is commonly believed that information is encoded in

the time course of the Ca2+ signal. Thus, the distinction between these two modes

of propagation is likely to be of physiological significance. Another interesting as-

pect of intracellular Ca2+ regulation is the generation of global events built up from

elemental local events called puffs. These elementary events in many electrically non-

excitable cells have amplitudes typically ranging from ∼ 50−600 nM, a spatial spread

of ∼ 6 µm and a total duration of ∼ 1 second. Apart from Xenopus oocytes, such

events have subsequently been observed in HeLa cells, neurites and endothelial cells

(reviewed in [22]). In heart and skeletal muscle, where Ca2+ release channels are

spatially organised in clusters, localised Ca2+ release events have also been seen [31].

These events called sparks are analogous to the Ca2+ puffs, although they are usually

faster in onset and decline, and have a more restricted spread (∼ 1 − 3 µm). Ca2+

sparks and puffs are simple examples of the stochastic nature of intracellular Ca2+

dynamics. The timescale on which stochasticity is observed when puffs/sparks are

triggered is of the order of many seconds. However, the origin of the stochastic nature

of Ca2+ release events lies in the individual gating of Ca2+ channels, which occur on

the millisecond timescale.

As regards the physiological significance of Ca2+ oscillations and waves, it is conceiv-

able that the rapid spatial propagation of Ca2+ signals provides a useful communica-

tion mechanism between distinct parts of the cell or between different adjacent cells in

a tissue (see [27, 141]). Calcium signals regulate a large number of cellular processes

including contraction of muscle fibers, release of hormones and neurotransmitters,

synaptic plasticity, sensory perception and adaptation in photoreceptors, exocytosis,

gene expression, gap junction regulation and others.
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1.3 Overview of the thesis

In Chapter 2, we define the main components of the cell and describe important

aspects of Ca2+ dynamics involved in the regulatory mechanisms of Ca2+ signalling

in living cells. We then discuss the basic approaches used in the modelling of Ca2+

oscillations, including the continuous deterministic models of Ca2+ oscillations based

on a description of essential Ca2+ fluxes throughout the cell. Bifurcation analysis

of various biophysical models demonstrates that oscillations are typically associated

with an instability of a fixed point in favour of a stable limit cycle over a range of

parameter values. Moreover, the bifurcation structure for many of the commonly

used biophysical models of Ca2+ oscillations can be surprisingly rich. Three of the

basic models of Ca2+ oscillations in the presence of IP3 (two-pool model of Goldbeter

et al. [63] and one-pool models of De Young Keizer et al. [175] and Atri et al. [2]) are

reviewed in more detail. Interestingly for the DYK model we uncover an interesting

global bifurcation structure (at least for a given set of parameter values). Because

of the success of the DYK model in reproducing experimentally observed behaviour

(such as the open probability of release) we use this as the basis for building a whole

cell model, described in Chapter 3. Chapter 2 also gives a brief overview of some

models exhibiting more complex forms of Ca2+ oscillations, such as periodic bursting

and chaotic behaviour. However, detailed aspects of these types of oscillations will

not be studied in this thesis.

In Chapter 3 we simplify the detailed biophysical DYK model of Chapter 2 using

a mathematical reduction process based on some biologically realistic assumptions

regarding the time scale of binding and unbinding to receptor sites. Travelling wave

behaviour in a whole cell model is then studied in this reduced model. We present

a detailed numerical bifurcation analysis together with a linear stability analysis of

Ca2+ wave propagation. We demonstrate that the model supports an interesting form

of bifurcation structure including global and period doubling bifurcations. A variety
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of propagating patterns are sustained by this model including travelling pulses and

periodic travelling waves, 2n-periodic orbits and 2n-homoclinic orbits. Moreover, a

kinematic theory of irregular wave propagation is used to predict the existence of a

non-periodic travelling wave (that connects two periodic wave trains).

In the DYK model, as well as in other biophysical models of Ca2+ release, insight

into behaviour is typically only possible with numerical analysis. One of the main

ambitions of this thesis is to introduce a minimal model of Ca2+ release consistent with

more detailed biophysical models, yet is analytically tractable. Importantly we shall

introduce a mathematical framework to address issues of Ca2+ release and oscillation.

This framework is based upon the deterministic Fire-Diffuse-Fire (FDF) model of

Keizer et al. [88] which uses a threshold process to mimic the nonlinear properties of

Ca2+ channels. The main advantages of studying FDF type models are the possibility

to analyse them exactly with both continuous and discrete distributions of Ca2+

release sites. In Chapters 4 and 5 we consider continuum and discrete distribution of

release sites respectively.

In Chapter 4, we introduce the generalised version of the FDF model. The distri-

bution of Ca2+ release sites is continuous in this chapter. The generalisation, firstly,

incorporates a time dependent threshold to mimic refractoriness of release sites and,

secondly, the notion of IP3 sensitivity motivated by a reduction of the DYK model.

Mathematical analysis is used to highlight the ability of the generalised FDF model to

describe realistic Ca2+ waves and in particular solitary and periodic waves. The pa-

rameters of the FDF model are constrained using numerical data from the biophysical

DYK model. This allows a direct comparison between these models.

In Chapter 5, we study the FDF model with a more biologically realistic distribu-

tion of release sites. In the first part of the chapter, we investigate how a regular

array of release sites influences the propagation of saltatory travelling waves (with

non-constant profile). By considering calcium stores as idealised point sources we are
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able to explicitly construct solutions of the FDF model that correspond to saltatory

solitary and periodic travelling waves. Moreover, the simplicity of the underlying

deterministic FDF model can lead to further computational improvements. When

considering a discrete set of release sites and calcium puffs or sparks that have a sim-

ple on/off temporal structure the calcium profile can be solved for in closed form. In

the second part of the chapter, by assuming that release times occur on some regular

lattice, we simplify the FDF model even further. The dynamics for release events is

calculated via a thresholding of the calcium profile at a release site. By direct nu-

merical simulation we illustrate that this computationally cheap version of the FDF

model provides an accurate representation of the original model. We shall also demon-

strate that it is both natural and straightforward to generalise our one-dimensional

FDF model to two dimensions. Simulations for both one and two dimensions are

presented with regular and disordered distribution of Ca2+ release sites. Varying

system parameters reveals that the model supports many patterns of wave propaga-

tion behaviour including regular and irregular lurching travelling pulses, colliding and

periodic waves, travelling fronts and spiral waves as well as abortive waves. These

calcium wave formations have been widely observed experimentally in a variety of

living cells.

Although theoretical work on Ca2+ dynamics has increased in recent years (reviewed

in [149]), the spatially extended nature of the cell combined with the stochastic nature

of localised calcium release and the heterogeneous distribution of Ca2+ stores has

received far less attention.

In Chapter 6 we introduce a model of calcium release based upon a stochastic gener-

alisation of the FDF threshold model. The stochastic nature of release is incorporated

via the introduction of a simple probabilistic rule for the release of calcium from inter-

nal stores. We illustrate that this is a natural way to investigate puff/spark to wave

transitions within a spatially extended cell model with a discrete distribution of re-
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lease sites. By avoiding a Markov process description of channel gating we side-step

the need for computationally expensive Monte Carlo type simulations. Functional

forms for the distribution of the incorporated threshold noise can be inferred from

the recent observation of Izu et al. [75] that the probability of release per unit time has

a sigmoidal functional form. Numerical simulations are presented for both one- and

two-dimensional cell models and demonstrate a variety of noise-sustained patterns

of wave propagation. In the parameter regime where deterministic waves exist, it is

possible to identify a critical level of noise defining a non-equilibrium phase-transition

between propagating and abortive structures. A statistical analysis shows that this

transition is the same as for models in the directed percolation universality class [70].

A study of a two-dimensional cell model illustrates that not only does the model sup-

port noisy circular and spiral waves as expected but that it can also exhibit a form

of array enhanced coherence resonance [69, 73, 178]. We find that coherent motion,

in the form of simultaneous and periodic release of calcium from all stores, can be

induced purely by noise.

The Ca2+ oscillations and waves considered in the previous chapters have been char-

acterised in single, and often isolated, cells. However, because many organisms are

multi-cellular, there is a need for the intercellular communication of regulatory sig-

nals. One such form of cellular communication is an intercellular Ca2+ wave that

spreads through multiple adjacent cells. These intercellular Ca2+ waves were first

observed in epithelial and glial cell cultures in response to mechanical stimulation

and neurotransmitters and have been observed later in many other cell types [140].

In Chapter 7, we investigate the issue of wave propagation failure through a cell

culture. Once again we focus on two different models (DYK and FDF). The analysis

(analytical and numerical) of intercellular waves in these two models will be divided

into two parts. In the first part the intercellular Ca2+ wave is mediated by a passive

diffusion of Ca2+ through gap junctions and the level of IP3 concentration is constant
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throughout the tissue. In the second part, passive diffusion of IP3 from the stimulated

cell will be taken into account as well as Ca2+ propagation through the gap junction.

We compare both models of intercellular Ca2+ waves in respect of wave propagation

dependence on gap-junction permeability.

Finally in Chapter 8 we present a summary of major achievements and natural

extensions of this thesis.

Some important results of this thesis were published in [37, 164, 165] and are to

appear in [36].



Chapter 2
Models of calcium oscillations

Cellular Ca2+ dynamics involves the exchange of Ca2+ ions between intracellular

stores and the cytosol, the interior and exterior of a cell or between cells, as well

as transport by diffusion and buffering due to the binding of Ca2+ to proteins, e.g.

calmodulin and calbindin. Intracellular stores are typically located within the mi-

tochondria, endoplasmic reticulum (ER) or sarcoplasmic reticulum (SR). The ER is

an extensive membrane network of tubes and cisternae (sac-like structures) in many

eukaryotic cells, important in the synthesis of proteins and lipids. The SR is the

specific analogue of the ER in the cardiac, smooth and skeletal muscle. The ER/SR

is the principle location of Ca2+ storage within the cell. The area between the plasma

(outside) cell membrane and the ER/SR is called the cytosol, where most of the cel-

lular metabolism occurs. Mitochondria are membrane-enclosed organelles distributed

through the cytosol. They can transiently accumulate calcium during cell stimulation

and provide the energy, for example, for cell movement, division and contraction. A

schematic diagram of a cell with components relevant to Ca2+ dynamics is shown in

Figure 2.1. The active elements of the ionic exchange processes through cell mem-

branes are channels and pumps. Typically channels have an open and closed state

as well as a host of intermediate states, and allow for flux of Ca2+ down its electro-

13
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Figure 2.1: Schematic diagram of the pathways involved in the control of cytosolic

Ca2+ oscillations.

chemical gradient when they are open. Pumps, on the other hand, transport Ca2+

against its electro-chemical gradient requiring a source of energy. The local dynam-

ics of Ca2+ release and uptake can lead to oscillations in the free cytosolic calcium

concentration. Such oscillations are believed to arise via nonlinear interactions be-

tween various cell components, including intracellular stores, pumps and channels and

are often modelled using coupled ordinary differential equation descriptions of these

sub-systems. The complexity of this modelling approach is greatly increased when

spatial aspects, such as spatial separation of receptors, SR/ER microstructure, and

functional distinction between cell periphery and cell bulk, are brought into play. For

theorists, one of the most interesting aspects of Ca2+ dynamics is that local oscil-

lations can be spread by ionic transport to form complex spatio-temporal patterns

such as oscillatory waves, spiral waves, and waves that travel from cell to cell. Not

only are these structures physiologically important (see Chapter 1), they are also

mathematically interesting and challenging to understand in their own right. The
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strength of mathematical models and analysis is twofold: i) mathematical models

help to quantify experimentally obtained data and ii) models yield qualitative insight

into processes which are not experimentally accessible.

The deterministic modelling of Ca2+ signalling has historically been based on a well-

established deterministic apparatus to describe self-sustained oscillations in chemistry

and physics using nonlinear differential equation systems. Local dynamics in these

systems is typically excitable, oscillatory or bistable. For sufficiently large perturba-

tions, excitable dynamical systems respond to small perturbations of a linearly stable

stationary state with a large amplitude excursion, that ultimately returns the system

to rest. Oscillatory dynamical systems are different in that they exhibit sustained

oscillations, typically around an unstable fixed point. Finally, bistability refers to

systems with two stable stationary states, perhaps separated by an unstable state.

In the present chapter, we focus on the temporal organisation of intracellular Ca2+

signals and review some basic approaches in the mathematical modelling of Ca2+

oscillations. Spatio-temporal aspects such as calcium waves are not included in the

mathematical treatments of Ca2+ signalling in this chapter and will be considered

later. Before discussing theoretical models of Ca2+ oscillations, we first overview the

regulatory mechanisms involved in the control of Ca2+ concentration within a cell.

This leads us to a more detailed discussion of the types of channel regulating Ca2+

influx and efflux, the energetic mechanisms underlying refilling of intracellular stores

and the chemical pathways that ultimately lead to calcium release in response to an

external agonist.

2.1 Calcium dynamics

The mechanism of Ca2+ oscillations relies on feedback processes that regulate Ca2+

levels within the cell. Whilst extracellular Ca2+ concentration varies between 1 and 2

mM, Ca2+ concentration in the cytosol is maintained at a resting level between 50-100
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nM. Following cellular stimulation, cytosolic Ca2+ can transiently rise to between 1

and 10 µM [17]. Although increases in cytosolic Ca2+ are necessary for many cellular

processes, sustained elevations in cytosolic Ca2+ are cytotoxic and may lead to cell

death. Thus, it is necessary for the cell to strictly regulate cytosolic Ca2+ levels within

defined limits. In order to achieve this the cell has developed a repertoire of Ca2+

channels, binding proteins, pumps and exchangers [17].

Two classes of oscillations are readily distinguished: those that depend primarily

on the influx of Ca2+ through channels from the extracellular space, and those that

depend primarily on Ca2+ release from internal stores. In this latter class, distinctions

can be made on the basis of whether the release of Ca2+ is dominated by the ryanodine

receptor (RYR), the inositol (1,4,5)- trisphosphate receptor (IP3R) or a combination

of both. IP3Rs are the predominant Ca2+ release channels in non-electrically excitable

(nonmuscle) cells, whereas RYRs are predominant in excitable (muscle) tissues [74].

In response to signals at the cell membrane, Ca2+ is released from the ER/SR into

the cytosol in the form of global or spatially localised elementary events [21, 22]. The

surface cell membrane consists of several different types of Ca2+ channels: voltage-

operated calcium channels (VOCCs), that open in response to depolarisation of the

cell membrane; receptor-operated channels, that open in response to the binding of

an external ligand; second-messenger-operated channels, that open in response to the

binding of a cellular second messenger; and mechanically operated channels, that

open in response to mechanical stimulation. The mechanism of transduction of the

signal at the cell membrane to the ER is dependent on the nature of the initial

stimulus. In all cell types external ligand binding to its receptor channel initiates a

cascade of signals which ultimately results in release of Ca2+ from the ER. The best

characterised of these signals uses the diffusible second messenger IP3. The binding of

an extracellular agonist such as a hormone or a neurotransmitter to a receptor in the

surface cell membrane can cause, via a G-protein link to phospholipase C (PLC), the

cleavage of phosphotidylinositol (4,5)-bisphosphate into diacylglycerol and IP3. IP3
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subsequently diffuses into the cell and binds to an IP3R on the ER resulting in Ca2+

release. [9]. However, in excitable cells, i.e. neurons and muscle, an action potential

or activation of receptor operated channels results in influx of Ca2+ across the cell

membrane which subsequently acts as the messenger to stimulate the RYRs, and also

IP3Rs, to release Ca2+ through an autocatalytic process referred to as calcium-induced

calcium release (CICR) [47, 94]. Both the RYR and IP3R are subject to several levels

of regulation on the cytosolic face where Ca2+ can both promote and inhibit its release

from either channel. At low concentrations Ca2+ stimulates Ca2+ release through the

receptor, whereas at high Ca2+ concentration release is inhibited. Furthermore, at

increasing Ca2+ concentration the IP3R becomes more sensitive to ligand and less

sensitive to Ca2+ dependent inhibition [134]. Thus, Ca2+ potentiates its own release

and can stimulate release from neighbouring receptors. This mechanism of CICR

for generating oscillations in the concentration of cytosolic free Ca2+ is believed to

underlie the waves that propagate via Ca2+ diffusion in a variety of cell types [20].

Of equal importance to the regulation of Ca2+ release from the ER/SR are the mech-

anisms of Ca2+ clearance from the cytosol. This function is performed by a number

of transporters located in the cell membrane and the ER/SR. One such transporter

is the sarco- and endoplasmic reticulum calcium ATPase (SERCA) which is a Ca2+

pump located in the membrane of the SR and ER whose function is to accumulate

Ca2+ into the internal stores using ATP as an energy source [102]. ATP is a ribonu-

cleoside 5’-triphosphate functioning as a phosphate group donor in the cell energy

cycle and carries chemical energy between pathways. SERCA functions are regulated

by both cytosolic and ER/SR conditions. Under resting conditions SERCA is rela-

tively inactive but following an increase in cytosolic Ca2+ the activity of the pump

is increased, resulting in re-sequestration of Ca2+ into the ER [99]. From the other

side, the Ca2+ pumping activity of SERCA is regulated by the Ca2+ content of the

ER. SERCA activity is maximal when the store is depleted and decreases as the store

approaches its maximal capacity [114]. There is also a Na+/Ca2+-exchanger in the
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cell membrane that uses the energy of the Na+ electrochemical gradient to remove

Ca2+ from the cell at the expense of Na+ entry.

Cytosol/cytoplasm

ER/SR

�������
ering

Ca2+

Ca2+

Ca2+

Ca2+

Jchannel Jpump

Jleak

JCa2+

Plasma membrane

Figure 2.2: General scheme of the main processes involved in intracellular Ca2+ os-

cillations.

Many models of Ca2+ oscillations are based on the description of essential fluxes (see

Figure 2.2). Calcium is removed from the cytosol in two principal ways: it is pumped

out of a cell and is sequestered into ER/SR. Calcium influx also occurs via two prin-

cipal pathways: inflow from the extracellular medium through Ca2+ channels in the

surface membrane and release from internal stores. The construction of mathematical

models is based on the formulation of flux balance equations for the various reactions

and transport processes in the particular cell.
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2.2 Theoretical models of Ca2+ oscillations

Two-pool model

One of the earliest models for IP3-dependent Ca2+ release assumes the existence of

two distinct internal stores, one of which is sensitive to IP3, the other is sensitive

to Ca2+ [62, 63, 89]. The model assumes the IP3 produced in response to the ago-

nist stimulation releases Ca2+ from the IP3-sensitive store through IP3Rs. The Ca2+

that is thereby released stimulates the release of further Ca2+ from the Ca2+-sensitive

store. A crucial assumption of the model is that the concentration of Ca2+ in the

IP3-sensitive store remains constant, as the store is quickly refilled from the extra-

cellular medium. A schematic diagram of this model is shown in Figure 2.3. The

Outside the cell

Extrusion (kc)Influx

Uptake (Juptake)

Leak (kf cs)

Calcium-induced
calcium release (Jrelease)

Calcium-sensitive 
        pool (cs)

IP3-sensitive 
        pool

IP3-dependent
release (r)

Inside the cell (c)

Cell membrane

Cytosol

Figure 2.3: Schematic diagram of the calcium fluxes involved in the two-pool model of

Ca2+ oscillations.

concentrations of Ca2+ in the cytosol and in the Ca2+-sensitive pool are denoted by c
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and cs respectively. The model assumes that IP3 causes a steady flux r of Ca2+ into

the cytosol, and that Ca2+ is pumped out of the cell at the rate −kc. Then, assuming

a homogeneous system, the model equations are

dc

dτ
= r − kc− f̃(c, cs), (2.1)

dcs

dτ
= f̃(c, cs), (2.2)

where

f̃(c, cs) =
V1c

n

Kn
1 + cn

︸ ︷︷ ︸
Juptake

−
(

V2c
m
s

Km
2 + cm

s

) (
cp

Kp
3 + cp

)

︸ ︷︷ ︸
Jrelease

− kfcs︸︷︷︸
Jleak

(2.3)

and τ denotes time. The function f̃ describes the dynamics of Ca2+ exchange between

the cytosol and the Ca2+-sensitive pool. The first term Juptake is the rate at which

Ca2+ is pumped from the cytosol into the Ca2+-sensitive pool by an active process,

the second term Jrelease is the rate at which Ca2+ is released from the Ca2+-sensitive

pool, and the third term is the rate at which Ca2+ leaks from the Ca2+-sensitive pool

into the cytosol. Jrelease demonstrates that Ca2+ stimulates its own release through

the positive feedback process of CICR [48, 50]. In this model r denotes the constant

concentration of IP3 and is treated as a control parameter.

It is simple to nondimensionalise the model equations to get

ε
du

dt
= ε(µ− u)− γf(u, v), (2.4)

ε
dv

dt
= f(u, v), (2.5)

f(u, v) = β

(
un

un + 1

)
−

(
vm

vm + 1

) (
up

αp + up

)
− δv, (2.6)

where u and v are the nondimensional concentrations of Ca2+ in the cytosol and

in the Ca2+-sensitive pool respectively, and µ denotes the nondimensionalised IP3
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concentration (for more detailed discussion see [85]). By letting w = u + γv the

two-pool model can be put into the form of a generalised FitzHugh-Nagumo model

for describing excitable membrane [56, 116]

dw

dt
= µ− (w − γv), (2.7)

ε
dv

dt
= f(w − γv, v). (2.8)

The characteristic of FitzHugh-Nagumo type models common to many biological

mechanisms at the cellular level is a linear nullcline for the slow variable and a cubic

nullcline that has either ”N” shape or inverted ”N” shape for the fast variable. The

nullclines (dw/dt = 0, dv/dt = 0) of the two-pool model in Figure 2.4 demonstrate

this well-known structure of excitable system which is sufficient to produce oscillatory

behaviour.

The stability of the steady state (u0, v0) given by

u0 = µ, (2.9)

f(µ, v0) = 0 (2.10)

is determined by the roots of the characteristic equation

λ2 + Hλ− fv

ε
= 0, H =

1

ε
(γfu(u0, v0)− fv(u0, v0) + ε) . (2.11)

Since fv < 0, the roots of the characteristic equation (2.11) have negative real part

(and the steady state is stable) if H > 0, and they have positive real part if H < 0.

At H = 0 the steady state changes stability through a Hopf bifurcation (HB), and at

these points a branch of periodic orbits appears. Oscillatory behaviour in dynamical

systems is most easily summarised by a bifurcation diagram. For their numerical

construction we use the software package AUTO [46], as implemented in XPPAUT

(see Appendix A.1). The bifurcation diagram for the two-pool model as a function of
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the main parameter µ is shown in Figure 2.5. As µ is increased, oscillations appear

at a supercritical HB and disappear in the same manner. The two bifurcation points

are connected by a branch of stable periodic orbits. Oscillations occur for a constant

value of µ. This shows that the CICR mechanism is sufficient to produce oscillations

in the absence of IP3 oscillations. The function of IP3 here is to produce a steady

influx of Ca2+ into the cytosol from the IP3-sensitive pool, and this steady influx

drives Ca2+ oscillations. A typical example of oscillations given in Figure 2.6 shows

pronounced spike-like behaviour, in agreement with many experiments.

0.2

0.4

0.6

0.8

1

1.2

1 1.4 1.8 2.2 2.6 3
w

v

dw/dt=0

dv/dt=0

Periodic orbit

Unstable steady state

Figure 2.4: Nullclines (solid curves) and sample limit cycle of periodic orbit (dashed

curve) of the two-pool model in the form given by equations (2.7) and (2.8) for the

following parameters: µ = 0.4, γ = 2, ε = 0.04, β = 0.13, α = 0.9, δ = 0.004, n = 2,

m = 2, p = 4. Intersection of the nullclines corresponds to the steady state value.

In the two-pool model Ca2+ stimulates its own release, while the flow of Ca2+ from

the internal store is terminated when the concentration of Ca2+ in the internal store

becomes too low. However, more recent experimental evidence indicates that not

only does Ca2+ stimulate its own release, it also inhibits it, but on a slower time
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Figure 2.5: Bifurcation diagram of the two-pool model for the following parameters:

γ = 2, ε = 0.04, β = 0.13, α = 0.9, δ = 0.004, n = 2, m = 2, p = 4. Circles denote

amplitude of periodic orbit. HB: Hopf bifurcation.
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Figure 2.6: An example of periodic oscillations in the two-pool model for µ = 0.32.
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scale [123]. It is believed that this sequential activation and inactivation of the IP3R

by Ca2+ is the fundamental mechanism underlying IP3-dependent Ca2+ oscillations

and waves. A number of models which incorporate this hypothesis have appeared

and been reviewed, for example, in [153] and [161]. Two basic modelling approaches

have been developed. One of them, developed by De Young and Keizer [175], mimics

the molecular subunit configuration of the IP3R to reflect the activation/inactivation

sequence of the channel that results from the binding of Ca2+ and IP3 to the IP3R.

An alternative approach, explored by Atri et al. [2] is the construction of a model

based on the kinetic data of Ca2+ release through the IP3R of the same form as

FitzHugh-Nagumo type models [56, 116]. We now consider these two approaches in

more detail.

The De Young Keizer model

The biophysical DYK model [175] assumes that the IP3R is composed of three in-

dependent and identical subunits. Each of the subunits includes a binding site for

activating IP3, activating Ca2+ and inactivating Ca2+. Only binding of IP3 on the

activating IP3 site and binding of Ca2+ on the Ca2+ activating site leads to a Ca2+

flux through the receptor. Each state of the subunit is given by xijk, i, j, k ∈ {0, 1},
where the first index refers to the IP3 binding site, the second to the Ca2+ activation

site, and the third to the Ca2+ inactivation site. If any of the indices i, j or k are

equal to 1, the binding site is occupied; otherwise the binding site is unoccupied. The

model generates eight possible receptor states with correlated transitions between

them (see Figure 2.7) where p and c denote IP3 and Ca2+ concentrations respectively.

The differential equations for the receptor states are based on mass-action kinetics.

For example,

dx000

dt
= −(v1 + v2 + v3), (2.12)
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Figure 2.7: Schematic binding diagram for the IP3 receptor model of De Young and

Keizer.

where

v1 = k1px000 − k−1x100 (2.13)

v2 = k4cx000 − k−4x001 (2.14)

v3 = k5cx000 − k−5x010. (2.15)

Since experimental data indicates that the receptor subunits act in a cooperative

fashion, the model assumes that the IP3R passes Ca2+ current only when three sub-

units are in the state x110, and thus the open probability of the receptor is x3
110. The

full DYK model consists of seven differential equations for the receptor states (with

the constraint
∑

i,j,k xijk = 1, expressing conservation of probability) and with the

following differential equation for Ca2+ dynamics

dc

dt
= (r1x

3
110 + r2)(cer − c)︸ ︷︷ ︸

Jreceptor flux

− r3c
2

c2 + k2
p︸ ︷︷ ︸

Jpumping

, (2.16)

where cer denotes the concentration of Ca2+ in the ER. The first term in this equation

is the Ca2+ flux through the IP3R, and it is proportional to the concentration differ-

ence between the ER and the cytosol. A constant r2 characterises an IP3-independent
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k1 400 µM−1s−1 k−1 52 s−1 r1 20 s−1

k2 0.2 µM−1s−1 k−2 0.21 s−1 r2 0.004 s−1

k3 400 µM−1s−1 k−3 377.36 s−1 r3 1.2 µM−1s−1

k4 0.2 µM−1s−1 k−4 0.029 s−1 kp 0.1 µM

k5 20 µM−1s−1 k−5 1.65 s−1 cer 1 µM

Table 2.1: Parameters of the DYK model.

leak from the ER into the cytosol. The second term describes the action of Ca2+ AT-

Pases that pump Ca2+ from the cytosol into the ER. Experimental data shows that

the Ca2+ ATPase is cooperative, with a Hill coefficient of 2. One of the key proper-

ties used in formulating models of the IP3R is the experimental analysis of the open

channel probability as a function of [Ca2+]. Bezprozvanny et al. [18] showed that this

open probability is a bell-shaped function of cytosolic Ca2+. Thus, at low [Ca2+], an

increase in [Ca2+] increases the open probability of the receptor, while at high [Ca2+]

an increase in [Ca2+] decreases the open probability. Parameters in the model are

usually chosen to obtain agreement with this steady-state data. Figure 2.8 shows the

calculated equilibrium open probability of the IP3R as a function of cytosolic Ca2+

concentration for the parameters given in Table 2.1. This plot demonstrates this

bell-shaped function of open probability that realistically decreases for lower levels of

[IP3]. The kinetic property of the IP3R that the receptor is activated quickly by Ca2+,

but inactivated by Ca2+ on a slower time scale, is incorporated in the magnitude of

the rate constants.

The bifurcation diagram of the DYK model as a function of the main bifurcation pa-

rameter p is shown in Figure 2.9. This diagram demonstrates that the curve of steady

states folds up, forming two limit points (LPs). Between these LPs three solutions

exist for a small window of p values. For low and high IP3 concentration there is

only one stable fixed point. For the parameter values of p where the system has an

unstable steady state periodic oscillations occur. The branch of stable periodic orbits
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Figure 2.8: The steady-state open probability of the IP3R, as a function of cytosolic

[Ca2+] from the DYK receptor model at three different IP3 concentrations.

is broken into two different branches, both of which arise in a homoclinic bifurcation

(HC) and end in a supercritical HB. A typical example of periodic oscillations in the

DYK model is shown in Figure 2.10. Though for our choice of the parameters the

DYK model demonstrates a complicated form of bifurcation structure, this is not

always the case. For some parameters in the physiological range, the model shows a

bifurcation structure similar to that seen in the two-pool model. This is illustrated

in Figure 2.11 where with an increase in IP3 periodic orbits appear via a supercritical

HB and disappear in the same manner. These HB points are connected by a stable

branch of periodic orbits.

The Atri model

One of the other approaches to modelling Ca2+ release, suggested by Atri et al. [2],

assumes that Ca2+ inactivates the IP3 receptor in a cooperative manner. In this

model the IP3R consists of three binding domains, the first of which binds IP3, the

other two binding Ca2+, and it is assumed that the receptor passes Ca2+ current only
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Figure 2.9: Bifurcation diagram of the DYK model. Circles denote amplitude of

periodic orbit. HB: Hopf bifurcation; HC: homoclinic bifurcation.
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Figure 2.10: An example of periodic orbit in the DYK model for p = 0.35.
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Figure 2.11: Bifurcation diagram of the DYK model for the following parameters:

r1 = 6, r2 = 0.108, r3 = 0.76, cer = 1.69. Other parameters are as in Table 2.1.

when IP3 is bound to domain 1, Ca2+ is bound to domain 2 and is not bound to

domain 3. Each binding domain which is independent of the other domains consists

of a number of binding sites. If p1 is the probability that IP3 is bound to domain 1,

p2 is the probability that Ca2+ is bound to domain 2, and 1 − p3 is the probability

that Ca2+ is bound to domain 3, then the steady-state Ca2+ flux through the IP3R

is given by

J = kfp1p2p3 (2.17)

for some constant kf . The probabilities pi, i = 1, . . . , 3, have been chosen such that

J agrees with the steady-state experimental data. Moreover, to complete the model

it is assumed that p1 and p2 are instantaneous functions of [Ca2+] and [IP3], but that

p3 acts on a slower time scale, so that

J = kfp1p2h, (2.18)

where h is a time-dependent inactivation variable. Thus, the model satisfies the
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b 0.11 k1 0.7 µM

β 0.02 µMs−1 k2 0.7 µM

γ 2 µMs−1 kγ 0.1 µM

τh 2 s kf 8.1 µMs−1

Table 2.2: Parameters of the Atri model.

following equations

dc

dt
= kfµh

(
b +

(1− b)c

k1 + c

)
− γc

kγ + c
+ β (2.19)

τh
dh

dt
=

k2
2

k2
2 + c2

− h, (2.20)

where c denotes Ca2+ concentration, and b, k1, k2, γ, kγ and τh are constants. The first

term in equation (2.19) is the Ca2+ flux through the IP3 receptor. In a fashion similar

to the DYK model, the second term represents pumping of Ca2+ out of the cytosol

into the ER, and β represents a constant leak into the cytosol. µ is an increasing

function of IP3 concentration and is treated as the main bifurcation parameter. The

values of other parameters are given in Table 2.2.

In Figure 2.12 we show the nullclines (dc/dt = 0, dh/dt = 0) of the Atri model for

a fixed value of µ and the phase trajectory that corresponds to a periodic solution.

Similar to the DYK model, the steady-state open probability of the IP3R in the Atri

model is a bell-shaped curve demonstrating a decrease in open probability for low

and high cytosolic Ca2+ and increase for some intermediate Ca2+ level (see Figure

2.13). As expected the probability decreases with a decrease in IP3 concentration.

The bifurcation diagram of this model is shown in Figure 2.14 and a typical example

of a stable periodic oscillation is shown in Figure 2.15. Note that the Atri model

exhibits oscillations in a manner similar to the DYK model (with two HB points

and two branches of periodic orbits both of which arise in a HC bifurcation), though
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Figure 2.12: Nullclines (solid curves) and sample limit cycle of periodic orbit (dashed

curve) of the Atri model for µ = 0.7. Intersection of the nullclines corresponds to the

steady state value.
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Figure 2.13: The steady-state open probability of the IP3R, as a function of cytosolic

[Ca2+] from the Atri receptor model at three different values of µ.
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Figure 2.14: Bifurcation diagram of the Atri model. Circles denote amplitude of

periodic orbit. HB: Hopf bifurcation; HC: homoclinic bifurcation.
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Figure 2.15: An example of periodic oscillations in the Atri model for µ = 0.6.
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there are some differences between these two models. First, the Atri model does not

include the factor (cer − c) in the term describing the IP3-sensitive Ca2+ current.

Thus, it assumes that the concentration of Ca2+ in the ER is so high, that depletion

of the ER has only a negligible effect on intracellular Ca2+ dynamics for most of

the physiological regime. Also the form of the pumping term is different from that

in the detailed DYK model, which uses a Hill equation with coefficient 2. There

is experimental evidence that the form used in the DYK model is a more accurate

description of the Ca2+ ATPase found in a variety of cell types [99]. Despite these

differences, the similarities between the bifurcation structures of these two models

suggest strongly that fast activation and slow inactivation of the IP3R by Ca2+ is a

significant mechanism underlying Ca2+ oscillations.

Bursting and chaos

As mentioned in the previous chapter, experimental results may show more complex

forms of Ca2+ dynamics, for example, periodic or chaotic bursting. Such patterns

of complex oscillations have been studied intensely in the case of transmembrane

potential oscillations in electrically excitable cells [28, 29, 62, 85] and similar patterns

are seen in Ca2+ bursting. One minor difference is that while often in electric bursting,

each active phase comprises several consecutive, large spikes with nearly the same

amplitude, in Ca2+ bursting single large spikes are followed by smaller ’secondary’

oscillations.

These complex Ca2+ oscillations are typically believed to arise by the interplay be-

tween two oscillatory mechanisms. Shen and Larter [144], for example, have demon-

strated regular bursting and a transition to chaos in a model involving differential

equations for cytosolic Ca2+, endoplasmic Ca2+ and IP3. Another model giving rise

to bursting is based on the previously discussed two-pool model [63] with the Ca2+

level in the IP3-insensitive pool treated as a dynamical variable [23].
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More recently another explanation of complex intracellular Ca2+ oscillations has been

proposed [65, 108] where Ca2+ sequestration by mitochondria and the Ca2+ binding

to cytosolic proteins is taken into account. These studies extend earlier work on

modelling the possible mitochondrial modulation of Ca2+ signals [109]. Numerical

simulations of these models demonstrate simple Ca2+ oscillations, periodic and ape-

riodic bursting and chaos under variation of parameter values. A model proposed

by Kummer et al. [90] uses variables for cytosolic Ca2+, endoplasmic Ca2+ and the

concentrations of active subunits of a G-protein and active PLC. This model shows

particularly good agreement with experimental observations in two respects. First,

each oscillation period starts with a large, steep spike followed by a number of pulses

of decreasing amplitude around an elevated mean value. Second, varying the model

parameters, one finds that the difference in stimulation nature can induce (periodic

or aperiodic) bursting or regular oscillations (see Figure 2.16 for an example of typical

chaotic bursting).

0

2

4

6

8

20 40 60 80 100 120
t (s)

[Ca
2+

]

Figure 2.16: An example of chaotic bursting in the Kummer model [90].
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Summary

In this chapter we have described the main components in a single cell such as the

ER/SR, cytosol, calcium receptor channels and pumps that are involved in the regula-

tory mechanisms of cellular Ca2+ dynamics. We have also discussed some of the main

theoretical models proposed for intracellular Ca2+ oscillations (for further reviews see

[54, 85, 143]). A numerical bifurcation analysis of these models shows that the gener-

ation of Ca2+ oscillations occurs in a similar fashion under parameter variation, even

though the model equations differ in their particular forms. We conclude that the

major mechanism for generating oscillations in system with IP3R is fast activation of

IP3R by IP3 and slow inactivation by Ca2+. The extension of these basic models may

lead to the formation of more complex pattens of Ca2+ oscillations such as bursting

and chaos observed experimentally. However, we do not consider these types of Ca2+

signals in this thesis.



Chapter 3
The De Young Keizer model

In the preceding chapter, some of the standard models underlying Ca2+ oscillations

and a review of their properties were introduced. One of the more popular of these

is the DYK model [175] based around a detailed description of the dynamics for

IP3Rs. Firstly, this model makes it plausible that the experimental activation and

inactivation by cytosolic Ca2+ of the IP3 receptor/channel is sufficient to produce

oscillations in calcium concentration. Secondly, the complete mechanism involves

only a single internal pool of Ca2+, the ER/SR. It is believed to be the first model

that explains oscillations on the basis of only the IP3 receptor/channel and a single

Ca2+ pool.

The present chapter is dedicated to a study of travelling wave behaviour in this model

using a systematic numerical bifurcation analysis. For the most recent set of exper-

imentally determined parameter values the model supports an interesting form of

bifurcation structure including global bifurcations. We also present a linear stability

analysis of solutions and a kinematic theory of wave propagation based around dis-

persion curves for periodic waves. This allows us to predict the existence of travelling

waves which connect periodic orbits. The prediction is subsequently confirmed with

36
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direct numerical simulations.

3.1 Reduction of the De Young Keizer model of Ca2+

release

The model developed by De Young and Keizer [175] describes IP3 dependent Ca2+

oscillations between the ER and the cytosol. As the model has been explained in detail

in the previous chapter, we give only a brief description here. The IP3R model has

eight possible receptor states. Transitions between these states are shown in Figure

2.7, where p and c denote IP3 and Ca2+ concentrations respectively. Seven differential

equations based on mass-action kinetics together with the constraint
∑

i,j,k xijk = 1

(conservation of probability) form a mathematical model of the IP3R. The model

assumes that IP3R releases Ca2+ only when three subunits are in the state x110,

i.e. with one IP3 and one activating Ca2+ bound. Thus the open probability of the

receptor is x3
110. The set of differential equations for the receptor states are combined

with the differential equation (2.16) for Ca2+ dynamics describing fluxes from the ER

to the cytosol (Ca2+ release from IP3Rs and constant leakage) and back (the action

of SERCA pumps).

The complexity of such a detailed receptor model provides motivation to simplify the

model with the retention of its essential properties. One simplification of the DYK

model [175] was suggested by Li and Rinzel [96] who have shown that the original

full model can be approximated by an excitable system of Hodgkin-Huxley form [71].

The Hodgkin-Huxley equations are the first quantitative model of the propagation

of an electrical signal along a squid giant axon. The model of Hodgkin and Huxley

was originally used to explain the action potential in the long giant axon of a squid

nerve cell, but the ideas have since been extended and applied to a wide variety of

excitable cells (see [85] for an excellent review). The experimental observation that
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IP3 and Ca2+ bind quickly to the activating site gives rise to the assumption that the

receptor is in a quasi-steady state with respect to IP3 binding and Ca2+ activation

[86, 96, 161]. This is implied by the parameter values for the detailed receptor model

shown in Table 2.1, where ki and k−i, i = 1, 3, 5, are significantly larger than ki

and k−i, i = 2, 4. Thus, the receptor states can be arranged into two groups: those

without Ca2+ bound to the inactivating site (x000, x010, x100 and x110) called group I

states, and those with Ca2+ bound to the inactivating site (x001, x011, x101 and x111)

called group II states. Because the binding of IP3 and the binding of Ca2+ to the

activating site are assumed to be fast processes, within each group the binding states

are at quasi-steady state with respect to transitions within the group. The differential

equations governing the states in group I are

dx000

dt
= −x000(k5c + k1p + k4c) + k−1x100 + k−4x001 + k−5x010, (3.1)

dx100

dt
= −x100(k5c + k−1 + k2c) + k1px000 + k−2x101 + k−5x110, (3.2)

dx010

dt
= −x010(k−5 + k1p + k4c) + k−1x110 + k−4x011 + k5cx000, (3.3)

together with the equation for the inactivation variable called h

h =
∑

i,j

xij0. (3.4)

Assuming that the group I binding sites are all in quasi-steady state, the quasi-

steady-state equations are obtained by setting dx000/dt = dx100/dt = dx010/dt = 0

and neglecting slow terms. Thus,

x000(k5c + k1p) = k−1x100 + k−5x010, (3.5)

x100(k5c + k−1) = k1px000 + k−5x110, (3.6)

x010(k−5 + k1p) = k−1x110 + k5cx000. (3.7)

These equations may be solved together with the constraint (3.4) to give the group I
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state probabilities which are found as

x000 =
K1K5h

(p + K1)(c + K5)
, x100 =

K5ph

(p + K1)(c + K5)
, (3.8)

x010 =
K1ch

(p + K1)(c + K5)
, x110 =

pch

(p + K1)(c + K5)
, (3.9)

where Ki = k−i/ki. An identical procedure applied to the group II receptor states

gives the quasi-steady-state equations for that group

x001 =
K3K5(1− h)

(p + K3)(c + K5)
, x101 =

K5p(1− h)

(p + K3)(c + K5)
, (3.10)

x011 =
K3c(1− h)

(p + K3)(c + K5)
, x111 =

pc(1− h)

(p + K3)(c + K5)
. (3.11)

To derive a differential equation for h, we add the differential equations for the group

I states with the inclusion of transitions between the group I and group II states and

substitute all the quasi-steady-state expressions to get

dh

dt
=

[
k−2p + k−4K3

p + K3

]
(1− h)−

[
(k−4K1K2 + k−2K4p)c

K2K4(p + K1)

]
h. (3.12)

Thus, by regarding the receptor as being in a quasi-steady state with respect to IP3

binding and Ca2+ activation the seven differential equations describing the kinetics

of IP3 receptor in the full DYK model is reduced to just one. Therefore, the reduced

model is given by the two differential equations, one of which is the Ca2+ dynamics

equation (2.16) with

x110 =
pch

(p + K1)(c + K5)
(3.13)

and another is the differential equation (3.12) for h. The dynamics of the inactivation

variable h is reminiscent of that of the gating variables in the Hodgkin-Huxley model

of nerve membrane [71] and can be written in the form

τ(c)
dh

dt
= h∞(c)− h, (3.14)
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where

h∞(c) =
β

α(c) + β
, τ(c) =

1

α(c) + β
, (3.15)

with

α(c) =
(k−4K1K2 + k−2K4p)c

K2K4(p + K1)
, β =

k−2p + k−4K3

p + K3
. (3.16)

In a certain range of the parameter p, the system has an excitable steady state, i.e.

small (subthreshold) perturbations of the steady state decay exponentially, but larger

(superthreshold) perturbations result in a large transient before the return to steady

state. In Figure 3.1 we show the nullclines (dc/dt = 0, dh/dt = 0) of the reduced

DYK model for the fixed value of p and the phase trajectory that corresponds to the

periodic solution. The intersection of two nullclines corresponds to the steady state

value. The typical periodic behaviour is represented in Figure 3.2 showing that the

oscillations are very spike-like.

Oscillatory behaviour in the model is most easily summarised with a bifurcation

diagram, using p as the main bifurcation parameter. A numerically constructed bi-

furcation diagram of the reduced model is shown in Figure 3.3. The curve of steady

states is folded, so that for a small window of p values there are three solutions. For

high and low p there is only stable fixed point. For the parameter values of p where

the system has an unstable steady state periodic oscillations occur and the figure

shows the maximum and minimum of the periodic orbit. In fact there are two dis-

connected branches of stable periodic orbits, both of which arise in a HC bifurcation

and end in a supercritical HB. Oscillations of Ca2+ first occur with a large period

and a very spiky profile. As p increases the period of oscillations rapidly decreases,

as illustrated in Figure 3.4. Note that the bifucration diagram of the reduced DYK

model is in good qualitative agreement with that of the full model shown in Figure

2.9. The main difference is in the amplitude of the limit cycle oscillation close to

the second HB. In the full DYK model the amplitude is slightly smaller than in the



CHAPTER 3. THE DE YOUNG KEIZER MODEL 41

0

0.2

0.4

0.6

0.8

1

h

0 0.2 0.4 0.6 0.8

c

dh/dt=0

dc/dt=0

(c,h)
_ _

Periodic orbit

Figure 3.1: Nullclines (solid curves) and the phase trajectory (dashed curve) corre-

sponding to the periodic solution of the model obtained for the parameter value p = 0.6.

Intersection of the nullclines corresponds to the steady state (c, h).
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Figure 3.2: An example of a typical periodic orbit of the receptor model for p = 0.6

and the initial values (c, h) = (0.24, 0.61).
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reduced model. Importantly, the reduced model captures the essential features of the

full model, namely a window of oscillations between two HBs, with three fixed points

near the first of these. This suggests that the assumptions used in the mathematical

reduction process are both realistic and effective for simplification of the DYK model.
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Figure 3.3: Bifurcation diagram of the reduced DYK model. Circles denote amplitude

of periodic orbit. HB: Hopf bifurcation; HC: homoclinic bifurcation.

3.2 Travelling waves in the model

As we discussed earlier in Chapters 1 and 2, oscillations of intracellular calcium do

not often occur uniformly throughout the cell, but are organised into repetitive intra-

cellular waves [1, 9, 79, 136]. In large cells such as Xenopus oocytes, the intracellular

waves develop a high degree of spatial organisation, forming concentric circles, plane

waves, and multiple spirals [92, 93, 94].

The observed Ca2+ waves in many types of cells are believed to be the result of Ca2+
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Figure 3.4: The period of the periodic orbit in the DYK model as a function of p.

diffusion between Ca2+ release sites. Although travelling waves cannot be explained

by diffusion in all types of cells, it is a reasonable assumption for modelling intra-

cellular Ca2+ waves. According to this hypothesis, the cell cytosol forms either an

excitable or an oscillatory system. In either of these cases the linking of release sites

by diffusion can lead to coordinated waves of high Ca2+ concentration.

In actual physiological systems, cytosolic calcium is strongly buffered in the cell. Free

Ca2+ ions typically constitute only 1% of the total calcium in the cytosol and mea-

surements in cells indicate that buffer-bound calcium is at least an order of magnitude

less mobile than free Ca2+ [91]. Generally speaking, these buffers are poorly mobile,

and they reduce both the amount of free calcium and its ability to diffuse. Detailed

models of calcium buffering have been studied by some researchers [80, 117, 119, 138].

Nowycky and Pinter [119], in particular, did a highly detailed study of the effects of

various types of calcium buffers.
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The chemical reaction for calcium buffering can be represented by the reaction

P + Ca2+
k+



k−

B, (3.17)

where P is the buffering protein and B is buffered calcium. If we let b and c denote

the concentration of buffer with Ca2+ bound and the concentration of free Ca2+

respectively, then a simple model of calcium buffering is given by the following system

of equations

∂c

∂t
= Dc∇2c + f(c) + k−b− k+c(bt − b), (3.18)

∂b

∂t
= Db∇2b− k−b + k+c(bt − b), (3.19)

where k− and k+ are the rates of Ca2+ release from the buffer and uptake by the

buffer respectively; bt is the total buffer concentration, and f(c) denotes all the other

reactions involving free Ca2+ (for example, channel characteristics, Ca2+ pumps, Ca2+

leak etc.). Dc and Db define the diffusion coefficients of Ca2+ and buffer accordingly.

If the buffer has fast kinetics, its effect on the intracellular Ca2+ dynamics can be

simply analysed. Assuming that k− and k+ are large compared to the time constant

of calcium reaction, we take b to be in the quasi-steady state k−b− k+c(bt − b) = 0,

and so

b =
btc

K + c
, K = k−/k+. (3.20)

It follows that

∂c

∂t
+

∂b

∂t
= (1 + V )

∂c

∂t
, V =

btK

(K + c)2
. (3.21)

Combining this equation with (3.18) and (3.19), we obtain

∂c

∂t
=

1

1 + V

(
∇2

(
Dcc + Dbbt

c

K + c

)
+ f(c)

)

=
1

1 + V

(
(Dc + DbV )∇2c− 2DbV

K + c
|∇c|2 + f(c)

)
. (3.22)
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We see that nonlinear buffering changes the model and that Ca2+ obeys a nonlinear

diffusion-advection equation, where the advection is the result of Ca2+ transport by

a mobile buffer [169]. The effective diffusion coefficient is a linear combination of the

two diffusion coefficients Dc and Db and lies somewhere between the two. If the buffer

is not mobile, i.e. Db = 0, then (3.22) reverts to a reaction-diffusion equation, with a

reduced diffusion coefficient.

Models with fast, immobile and unsaturated buffers have been considered by a number

of authors [85, 91, 152, 156, 169]. There has been relatively little work done on Ca2+

transport by mobile buffers. However, it is known that inclusion of mobile buffers does

not tend to eliminate an existing wave [152], although it can cause the appearance

of two stable waves in some cases [148]. Little else is known about their effects on

qualitative wave properties. In this thesis we ignore the complicating effects of Ca2+

buffers assuming that calcium buffering is included implicitly in the model (in both

the cytosol and the ER) by treating all fluxes as effective fluxes, and using a small

diffusion coefficient for Ca2+. This is a realistic assumption in light of recent work

that indicates buffer mobility has only a limited effect on wave properties [155]. Thus

it is likely that inclusion of mobile buffers would have no qualitative effects on our

results.

For the generation of Ca2+ waves in the model we add a term D∇2c to the right

hand side of equation (2.16), where D is an effective diffusion coefficient. We shall

restrict our attention to one spatial dimension for a detailed understanding of wave

propagation using a mixture of analysis and numerics. We also ignore any effects

of heterogeneity within a single cell. Though this assumption cannot be justified on

physiological grounds, the effects of discreteness on wave propagation are unlikely

to be understood until wave propagation in a homogeneous medium is understood.

Later, in Chapter 5, we relax the assumption of homogeneity.

For travelling waves with fixed velocity s it is convenient to rewrite the DYK model
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in the comoving reference frame where ξ = x− st. A transformation into this frame

yields

∂tc = D∂2
ξ c + s∂ξc + f1(c, h) (3.23)

∂th = s∂ξh + f2(c, h), (3.24)

where

f1(c, h) = (r1x
3
110 + r2)(cer − c)− r3c

2

c2 + k2
p

, (3.25)

f2(c, h) =
h∞(c)− h

τ(c)
. (3.26)

In the comoving frame, travelling waves with speed s correspond to stationary solu-

tions defined by ∂tc = ∂th = 0. Hence, they can be found by studying solutions to

the travelling wave ODEs

dc

dξ
= w, D

dw

dξ
= −sw − f1(c, h), s

dh

dξ
= −f2(c, h). (3.27)

Travelling pulses correspond to a homoclinic orbit in these equations, whilst periodic

wave-trains correspond to limit cycle oscillations. Fixed points of the travelling wave

ODEs correspond to homogeneous states of the spatially extended model.

We present a numerical analysis of the travelling wave ODEs for the DYK model given

by (3.27), treating p = [IP3] as the physiologically significant bifurcation parameter.

Homoclinic orbits are expected to arise as the limit of periodic orbits as the period

tends to infinity. All numerically computed homoclinic orbits presented here are just

periodic orbits with large period, which for practical purposes we take as 104.

3.2.1 Bifurcation analysis

For any fixed value of s we can construct the bifurcation diagram similar to that in

Figure 3.3 and find the values of p at which Hopf bifurcations occur. These bifurcation

points can be continued in the (p, s) parameter plane. In Figure 3.5 we trace the locus
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of Hopf bifurcations labeled HB, as well as three branches of homoclinic orbits labeled

HC defining solitary travelling pulses. The Hopf bifurcation curve forms a distinct

loop since the curve of steady states of Ca2+ oscillations has the S-shape as shown in

Figure 3.3. The behaviour of the system as s→∞ is exactly that of the model in the

absence of diffusion, as expected from the general theory [103]. Thus, for large values

of s there are two Hopf bifurcations and only two homoclinic bifurcations (labelled

(B) and (C)). The branch of periodic orbits that originates on the right most Hopf

bifurcation ends in a homoclinic bifurcation on branch B, while the branch of periodic

orbits arising from the left most Hopf bifurcation ends in a homoclinic bifurcation on

branch C.

For intermediate values of s only one of the three homoclinic branches (labelled (A))

occupies a significant window of p values. This homoclinic branch arises from the

branch of periodic orbits that originates on the right most Hopf bifurcation and

solitary waves on this branch fail to propagate if p is too small. We now discuss some

aspects of this bifurcation diagram which are interesting from a dynamical systems

perspective.

First of all, we take a closer look at the upper part of homoclinic orbit branch A

and show a magnified view of Figure 3.5 in Figure 3.6. The homoclinic branch A

is found to end at a T-point [61]. This is a point where a heteroclinic cycle exists

between a saddle and a saddle focus. Note that global bifurcations in this model can

be directly linked to windows of parameter space where there are three fixed points.

Previous work by Glendinning and Sparrow [61] predicts the existence of a winding

homoclinic branch near a T-point. This phenomenon is clearly seen in Figure 3.6,

where the homoclinic branch B connects to homoclinic branch A in a spiral. Figure

3.7 (A and B) shows the heteroclinic cycle between two fixed points at the T-point: a

whole cycle and magnified view of the cycle in the neighbourhood of the saddle focus

and the saddle point. The spiral of homoclinic orbit occurs when the homoclinic orbit
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Figure 3.5: Two-parameter bifurcation diagram of the travelling wave equations. HB:

the curve of Hopf bifurcation points; HC: branches of homoclinic orbits.

begins and ends at the saddle point. The spiral path of the branch of homoclinic orbit

is a result of the spiral nature of the trajectory in the neighbourhood of the saddle

focus.

Next we examine the lower part of homoclinic orbit branch C using the magnified

view presented in Figure 3.8. As the speed of travelling wave decreases, folds in the

homoclinic branch C occur before the branch intersects a curve of Hopf bifurcation

points. Balmforth et al. [5] have shown that the resulting oscillations in the branch of

homoclinic orbits correspond to homoclinic orbits that make multiple loops around

one of the other steady states before returning to the starting point. Just such an

orbit is presented in Figure 3.9, which is taken from branch C at a point near where

the branch intersects the locus of Hopf points. For comparison Figure 3.10 shows a

homoclinic orbit from branch C before the branch starts to fold. This orbit goes once

around another steady state before returning to the rest.
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Figure 3.6: Magnified view of the upper part of Figure 3.5 where homoclinic branch

A connects to homoclinic branch B at a T-point.

This form of bifurcation structure has also been observed by Sneyd et al. [154] in a

numerical analysis of travelling waves in a model of pancreatic acinar cells. We briefly

present the main physiology of their model. The model of Sneyd et al. assumes that

there are two different shut states, S and S̃, and Ca2+ regulates the interconversion

of the receptor between these two states. Similary, there are two open, O and Õ, and

two inactivated states, I1 and Ĩ1. Their model of an IP3R is based on the binding

diagram shown in Figure 3.11, where p and c denote IP3 and Ca2+ concentrations

respectively. Since IP3 can bind to either shut state, and convert it to an open state,

the concentration of Ca2+ will determine the rate at which receptors are opened by

IP3. In a similar fashion, [Ca2+] controls the rate of receptor inactivation, and the

rate of recovery from inactivation. By using a standard assumption that opening

of the receptor by IP3 binding is a fast process compared to receptor inactivation

and recovery from inactivation, the model of Sneyd et al. reduces to two equations.

Similar to the Li-Rinzel reduced DYK model, one equation expresses conservation

of calcium in the cytoplasm, and the other describes the gating dynamics of the
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Figure 3.9: A homoclinic orbit from the marked point 1 in Figure 3.8.
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Figure 3.11: A schematic diagram of the full receptor model of Sneyd et al. [154].
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IP3R. The concentration of Ca2+ is affected by diffusion, IP3Rs, calcium pumps, and

leakage,i.e.

∂tc = D∂2
xc + Jr(c, h, p)− Jp(c) + Jl, (3.28)

with the diffusion coefficient D; Jr(c, h, p) denotes the influx through IP3Rs; Jp(c) the

ATPase-driven Ca2+ flow from the cytoplasm to the ER (SERCA pumps) as in the

DYK model (see equation (2.16)); and Jl indicates the constant calcium leaking into

the cell. The variable h = h(x, t) in the model of Sneyd et al. represents the fraction

of the IP3Rs that are active. The portion of active IP3Rs varies according to

∂th = φ3(c)(1− h)− φ1(c)φ2(c)p

φ1(c)p + φ−1(c)
, (3.29)

where

φ1(c) =
r2c

R1 + c
, φ−1(c) =

k−1R3

R3 + c
, (3.30)

φ2(c) =
k2R3 + r4c

R3 + c
, φ3(c) =

k3R5

R5 + c
(3.31)

and Ri = r−i/ri for i = 1, 3, 5. Their model assumes that the IP3R is made up of

four independent, identical subunits and can only release calcium when all four of its

subunits are open. Thus the influx of calcium is proportional to the probability that

each of four subunits are open:

Jr(c, h, p) = kf

(
phφ1(c)

φ1(c)p + φ−1(c)

)4

. (3.32)

Although the structure of IP3R differs to the one in the DYK model, the Sneyd et

al. model possesses a qualitatively similar bifurcation structure. Sneyd et al. have

discussed the bifurcation diagram in some detail, although without an explicit deter-

mination of wave stability. We further develop their arguments and determine the

stability of numerically constructed solution branches in the DYK model using linear

stability analysis. Our results are consistent with the recent paper of Romeo and
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Jones [135], who investigate the stability of travelling pulse solutions in the Sneyd

et al. model of pancreatic acinar cells [154]. Note that our stability analysis in [165]

pre-dates that of Romeo and Jones [135].

3.2.2 Stability

Linearisation of (3.23) and (3.24) around a stationary (travelling wave) solution (c0(ξ),

h0(ξ)) and considering small perturbations of type (r(ξ, t), s(ξ, t)) ∝ (r(ξ), s(ξ)) exp(λt)

yields an eigenvalue problem given by

M


r(ξ)

s(ξ)


 = λ


r(ξ)

s(ξ)


 , M =


D∂2

ξ + s∂ξ + A1(ξ) A2(ξ)

B1(ξ) s∂ξ + B2(ξ)


 , (3.33)

where

A1(ξ) = ∂cf1(c0(ξ), h0(ξ)), A2(ξ) = ∂hf1(c0(ξ), h0(ξ)),

B1(ξ) = ∂cf2(c0(ξ), h0(ξ)), B2(ξ) = ∂hf2(c0(ξ), h0(ξ)).

The linear stability of a travelling wave is then determined by an examination of the

spectrum of the Jacobian M in (3.33). The eigenvalues associated with perturba-

tions around the homogeneous steady state (giving the essential spectrum) can easily

be found by substituting solutions of the form u(ξ, t) = exp(λt + ikξ)u0 into the

linear equation ut = Mu. Hence, the continuous spectrum of M is defined by a

characteristic polynomial of the form det[M(k)− λI] = 0, where

M(k) =



−Dk2 + isk + A1 A2

B1 isk + B2



 . (3.34)

Here A1, A2, B1 and B2 are the forms taken by A1(ξ), A2(ξ), B1(ξ) and B2(ξ) when

(c0(ξ), h0(ξ)) = (c, h) is a homogeneous steady state. Assuming that Re(λ) = α and

Im(λ) = β, gives us the following system for the continuous spectrum:

−DB2k
2 + Dk2α− s2k2 + 2skβ + A1B2 − (A1 + B2)α + α2 − β2 − A2B1 = 0

−Dsk3 + Dk2β + sB2k − 2skα + sA1k − (A1 + B2)β + 2αβ = 0,
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which may be solved simultaneously to give the pair (α(k), β(k)). To find the full

spectrum of the linearised system it remains to determine the point spectrum ofM.

In particular the eigenvalue spectrum of a single pulse in an infinite system contains

a continuous part which can be identified with the spectrum of the stable rest state,

as well as a discrete part related to eigenfunctions localised near the pulse solution.

Since, in general, solutions c0(ξ), h0(ξ) and the eigenfunctions of the Jacobian M
are not available in closed form, the eigenspectrum of M has to be determined nu-

merically. We have used Fourier spectral methods on a bounded domain with a dis-

cretization of N = 28 points to do precisely this. A brief description of these methods

is given in Appendix A.3 and a more detailed discussion may be found in [166] and

[170]. The zero eigenvalue, which always exists due to the translational symmetry

of the problem, is used as a numerical accuracy check and has been obtained with a

precision of 10−4. Figure 3.12 shows the eigenspectrum for travelling pulse solutions

on the upper and lower part of homoclinic branch A in Figure 3.5. We see that, in

both cases, the continuous spectrum lies completely in the left complex half-plane.

The discrete spectrum for the solution on the upper branch remains in the left half-

plane. However, the discrete spectrum for the solution on the lower branch crosses

the imaginary axis and has an isolated eigenvalue in the right half-plane. Hence, we

conclude that of the two possible coexisting solitary pulses it is the faster one that is

stable.

3.2.3 A kinematic theory of spike trains

By treating the period of oscillations as a parameter it is also possible to construct

dispersion curves showing the speed of a wave as a function of its period. In Figure

3.13 we present a typical dispersion curve, s = s(∆), for a periodic orbit. A numerical

calculation of the eigenspectrum ofM shows that it is the faster of the two branches

that is stable. Knowledge of dispersion curves opens the way for the development of
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Figure 3.12: (A): Eigenvalues of the linearised system in the complex plane for the

pulse solution at p = 0.2363 and s = 2. (B): Eigenspectrum at p = 0.2408 and

s = 0.6. The solid lines correspond to the analytically obtained continuous spectrum

at the same parameter values.
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Figure 3.13: The dispersion curve for periodic travelling waves when p = 0.2622.

a kinematic theory of irregular wave propagation that attempts to follow irregularly

spaced spikes of activity [132]. Miller and Rinzel [113] considered impulse propa-

gation along the Hodgkin-Huxley cable equations [71] using numerical experiments

and deduced that the kinematic approximation provides a reasonable estimate for the

variation in interspike intervals and the influence of dispersion during propagation.

Using their approach the dynamics of Ca2+ spikes are considered to evolve according

to

dT n

dx
=

1

s(∆n)
, ∆n(x) = T n(x)− T n−1(x), (3.35)

where s(·) is the velocity as a function of interspike interval given by the dispersion

relation for periodic wave trains. The time at which the nth spike occurs at position

x is defined in terms of a threshold parameter cth as

T n(x) = inf{ t | c(x, t) ≥ cth,
∂c(x, t)

∂t
> 0; t ≥ T n−1(x)}. (3.36)

We shall call ∆n(x) the instantaneous interspike interval (ISI), as it measures the time

between spikes of activity at position x. When the instantaneous ISI is constant, we
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recover a singly periodic wave. Importantly, this framework is ideally suited for the

analysis of irregular spike trains.

For linear stability analysis we consider local perturbations of the firing times as

T n(x) → T n(x) + gn(x). A general propagating wavetrain is stable if under the

perturbation the system converges to the unperturbed solution during propagation

(i.e. , gn(x)→ 0 as x→∞). Inserting the perturbed solution in (3.35) gives

dgn(x)

dx
= − s′(∆n)

s2(∆n)
[gn(x)− gn−1(x)]. (3.37)

Thus, a linear stability analysis of the kinematic equations shows that solutions are

stable if s′(∆n) > 0 for all n. For a periodic orbit with ∆n = ∆ for all n the stability

predictions of the kinematic theory (solutions are stable if s′(∆) > 0, i.e. on the upper

branch) are in complete agreement with those obtained from the eigenspectrum of

M. Interestingly it has been shown that when the stable branch of the dispersion

curve has an exponential shape then there are solutions to the kinematic equations

that describe stable connections to periodic orbits [35]. This form of wave may also

be regarded as a travelling front in the ISIs such that ∆n(x) = ∆(κx− ωn) for some

κ and ω where ∆(·) has a sigmoidal shape. To confirm this prediction we perform a

direct numerical simulation of the DYK model. Since we are looking for a travelling

front in the instantaneous ISIs we choose initial data (at one end of a cell of length

L) with a spike train that has a step change in the interspike intervals (changing from

∆(1) to ∆(2) after n∗ ISIs of ∆(1)) given by

I(t) =

n∗∑

0

P (t− n∆(1)) +

∞∑

n=n∗+1

P (t− n∗∆(1) − (n− n∗)∆(2)) (3.38)

with general rectangular stimulus of the form I(t) =
∑

n P (t − T n(0)) with P (t) =

I0θ(t)θ(τd− t), where I0 is the magnitude of an applied pulse, τd its duration and θ(x)

is a step function with θ(x) = 1 for x ≥ 0 and is zero for x < 0.

Figure 3.14 gives an illustration of this signal. An example of direct numerical sim-

ulation is shown in Figure 3.15. We can see a transition from period ∆(1) to ∆(2) as
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Figure 3.14: A stimulus signal I(t) for a connection between orbits with differing

instantaneous ISIs. The following parameters are used: I0 = 35, τd = 1, L = 200,

∆(1) = 30, ∆(2) = 50, n∗ = 200.

time increases. Another way to visualise these connections between periodic orbits is

to plot the ISIs at various values of x as a function of the number of spiking events

at those position, as shown in Figure 3.16 (where we have used values of ∆(1) to ∆(2)

that best illustrate the sigmoidal nature of the front). Here, it is clearly seen that the

step change can smooth out to form a transition layer of the form predicted by the

kinematic theory.

3.2.4 Period doubling bifurcations

Using direct numerical simulations Sneyd et al. [154] also show that secondary waves

and irregular travelling wave behaviour can arise near the point where homoclinic

branch A disappears at a T-point. Such waves are also expected in the DYK model.

Sneyd et al. conclude that homoclinic branch A is the one that generates physiologi-

cally significant travelling waves. Our stability analysis would also suggest that one

may restrict attention to the faster branch. However, when broadening the discussion
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Figure 3.15: Stimulation of a cell of length L = 200 and p = 0.26 with a spike

train input at x = 0 with instantaneous ISI changing from ∆(1) = 30 to ∆(2) = 50

after 200 spikes. Dynamics of Ca2+ is shown at a position of 3L/4 from the point of

stimulation, showing a connection between periodic orbits with ISI ∆(1) and ∆(2).
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Figure 3.16: Travelling front in the ISIs, showing a connection between periodic orbits.

Initial data is in the form of a spike train with a step in the ISIs after 200 spikes from

∆(1) = 30 to ∆(2) = 31. Here, p = 0.26 and cth = 0.3. Data is represented at the

following positions: 0, L/4, L/2 and 3L/4, with L = 200.
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of waves to cover periodic travelling waves it is possible that there are other interest-

ing bifurcation structures present. With this in mind we turn our attention to period

doubling bifurcations of the orbits arising at Hopf bifurcation points in Figure 3.3.

We have found that it is possible for period doubling bifurcations to occur for slow

waves arising when branches of periodic orbits connect to each other as in Figure

3.17. In this figure, period doubling points of a primary periodic orbit are labelled

PD1, period doublings of secondary orbits as PD2 etc. Orbits of type PD2 and PD4

are destroyed in global homoclinic bifurcations in favour of homoclinic orbits which

we denote as HC2 and HC4. Figure 3.18 (A, B and C) demonstrates typical examples

of double periodic orbit and double homoclinic orbit as well as 4-periodic solution. It

is likely that there exists a family of 2n-periodic orbits which arise from n-periodic

orbits (through period doublings) and end in 2n-homoclinic bifurcations.

0.01

0.014

0.018

0.022

c

0.3 0.305 0.31 0.315
p

PD2

PD1 HC2

HC2

PD1

PD2

HB

HB

Figure 3.17: Bifurcation diagram of the reduced DYK model for s = 0.2 and D = 1

showing period doubling bifurcations. HB: Hopf bifurcation; PDn: period-doubling of

an n-periodic orbits; HC2: homoclinic bifurcation to a doubly periodic orbit.

In Figure 3.19 we show the branches of 2- and 4-homoclinic orbits HC2 and HC4
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Figure 3.18: Examples of (A) double periodic orbit for p = 0.3034, (B) double homo-

clinic orbit for p = 0.306 and (C) 4-periodic orbit for p = 0.3055 and s = 0.2.
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together with the lower part of homoclinic branch A. This figure suggests the pos-

sibility of a homoclinic-doubling cascade arising from the unstable solitary pulse of

branch A. Since, however, these bifurcations are those of an unstable wave they are

not expected to be physiologically significant.

0.18
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0.3

0.34

0.27 0.28 0.29 0.3 0.31

s

p

HC (branch A)

HC2

HC4

PD1

PD2

HB

Figure 3.19: Two parameter bifurcation diagram of the travelling wave equations

showing homoclinic-doubling cascade. HCn: branches of n-homoclinic orbits; HB:

Hopf bifurcation; PDn: period-doubling bifurcation curves of n-periodic orbits (dashed

curves).

Summary

In this chapter we have presented a detailed numerical bifurcation analysis of travel-

ling waves in the reduced DYK model of calcium release. The linear stability of these

waves has been found by numerically solving an appropriate eigenvalue problem. A

by-product of this investigation is the observation that this model has qualitatively

the same dynamics as the recently introduced two-state model of IP3 receptor dy-

namics for pancreatic acinar cells [154]. We have also presented a kinematic theory of

wave propagation based around numerically computed dispersion curves for periodic
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waves. We have used this to predict the existence of a non-periodic wave that may

be regarded as a travelling front that connects two different periodic orbits. Direct

numerical simulation of the DYK model has confirmed this prediction.



Chapter 4
The continuum Fire-Diffuse-Fire model

The analysis of travelling waves, even in the reduced DYK model presented in the

previous chapter, is typically only possible with the use of numerical bifurcation tech-

niques. In this chapter we introduce a much simpler FDF type model which provides

an idealised model of Ca2+ release within living cells. This model was originally in-

tended as a model of cardiac myocytes in which calcium release occurs via RyR Ca2+

channels located in a regular array in the SR [88]. The discreteness of release sites

leads to a wave of increased Ca2+ concentration that travels with a lurching quality

(saltatory propagation). However, one of the major successes of the FDF model is

that it can be analysed both in the discrete and continuous limits. This chapter is

concerned with the continuum description where waves propagate with a constant

profile. Saltatory waves will be considered in Chapter 5.

We generalise the original FDF model to incorporate dependence on IP3 concentra-

tion and also refractoriness of release sites. This allows a direct comparison between

numerically obtained properties of the DYK model in Chapter 3 and new exact ana-

lytical results for travelling waves in the FDF model. We demonstrate that travelling

wave solutions of the continuum FDF model exhibit many qualitative and quanti-

65
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tative features of the waves we have described for the DYK model under parameter

variation.

4.1 The Fire-Diffuse-Fire model

The propagation of Ca2+ waves in cardiac myocytes are often along the longitudi-

nal axis where Ca2+ release sites are aligned in regular arrays with a characteristic

separation of ∼ 2µm. This structure of cardiac myocytes is amenable to modelling

and leads to an idealised model of spark-mediated Ca2+ waves (FDF model), orig-

inally introduced by Keizer et al. [88]. They suggested a simplified model of Ca2+

release that mimics the properties of CICR from isolated sites to explore the nature

of saltatory wave propagation. In this model a site releases Ca2+ instantaneously

(”fires”) when the value of [Ca2+] at the site exceeds a threshold value. To mimic a

long-lasting refractory state, once a site has released Ca2+, it can no longer fire again.

The release sites are located with a fixed separation d and Ca2+ released at one site

diffuses continuously with an effective diffusion constant D, due to the presence of

myoplasmic buffers. The original FDF model was decribed by the single-evolution

equation

∂u

∂t
= D

∂2u

∂x2
+

σ

τR

∑

i

δ(x− xi)Θ(t− ti)Θ(ti + τR − t), (4.1)

where u(x, t) is the average concentration of calcium, δ is the Dirac delta function,

Θ(·) is the Heaviside step function (Θ(t) = 0 for t < 0, Θ(t) = 1 for t ≥ 0), ti is the

first time at which the ith site takes on the threshold value, σ is the source amplitude

and τR is the ”rise time” for the receptor (i.e. , the length of time the receptor is open

during a release event). In contrast to the kinetic biophysical models, the FDF model

leads to analytical expressions for the wave shape and the wave speed. Moreover, this

model reproduces the full range of wave propagation, from saltatory to continuous,

whereas homogeneous reaction diffusion models predict only continuous propagation.

We illustrate this in Figure 4.1 where we show the propagation of continuous and
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saltatory Ca2+ signals in the original FDF model. In panel A, the time constant

for Ca2+ release τR = 1 s and the propagating signal is a travelling front. Panel

B presents a simulation using τR = 10 µs where spark-like Ca2+ release leads to a

propagating signal that is distinctly saltatory. In this model the speed of the wave

front is determined by the time it takes Ca2+ released by the site at the front to

diffuse to the next active site and raise the value of [Ca2+] there to the threshold.

Note, that the continuous wave travels at ∼ 11.3 µm/s while the saltatory wave

travels at ∼ 67 µm/s. The long duration of Ca2+ release in the continuous case

appears to slow the velocity of the propagating signal. The works of Keizer et al. [88]

and other researchers [44, 126, 127] give a simple criterion for distinguishing saltatory

and continuous propagation modes. When DτR/d2 � 1, propagation is saltatory and

the wave speed is proportional to D. In the saltatory limit, propagation consists of

isolated bursts of Ca2+ that occur as each consecutive site fires. When DτR/d2 � 1,

propagation is continuous, the velocity is proportional to
√

D, and many sites are

releasing Ca2+ simultaneously. The effect of Ca2+ pumps, which resequester the ions

back into the stores was neglected in these studies (assuming that the pumps operate

on a very slow time-scale). The analysis of the FDF model was extended later by

Coombes [34] to include linear SERCA pumps.

Here we generalise the FDF model to include multiple Ca2+ release events for de-

scribing more realistic travelling Ca2+ waves. The generalised version of the model

sustains both solitary and periodic travelling wave propagation. The Ca2+ signal is

generated by the mechanism of CICR, i.e. the receptor channel is activated at low

cytosolic Ca2+ levels and inhibited at high cytosolic Ca2+ levels. Thus, for low Ca2+

levels, an increase in Ca2+ stimulates a further increase. At higher levels the receptor

inactivates and cannot reopen for some time during which it is in a refractory state.

Thus, the release of Ca2+ by intracellular stores is self-regulating. The release events

(Ca2+ puffs or sparks) lead to the propagation of travelling waves via diffusion of

Ca2+. The model incorporates descriptions of the two major fluxes between the ER
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Figure 4.1: Continuous (A) and saltatory (B) travelling wave propagations for the

following parameters: D = 30 µm2/s, d = 2 µm, σ = 5 µM · µm, uth = 0.1 µM and

τR = 1 s for panel A and 10 µs for panel B.

and the cytosol. The first is due to a pump which drives the Ca2+ up the gradient

from the cytosol back into the ER and the second arises when the Ca2+ channel opens

and causes a large flux from the ER into the cytosol. Denoting the concentration of

Ca2+ ions by u(x, t), the generalised FDF model is given by the following partial

differential equation

∂u

∂t
= − u

τd
+ D

∂2u

∂x2
+ ρ(x)

∑

m

η(t− T m(x)), x ∈ R, t > 0. (4.2)

The decay time τd describes the action of the Ca2+ pumps that resequester the Ca2+

back into the stores. Note that in comparison to the DYK model, the model of a pump

is linear and is one of the reasons why the generalised FDF model is mathematically

tractable. The other reason is that there is no explicit inclusion of receptor dynamics.

Rather, Ca2+ puffs are triggered from the release site at position x at times T m(x),

m ∈ Z. These release times are defined in terms of a threshold process according to

T m(x) = inf{ t | u(x, t) > h,
∂u(x, t)

∂t
> 0; t ≥ T m−1(x)}. (4.3)

However, as it stands the FDF model ignores the significantly important process

of being in a refractory state and cannot therefore be sensibly used to understand
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periodic travelling waves. It is of course perfectly satisfactory when studying solitary

waves, since single release events are not affected by refractoriness. To remedy this

lack of refractoriness we introduce a time dependent threshold. The idea is to mimic

refractoriness, whilst retaining analytical tractability, with a threshold which is high

just after a release event but gradually decays back to some more normal level. Such

a process may be written

ḣ =
uth − h

τ
+ γ

∑

m

δ(t− T m(x)), with initial data h(0) = uth, (4.4)

where τ determines the refractory time-scale and γ is some large positive constant.

Using this scheme h decays towards a constant threshold uth at a rate τ−1 and h→ γh,

whenever a Ca2+ puff is triggered. The function η(t) describes the shape of the puff

and is often considered to be a simple rectangle:

η(t) =
σ

τR
Θ(t)Θ(τR − t), (4.5)

where Θ(·) is a step function, σ is the strength of the puff and τR its duration. For a

simple continuum model we consider the density distribution of the calcium sources

ρ(x) = 1 (the discrete FDF model is discussed in Chapter 5).

4.2 Solitary travelling pulse

Before discussing periodic travelling waves we first review some properties of solitary

wave propagation in the continuum FDF model [34]. Solitary travelling waves may be

described in the form T 0(x) = x/s, where s denotes the speed of the wave. Assuming

u(x, t) = u(ξ), where ξ = st− x, gives the following travelling wave ODE:

Duξξ − suξ −
u

τd
= − σ

τR
Θ(ξ)Θ(sτR − ξ), (4.6)
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where uξ ≡ du/dξ. For travelling pulse solutions which satisfy limξ→±∞ u(ξ) = 0 the

solution to (4.6) takes the form

u(ξ) =






α1e
λ+ξ −∞ < ξ < 0

α2e
λ+ξ + α3e

λ−ξ + τdσ/τR 0 < ξ < sτR

α4e
λ−ξ ξ > sτR

(4.7)

with

λ± =
1

2D

[
s±

√
s2 + 4D/τd

]
. (4.8)

By ensuring the continuity of the solution and its first derivative at ξ = 0 and ξ = sτR

the unknown coefficients α1, . . . , α4 may be found as follows

α1 = α3
λ−
λ+

[1− e−λ+sτR ] (4.9)

α2 = −α3
λ−
λ+

e−λ+sτR (4.10)

α3 =
τdσ

τR

λ+

λ− − λ+
(4.11)

α4 = α3[1− e−λ−sτR]. (4.12)

The self-consistent speed of the travelling pulse can be found by demanding that

u(x, T (x)) = uth, i.e. in the travelling frame system u(0) = uth. This gives from (4.7)

that the speed of a travelling pulse satisfies the implicit equation

uc =
λ−

λ− − λ+
[1− e−λ+sτR], (4.13)

where uc = uthτR/στd. It is straightforward to show from (4.13) that the speed

of the wave scales with the square-root of the diffusion coefficient [34]. Figure 4.2

demonstrates the speed of the constant profile travelling pulse as a function of the

dimensionless threshold parameter uc = uthτR/στd. The two waves coalesce at a LP

and propagation failure can result for too large a choice of the threshold parameter.

Figures 4.3 and 4.4 demonstrate exactly this. When we are in the parameter regime
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to the left of the LP, solitary travelling wave in the model propagates through the

whole cell (Figure 4.3). To the right of the LP, travelling pulses fail to propagate

and we observe an abortive wave (Figure 4.4). Figure 4.5 demonstrates a numerical

continuation of the LP in Figure 4.2. This figure specifies the area of parameters in

the (uc, τ
−1
R ) plane where stable travelling pulse exists.
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Figure 4.2: Speed s as a function of the dimensionless threshold parameter uc in the

continuum FDF model for the parameters τd = τR = D = 1. A linear stability analysis

shows that the fast branch is stable [34].

4.3 Periodic travelling wave

In this section we consider periodic travelling waves in the generalised FDF model.

We construct periodic travelling waves by writing release times in the form T m(x) =

(m + kx)∆, where k is the wavenumber and s = 1/(k∆) the wave velocity. The

travelling wave ODE in the travelling frame co-ordinate system (ξ = st− x) is given

by equation (4.6). The periodic travelling wave solution to (4.6) takes the form
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Figure 4.3: Space-time plot of the calcium concentration showing the solitary travelling

wave propagation in the continuum FDF model with the parameters from Figure 4.2

and uc = 0.1.
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Figure 4.4: Space-time plot of the calcium concentration showing the propagation

failure of solitary travelling wave in the continuum FDF model with the parameters

from Figure 4.2 and uc = 0.25.
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Figure 4.5: Continuation of the limit point shown in Figure 4.2 in the (uc, τ−1
R )

parameter plane.

u(ξ) = u(ξ + m∆):

u(ξ) =





α1e
λ+ξ + α2e

λ−ξ + τdσ/τR 0 < ξ < sτR

α3e
λ+ξ + α4e

λ−ξ sτR < ξ < s∆,

(4.14)

with λ± given by equation (4.8). By demanding continuity of the solution and its

first derivative the coefficients α1, . . . , α4 may be found as follows

α1 =
τdσ

τR

λ−
(λ− − λ+)

(1− eλ+s(∆−τR))

(eλ+s∆ − 1)
(4.15)

α2 = −τdσ

τR

λ+

(λ− − λ+)

(1− eλ−s(∆−τR))

(eλ−s∆ − 1)
(4.16)

α3 =
τdσ

τR

λ−
(λ− − λ+)

(1− e−λ+sτR)

(eλ+s∆ − 1)
(4.17)

α4 = −τdσ

τR

λ+

(λ− − λ+)

(1− e−λ−sτR)

(eλ−s∆ − 1)
. (4.18)

The self-consistent speed of the periodic travelling wave may be found by demanding

u(s∆) = h. This generates an implicit equation for the dispersion relation s = s(∆):
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uc
1− e−∆/τ

1− γe−∆/τ
=

λ−
(λ− − λ+)

(1− e−λ+sτR)

(eλ+s∆ − 1)
− λ+

(λ− − λ+)

(1− e−λ−sτR)

(eλ−s∆ − 1)
, (4.19)

where uc = uthτR/τdσ. We plot a typical dispersion curve in Figure 4.6, showing a

similar shape to that of the DYK model (see Figure 3.13). No attempt has been made

to tune free parameters of the FDF model to obtain a quantitative fit to data from the

DYK (or other) model. We invoke the model independent kinematic theory presented

earlier to establish that it is the faster of the two possible branches that is stable.

Moreover, since the stable branch of the dispersion curve has an exponential shape

stable waves representing connections to periodics are also expected. If we neglect

refractoriness and consider a constant threshold the resulting dispersion curve exhibits

unphysical divergent speeds. This is expected in the absence of a refractory process

since release events can occur arbitrarily close in time. In Figure 4.7 we illustrate an

0.2

0.6

1

1.4

s

0 5 10 15 20

stable

unstable

∆

Figure 4.6: The dispersion curve obtained from (4.19) when uc = 0.2, τ = 2, γ = 3,

τR = 1, τd = 1 and D = 1.

example of a periodic travelling wave in the continuum FDF model. Solitary pulses

constructed in section 4.2 may also be defined from periodic solutions by taking the

limit ∆→∞.
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Figure 4.7: Space-time plot of the calcium concentration showing the periodic travel-

ling wave propagation in the continuum FDF model with the parameters from Figure

4.6 and ∆ = 10.

A weakness of the FDF model is that it is independent of IP3 concentration, which

as we have seen is an important parameter of the DYK model. To include a notion of

IP3 sensitivity within an FDF model it is natural to modify the threshold parameter,

such that release events are easier to generate in the presence of high IP3. We suggest

that the level of Ca2+ in the ER, cer, required to generate a periodic travelling wave

is a good candidate for determining a threshold function uth = uth(p). In Figure 4.8

we continue Hopf points of Figure 3.5 that define the borders of such a region in the

(p, cer) parameter plane. This figure shows that for small values of IP3 waves fail to

propagate and that lower levels of cer are required to generate waves with increasing

[IP3], as observed experimentally. We approximate the threshold function of Figure

4.8 using

uth(p) = k

[
u0 + A

e−Bp

p− C

]
, (4.20)

where k = 1, u0 = 0.48, A = 0.1627, B = 0.5583 and C = 0.055 are fitted numerically.
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Figure 4.8: Concentration of calcium in the ER, cer, as a function of IP3 concentra-

tion, p, in the DYK model, required to generate travelling waves.

The inclusion of an IP3 dependent threshold level in the FDF model makes it sensitive

to IP3 and allows a more direct comparison with results from the DYK model.

In Figure 4.9 we plot the wave speed of a pulse as a function of the IP3 concentration.

In the same figure we plot the homoclinic branch A of the DYK model from Figure 3.5

for better visualisation. For a comparison between the DYK model and the generalised

FDF model we choose the same diffusion coefficient and adjust the remaining time

and strength scales appropriately. A value for τR is chosen simply by reading off the

temporal duration of a calcium spike in the DYK model. The time scale of the linear

pump in the FDF model is chosen so as best to agree with that of nonlinear pump

term in equation (2.16). This term is sigmoidal with a slowly varying gradient for

intermediate levels of calcium concentration. The gradient in this intermediate regime

provides a reasonable estimate for τd. This leaves only one free parameter, namely

k, which we choose so as to give the best quantitative agreement of the generalised

FDF and DYK models. Note that both curves in Figure 4.9 are very similar. In the
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absence of an IP3 dependent threshold function no such comparison would have been

possible.

HC (branch A)

FDF model

0

1

2

3

s

0.22 0.26 0.30
p

Figure 4.9: Speed of the travelling pulse in the FDF continuum model as a function

of [IP3] with k = 0.17, τR = 0.5, τd = 0.29 and D = 1. The second curve is the

homoclinic branch A of the DYK model from Figure 3.5.

Summary

In this chapter we demonstrated that much of the travelling wave behaviour of the

biophysical DYK model in Chapter 3 can be reproduced by a much simpler FDF

type model. We presented a generalised form of continuum FDF model with an IP3

dependent threshold and a simple refractory process. Parameters of the FDF model

are constrained using numerical data from the DYK model. The main advantage

of studying FDF type models is their mathematical tractability. A mathematical

analysis of solitary and periodic travelling waves shows the ability of the generalised

FDF model to describe realistic travelling Ca2+ waves. The analytical tractability of

the model also opens up the possibility to study more realistic distributions of release

sites and this is discussed in the next chapter.



Chapter 5
Discrete Fire-Diffuse-Fire model

Our discussion of the FDF model in the previous chapter began with the issue of

cellular heterogeneity in a variety of cell types. The majority of the spatial whole-cell

models (see Chapter 2) are based on the assumption that the ER can be represented

as a compartment continuously distributed throughout the cytosol. Although it can

sometimes be rigorously justified, this assumption is made largely for convenience.

The images of Ca2+ activity in cardiac myocytes confirm the facts of cellular inhomo-

geneity (see Figure 5.1), demonstrating isolated Ca2+ sparks, wave initiation and a

spark-mediated propagating Ca2+ wave. Skeletal muscle and cardiac cells are invaded

by T-tubules, which allow communication with the extracellular space. T-tubules have

VOCCs allowing the influx of calcium into the cell in response to an action potential.

The RyRs through which calcium is released are located directly opposite the calcium

channels. The physical arrangement of calcium release sites means that in these cell

types it may not be appropriate to view the release of calcium as spatially uniform.

In cardiac cells, calcium waves do not normally propagate without T-tubule stimulus.

The discreteness of calcium release sites in these cell types prevents the spontaneous

propagation of a calcium wave, which would lead to spontaneous (uncontrolled) mus-

cular contraction. This is a possible situation in which the discreteness of release sites

78
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(A)

(B)

(C)

Figure 5.1: Confocal line-scan images of isolated Ca2+ sparks, wave initiation, and

a spark-mediated propagating Ca2+ wave in cardiac myocytes. Horizontal scale bar

(space): 5 µm except for panels B, C and E in (C) which is 10 µm; vertical scale bar

(time): 100 ms except for (C) and second panel in (A) which is 200 ms. (From the

work of Cheng et al. [30]).
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could have major negative consequences. For example, in hypertension, cardiac cells

compensate for increased pressure by growing larger (hypertrophy). It is possible that

in this hypertrophied state, the separation between RyRs and T-tubules is increased,

leading to less effective coupling between action potentials and calcium release, and

impaired contraction [176].

The generalised FDF model may be naturally extended to include the discrete nature

of calcium stores within a cell. In this chapter we consider the FDF model defined

in Chapter 4 with a discrete distribution of calcium release sites. This simple change

to any continuum model destroys translation invariance and invalidates many of the

standard tools of analysis. However, within the FDF framework analytical progress

is still possible. To illustrate this point we investigate how a regular array of release

sites influences the propagation of saltatory travelling waves. Making the further

assumption that release events occur on a regular temporal lattice we simplify the

FDF model so that it may be re-written in the language of binary release events. We

introduce a dynamics for the release events that are calculated via a thresholding of

the calcium profile at a release site. Thus, under the assumption that release times

occur on some regular temporal lattice the model does not have to be evolved as a

discontinuous PDE with a self-consistent search for the times of threshold crossing

that define release events. Direct numerical simulations are used to show that this

computationally cheap version of the FDF model provides an accurate representation

of the original model.

5.1 Spatially discrete FDF model

One of the major advantages of the generalised FDF model given by equation (4.2) is

that it may be naturally extended to account for saltatory travelling wave propaga-

tion. Continuous and discrete limits in the model are achieved by specifying the form

of the distribution function of Ca2+ release sites ρ(x). The discrete approximation
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in the FDF model may be obtained by modelling Ca2+ release sites as point sources,

that is, an array of Dirac delta functions δ(x−xn), where xn is the spatial position of

the nth release site. For simplicity we consider an idealised set of point sources so that

the function of the distribution of Ca2+ release sites is given by ρ(x) =
∑

n δ(x−nd),

where d is the spacing between stores. The general structure of the model is given by

the simple schematic diagram of Figure 5.2. The FDF model provides a caricature

of Ca2+ release events which interact via diffusion of Ca2+ and the triggering of a

CICR-like mechanism. Ca2+ puffs or sparks in the model are triggered from the re-

Ca2+

store
CICR

�������

u=[Ca2+]

ER

d

n-1 n n+1

Figure 5.2: Schematic representation of the FDF model.

lease site xn = nd at times T m(xn), m ∈ Z, according to a threshold process defined

by (4.3). The shape of the puff is assumed to be the same as in the continuum FDF

model and is given by equation (4.5).

5.1.1 Periodic travelling wave

The solution of the FDF model given by equation (4.2) with a discrete distribution of

Ca2+ release sites can be expressed in the terms of the Green’s function for the cable

equation as

u(x, t) =
σ

τR

∞∑

n=−∞

∫ t

−∞
dt′

∫ ∞

−∞
dx′G(x−x′, t−t′)δ(x′−xn)

∞∑

m=0

η(t′−T m(xn)), (5.1)
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where

G(x, t) =
e−t/τd

√
4πDt

e−x2/(4Dt)Θ(t). (5.2)

The substituting of the function η(t) into equation (5.1) gives

u(x, t) =
σ

τR

∞∑

n=−∞

∫ t

−∞
dt′

∫ ∞

−∞
dx′G(x− x′, t− t′)δ(x′ − xn)

×
∞∑

m=0

Θ(t′ − T m(xn))Θ(τR − (t′ − T m(xn))) (5.3)

=
σ

τR

∞∑

n=−∞

∞∑

m=0

∫ T m(xn)+τR

T m(xn)

G(x− xn, t− t′)dt′.

We consider periodic travelling waves that satisfy T m(xn) = nd/s+m∆ ≡ n∆1+m∆,

m ≥ 1, where s is the speed of threshold crossing events given by s = d/∆1 and ∆

is the time between successive Ca2+ release events at a store. For simplicity we shall

consider ∆ to be sufficiently large that we do not have to worry about the inclusion of

refractory process and take the threshold for release to be uth(p) defined by equation

(4.20). Then the solution describing saltatory periodic travelling waves in the FDF

model is

u(x, t) =
σ

τR

∑

n,m

∫ min(t−n∆1−m∆,τR)

0

G(x− nd, t− t′ − n∆1 −m∆)dt′. (5.4)

This can be rewritten as

u(x, t) = σ
∑

n,m

H(x− nd, t− n∆1 −m∆), (5.5)

where

H(x, t) =
1

τR

∫ min(t,τR)

0

G(x, t− t′)dt′. (5.6)

We determine the speed of the travelling waves in a self-consistent manner by de-

manding that

lim
n,m→∞

u(nd, n∆1 + m∆) = uth(p). (5.7)
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Then using initial data such that u(0, 0) = 0 the speed of the wave is implicitly

determined by

uth(p) = σ

∞∑

n=0

∞∑

m=1

H(nd, n∆1 + m∆), (5.8)

with

H(x, t) =
1

τR

∫ τR

0

G(x, t− t′)dt′. (5.9)

A saltatory periodic travelling wave determined by (5.4) and (5.8) is shown in Figure

5.3. This nicely illustrates that waves propagate with a non-constant profile and that

large increase in Ca2+ concentration occurs just after a release event. The saltatory

nature of the wave may be directly attributed to the fact that release sites are not

spread continuously throughout the system.

0-20d 20d 40d

ud/σ

0.4

0.8

1.2

1.6

0

Distance (x)

uc

Figure 5.3: An example of a stable saltatory periodic travelling wave. The period ∆1

is determined self-consistently as ∆1 = 0.2. Other parameters are τd = 1, d2/D = 1,

τR = 0.1, ∆ = 4.2 and uc ≡ uth(p)d/σ = 0.1 . The system is sampled at some large

release time t0, then at t0 + τR and t0 + ∆1.

We now demonstrate how the period of travelling waves depends on the main system
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parameters. In the special case τR → 0 we see from equation (5.9) that H(x, t) →
G(x, t), which is given in closed form by (5.2). Hence, the speed of the wave can be

found by solving

uth(p)d

σ
= d

∞∑

n=0

∞∑

m=1

G(nd, n∆1 + m∆) (5.10)

=
∞∑

n=0

∞∑

m=1

√
τD

4π(n∆1 + m∆)
exp

(
−n

[
∆1

τd

+
nτD

4(n∆1 + m∆)

])
exp

(
−m∆

τd

)

where τD = d2/D. For finite τR, the function H(x, t) is evaluated in [34] as H(x, t) =

A(x, t− τR)− A(x, t), where

A(x, t) =

√
τdD

4DτR

[
exp

( −|x|√
τdD

)
erfc

(
− |x|√

4Dt
+

√
t

τd

)

+ exp

( |x|√
τdD

)
erfc

( |x|√
4Dt

+

√
t

τd

)]
. (5.11)

In Figure 5.4 we show how the period of travelling waves depends on the value of τ−1
d

for the case that τR = 0. We see that there is propagation failure at some critical

value of τd, where two branches of the solutions coalesce. To illustrate the effects of

a finite width for the calcium puff on the speed of the periodic travelling wave we

continue the LP of the bifurcation diagram in Figure 5.4 as a function of τR. The

results of a numerical continuation are shown in Figure 5.5. This plot shows the

parameter region where saltatory periodic travelling waves can exist and highlights

the fact that with increasing τR the LP in Figure 5.4 occurs at increasingly larger

values of τd.

The fact that there are two solution branches for a periodic travelling wave raises

the question of stability. To determine the stability of saltatory waves we consider

perturbation of the release times where T m(nd)→ T m(nd)+emλ, λ ∈ C, and examine

the linearised evolution of these perturbations. Solutions are linearly stable if Re λ <



CHAPTER 5. DISCRETE FIRE-DIFFUSE-FIRE MODEL 85

0

0.4

0.8

1.2

1.6

2

0 1 2 3 4

τd

LP

unstable

stable

∆1

-1

Figure 5.4: Period ∆1 as a function of the parameter τ−1
d with τR = 0. Other param-

eters as in Figure 5.3.
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Figure 5.5: Continuation of the LP of Figure 5.4 in the (τ−1
d , τR) plane.
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0. After substituting into equation (5.8) and expanding to first order we obtain

Φ(α, β) ≡
∑

n,m

emαeimβH ′(nd, n∆1 + m∆) = 0, (5.12)

where we have set λ = α+iβ, α, β ∈ R. Here, H ′(x, t) = ∂H(x, t)/∂t. Differentiation

of equation (5.9) shows that H ′(x, t) = [G(x, t) − G(x, t − τR)]/τR. To find the

stability of the solution as a function of parameters the system of two equations

Re Φ(α, β) = 0 and Im Φ(α, β) = 0 has to be solved simultaneously for α and β

along the solution branch. Two possible types of bifurcation point are defined by the

conditions α = 0, β = 0 and α = 0, β 6= 0. For the first case a change in stability

occurs when Φ(0, 0) = 0. The second type of instability arises when a complex

-1

0

1

2

0 1 2 3 4

Φ(0,β)

τd
-1

Figure 5.6: A plot of the function Φ(0, π) along the solution of Figure 5.4, showing

that there is a change in stability at the LP where propagation failure occurs.

eigenvalue crosses the imaginary axis. Then a change of stability occurs when β = π.

A plot of the function Φ(0, π) in Figure 5.6 shows that the change of stability for the

solution shown in Figure 5.4 occurs at the LP defining propagation failure. A direct

examination of α = Reλ, along the two solution branches, shows that the faster

branch is stable, while the slower one is unstable.
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5.1.2 Solitary travelling pulse

In the absence of multiple Ca2+ release events from an individual store, i.e. considering

the case when m = 0, we recover the discrete FDF model of solitary travelling wave

propagation [34]. A saltatory travelling pulse solution is analytically determined by

the following equation

u(x, t) =
σ

τR

∞∑

n=−∞

∫ min(t−n∆1,τR)

0

G(x− nd, t− t′ − n∆1)dt′. (5.13)

and is illustrated in Figure 5.7. The speed of the solitary wave can be found in a

ud/σ

0 5d 10d

uc

0.5

1.0

1.5

t = 6∆

t = (5+3/4)∆

t = 5∆+τR

t = 5∆

Distance (x)

Figure 5.7: An example of a stable saltatory solitary travelling wave. The period ∆1

is determined self-consistently as ∆1 = 0.17. Other parameters as in Figure 5.3.

self-consistent manner similar as in the periodic case by demanding that

lim
n→∞

u(nd, n∆1) = uth(p). (5.14)

and for the special case when τR → 0 this gives

uc ≡
uth(p)d

σ
=

∞∑

n=0

√
τD

4πn∆1
exp

(
−n

[
τD

4∆1
+

∆1

τd

])
. (5.15)
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In Figure 5.8 we show how the speed of solitary travelling pulse depends on the

dimensionless threshold parameter uc. In common with the periodic wave solution

there is the co-existence of two travelling waves with speeds that approach each other

as the threshold parameter increases. Eventually the two solitary waves coalesce at

the LP such that propagation failure can result for too large a choice of the threshold

parameter.

stable

unstable

0 0.1 0.2 0.3

0

0.1

0.2

0.3

uc

LP

∆1

Figure 5.8: Period ∆1 as a function of the dimensionless threshold parameter uc with

τR = 0. Other parameters as in Figure 5.7.

5.2 Discrete-time FDF model

5.2.1 One-dimensional model

The analytical tractability of the discrete FDF model is not only useful for gaining

insight into the dependence of wave speed on system parameters, but can help in

reducing the computational demands on a numerical scheme for the self-consistent
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evolution of the model equation. Consider for the moment the class of solutions where

all release times occur at integer multiples of τR, the rise-time of the receptor. In this

case we may write

∑

m

η(T m
n ) =

∑

p

η(pτR)an(p), (5.16)

for all n, where we define the release function an(p) as

an(p) =





1 T m
n = pτR

0 otherwise

, (5.17)

and T m
n = T m(xn) is the time of release of the mth puff at the nth release site. In

general the release times will not occur at multiples of τR. However, by restricting

the system so that release times do occur on a regular temporal lattice and choosing

τ = RτR (the refractory time scale) for some R ∈ Z, we may write

an(p) = Θ(un(p)− uth)

min(R,p)∏

m=1

Θ(uth − un(p−m)), (5.18)

where un(p) ≡ u(xn, pτR). The first term on the right is a simple threshold condition

for the determination of a release event whilst the second term ensures that release

events are separated by at least the refractory time scale τ . This restriction of the

model eliminates the need for the precise determination of release times. The FDF

model then takes the particularly simple form

Qu(x, t) =
σ

τR

∑

n∈Γ

an(p)δ(x− xn), pτR < t < (p + 1)τR, (5.19)

where Q is the linear differential operator

Q = ∂t +
1

τd

−D∂xx, (5.20)

with Green’s function given by equation (5.2) and Γ is a discrete set that indexes the

stores.
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The dynamics for pτR < t < (p + 1)τR is completely determined in terms of initial

data up(x) = u(x, pτR) as

u(x, t) =
σ

τR

∑

n∈Γ

an(p)H(x− xn, t− pτR) + (G⊗ up)(x, t), (5.21)

where

H(x, t) =

∫ t

0

G(x, t− s)ds, (5.22)

and

(G⊗ up) (x, t) =

∫

R

G(x− x′, t− pτR)up(x
′)dx′. (5.23)

Compared to the original FDF model the one we have described here is computation-

ally cheap to solve. Release events defined by an(p) = 1 are easily calculated since

un(p) ≡ up(xn) may be written as a sum of two terms that are both amenable to

fast numerical evaluation. In particular up(x) may be written in terms of the basis

functions Hn(x) = σH(x− xn, τR)/τR, so that

up(x) =
∑

n∈Γ

an(p− 1)Hn(x) + (G⊗ up−1)(x, pτR). (5.24)

Since the basis functions Hn(x) are fixed for all time they need only be computed

once. For small τR we also have the useful result that H(x, τR)→ G(x, τR), which is

given in closed form by (5.2). The convolution in (5.24) may be performed efficiently

using Fast Fourier Transform (FFT) techniques. Once again the FFT of G(x, τR)

need only be computed once, so that it is only necessary to successively construct the

FFT of up(x) for p = 0, 1, 2, . . .. We then have that G⊗up = F−1(F [G]F [up]), where

F denotes the FFT. Hence, under the assumption that release times occur on some

regular temporal lattice the model does not have to be evolved as a discontinuous

PDE with a self-consistent search for the times of threshold crossings that define

release events.

Of course the above approach is only useful if the restricted class of solutions that

we have focused on is in some sense close to solutions of the full model. To illus-

trate that this is the case for practical applications we compare the exact solution
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of a saltatory travelling pulse with that from this model. In Figure 5.9 we plot the

speed of a lurching solitary pulse for the full FDF model discussed in the previous

section. On the same figure we plot numerical results obtained from our reduced FDF

model. It can be seen that there is excellent agreement between the two, justifying

the practical assumption that release events can be considered to occur only at integer

multiples of the calcium puff duration. From experimental data it is apparent that

the refractory time-scale is typically 50 times that of the release duration (see [87] for

a discussion) so we assume R = 50 in our simulations if it is not specified. Typically

τR is approximately 10− 20 ms.

0 0.1 0.2 0.3
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40
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  100

Figure 5.9: Speed of a solitary pulse as a function of the threshold level uth in the

FDF model. Crosses denote results from simulations of the reduced FDF model with

500 regularly spaced stores. Parameters: d = 2 µm, D = 30 µm2/s, τ = 10 ms,

τd = 0.2 µM/s.

The best way to illustrate the sort of behaviours that can be generated by this reduced

model is with a space-time density plot for calcium concentration. In real cells release
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sites are not likely to be arranged on a perfectly regular lattice, although for cardiac

myocytes release sites are in fact regularly spaced along the longitudinal axis of the

cell. In our simulations we focus both on regular and disordered distribution of

release sites. Free boundary conditions are assumed in model simulations, i.e. wave

propagation in the system is restricted only by cell size.

First of all, we present simulation results in one dimension for a regular lattice of

release sites, with lattice spacing d. In Figure 5.10 we show a solitary lurching pulse

arising from an initially activated release site in the middle of the cell. This nicely

illustrates that a discrete set of release sites can lead to a wave that propagates with a

non-constant profile, but with a well defined speed. Experimentally observed calcium

waves, for example in immature Xenopus oocytes, evoked by stimuli just above the

wave threshold do not propagate in a smoothly continuous manner either. The confo-

cal linescan imaging of intracellular Ca2+ signal done by Callamaras et al. [25] clearly

shows this in Figure 5.11. In the case when two waves are initiated at well separated

release sites, two lurching pulses will propagate toward each other. In Figure 5.12, we

show that they are destroyed in wave-wave collisions just after the observed increase

in Ca2+ concentration caused by their interaction. This phenomenon of wave-wave

annihilation may be directly attributed to the refractoriness of the underlying release

dynamics. Interestingly, by varying the parameters of the system we may also observe

the propagation of periodic travelling waves. In practice this may be easily achieved

by decreasing the refractoriness of the system, so that the Ca2+ concentration at the

initially activated release site is still above the threshold after the refractory time and

the system is ready to initiate a new travelling pulse. We demonstrate this behaviour

in Figure 5.13. A similar effect may be obtained, for example, by increasing the

diffusion or decreasing the threshold parameter in the model.

Now we consider a disordered distribution of release sites. In this case the position

of release sites in a regular array is perturbed by a small random vector (of size
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Figure 5.10: An example of two lurching pulses moving out from the center of a

deterministic one-dimensional FDF model with 50 regularly spaced release sites. Pa-

rameters as in Figure 5.9 for a cell of linear dimension 100 µm and uth = 0.1.

500 ms

10 µm

Figure 5.11: The confocal linescan image of saltatory wave propagation evoked by

flash photolysis of IP3 in immature Xenopus oocytes [25].
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Figure 5.12: An example of colliding pulses moving out from the release sites located

apart on the distance of 60 µm. Other parameters as in Figure 5.10. The interaction

between two waves causes the propagation failure.
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Figure 5.13: An example of periodic travelling wave moving out from the center of a

deterministic one-dimensional FDF model with 50 regularly spaced release sites with

R = 48. Other parameters as in Figure 5.10.
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εd). Simulation results indicate that regular waves give way to more irregular waves,

with the degree of irregularity increasing with the amount of spatial disorder. The

irregularity of these waves is directly attributable to the quenched disorder of the

release sites. Ultimately, if the degree of spatial disorder is sufficiently large we see

propagation failure. Figure 5.14 shows an example of a periodic travelling wave in

the system with a disordered distribution of release sites. This disorder gives rise

to irregular activity, though with well defined periodicity. An example of disorder

induced propagation failure is shown in Figure 5.15. The reason for this failure is that

the average distance between release sites appears to be too large for the spreading

of activity.

5.2.2 Two-dimensional model

The generalisation of our FDF model to two dimensions is both natural and straight-

forward by introducing a continuous spatial coordinate r ∈ R
2 and a discrete set of

vectors rn ∈ R2, n ∈ Z, indicating the positions of release sites. The basis functions

H(r− rn) can be computed numerically from equation (5.22) with

G(r, t) =
e−t/τd

4πDt
e−r2/(4Dt) (5.25)

and r = |r|. However, it is also possible to compute the basis functions in closed form

for two special cases. i) In the limit τd →∞ then H(r) = E1(r
2/4DτR)/4πD, where

E1(x) is the exponential integral function

E1(x) =

∫ ∞

x

dz
e−z

z
. (5.26)

This corresponds to the limit of zero pumping, where calcium is not removed from the

cytosol. ii) For small τR we also have that H(r, t)→ G(r, t) (as already noted in sec-

tion 5.1.1). Since the puff duration is very small compared to τ this is a very accurate

approximation, and so has been used in numerical simulations for this section.

First of all, we present simulation results on a regular square lattice, with release
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Figure 5.14: An example of periodic travelling wave moving out from the center of a

one-dimensional FDF model with irregularly spaced release sites when ε = 0.4d and

R = 48. Other parameters as in Figure 5.10.
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Figure 5.15: An example of travelling wave propagation failure in a one-dimensional

FDF model with irregularly spaced release sites when ε = 0.6d and R = 48. Other

parameters as in Figure 5.10.
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site spacing d. An example of behaviour in the deterministic two-dimensional FDF

model with an initially active release site in the center of the cell is shown in Figure

5.16. Here a sequence of snap shots shows nucleation of a wave and subsequent

propagation of the wave through the cell. Repetitive nucleations occur in the middle

of the cell with the period of oscillation largely determined by the refractory time-

scale. Note that the octagonal shape of the wave (rather than a circular one) is due

to the underlying square array of release sites. Animations of this figure and others

may be found on the CD provided, where the corresponding file name is indicated

in the caption of each figure (also see Appendix A.2). Different choices of initial

conditions give rise to more complex patterns of wave propagation. For example, in

Figure 5.17 we show spiral wave propagation, similar in structure to that observed

in the work of Dallon and Othmer [41]. In common with our model these authors

also consider a discrete/continuum model for signalling in Dictyostelium discoideum

in which cells (rather than release sites) are treated as discrete points in a continuum

of chemoattractant.

Now we consider a disordered distribution of release sites in two-dimensions, in the

same manner as in the one-dimensional model. Figure 5.18 demonstrates an example

of wave propagation in the presence of an irregular square lattice with an initially

active single release site in the center of the cell. Comparing to Figure 5.16, the

irregularity of the release sites causes the propagation of more circular waves with

unequal activities. As expected, the degree of disorder in the distribution of release

sites may change the pattern of wave propagation. To illustrate this we present two

figures with different perturbations on the release site positions. Figure 5.20 shows an

irregular wave that fails to propagate, whilst Figure 5.19 shows one that propagates

and ultimately gives rise to a periodic spread of activity. In Figure 5.21 we show the

propagation of spiral wave similar as in Figure 5.17, but with an irregular distribution

of release sites.
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Figure 5.16: Temporal sequence snapshots for the deterministic two-dimensional FDF

model on the regular square lattice cell 120 µm × 120 µm. Other parameters as in

Figure 5.9 and uth = 0.1. Frames are presented every 0.1 s starting in the top left

corner and moving rightward and down. An initial seed in the center of the cell

model leads to the formation and propagation of the well defined wave front. After

the refractory time in 0.5 s a new release event appears in the middle of the square

lattice giving rise to a new propagating front of activity. (File: reg prop.avi)
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Figure 5.17: Initiation of a spiral wave in the deterministic two-dimensional FDF

model on the regular square lattice cell via activation of a line of release sites. Other

parameters as in Figure 5.16. (File: reg spiral.avi)
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Figure 5.18: Temporal sequence snapshots for the two-dimensional FDF model on

the irregular square lattice cell 120 µm × 120 µm with ε = 0.4d. Other parameters

as in Figure 5.16. Frames are presented every 0.1 s starting in the top left corner

and moving rightward and down. An initial seed in the center of the cell model leads

to the formation and propagation of the periodic irregular circular wave front. (File:

irreg prop1.avi)
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Figure 5.19: Temporal sequence snapshots for the two-dimensional FDF model on

the irregular square lattice cell 120 µm × 120 µm with ε = 0.6d. Other parameters

as in Figure 5.16. Frames are presented every 0.08 s starting in the top left corner

and moving rightward and down. This example demonstrates the propagation and

ultimate rise to a periodic spread of activity. (File: irreg prop2.avi)
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Figure 5.20: Temporal sequence snapshots for the two-dimensional FDF model on

the irregular square lattice cell 120 µm× 120 µm with ε = 0.8d. Other parameters as

in Figure 5.16. Frames are presented every 0.1 s starting in the top left corner and

moving rightward and down. This example demonstrates the propagation failure in

the model. (File: irreg failure.avi)
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Figure 5.21: Initiation of a spiral wave in the deterministic two-dimensional FDF

model on the irregular square lattice with ε = 0.2d. Other parameters as in Figure

5.17. (File: irreg spiral.avi)
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Summary

In this chapter we have studied the generalised FDF model with a discrete distribu-

tion of calcium release sites. The discrete FDF model is still mathematically tractable

and solutions that correspond to saltatory solitary and periodic travelling waves have

been explicitly constructed. Moreover, we have shown that this minimal model of

Ca2+ release can be further simplified. Assuming that release times occur on some

regular lattice leads to a computationally inexpensive deterministic model where re-

lease events are calculated via a thresholding of the calcium profile at a release site.

We have shown by direct numerical simulation that this computationally effective ver-

sion of the FDF model provides an accurate representation of the original model. It is

also natural and straightforward to generalise our FDF model to two dimensions. The

model has been extensively numerically simulated in both one and two dimensions

with regular and irregular distribution of release sites. Simulation results demonstrate

that under parameter variation the model supports many patterns of wave propaga-

tion including regular and irregular solitary and periodic travelling waves, colliding

waves, travelling fronts, spirals and abortive waves. Besides this, the simplified ver-

sion of the FDF model is in an ideal form to be generalised to incorporate stochastic

effects.



Chapter 6
Stochastic FDF model

Ca2+ signalling within and between living cells arises through complex mechanisms

which have evolved to the specialised needs of particular cell types. It is important not

to forget that the release of Ca2+ is controlled by the stochastic opening and closing of

Ca2+ channels and the transitions between these two conductance states are random

in time [31, 118, 124]. As we have previously emphasised, Ca2+ waves are composed

of elementary stochastic release events Ca2+ (puffs or sparks) through single channels

or several channels in a cluster [104, 105, 159, 163]. The stochastic nature of the

release kinetics appears to play a significant role in initiation and propagation of the

wave both in systems based on the IP3R [107] and the RyR [30]. Hence, stochastic

effects need to be taken into acount when waves are modelled mathematically.

Most of the theoretical research on calcium waves has focused on deterministic models

of intracellular Ca2+ release (see Chapter 2). Only relatively recently has the stochas-

tic nature of intracellular Ca2+ release been considered [51, 52, 53, 87, 145, 146].

Keizer and Smith [87] and Falcke et al. [53] have both emphasized the importance

of modelling stochastic release kinetics when considering initiation and subsequent

propagation of waves. Both have observed waves that abort in the presence of noise

107
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and also shown how noise may generate a spark-to-wave transition. Keizer and Smith

[87] introduced a spatially one-dimensional stochastic model with a clustered distri-

bution of RyR release channels for cardiac myocytes. The numerical simulation of

their model requires combining the evolution of a nonlinear PDE with a continuous

time Markov process describing the transition between the open, closed and several

intermediate states of the RyR. The model of Falcke et al. [53] considers a stochastic

version of the DYK IP3R model, but with channel clusters at lattice points coupled

by fast diffusion. The assumption of fast diffusion and linearity of the equation for

calcium transport allows an adiabatic elimination of the calcium dynamics in favour

of a purely stochastic continuous time Markov process for the channel configurations

of the IP3R. A recent numerical study of the spark to wave transition in cardiac cells

may be found in [75].

In this chapter we introduce a model of calcium release based upon a stochastic

generalisation of the FDF threshold model. We show how this leads to a natural

description of release events using a probabilistic rather than a deterministic update

rule. Simulation results are presented for both a one and two-dimensional cell model.

These simulations illustrate that stochastic calcium release leads to the spontaneous

production of calcium puffs/sparks that may merge to form saltatory waves. Suf-

ficiently large threshold noise is able to terminate a wave prematurely suggesting

that for some critical noise level there is a non-equilibrium phase transition between

propagating and abortive waves. A statistical analysis shows that the model exhibits

properties consistent with behaviour of other models from the universality class of

directed percolation [70]. In a two-dimensional cell model, we show that not only

does the model support noisy circular and spiral waves as expected but that it can

also exhibit a form of array enhanced coherence resonance (AECR) [69, 73, 178]. We

find that coherent motion, in the form of simultaneous and periodic release of calcium

from all stores, can be induced purely by noise.
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6.1 One-dimensional stochastic model

The discrete-time FDF threshold model defined by equations (5.18), (5.21) and in-

troduced in the previous chapter is in an ideal form to be generalised to incorporate

stochastic effects. The simplicity of the underlying deterministic model means that

the calcium profile can be solved for in closed form, without the need for assump-

tions such as fast diffusion. This obviates the need to numerically evolve a PDE to

obtain calcium profiles. Moreover, the FDF threshold is a natural point at which to

introduce a source of noise in the system. By avoiding a Markov process description

of channel gating we side-step the need for computationally expensive Monte Carlo

type simulations.

We consider the stochastic gating of receptor channels to give rise to an effective

threshold that can be modelled under the replacement uth → uth + ξ where ξ is an

additive noise term with distribution ρ(ξ). The probability that an(p) = 1 is then

given by

P (an(p) = 1) = P (un(p) > uth)

min(R,p)∏

m=1

P (un(p−m) < uth), (6.1)

where

P (u > uth) =

∫
ρ(ξ)Θ(u− uth − ξ)dξ. (6.2)

For convenience we choose ρ(ξ) = f ′(ξ) so that

P (u > uth) = f(u− uth). (6.3)

In work by Izu et al. [75] it has been argued that the probability of release per unit

time follows a functional form given by un/(Kn +un) with the Hill coefficient n = 1.6

and Ca2+ sensitivity parameter K = 15 µM. Moreover, recent work described in [36]

shows that such functional forms can be derived from stochastic models of channel
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clusters. This also suggests that natural choices for f(u) are sigmoidal functions.

Here we shall make the choice

f(u) =

{
1

1 + e−βu
− 1

1 + eβuth

}
(1 + e−βuth), (6.4)

so that the probability of release is zero when u = 0 and tends to one as u→∞. In

summary, the stochastic FDF model is defined by equation (5.21) with the an(p) ∈
{0, 1} treated as random variables such that P (a = 1) is given by (6.1). In Figure

6.1 we illustrate the release probability function f(u − uth). Note, that in the limit

β → ∞, this function approaches a step function so that P (u > uth) = Θ(u − uth)

and we recover our original deterministic model. Thus we interpret β as a parameter

describing the level of noise. For sigmoidal forms of f the noise distribution ρ = f ′

is bell-shaped with the width of the bell controlled by β (see Figure 6.2). In this

framework the refractory time-scale can also be thought of as being drawn from some

distribution, since release events are no longer bound by the constraint that they be

separated by at least τ .

0 0.2 0.4 0.6 0.8

0.2

0.6

1

small

large

β

β

f(u-uth)

Figure 6.1: The release probability function f(u− uth) suggested experimentally [75].

Here we illustrate the sort of behaviors that can be generated by this stochastic model.
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Figure 6.2: The function of noise distribution ρ(ξ) for the given sigmoidal form of

function f .

A space-time density plot of a solitary lurching pulse arising in the deterministic limit

β → ∞ has already been shown in Figure 5.10 (for a regular array of release sites).

As we have already noted this is qualitatively the same as that seen in experimental

line scans, like that of Figure 5.11. Both these plots are useful for comparison with

results from the stochastic model. In Figure 6.3 we plot the corresponding behaviour

to Figure 5.10 in the presence of a finite amount of noise. Initial release from the

central site leads to a local elevation of Ca2+ which initiates a propagating Ca2+ wave

via activation of nearby sites, as in the deterministic case. However, the stochastic

nature of the wave is evident from the fact that it does not propagate symmetrically

away from the initial event. A similar type of behaviour can be observed in the

deterministic FDF model with an irregular distribution of release sites (see Figures

5.14 and 5.15). However, in this instance (without threshold noise), initial data

always leads to the same wave form, whereas in the stochastic FDF model this is

not the case. Another example of a stochastic travelling wave is given in Figure 6.4
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for a higher level of threshold noise. Although rather well defined to start with the

leftward propagating wave terminates at around 1.4 s. Activity in the wake of the

primary stochastic front can also be sufficient to prime release sites for subsequent

spark production, seen at around 1.6 s and again at around 3.2 s. It is also possible for

propagating pulses to lead to the creation (in their wake) of oppositely propagating

pulses. This so-called back-firing has been observed in a number of models (see for

example [3, 58]) including the stochastic calcium release models of Keizer and Smith

[87] and Falcke [53]. Simulation results demonstrate that this model captures the main

qualitative features of the experimentally observed calcium puff/sparks and waves in

a variety of cell types [25, 30, 107] (see, for example, the confocal linescan image of

Ca2+ signalling in Figure 6.5).

6.1.1 Directed percolation

From Figure 5.9 it is easy to see that the deterministic FDF model can support

travelling waves if the threshold for release is not too high, i.e. , if uth < u∗
th, where

u∗
th is defined by the saddle-node bifurcation where the fast and slow branches of

s = s(uth) coalesce. However, in the regime where uth < u∗
th it is possible that noisy

versions of these waves will fail to propagate if noise levels are too high. This leads

to the interesting possibility of a critical noise that defines a border between waves

which survive or eventually go extinct. Indeed Bär et al. [6] have produced numerical

evidence that the model of Falcke et al. [53] for stochastic calcium waves exhibits a

non-equilibrium phase-transition belonging to the so-called directed percolation (DP)

universality class.

DP is a d + 1-dimensional dynamic process that is often treated as a testing ground

for new ideas in non-equilibrium statistical mechanics [4, 110, 158]. Models within

the DP universality class are interesting because they exhibit non-equilibrium phase

transitions. In particular they can exhibit transitions from absorbing states, i.e.
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Figure 6.3: Stochastic travelling wave for the model of Figure 5.10 with a finite amount

of noise. Here β = 70.
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Figure 6.4: Stochastic travelling wave for the model of Figure 5.10 with a finite amount

of noise. Here β = 10.

150 ms

20 µm

Figure 6.5: The confocal linescan calcium image in immature Xenopus oocytes show-

ing that puffs tend to occur randomly between different release sites [25].
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Figure 6.6: DP in 1+1 dimensions interpreted as a time-dependent stochastic process.

Open (closed) bonds are indicated by solid (dashed) lines and black (white) circles

denote active (inactive) sites. Starting from a fully occupied initial state the model

evolves according to the dynamic rules of equation (6.5) and reaches a final state at

t = 3.

configurations that can be reached by the dynamics but cannot be left, under variation

of parameters controlling the level of noise in the model. As an example, a (1 + 1)-

dimensional directed bond percolation process is illustrated in Figure 6.6, where the

lattice sites are enumerated horizontally by a spatial coordinate i and vertically by a

discrete time variable t. A local binary variable si(t) is attached to each site. si = 1

means that the site is active (occupied) while si = 0 denotes an inactive (unoccupied)

site. We define a cluster in this context as a group of neighbouring occupied sites.

On the contrary, if all nearest neighbours of an occupied site are inactive, this site

is isolated. For a given configuration at time t, the next configuration at time t + 1

can be determined as follows. For each pair of bonds between the sites (i± 1, t) and

(i, t) two random numbers z±i ∈ (0, 1) are generated. A bond is considered to be open

(with probability p) if z±i < p, leading to the update rule

si(t + 1) =





1, if si−1(t) = 1 and z−i < p,

1, if si+1(t) = 1 and z+
i < p,

0, otherwise.

(6.5)

Percolation theory deals with the clusters that are formed in this process. When the
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probability p is very small, most sites are either isolated or form small clusters which

contain a finite number of sites. Clearly, there is no continuous cluster between the

two limits of the lattice. As p increases, there appear on the average more and more

clusters of larger size. When a certain value of p = pc is reached, there suddenly

appears the possibility of a cluster connecting continuously the two limits of the

lattice. This cluster is usually called the infinite cluster in the percolation literature,

even though the system is finite. For all values p > pc, there is a continuous path

of active sites exists connecting the extremes of the lattice (from past to future). A

phase transition is defined to occur at the point where p = pc and there is a qualitative

change in the system behaviour (from an absorbing state to an infinite cluster) as p

is varied through pc. Numerical simulations of the (1 + 1) directed bond percolation

process show that the temporal evolution of a DP process changes significantly at

the phase transition. Typical space-time histories for random initial conditions and

a single active seed are shown in Figure 6.7. For p < pc the number of occupied sites

decreases exponentially until the system reaches the absorbing state (no occupied

sites), whereas for p > pc there is a finite probability that the resulting cluster is

infinite. At the critical point when p = pc, the mean active site number decays very

slowly and the critical cluster is generated with certain scaling properties. Precisely

at the critical point the survival probability, Π(t), that a wave initiated from a single

site has not aborted after t time steps, is expected to scale asymptotically as t−δ,

where δ is a universal scaling parameter (see [70] for a review). The analysis of the

DP universality class is highly non-trivial and it has only been possible to obtain

critical exponents for models in this class numerically. The best current estimate for

δ comes from the work of Jensen [81], who finds that δ ∼ 0.159464.

According to the Janssen-Grassberger DP conjecture, any spatio-temporal stochastic

process with short range interactions, fluctuating active phase and unique nonfluctu-

ating (absorbing) state, single order parameter and no additional symmetries, should

belong to the DP class. Since these are almost the defining characteristics of a minimal
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Figure 6.7: DP in 1+1 dimensions starting from random initial conditions (top) and

from a single active seed (bottom).

model for stochastic calcium release we should not be too surprised if our stochastic

FDF model also belongs to the DP class. To explore this possibility we consider the

behaviour of our model under variation of the noise parameter β. We denote the

critical value of β at the phase transition between propagating and abortive waves

by βc. To obtain a good estimate of the critical exponent δ we construct the effective

exponent:

δ(t) =
ln[Π(rt)/Π(t)]

ln r
, (6.6)

where ln r is the distance used for estimating the slope of Π(t). For β 6= βc, δ(t) will

deviate from a straight line (in the large t limit) so that plots of δ(t) for various choices

of β may be used to predict βc. An estimate of δ is obtained by extrapolating the

behaviour of δ(t) to t−1 = 0. In Figure 6.8 we plot δ(t) for various β, showing that for

our choice of system parameters βc ∼ 0.47. In Figure 6.9 we plot the corresponding

distribution of survival times Π(t) for the activation process started from a single
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site. Using our value of βc we find δ ∼ 0.159, suggesting that our model does indeed

belong to the DP universality class. Whether or not a DP transition will be seen in

a living cell is another matter entirely. As pointed out by Hinrichsen [70], the size

of a living cell is only a few orders of magnitude larger than the diffusion length,

leading to strong finite size effects. Moreover, inhomogeneities as well as internal

cellular structures are a source of disorder that may further complicate matters. To

date there is no clear experimental evidence that there is a phase transition between

survival and extinction of propagating calcium waves in living cells.

Till now we have illustrated the properties of the stochastic FDF model with one-

dimensional studies in the regime where wave propagation is possible in the limit of

zero threshold noise. In the next section we turn to two-dimensional studies and also

explore the parameter regime where an initial disturbance could not propagate in the

deterministic regime.
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Figure 6.8: A plot of −δ(t) as a function of 1/t for three different level of threshold

noise, β = 0.49 (upper curve), β = 0.47 (middle curve) and β = 0.45 (lower curve).
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Figure 6.9: The distribution of survival times for the stochastic FDF model at the

critical noise defining the transition between propagating and abortive waves. For

large t, Π(t) scales as t−0.159, indicating that our model belongs to the DP universality

class.

6.2 Two-dimensional stochastic model

In this section we consider a two-dimensional FDF model discussed in section 5.2.2

in the presence of threshold noise. For simplicity we focus only on a regular square

lattice of release sites, with lattice spacing d. A single active site is placed in the centre

of the square lattice at the beginning of simulations. An example of behaviour in the

two-dimensional stochastic FDF model is shown in Figure 6.10. Here a sequence

of snap shots shows nucleation of a circular front, subsequent propagation and the

emergence of noisy spiral waves. These waves can be annihilated in collisions with

other waves and created by spontaneous nucleation. The long time behaviour of the

system is dominated by the interaction of irregular target and spiral waves. This is

typical of dynamics in noisy spatially extended excitable systems. In fact the role

of fluctuations for the generation and propagation of patterns in spatially extended
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excitable media is a subject of increasing attention and can be traced back to work

by Jung and Mayer-Kress [83, 84]. We note that both the stochastic FDF model and

the Jung and Mayer-Kress (JMK) model describe the interaction of threshold devices

with spatially decaying connectivity (fixed in the JMK model, but determined by

the calcium profile in ours). In the JMK model noise is added to the state variable,

whereas in the stochastic FDF model it is added to the threshold.

Importantly it is possible for noise to sustain spatio-temporal structures that could

not otherwise occur. In this case a removal of all noise would lead to a deterministic

system which could not support travelling waves. Since noise sustained target waves

may collide with each other this typically limits their growth to a finite region, whose

size is expected to decrease with increasing noise. Indeed the scale of noisy spiral

waves has been shown to be dominated by the ratio of longitudinal (normal to the

front of high activity) and the traversal (parallel to the front) speed of propagation

[84]. As noise levels increase the transversal propagation speeds up, yielding a spiral

wave with larger curvature. For increasing noise it is possible that the breakup of

spirals and increased spontaneous nucleation of other spirals may destroy any coherent

motion. However, it is also possible to see coherent motion for high levels of noise.

In fact coherence can actually be enhanced in regions of high noise and it is possible

to observe synchronized global release events. This type of behaviour has recently

been termed array enhanced coherence resonance (AECR) and is typical of the way

in which noise can lead to structured activity in spatially extended excitable systems

[69, 73, 178]. In Figure 6.11 we show an example of this type of phenomenon in

the stochastic FDF model. Here an initial disturbance leads to the propagation of

a circular target wave. In the wake of the wave there is then subsequent release

from a set of neighbouring sites. After this one sees near simultaneous release from

a large number of sites. This process of simultaneous release repeats and at every

stage recruits more and more stores. After only a few cycles of this process one sees

an almost simultaneous release from all sites. This causes an oscillation in the global
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Figure 6.10: Temporal sequence snapshots for the two-dimensional stochastic FDF

model with β = 100 (low noise). Other parameters as in Figure 5.9. Frames are

presented every 0.45 s starting in the top left corner and moving rightward and down.

An initial seed in the center of the cell model leads to the formation and propagation of

a circular front. Spiral waves form in the wake of the wave by spontaneous nucleation.

These can be destroyed in wave-wave collisions and created by spontaneous nucleation.

(File: noisy prop.mpg)
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Figure 6.11: Temporal sequence snapshots for the two-dimensional stochastic FDF

model with β = 10 (high noise). Other parameters as in Figure 5.9. Frames are

presented every 0.45 s starting in the top left corner and moving rightward and down.

An initial seed leads to the formation of a circular travelling front. In the wake of the

wave there is periodic and near simultaneous release from a large number of stores,

typical of systems exhibiting array enhanced coherence resonance. (File: AECR.mpg)
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signal U(t) defined by

U(t) =
1

|Γ|

|Γ|∑

n=1

u(rn, t), (6.7)

where |Γ| is the number of release sites. An example of this oscillation is shown in

Figure 6.12 for the data of Figure 6.11. In this figure we also plot the variation of

U(t) for the data presented in Figure 6.10. Although showing some level of periodic

behaviour, it is clearly not as regular as that of the AECR example. The frequency

of the AECR oscillation (as measured by variation in U(t)) increases monotonically

with the noise level β−1 (above a cut-off below which AECR fails), and is shown in

Figure 6.13.
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Figure 6.12: Plot of the global signal U(t) for the data of Figure 6.11 (solid line) and

also that of Figure 6.10 (dashed line).

We emphasize that the coherent motion illustrated in Figure 6.11 is induced purely by

noise without an external periodic signal. This is very reminiscent of the behaviour

of an excitable activator-inhibitor medium recently discussed by Hempel et al. [69].

They also consider a model with threshold noise (but with fixed Gaussian spatial
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Figure 6.13: Frequency f of oscillation of U(t) for the system exhibiting AECR as a

function of β−1. Note that frequency increases monotonically with increasing noise

levels. Parameters as in Figure 6.11.

interactions) and note that when the nucleation time becomes much smaller than the

intrinsic refractory time of the system, all cells fire and come back to rest essentially

at the same time.

Finally we demonstrate that the stochastic FDF model may generate Ca2+ sparks and

waves in the fashion similar to that seen in experiments. In Figure 6.14 we illustrate

the visual similarity between our model results and those of Marchant and Parker

[107]. Figure 6.14 (B) demonstrates the summation of activity from many stochastic

puff sites generating regularly repetitive Ca2+ waves in Xenopus oocytes. The similar

behaviour of wave propagation in the stochastic FDF model is shown in Figure 6.14

(A) for the low level of noise and by decreasing the refractoriness of the system.

Experimental results in Figure 6.14 (C) illustrate an example of disruption of CICR

resulting from Ca2+ diffusing between release sites, thereby functionally uncoupling

individual sites. By increasing the level of noise and refractoriness in the stochastic
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FDF model we observe the continued rise of individual puffs without generation of

repetitive waves (Figure 6.14 (D)) similar to that in Figure 6.14 (C).

(A)

(B)

(C)

(D)

Figure 6.14: (B) and (C): Image sequences illustrating the patterns of Ca2+ liberation

evoked in immature Xenopus oocytes by a photolysis flash of IP3. Each image sequence

was captured at intervals of 0.1 s. (From [107]). (A) and (D): An example of

generated Ca2+ puffs/sparks and propagating waves in the stochastic two-dimensional

FDF model of Ca2+ release for β = 70, R = 5 and β = 5, R = 50 respectively.

Frames are presented every 0.25 s.

Summary

In this chapter we have introduced a stochastic generalisation of the FDF model for
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Ca2+ release. One of the main advantages of our model is that it is computationally

inexpensive. The stochastic nature of the release events is modelled by the inclusion

of additive noise to the threshold. For high noise we observe spontaneous Ca2+ sparks

and the possibility of global coherent signals in the form of simultaneous and periodic

release from all sites. For low noise Ca2+ sparks can reinforce each other and propagate

as waves. A statistical analysis of the model shows the interesting possibility of a

non-equilibrium phase transition between propagating and non-propagating waves

suggesting that the model belongs to the directed percolation universality class.



Chapter 7
Intercellular calcium waves

In many cell types, an initiated wave of increased intracellular calcium can spread

from cell to cell to form an intercellular wave. Distinct from the previous chapters

where we studied intracellular waves, this chapter considers some aspects of intercel-

lular calcium signal propagation. In particular we are interested in the issue of wave

propagation failure through the cell culture as a function of cell-cell coupling parame-

ters. The focus is on the detailed biophysical DYK model discussed in Chapter 3 and

the much simpler FDF model discussed in Chapter 4. Both of these models are ex-

tended to the tissue level by connecting model cells with gap junctions. In the case of

the deterministic and continuous FDF model precise analytic statements about inter-

cellular wave propagation failure are made as a function of gap junction permeability.

The important effect of IP3 regulation and transport on intercellular wave propaga-

tion is explored numerically for both FDF and DYK models, and in both instances is

shown to severely restrict wave propagation. Moreover, comparisons between the two

models show both qualitative and quantitative agreement, lending further support to

the notion that the FDF model with an IP3 dependent threshold provides a realistic

caricature of the more complicated DYK model.

127
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7.1 Mechanisms of intercellular calcium wave propa-

gation

There is considerable experimental evidence to show that intracellular calcium signals

can mediate intercellular communication by activating calcium signals in surrounding

cells [19, 26, 42, 43, 59, 139, 140, 177]. It has been proposed that intercellular Ca2+

waves can serve to coordinate a multicellular response to a local stimulus. In some

systems, such as the airway epithelium, the cell culture forms a thin layer of cells,

connected by gap junctions. When a cell in the middle of the culture is mechanically

stimulated, the Ca2+ in this cell increases quickly generating an intracellular wave.

After a time delay of a second or so, the neighbours of the stimulated cell also show

an increase in Ca2+, and this increase spreads sequentially through the culture. An

intracellular wave moves across each cell and after a short delay at the cell bound-

ary initiates a similar intracellular wave in the neighbouring cell. Repetition of this

process results in an intercellular wave moving across the culture. The distance the

wave propagates appears to depend on the magnitude of the initial stimulus.

IP3 can play the role of a second messenger, releasing Ca2+ from ER via IP3R Ca2+

channels that are sensitive to both Ca2+ and IP3 (discussed in detail in Chapter

2). Evidence also indicates that intercellular waves are mediated by the movement

of IP3 through gap junctions. When intercellular signalling of this type was first

discovered, several qualitative models of the underlying mechanisms were proposed

[19, 140, 150, 151, 153]. The main idea of these models is based on the passive-

diffusion hypothesis which is shown as a schematic diagram in Figure 7.1. Mechanical

stimulation of a single cell initiates the production of IP3 in that cell and consequent

release of Ca2+. Some of this IP3 moves through gap junctions to neighbouring cells,

releasing Ca2+ from internal stores there. A small amount of IP3 can stimulate a

large release of Ca2+ via a positive-feedback process. The subsequent transport of
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Ca2+ through neighbouring cells stimulates further release resulting in an intercellular

Ca2+ wave. This hypothesis for the propagation of intercellular Ca2+ waves relies on

the passive diffusion of IP3 between cells via gap junctions.

It is important to emphasise that this diffusional hypothesis of wave propagation

cannot fully account for the observed behaviour of all Ca2+ waves. For example, the

3

Figure 7.1: Schematic diagram of the passive diffusion hypothesis for the propagation

of intercellular Ca2+ waves. GJ: gap junction; IP3R: IP3 receptor/ Ca2+ channel.

The ⊕ sign denotes Ca2+- induced Ca2+ release. (From [140]).

intercellular Ca2+ waves observed in the liver [125, 133] and the astrocyte networks of

the central nervous system [38, 59] propagate over large distances and cannot simply

rely on the diffusion of a messenger from a single point or cell. In these cases, it

is likely that a process of regeneration is required to actively propagate the wave.

This can be explained by the fact that both the calcium-releasing messenger IP3 and

calcium can participate in the gap-junctional mode transmission [32, 137]. In some
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systems, an external signal is applied globally, so that IP3 concentration increases in

practically all cells. Under these conditions, calcium release in the presence of IP3R

and RyR calcium channels can be activated by the CICR mechanism (discussed in

detail in Chapter 2). Thus, calcium influx through gap junctions may trigger calcium

release in a cell acting as an intercellular mediator and in this way a regenerative

intercellular calcium wave could spread.

CICR and gap-junctional calcium diffusion may be considered as a basic mechanism

of intercellular calcium signalling. Recently, models based on a CICR/gap-junctional

calcium diffusion mechanism have been developed for the formation of intercellu-

lar spiral waves of calcium in hippocampal slices [171], for the synchronisation of

calcium oscillations in hepatocyte couplets [66] and for the propagation of calcium

wavefronts in a model of calcium elevation through CICR coupled to cytoplasmic

and gap-junctional calcium diffusion [67]. A common finding in these studies is the

existence of a critical junctional calcium permeability which must be exceeded for

intercellular wave propagation or synchronisation to occcur. Our intention in the

investigation of intercellular wave signalling is to begin with a simple mathematical

model and focus on the conditions under which intercellular calcium waves can occur,

and on how the occurence and properties of the waves depend on the parameters of

the calcium transport processes in the cell. The FDF model of intracellular calcium

waves discussed in Chapter 4 can be considered as a good canditate to start the

analysis of intercellular wave propagation.

7.2 Intercellular Ca2+ waves in the Fire-Diffuse-Fire

model

A detailed analysis of the previously presented FDF model demonstrates the for-

mation of intracellular travelling pulse of calcium propagating via the interaction of
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CICR and calcium diffusion. Considering multiple cells with gap-junctional connec-

tions and calcium fluxes across the gap junctions, we may study the characteristics of

intercellular Ca2+ wave propagation in the FDF type model in terms of basic cellular

parameters.

7.2.1 Model equations

We introduce a linear cell array connected by the gap junctions shown in Figure 7.2.

The change in the concentration of cytoplasmic calcium in the i-th cell, ui(x, t) =

[Ca2+], i = 0, 1, . . . , n, is given using a continuum FDF model in the following form

∂ui

∂t
= D

∂2ui

∂x2
+

∑

m

η(t− T m(x))− ui

τd

, 0 ≤ x ≤ L, (7.1)

where L denotes the length of a cell and x is mapped for each cell individually to

the interval (0, L). A detailed discussion of this equation can be found in Chapter 4.
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Figure 7.2: Linear array of cells of uniform length L, coupled by the gap junctions.

We only mention here that the function η(t) describing the shape of the Ca2+ puff is

given by

η(t) = σΘ(t)Θ(τR − t), (7.2)

where Θ(·) is the Heaviside step function, σ is the strength of the Ca2+ puff and τR

its duration. Note that in comparison to Chapter 4 we do not consider the puff shape

to be normalised.



CHAPTER 7. INTERCELLULAR CALCIUM WAVES 132

The intercellular calcium fluxes through gap junctions are assumed to be proportional

to the concentration differences across the gap junctions so that

−D ∂ui

∂x

∣∣
x=0

= Fc[ui−1(L, t)− ui(0, t)],

D ∂ui

∂x

∣∣
x=L

= Fc[ui+1(0, t)− ui(L, t)],

(7.3)

where Fc is the effective gap-junctional calcium permeability. We study the case

of a solitary travelling pulse. From the analysis of Chapter 4 (section 4.2) we may

write the following implicit equation for the speed of solitary travelling pulses in an

infinitely long single FDF cell model as

uth

στd
=

λ−
λ− − λ+

[1− e−λ+sτR ], (7.4)

where s denotes the speed of the wave, uth is the FDF threshold and λ± = [s ±
√

s2 + 4D/τd]/2D. The bifurcation diagram in Figure 7.3 shows the speed of the

travelling pulse as a function of the calcium puff duration τR. One notes that the

speed of the stable solution branch is constant for almost the whole parameter region

of τR where solitary travelling pulse can exist. This implies that large values of τR

do not significantly influence the speed of the propagating pulse (at least for a large

cell). In this respect we assume that the duration of a Ca2+ puff is large enough so

that its shape can be approximated by the simple threshold condition σΘ(u − uth).

Thus, to carry out mathematical analysis of a single pulse, we consider the simplified

equation for the concentration of cytoplasmic calcium in the form

∂ui

∂t
= D

∂2ui

∂x2
+ σΘ(ui − uth)−

ui

τd

, 0 ≤ x ≤ L, i = 0, 1, . . . , n, (7.5)

together with equations (7.3) for the intercellular calcium fluxes across the gap junc-

tions.

7.2.2 Analysis of the model

The analysis of wave propagation in the model follows a similar approach to that

of Höfer et al. [67]. For convenience we non-dimensionalise the model equation by
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Figure 7.3: Speed of the intracellular travelling pulse in the FDF model as a function

of the Ca2+ puff duration τR for the choice of parameters D = 1, τd = 1, σ = 1 and

uth = 0.1.

introducing the scaled time τ = t/τd, space ξ = x/L and calcium concentration

ũ = u/uth. In the remainder of this chapter we will use the symbol u(ξ, τ) instead of

ũ for the scaled concentration. Hence, the model takes the following form

∂ui

∂τ
= δ

∂2ui

∂ξ2
+ αΘ(ui − 1)− ui, 0 ≤ ξ ≤ 1, (7.6)

−δ ∂ui

∂ξ

∣∣∣
x=0

= p[ui−1(1, τ)− ui(0, τ)],

δ ∂ui

∂ξ

∣∣∣
x=1

= p[ui+1(0, τ)− ui(1, τ)],

(7.7)

with the three dimensionless parameters

δ =
Dτd

L2
, α =

στd

uth
, p =

Fcτd

L
. (7.8)

Provided that α > 1 the kinetics of CICR and calcium removal given by f(u) =

αΘ(u−1)−u exhibit bistability. Figure 7.4 shows that a calcium signal is represented
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by the transition from the rest state of low cytoplasmic calcium u = 0 to the excited

state u = α which corresponds to the elevated calcium level following the triggering

of CICR. We suppose that a local stimulus is applied in cell 0, at position ξ = 0,
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u

f(u)

u=α
u=0

Figure 7.4: Bistable kinetics of ER calcium release and removal f(u) with step-

function CICR when α = 10.

u0(0, τ) = c0, τ > 0, (7.9)

and that initial calcium concentration in all cells is at the rest state, ui(ξ, 0) = 0. If

the stimulus triggers a regenerative intercellular calcium wave, it may be that all cells

of the array become activated. However, it is also possible that signal propagation

fails at some distance from the point of initiation, because the gap-junctional calcium

influx into a cell becomes too small to excite CICR and limits the spatial range of the

signal. Regenerative intercellular calcium waves and spatially limited calcium signals

can be expressed in terms of the asymptotic behavior, τ →∞, as

lim
i→∞

ui(ξ) = α (7.10)
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and

lim
i→∞

ui(ξ) = 0 (7.11)

respectively, where ui(ξ), 0 ≤ i < ∞, denote stationary concentrations. Thus, if

the ui(ξ, τ) approach the solution given by equation (7.11) after application of a

local stimulus c0 we observe the failure of regenerative intercellular wave propagation.

Stationary solutions to equations (7.6) and (7.7) may satisfy equations (7.9) and

(7.11), if calcium in cells up to cell m, m ≥ 0, is above the CICR threshold, while in

the remaining cells it is below:

ui(ξ) =





> 1, 0 ≤ i ≤ m

< 1, m + 1 ≤ i <∞.

(7.12)

Letting ∂ui/∂τ = 0 in equation (7.6) yields the following solution for the calcium

profile:

ui(ξ) = αi + βie
−ξ/

√
δ + γie

ξ/
√

δ, 0 < ξ < 1, (7.13)

where

αi =





α, 0 ≤ i ≤ m

0, otherwise.

(7.14)

By connecting the solutions for neighbouring cells using equations (7.7), one may

obtain a linear system of difference equations for βi and γi in the form:



βi

γi



 = A



βi−1

γi−1



 . (7.15)

The matrix A results from evaluating equations (7.7) for calcium fluxes with equation

(7.13) for i < m and i > m + 1 and is found as

A =



(1−
√

δ
2p

)e−1/
√

δ
√

δ
2p

e1/
√

δ

−
√

δ
2p

e−1/
√

δ (1 +
√

δ
2p

)e1/
√

δ



 . (7.16)
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The system of difference equations (7.15) can be explicitly solved for in closed form

in terms of (β0, γ0) as


βi

γi


 = P


λi

− 0

0 λi
+


P−1


β0

γ0


 , (7.17)

where λ± are the eigenvalues of matrix A and P is a modal matrix with linearly

independent eigenvectors as its columns. The system of equations (7.17) is solved by

βi = b1λ
i + b2λ

−i, γi = ν1b1λ
i + ν2b2λ

−i for 0 ≤ i ≤ m, (7.18)

βi = B1λ
i, γi = ν1B1λ

i for m + 1 ≤ i ≤ ∞, (7.19)

with the following spectrum for A

λ− ≡ λ = T (1−
√

1− 1/T 2)

λ+ = 1/λ−
(7.20)

where

T = cosh

(
1√
δ

)
+

√
δ

2p
sinh

(
1√
δ

)
. (7.21)

We note that T ≥ 1 and, therefore, it is straightforward to identify that λ is real and

0 ≤ λ ≤ 1. The terms λ−i are excluded from equations (7.19) because of the use of

the boundary condition given by equation (7.11). Substituting the expressions for βi

and γi given by (7.18) into the system of difference equations (7.15) and solving this

system in respect of ν1 and ν2 show that

ν1 =
e−1/

√
δ − λ

e1/
√

δ − λ
and ν2 =

e−1/
√

δλ− 1

e1/
√

δλ− 1
. (7.22)

Using equations (7.18) and (7.19) with equation (7.13) the gap-junctional flux condi-

tions (7.7) between cells m and m+1 and the left boundary condition (7.9) introduce

a linear system of equations for b1, b2 and B1 as a function of m. This system is

given in Appendix (A.4) and has a unique solution. In this way, the calcium profile
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ui(ξ) given by equation (7.13) is found in terms of the model parameters with the

spatial range of signal m to be determined. The relation (7.12) yields m such that

the conditions to the solution

um(0) > 1, um+1(0) < 1 (7.23)

are satisfied. A critical situation occurs if the calcium concentration in cell m + 1

just reaches the CICR threshold, i.e. um+1(0) = 1. This condition separates the case

when the (m+1)st cell is not excited from the case when it is excited. The expression

for um+1(0) is simply defined by

um+1(0) = B1λ
m+1 + ν1B1λ

m+1, (7.24)

and is derived in Appendix A.4. For the spatially limited calcium signals um+1 < 1

for some finite value of m. The other case is when limm→∞ um+1(0) > 1 and we

expect the stimulus to induce nondecaying intercellular calcium waves. The critical

condition separating the two cases is

lim
m→∞

um+1(0) = 1. (7.25)

Taking the limit m→∞ in equation (7.24) (and correspondingly in equation (A.5)),

we find that the condition for propagation depends on the cellular parameters α, p

and δ and does not depend on the size of the initiating stimulus s. This critical

condition is given by the following equation

λ(cosh( 1√
δ
)− λ)

1− λ2
=

1

α
. (7.26)

This equation implicitly defines a critical value of permeability, Fcritical, which defines

a border between propagating and non-propagating intercellular travelling waves. In

fact condition (7.26) may be regarded as a special case of that considered by Höfer

et al. [67] (who treat a more general scenario where gap junctions occupy a finite

fraction of the size of each cell). As Figure 7.5 demonstrates the critical junctional

permeability is a monotonically increasing function of the effective calcium diffusiv-

ity. In this figure the physical variables Fc and D have been plotted (rather than
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Figure 7.5: Critical gap-junctional permeability Fcritical required for intercellular cal-

cium wave propagation according to equation (7.26) for the choice of parameters

σ = 1, τd = 1, uth = 0.1 and L = 7.5. Crosses indicate the results from numeri-

cal simulation of the full FDF model of intercellular waves with the same parameters

and τR = 1. Increasing agreement between numerical experiments and theory is found

with increasing τR, as expected.

their non-dimensionalised counterparts, p and δ). It is worth remembering that the

mathematical analysis for deriving the implicit equation (7.26) was only carried using

an approximate puff shape. To test the validity of this approximation, the critical

permeability in the full FDF model of intercellular Ca2+ waves (equation (7.1)) was

found numerically. The results of this numerical analysis is shown by crosses in Figure

7.5. It can be seen that there is good, but not precise, agreement between the two

models, justifying the assumptions of the simplified model. Figure 7.6 demonstrates

the calcium concentration for intercellular waves in two cases of being just above or

below the numerically found critical curve. For F > Fcritical, a local stimulus triggers

a regenerative intercellular calcium wave. It consists of a series of intracellular waves
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punctuated by gap-junctional delays (Figure 7.6 a). The spatial range of propagation

is potentially arbitrarily large, only limited by system boundaries, and the intracel-

lular speed of propagation is constant. Very long-ranging calcium waves of constant

speed were reported for systems in which PLC-activating agonist has been applied

globally, and junctional calcium diffusion has been hypothesised as a coupling mech-

anism [38, 133, 179]. If F < Fcritical, no regenerative intercellular waves exist and the

signal does not propagate beyond the stimulated cell (Figure 7.6 b). Thus, regener-

ative calcium waves are triggered if the propagation condition is satisfied; otherwise

the signal remains restricted to the first cell. Moreover, the permeability of Ca2+ at
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Figure 7.6: Space-time plot of the calcium concentration in the FDF model of intercel-

lular waves for the following parameters: σ = 1, τd = 1, τR = 1, uth = 0.1, L = 7.5,

D = 1 and (a) Fc = 0.18 (regenerative intercellular wave), (b) Fc = 0.16 (propagation

failure). In both cases the left most cell was stimulated and the first 5 cells are shown.

the gap junction controls a delay in the transmission of the wave between cells. In

Figure 7.7 we plot the position of the wave front against time. The wave front is

defined to be the place at which [Ca2+]= 0.3. The rising portion of the curves corre-

spond to the movement of the wave across a cell, whereas the flat portion correspond

to the intercellular delay. As Fc decreases, the intercellular wave moves more slowly,
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due principally to an increase in the intercellular delay.
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Figure 7.7: Position of wave front as a function of time for 3 different values of Fc

in the FDF model. All other parameters are as in Figure 7.6.

We have investigated a basic model of intercellular calcium signal propagation based

on CICR via ryanodine receptors and gap-junctional calcium diffusion. This type of

wave propagation cannot fully account for the observed behaviour of all Ca2+ waves.

In the presence of IP3R calcium release channels both the calcium-releasing messenger

IP3 and calcium can participate in the gap-junctional mode of transmission. The

next section introduces some features of intercellular calcium waves in IP3 sensitive

systems.

7.3 Intercellular Ca2+ waves in the presence of mobile

IP3

Experimental evidence supports the hypothesis that mechanically-stimulated inter-

cellular Ca2+ waves in some systems can result from the diffusion of IP3 through
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gap-junctions (see Figure 7.1). In this case a model based on the dynamic properties

of IP3 is essential for the representation of these processes. We assume that IP3 moves

through the culture by passive diffusion, moving from cell to cell via gap junctions,

and decays at the same time. Then, within each cell equation for the cytoplasmic IP3

concentration denoted by p =[IP3] is

∂p

∂t
= Dp

∂2p

∂x2
− Vpp

kµ + p
, (7.27)

where Dp is the diffusion coefficient of IP3, Vp is the maximal rate of IP3 degradation,

and kµ is the concentration at which IP3 degradation is half-maximal. The intercel-

lular fluxes of IP3 are assumed to be proportional to the concentration differences

across the gap junctions, i.e.

−Dp
∂pi

∂x

∣∣
x=0

= Fp[pi−1(L, t)− pi(0, t)],

Dp
∂pi

∂x

∣∣
x=L

= Fp[pi+1(0, t)− pi(L, t)],

(7.28)

where L denotes the length of a single cell and pi is the IP3 concentration in cell i.

Fp defines the gap-junctional IP3 permeability coefficient.

The Ca2+ dynamics within each cell can be described by the reduced DYK model

given by equations (2.16) and (3.14). The detailed derivation of these equations has

been given in Chapter 3 with the parameter values listed in Table 2.1.

Similar to the IP3, the intercellular Ca2+ fluxes are assumed to be proportional to

the concentration differences across the gap junctions

−Dc
∂ci

∂x

∣∣
x=0

= Fc[ci−1(L, t)− ci(0, t)],

Dc
∂ci

∂x

∣∣
x=L

= Fc[ci+1(0, t)− ci(L, t)]

(7.29)

with the gap-junctional calcium permeability Fc. We are now in a position to consider

the effects of mobile IP3 on intercellular calcium waves in both DYK and FDF based

models.
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7.3.1 Intercellular Ca2+ waves using the DYK single cell model

Before we analyse intercellular signal propagation in the presence of diffusing IP3

we first consider the simpler case when the value of IP3 concentration throughout

the culture is constant. We assume that the wave spreads from cell to cell only by

the Ca2+ fluxes given by equations (7.29). The extended analysis of intracellular

oscillations and waves in the DYK model represented in Chapter 3 determines the

IP3 concentration, which is required for the wave generation in a single cell. This

generated intracellular wave may propagate through the culture with propagation

controlled by gap-junctional calcium permeability. From Chapter 4 we expect that

a DYK model, with constant level of IP3 throughout the tissue, will behave quali-

tatively like an FDF model with an appropriate IP3 dependent threshold. This is

illustrated in Figure 7.8, where the calcium concentration of intercellular waves is

shown for two different values of calcium permeability. Figure 7.8 shows exactly the

same qualitative features as that for the FDF single cell model, shown in Figure 7.6.

For both single cell models intercellular calcium wave propagation is favoured with

increasing gap-junctional coupling. The critical calcium permeability for wave prop-

agation can be found numerically for the DYK single cell model and analytically for

the FDF single cell model, using (7.26) and (4.20). In Figure 7.9 we plot the critical

Fc dependence on the effective Ca2+ diffusivity for both single cell models. It is seen

to be a monotonically increasing function. For completeness the wave front position

as a function of Fc for the DYK model is shown in Figure 7.10. As expected the

variation of permeability through the gap junctions causes a delay time in the trans-

mission of the wave between cells, precisely of the type already found for the FDF

model (see Figure 7.7).

We now consider the full dynamics for IP3 concentration defined by equation (7.27),

coupled to equation (2.16) describing the dynamics of intracellular Ca2+. Both IP3

and Ca2+ fluxes through the gap junctions are assumed to be proportional to the
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Figure 7.8: Space-time plot of the calcium concentration in the DYK model of inter-

cellular waves with the constant IP3 concentration p = 0.25 for the parameters given

in Table 2.1, L = 7.5, Dc = 1 and (a) Fc = 0.07 (intercellular wave propagation), (b)

Fc = 0.04 (propagation failure). In both cases the left most cell was stimulated and

the first 5 cells are shown.

concentration differences, given by equations (7.28) and (7.29) respectively. In Fig-

ure 7.11 we illustrate the effect of varying the gap-junctional IP3 permeability on

the system behaviour. This plot demonstrates that arrival time of the propagating

intercellular wave (at a cell boundary) is sensitive to changes in Fp and a decrease in

this parameter leads to a decrease in wave speed or ultimately to propagation failure.

This is in qualitative agreement with the work of Sneyd et al. [150] for the analysis

of intercellular waves in the Atri model [2].

The bifurcation diagram of the reduced DYK model in Figure 3.3 shows the existence

of a stable limit cycle for an intermediate range of IP3 concentrations. Thus, if the IP3

concentration is steadily increased in all cells, the cells within a specific physiological

range of IP3 concentrations will exhibit Ca2+ oscillations. This is clearly seen in

space-time plot of the calcium concentration in Figure 7.12. The left most cell was

stimulated by IP3 and the first five cells are shown. The decrease in gap-junctional



CHAPTER 7. INTERCELLULAR CALCIUM WAVES 144

2 4 6 8 10
Dc

0

0.2

0.4

0.6

0

Fc

Figure 7.9: The critical gap-junctional permeability required for intercellular calcium

wave propagation found numerically for the DYK single cell model (solid curve) and

analytically for the FDF single cell model (dashed curve) with constant IP3 concen-

tration p = 0.25 and k = 0.13 in equation (4.20).
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Figure 7.10: Position of wave front (defined to be where [Ca2+] = 0.3) as a function

of time for three different values of Fc in the DYK model. All other parameters are

as in Figure 7.8.



CHAPTER 7. INTERCELLULAR CALCIUM WAVES 145

IP3 permeability makes it diffucult for IP3 to spread through the system causing

failure of an intercellular wave. We demonstrate this in Figure 7.13.
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Figure 7.11: Arrival time of wave in the DYK model for four different values of Fp

for the parameters given in Table 2.1 and L = 7.5, Dc = 1, Fc = 0.2, Dp = 15,

Vp = 0.01, kµ = 5.

7.3.2 Intercellular Ca2+ waves using the FDF single cell model

We now consider the FDF model defined by equation (7.1) together with (4.4) (for

periodic travelling wave) and (4.20) and coupled to equation (7.27) describing the

dynamics for cytoplasmic IP3 concentration. Intercellular fluxes of both Ca2+ and

IP3 are assumed to be proportional to the concentration differences across the gap

junctions and given by equations (7.3) and (7.28) respectively.

In Figure 7.14 we illustrate how the system behaviour depends on the variation in

the gap-junctional IP3 permeability. As for the DYK model (Figure 7.11), this plot

demonstrates that the speed and range of propagation are sensitive to changes in
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Figure 7.12: Space-time plot of the calcium concentration in the DYK model of inter-

cellular waves for the parameters in Figure 7.11 and Fp = 7.
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Figure 7.13: Space-time plot of the calcium concentration in the DYK model of inter-

cellular waves for the parameters in Figure 7.11 and Fp = 2.
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Fp. Similar to the DYK model, we illustrate two space-time plots of the calcium

concentration for different values of gap-junctional IP3 permeability. The left most

cell was stimulated by IP3 and the first five cells are shown. Figure 7.15 demonstrates

the propagation of intercellular periodic travelling waves via the whole system with

the observed increase in a gap-junctional delay times farther away from the stimulated

cell. This is caused by the process of IP3 diffusion through gap junctions. Figure 7.16

shows a case of decreased IP3 permeability and as the result of this the failure of

intercellular wave propagation.
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Figure 7.14: Arrival time of wave in the FDF model for four different values of Fp

for the following parameters σ = 1, τd = 1, L = 7.5, Dc = 1, Fc = 0.2, Dp = 15,

Vp = 0.01, kµ = 5 and k = 0.1.

Summary

In this chapter we have investigated the subject of wave propagation failure through

the cell tissue in two different models of Ca2+ release, DYK and FDF. In the first part

of the analysis (analytical and numerical) the level of IP3 concentration is assumed to
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Figure 7.15: Space-time plot of the calcium concentration in the FDF model of inter-

cellular waves for the parameters in Figure 7.14 and Fp = 7.
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Figure 7.16: Space-time plot of the calcium concentration in the FDF model of inter-

cellular waves for the parameters in Figure 7.14 and Fp = 2.
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be constant throughout the cell culture and the intercellular Ca2+ wave is mediated

by a passive Ca2+ diffusion through gap junctions. Numerical simulation of the DYK

model shows that the critical gap-junctional calcium permeability is consistent with

that found from the mathematical analysis of the FDF model. In the second part, we

have included the dynamics of IP3 into these two models assuming a passive diffusion

of IP3 from the stimulated cell as well as Ca2+ propagation through the gap junction.

A qualitative comparison of the simulation results of both the DYK and FDF models

in respect of wave propagation dependence on gap-junctional permeability shows the

similarity in behaviour of a propagating intercellular wave through the cell tissue.



Chapter 8
Conclusions and further work

In this chapter we describe some natural ways to extend the work presented in this

thesis. First, however, we briefly summarise the main achievements of this thesis.

8.1 Conclusions

In this thesis we have studied oscillations and waves of cytosolic Ca2+ in single cells as

well as multi-cellular systems from a mathematical perspective. We have focused on

two models of Ca2+ release (DYK and FDF) for a systematic analytical and numerical

analysis of Ca2+ dynamics.

First of all, a detailed numerical bifurcation analysis together with a linear stability

analysis in the reduced DYK model was presented. The dispersion curve for periodic

waves and a kinematic theory of irregular wave propagation were used to predict the

existence of a non-periodic travelling wave connecting periodic orbits. This prediction

was confirmed by direct numerical simulation. We have used a detailed analysis of

the DYK model to motivate the form of a much simpler minimal FDF model capable

of exhibiting qualitatively similar behaviour to that of the more complex biophysical

150
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DYK model. We have presented the generalised form of the original FDF model

supporting both solitary and periodic travelling waves and retaining mathematical

tractability. One of the important features of this generalised model is the inclusion of

an IP3 sensitive threshold. The explicit construction of travelling waves has allowed us

to probe the mechanisms for propagation failure in the two extremes of i) a continuous

distribution of calcium stores and ii) a discrete distribution.

Moreover, we have presented an integrative multi-scale framework which opens up

new possibilities for mathematical progress in studying the dynamics of Ca2+ release

in cells. In particular we have shown that the FDF model may be naturally extended

to include further layers of biological reality. The important extensions presented

in this thesis include more general choices of the distribution of release sites, the

stochastic triggering of release and studying the model in one and two dimensions.

The computationally efficient FDF framework is ideal for investigating spark to wave

transitions within a spatially extended cell model with a discrete distribution of release

sites. Numerical simulations of the model in one and two dimensions (with stores

arranged on both regular and disordered lattices) have illustrated the spontaneous

production of Ca2+ sparks, the spreading of circular Ca2+ waves, spirals and more

irregular waves. This highlights the ability of the model to describe realistic travelling

Ca2+ waves. Furthermore, this approach allowed us to examine behaviour which can

only be produced in stochastic systems, and in particular AECR. This phenomenon

could play a potentially important role in the development of ectopic beats in the

heart. For an intracellular Ca2+ oscillation to trigger an ectopic beat it is necessary

that it first triggers an action potential. This can only be triggered if the sodium-

calcium exchange current associated with a Ca2+ oscillation is sufficiently large and

rapid. However, in experiments on isolated myocytes, Ca2+ waves rarely trigger an

action potential. If Ca2+ release was simultaneous throughout the cell (i.e. if the Ca2+

oscillations were due to AECR) rather than in the form of a wave, the induced sodium-

calcium exchange current would have a larger amplitude, increasing the likelihood of
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an action potential being evoked.

In numerical simulations of a one-dimensional stochastic FDF model it has also been

possible to identify a critical level of noise defining a non-equilibrium phase-transition

between propagating and abortive structures. A statistical analysis shows that this

transition is the same as for models in the DP universality class. The analysis of

calcium release and transport in the generalised stochastic FDF model may be used

for determination of the critical levels of extracellular Ca2+, and values of other

controllable variables, necessary for an experiment to exhibit the types of abortive

waves that would signal the onset of a DP phase transition. This may provide the

first experimental realisation of the critical exponents for the intensely studied DP

universality class in statistical physics.

8.2 Further work

We have shown that the biophysically motivated DYK model of calcium release can

be viewed as possessing an IP3 sensitive threshold (Chapter 4). The use of this IP3

sensitive threshold within the stochastic FDF framework would allow the investiga-

tion of the effects of stochastic fluctuations in IP3 levels. Although not expected to

influence any critical exponents (since these should be independent of the details of

the model), the background level of IP3 would be expected to influence the speed

and shape of a travelling wave. Interestingly precisely this issue has been recently

addressed by Shuai and Jung [147] in a model of Ca2+ release which incorporates a

stochastic model of an IP3R.

Throughout this work we have made the assumption that diffusion is isotropic. How-

ever, the relaxation of this assumption does not lead to any technical difficulties. For

example, in two dimensions we might consider the replacement D∇2 → Dx∂xx+Dy∂yy

so that G(x, y, t) = exp[−t/τd] exp[−x2/4Dxt − y2/4Dyt]/4π
√

DxDyt. The remain-
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der of the formalism we have employed then carries over. Also as it stands the FDF

framework incorporates only a linear model of SERCA pump, although a common

model of such a process is to consider a sink of the form un/(K + un). A piecewise

constant version of such a function (valid as n → ∞) may be easily studied within

the FDF framework.

The stochastic phase plane analysis used for addressing threshold noise [36] may also

be suited for establishing the distribution of release event duration. Once this is

determined the discrete time update rule can be replaced by an iterated function

system where τR is treated as a random variable (with known distribution).

In the FDF framework it will also be possible to explore the importance of focal sites

on wave initiation and propagation. Focal release sites are distinguished by their

higher sensitivity to IP3 and their close apposition to neighboring release sites. They

are known to be able to entrain both the temporal frequency and spatial directionality

of calcium waves [107]. This issue has recently been considered by Falcke from a

theoretical perspective [51, 52]. Falcke shows that, for a stochastic realisation of the

DYK model, large period (noise induced) oscillations may be perceived as a nucleation

phenomena where the period of oscillation depends on the geometry of the array of

release sites.

The recent experimental progress in determining the precise spatio-temporal recruit-

ment pattern of sparks in rat atrial myocytes [100] provides an ideal testing ground

for the use of a stochastic FDF framework to understand the behaviour of real cells.

An important aspect of this particular cell that can naturally be accommodated

within our FDF framework is the separation of stores into subsarcolemmal junctional

SR (JSR) and central nonjunctional SR (NJSR) classes. It is known that Ca2+ rise

in atrial myocytes occurs at so-called eager-sites in the subsarcolemmal region fol-

lowed by CICR wave propagation into the deeper layers of the cell. It would appear

that enchanced excitability of the eager-sites leads to a predetermined microscopic
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activation sequence of Ca2+ sparks whereby single cells produce reproducible inho-

mogeneous Ca2+ release upon depolarisation. Models of the VOCC channels (that

mediate the entry of the electrical signal into the cell) may be developed using an

appropriate FDF voltage dependent (rather than Ca2+) threshold function. Since

eager-sites display the highest frequency of spontaneous Ca2+ sparks in resting cells

the functional distinction between JSR and NJSR stores may be modelled using a

non-uniform distribution of thresholds. In particular the use of a stochastic FDF

model will allow the investigation of how the geometry of release sites gives rise to

nucleation phenomena. Furthermore, such a modelling study will be able to probe

the way in which the failure to recruit Ca2+ sparks appropriately can lead to defective

excitation-contraction coupling in cardiac cells [64].

In addition to forming the global Ca2+ transient underlying contraction, Ca2+ sparks

can also cause depolarisation of cardiac cells and thereby enhance or corrupt the

rhythm of the heart. Incubation of electrically-paced atrial myocytes causes the ap-

pearence of spontaneous subsarcolemmal Ca2+ sparks [97], which are probably due

to the activation of IP3Rs that co-localise with RyRs in these cells. The progressive

increase in cytoplasmic Ca2+ caused by the summation of infrequent subsarcolemmal

Ca2+ sparks promotes electrogenic forwardmode Na+/Ca2+ exchange. Because of the

strategic firing of subsarcolemmal Ca2+ spark sites, only a few events may be neces-

sary to create enough inward current to drive a cell to the threshold for depolarisation

[68]. The ability of a few Ca2+ sparks to enhance cardiac automaticity (increase the

frequency of spontaneous action potentials) has potentially serious implications for

the generation of cardiac arrhythmias and sudden heart failure. The FDF frame-

work may be suited to probing the issue of spontaneous release from the SR from a

theoretical perspective. In particular, it is possible to consider the role of the dual

presence of both RyRs and IP3Rs and their spatial distribution in generating delayed

after-depolarising (DAD) currents [101]. Moreover, a theoretical study of wave initi-

ation and propagation can be compared to experiments where each receptor class is
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pharmacologically knocked out. Using a theoretical approach we may determine the

conditions that separate subthreshold DADs (associated with a non-regenerative ring

of Ca2+ around the cell) from suprathreshold DADs (associated with a ring of sparks

that propagates to the deep cell layers).

Finally, the generalised FDF model can be easily extended to a fully three dimensional

system. This is especially relevant to the modelling of subsarcolemmal waves in atrial

myocytes, where release sites are arranged along one-dimensional lines in a three-

dimensional cell. By generalising the one-dimensional analysis and incorporating the

appropriate inhomogeneous mixed boundary conditions this problem may be tackled

using Fourier techniques along the lines described by Lemon [95].



Appendix A
Numerical Issues

A.1 XPPAUT

The XPPAUT package has been developed by Bard Ermentrout [49] at the University

of Pittsburgh and is freely available free at http://www.pitt.edu/∼phase/. It is an

interactive package for numerically solving and analysing differential equations. It

also provides a simple interface to most of the common features of the numerical

bifurcation software AUTO (ftp://ftp.cs.concordia.ca/pub/doedel/auto), originally

developed by E J Doedel [46].

We list XPPAUT codes (*.ode files) that have been used to produce some of the

figures in Chapters 2 and 5.

Program 1. Oscillations in the two-pool model

#Parameters

par mu=0.2,gam=2,eps=0.04,bet=0.13,alfa=0.9,del=0.004,n=2,m=2,p=4

#Equations

156
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u’=mu-u-gam*f(u,v)/eps

v’=f(u,v)/eps

f(u,v)=bet*((u^n)/(1+u^n))-((v^m)/((v^m)+1))*((u^p)/(alfa^p+u^p))-del*v

done

Program 2. Oscillations in the full DYK model of IP3R

#Parameters

par p=1

#Equations

dx000/dt=-(v1+v2+v3)

dx100/dt=-(v4+v5-v1)

dx001/dt=-(-v2+v8+v9)

dx010/dt=-(-v3+v11+v12)

dx101/dt=-(-v9-v4+v15)

dx011/dt=-(-v8+v17-v11)

dx110/dt=-(v19-v5-v12)

dc/dt=(r1*(x110)^3+r2)*(caer-c)-(r3*c^2)/((c^2)+(kp^2))

#Functions

x111=1-(x000+x100+x001+x010+x101+x011+x110)

v1=kp1*p*x000-km1*x100

v2=kp4*c*x000-km4*x001

v3=kp5*c*x000-km5*x010

v4=kp2*c*x100-km2*x101

v5=kp5*c*x100-km5*x110

v8=kp5*c*x001-km5*x011

v9=kp3*p*x001-km3*x101

v11=kp4*c*x010-km4*x011

v12=kp1*p*x010-km1*x110
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v15=kp5*c*x101-km5*x111

v17=kp3*p*x011-km3*x111

v19=kp2*c*x110-km2*x111

#Fixed variables

kp1=400,kp2=0.2,kp3=400,kp4=0.2,kp5=20

km1=52,km2=0.21,km3=377.36,km4=0.029,km5=1.65

caer=1,kp=0.1,r1=20,r2=0.004,r3=1.2

done

Program 3. Travelling waves in the reduced DYK model

#Parameters

par p=0.7,s=2

#Initial conditions

c(0)=0.2944

w(0)=0

y(0)=0.6431

#Fixed variables

k1=400,k2=0.2,k3=400,k4=0.2,k5=20

km1=52,km2=0.21,km3=377.36,km4=0.029,km5=1.65,

kp=0.1,D=1,caer=1, r1=20,r2=0.004,r3=1.2

bigK1=km1/k1

bigK3=km3/k3

bigK5=km5/k5

bigK2=km2/k2

bigK4=km4/k4

#Equations

c’=w

w’=(s*w-(r1*x110^3+r2)*(caer-c)+r3*c^2/(c^2+kp^2))/D
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y’=((hinf(c,p)-y)/tau(c,p))/s

#Functions

alfa(c,p)=(km4*bigK2*bigK1+km2*p*bigK4)*c/(bigK4*bigK2*(p+bigK1))

betta(c,p)=(km2*p+km4*bigK3)/(p+bigK3)

x110=p*c*y/((p+bigK1)*(c+bigK5))

hinf(c,p)=betta(c,p)/(alfa(c,p)+betta(c,p))

tau(c,p)=1/(alfa(c,p)+betta(c,p))

done

Program 4. Oscillations in the Atri model

#Parameters

par mu=1

#Equations

c’= kflux*mu*h*(b+c*(1-b)/(k1+c)) - gam*c/(kgam+c)

h’=(k2^2/(k2^2+c^2)-h)/tauh

#Fixed variables

b=0.111,gam=2,tauh=2,k1=0.7,k2=0.7,kgam=0.1,kflux=8.1

done

Program 5. Numerical simulation for orbit connection in the reduced DYK

model

#Parameters

par p=0.2622,caer=1,dx=1,nstar=200,I0=35

par del1=30,del2=50,td=1,r1=20,r2=0.004,r3=1.2

#Initial conditions

c[0..200](0)=0.00825

y[0..200](0)=0.97643
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#Equations

dc0/dt=(r1*x110(c0,y0)^3+r2)*(caer-c0)-r3*c0^2/(c0^2+kp^2)+

+D*(c1-c0)/dx^2+I(t)

dc[1..199]/dt=(r1*x110(c[j],y[j])^3+r2)*(caer-c[j])-r3*c[j]^2/(c[j]^2+kp^2)+

+D*(c[j-1]-2*c[j]+c[j+1])/dx^2

dc200/dt=(r1*x110(c200,y200)^3+r2)*(caer-c200)-r3*c200^2/(c200^2+kp^2)+

+D*(c199-c200)/dx^2

dy[0..200]/dt=(hinf(c[j])-y[j])/tau(c[j])

#Functions

alfa(c)=(km4*bigK2*bigK1+km2*p*bigK4)*c/(bigK4*bigK2*(p+bigK1))

betta(c)=(km2*p+km4*bigK3)/(p+bigK3)

x110(c,y)=p*c*y/((p+bigK1)*(c+bigK5))

hinf(c)=betta(c)/(alfa(c)+betta(c))

tau(c)=1/(alfa(c)+betta(c))

bigK1=km1/k1

bigK3=km3/k3

bigK5=km5/k5

bigK2=km2/k2

bigK4=km4/k4

I(t)=sum(0,nstar)of(I0*heav(t-i’*del1)*heav(td-(t-i’*del1)))+

+sum(nstar+1,400)of(I0*heav(t-nstar*del1-(i’-nstar)*del2)*heav(td-

-(t-nstar*del1-(i’-nstar)*del2)))

#Fixed variables

k1=400,k2=0.2,k3=400,km4=0.029,km5=1.65,km1=52,km2=0.21

km3=377.36,k5=20,k4=0.2,kp=0.1,vc=0.185,D=1

@ MAXSTOR=1000000

#dt=0.1

done
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Program 6. Travelling front in the continuum FDF model

# Bistable wave simulation

#Parameters

par d=30,dx=0.2,sigma=5,taur=1,taud=10000000,cth=0.1

#Initial conditions

c[0..100](0)=0

s[0..20](0)=1.0

s[21..100](0)=0

#global 1 c0-cth {s0=1}

global 1 c10-cth {s10=1}

global 1 c20-cth {s20=1}

global 1 c30-cth {s30=1}

global 1 c40-cth {s40=1}

global 1 c50-cth {s50=1}

global 1 c60-cth {s60=1}

global 1 c70-cth {s70=1}

global 1 c80-cth {s80=1}

global 1 c90-cth {s90=1}

global 1 c100-cth {s100=1}

#Equations

dc0/dt = sigma*heav(s0)/2/taur-c0/taud+d*(c1-c0)/dx^2

dc[1..99]/dt = sigma*heav(s[j])/taur-c[j]/taud+d*(c[j-1]-2*c[j]+c[j+1])/dx^2

dc100/dt = sigma*heav(s100)/2/taur-c100/taud+d*(c99-c100)/dx^2

ds[0..100]/dt = -heav(s[j])/taur

#Auxiliary function

aux logc[0..100] = c[j]

#Numerical method characteristics

@ total=2,trans=0,dt=0.0001,xlo=0,xhi=2000,ylo=0,yhi=1
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@ maxstore=1000000,bounds=10000

@ xplot=x,yplot=Ca10

done

Program 7. Travelling front in the discrete FDF model

# Bistable wave simulation

#Parameters

par d=30,dx=0.2,sigma=5,taur=0.01,taud=10000000,cth=0.1

#Initial conditions

c[0..100](0)=0

s[0](0)=1.0

s[1..100](0)=0

#global 1 c0-cth {s0=1}

global 1 c10-cth {s10=1}

global 1 c20-cth {s20=1}

global 1 c30-cth {s30=1}

global 1 c40-cth {s40=1}

global 1 c50-cth {s50=1}

global 1 c60-cth {s60=1}

global 1 c70-cth {s70=1}

global 1 c80-cth {s80=1}

global 1 c90-cth {s90=1}

global 1 c100-cth {s100=1}

#Equations

dc0/dt = sigma*heav(s0)/2/taur-c0/taud+d*(c1-c0)/dx^2

dc[1..99]/dt = sigma*heav(s[j])/taur-c[j]/taud+d*(c[j-1]-2*c[j]+c[j+1])/dx^2

dc100/dt = sigma*heav(s100)/2/taur-c100/taud+d*(c99-c100)/dx^2

ds[0..100]/dt = -heav(s[j])/taur
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#Auxiliary function

aux logc[0..100] = c[j]

#Numerical method characteristics

@ total=0.5,trans=0,dt=0.0001,xlo=0,xhi=2000,ylo=0,yhi=1

@ maxstore=1000000,bounds=10000

@ xplot=x,yplot=Ca10

done

A.2 MATLAB

Many figures and all animations have been performed using the software package

MATLAB produced by The MathWorks, Inc. (http://www.mathworks.com). MAT-

LAB provides an interactive development tool for scientific and engineering problems

and more generally for those areas where significant numerical computations have to

be generated. Program codes and animations are presented on the CD provided.

A.3 Fourier spectral methods

Spectral methods are based on the global representations of functions, usually by

a trigonometric or polynomial interpolants, whereas in other methods, such as finite

elements or finite differences, the underlying expansion involves local interpolants such

as piecewise polynomials. In practice this means that the accuracy of the spectral

method is much higher than others.

We have used a Fourier interpolant on a bounded domain for the generation of spectral

differentiation matrices. The nodes have been determined by

xk = (k − 1)h, h =
2π

N
, k = 1, ..., N. (A.1)

Since the canonical interval for the method is [0, 2π], we have applied a linear trans-



APPENDIX A. NUMERICAL ISSUES 164

formation xk ←→ Lxk

2π
to convert the domain [0, L] where the differential equation is

defined to [0, 2π]. The differentiation processes in the Jacobian M of Chapter 3 has

been represented by a first- and second - order differentiation matrices

D
(1)
k,j =





0, k = j

1
2
(−1)k−j cot (k−j)h

2
, k 6= j

(A.2)

and

D
(2)
k,j =






0, k = j

−1
2
(−1)k−j csc2 (k−j)h

2
, k 6= j,

(A.3)

cot(z) = 1
tan(z)

, csc(z) = 1
sin(z)

.

A.4 Intercellular waves in the FDF model

The system of equations for b1, b2 and B1 as a function of m is as follows:




pλmρ+
1 b1 + pλ−mρ+

2 b2 + λm+1(
√

δ(ν1 − 1)− p(ν1 + 1))B1 = −pα

λm(
√

δρ−
1 + pρ+

1 )b1 + λ−m(
√

δρ−
2 + pρ+

2 )b2 − pλm+1(ν1 + 1)B1 = −pα

(ν1 + 1)b1 + (ν2 + 1)b2 = s− α,

(A.4)

where

ρ+
1 = e1/

√
δν1 + e−1/

√
δ, ρ−

1 = e1/
√

δν1 − e−1/
√

δ,

ρ+
2 = e1/

√
δν2 + e−1/

√
δ, ρ−

2 = e1/
√

δν2 − e−1/
√

δ.

The concentration of calcium in the (m + 1) cell satisfies the equation um+1(0) =

B1λ
m+1 +ν1B1λ

m+1, where B1 is obtained from the system of equations (A.4). Thus,

um+1(0) is given by:

um+1(0) = p(1 + ν1)[2e1/
√

δλm(α− s)(ν2 − ν1) + α(1 + ν1)(1− e2/
√

δν2)+

αλ2m(1 + ν2)(e
2/

√
δν1 − 1)]/D,

(A.5)
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where

D = λ2m(1 + ν2)[
√

δ(1− ν1)(e
1/

√
δν1 − 1) + 2pν1(e

1/
√

δ − 1)]+

√
δ(1− ν2

1)(1− e1/
√

δν2) + 2p(1 + ν1)(ν1 − e1/
√

δν2).
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